Submitted 30 October 2020
Accepted 7 December 2020
Published 8 February 2021

Corresponding author
Muhammad Hasanain Chaudary,
mhchaudary@cuilahore.edu.pk

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.351

() Copyright
2021 Rizwan Ali et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Petri Net based modeling and analysis for
improved resource utilization in cloud
computing

Muhammad Rizwan Ali', Farooq Ahmad?®, Muhammad Hasanain
Chaudary?, Zuhaib Ashfaq Khan’, Mohammed A. Alqahtani®,
Jehad Saad Alqurni®, Zahid Ullah® and Wasim Ullah Khan”

! Department of Computer Science, Western Norway University of Applied Sciences,
Bergen, Norway

% Department of Computer Science, COMSATS University Islamabad, Lahore Campus,
Lahore, Pakistan

3 Department of Electrical & Computer Engineering, COMSATS University Islamabad,
Attock Campus, Attock, Pakistan

* Department of Computer Information Systems, College of Computer Science and Information
Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

> Department of Educational Technology, College of Education, Imam Abdulrahman Bin Faisal
University, Dammam, Saudi Arabia

® Department of Information Systems, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia

7 School of Electrical Engineering and Automation, Wuhan University, Wuhan, China

ABSTRACT

The cloud is a shared pool of systems that provides multiple resources through the
Internet, users can access a lot of computing power using their computer. However,
with the strong migration rate of multiple applications towards the cloud, more disks
and servers are required to store huge data. Most of the cloud storage service
providers are replicating full copies of data over multiple data centers to ensure data
availability. Further, the replication is not only a costly process but also a wastage
of energy resources. Furthermore, erasure codes reduce the storage cost by splitting
data in n chunks and storing these chunks into # + k different data centers, to tolerate
k failures. Moreover, it also needs extra computation cost to regenerate the data
object. Cache-A Replica On Modification (CAROM) is a hybrid file system that gets
combined benefits from both the replication and erasure codes to reduce access
latency and bandwidth consumption. However, in the literature, no formal analysis
of CAROM is available which can validate its performance. To address this issue, this
research firstly presents a colored Petri net based formal model of CAROM. The
research proceeds by presenting a formal analysis and simulation to validate the
performance of the proposed system. This paper contributes towards the utilization
of resources in clouds by presenting a comprehensive formal analysis of CAROM.

Subjects Algorithms and Analysis of Algorithms, Computer Education, Data Science
Keywords Cloud computing, Replication, Colored Petri net, Formal analysis

INTRODUCTION

Cloud computing is an emerging paradigm of information technology. Moreover, cloud
computing is an IT criterion that provides universal access to shared pools of system
resources through the Internet. The resources can be provided on demand on pay or in the

How to cite this article Rizwan Ali M, Ahmad F, Hasanain Chaudary M, Ashfaq Khan Z, Alqahtani MA, Saad Alqurni], Ullah Z, Khan
WU. 2021. Petri Net based modeling and analysis for improved resource utilization in cloud computing. Peer] Comput. Sci. 7:e351
DOI 10.7717/peerj-cs.351

http://dx.doi.org/10.7717/peerj-cs.351
mailto:mhchaudary@�cuilahore.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.351
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

form of a subscription. With Internet access growth, cloud computing is emerging in the
industry, academia, and society. Due to a large number of resources, the cloud uses
virtualization for resource management. Further, clouds need to stimulate data centers’
design so that data can be readily available to users anywhere in the world (Buyya et al.,
2009).

Services
There are four different services in cloud computing.

Software as a Service

Software as a Service (SaaS) is a multi-tenant platform that enables cloud users to deploy
their applications to the hosting environment. Further, it supports different cloud
applications in a single logical environment to achieve optimization in terms of speed,
security, availability, scalability, and economy (Dillon, Wu ¢ Chang, 2010).

Platform as a Service

Platform as a Service (PaaS) facilitates the cloud user to organize, develop and manage
various applications through a complete “software development lifecycle”. Further, it also
eliminates the requirement of an organization to traditionally build and maintain the
infrastructure, to develop applications (Sajid ¢~ Raza, 2013). By using Saa$, cloud users can
host different applications while PaaS offers a platform to develop different applications
(Dillon, Wu & Chang, 2010; Sajid & Raza, 2013).

Infrastructure as a Service

It offers direct access to resources such as storage, computer, and network resources used
for processing (Dillon, Wu ¢ Chang, 2010). Infrastructure as a Service (IaaS) sets up an
independent virtual machine (VM) to transform the architecture of the application so that
multiple copies can be executed on a single machine. Moreover, it provides access to
the infrastructure and delivers additional storage for network bandwidth of the corporate
web servers and data backups. An important feature of Iaa$ is that extensive computing
can also be switched on, which previously was only accessible to people with the facility
of high power computers.

Database as a Service

Database as a Service (DaaS) is a self-service cloud computing model. In DaaS, user request
database services and access to the resources. Daa$S provides a shared, consolidated program
to provide database services on a self-service model (Mateljan, Cisi¢ & Ogrizovié, 2010).

Deployment models

Based on environmental parameters including openness, storage capacity and
proprietorship of the deployment infrastructure, one can choose a deployment model from
the types of cloud deployment models given below. The following are the types of cloud
computing available in the literature.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 2/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Public cloud

Generally, public clouds may be owned and managed by academic or government
organizations and it is used by common users and the public. In the traditional regular sense,
in public cloud sources, the internet is delivered dynamically and based on self-service via the
Internet by an external supplier who shares resources (Ahmed et al., 2012). Moreover,
security issues occur in such types of clouds and are more prone to attack. That is why the
user has access to the public cloud via the correct validations (Sajid ¢» Raza, 2013).

Private cloud

Such kind of infrastructure only works for a specific organization while off-premise private
cloud is used by one company and the infrastructure is implemented by another company
(Ahmed et al., 2012). There is no restriction of network bandwidth, security risks, and
legal requirements in a private cloud, and data is managed within the organization, which
is not permitted in a public cloud (Kamboj & Ghumman, 2016).

Hybrid cloud

It is a combination of two or more separate cloud infrastructures (public or private) and
forms another type of cloud, the so-called hybrid cloud. This concept is also known as
cloud bursting where several integrated cloud infrastructures remain unique entities
(Mell & Grance, 2011). Hybrid cloud facilitates organizations to shift overflow traffic to the
public cloud to prevent service interruption.

Federated cloud

To handle the site failure, cloud infrastructure providers have established different data
centers at different geographic locations to ensure reliability. However, this approach has
many shortcomings, one problem is that the cloud users may find it difficult to know
which remote location is best for their application to host. Cloud service providers have a
finite capacity and it is difficult for a cloud infrastructure provider to set up different
data centers at different geographic locations. This is why different providers of cloud
services fall under one umbrella and form a federated cloud (Varghese ¢ Buyya, 2018).
In times of work overload, cloud federation offers the opportunity to avail available
computational, cost-effective, on-demand, and reliable storage options to other cloud
service providers (Buyya, Ranjan & Calheiros, 2010). For example, an EU-based EGI
federated cloud shares 300 data centers with 20 cloud providers.

Issues

Current data centers are hosting multiple applications having time latency from a few
seconds to multiple hours (Patterson, 2008). The main focus of Cloud computing is to
provide a performance guarantee and to take care of data privacy. With the high growth
rate of data on the Cloud, more massive servers’ need is rising day by day. Demand for
higher performance is being fulfilled by replicating data in multiple data centers worldwide
without thinking about energy consumption. Further, on average, every data center utilizes
as much energy as 25,000 households. Data centers are costly and unfavorable for the

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 3/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

. Data Center having Redundant Copies
- Primary Data Center

- Data Center

Figure 1 CAROM process flow. Full-size] DOT: 10.7717/peerj-cs.351/fig-1

environment, as they emit more carbon than both Argentina and the Netherlands
(Patterson, 2008).

Need of cache-a replica on modification

Cache-A Replica On Modification (CAROM) is a hybrid cloud file system that merges the
benefits of both replication and erasure codes. Figure 1 reflects the process flow of
CAROM. CAROM has a cache at each data center. Cache points out the local access, and
every data center performs as a primary data center. The data object which is frequently
accessed is stored in the cache to avoid the extra computational cost. In contrast, those
objects that are accessed rarely are divided into m data chunks. Further, distribute them
among n + k data nodes, tolerate k failures, and take the storage cost to a minimum and
make the data center environment friendly (Ma et al., 2013).

Contribution of research

Formal methods are mathematical methods used to model or specify any system. Petri net
provides strong mathematical and graphical representations to incorporate concurrency,
sequential execution, conflicts, determinism, resource sharing, timing information,
communication, synchronization, and distribution in the underlying system. This paper's
primary goal is to develop a data scheduling model based on colored Petri net (CPN),
which utilizes CAROM to reduce storage cost and bandwidth latency. Statistical analysis is
provided to elucidate the performance of the model. Simulation is performed, and
verification is also presented of the proposed model.

The rest of the article is organized as follows: “Related Work” presents related work.
“Colored Petri Nets” presents basic terminology, notations, and graphical convention
about Petri Nets. “Formal Model of CAROM” presents the formal modeling of the
CAROM based data scheduling framework. “Simulation” presents a formal analysis of the

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 4/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-1
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

developed model. “Analysis” presents the simulations, its results, and the discussion on it.
“Conclusion” concludes our work and gives final thoughts about the strengths and
weaknesses of our approach.

RELATED WORK

In the cloud, resource scheduling is a challenging field (Mathew, Sekaran ¢ Jose, 2014).
Magnificent work has been done in resource scheduling in the cloud. Some approaches are
relevant to resource scheduling in the cloud. This approach’s immediate attention is to
optimize time performance, like completion time, total delay, and response time (Mathew,
Sekaran ¢ Jose, 2014). Zhan et al. (2015) provides a detailed survey of cloud computing.
Ant colony optimization algorithm for scheduling tasks according to budget is
presented in Zuo et al. (2015). In Adil et al. (2015), a heuristic algorithm is proposed

for task scheduling. Kumar ¢» Verma (2012) presents a genetic algorithm to schedule
independent tasks. In Mateescu, Gentzsch ¢ Ribbens (2011), another genetic algorithm is
presented that improves the makespan of resources. The authors of De Assun¢do, Di
Costanzo & Buyya (2010) proposed an architecture that provides a platform for
scientifically, high performance (HPC) applications. The cornerstone of the proposed
architecture is the Elastic cluster, which expands the hybrid cloud environment

(De Assungado, Di Costanzo ¢ Buyya, 2010). Researchers in Mastelic et al. (2015) analyzed
the assessment between performance and usage costs of various facilities algorithms for
using resources from the cloud to expand a cluster capacity. The authors in Javadi,
Abawajy ¢ Buyya (2012) propose non-disruptive source facilities policies for hybrid cloud
environments that they have evaluated using a model-based simulation instead of our real
case study performance evaluation. Researchers in Mattess, Vecchiola ¢» Buyya (2010) present
a facility algorithm for expanding cluster capacity with Amazon EC2 Spot Organizations.
Research work in Yuan et al. (2017) provides a profit maximization model for private
proposals cloud providers using the temporal variation of prices in a hybrid cloud. Although
they are similar to many others, they take time, and data and networks’ costs are negligible.

However, all the algorithms in the literature were limited to static resources only. With
the revolution of cloud computing, the number of data servers is increasing across the
world. The construction of the data center is not only cost-effective but also not in favor
of the environment. Much focus is given to energy-optimized resource scheduling in
cloud computing. The researcher has proposed an aware energy model in the form of
directed acyclic graphs in Gan, Huang ¢ Gao (2010). In Zhao et al. (2016), two fitness
functions are defined: job completion time and energy.

A researcher in Shen et al. (2017) proposed a resource allocation technique that allocates
resources to virtual machines taking care of energy. DVFS method has been presented
in Hosseinimotlagh, Khunjush ¢ Samadzadeh (2015), which schedules a single task and
takes care of the voltage supply. One researcher in Wu, Chang ¢ Chan (2014) has
presented a virtual machine scheduling algorithm that achieves energy optimization and
reduces host temperature. In Mhedheb et al. (2013), a method is presented to reduce both
network and server power. Research work in Xia et al. (2015) scaled the voltage to

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 5/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

reduce energy costs. Scaled processor utilization and resource consolidation has been
presented in Lee ¢ Zomaya (2012) for energy optimization.

All these methods focus on reducing the cost of energy without the care of job
completion time. In Beloglazov, Abawajy ¢» Buyya (2012), the researcher proposed energy-
aware mapping of VM:s to cloud servers as a problem with bin-packing, independent of the
types of workload. Klein et al. (2014) presented a framework of brownout for energy
optimization. All users have to bear either time latency or cost on a cloud file system.

COLORED PETRI NETS

Petri nets are bipartite directed graphs with the power of behavioral analysis of the
modeled system through it. CPN is a mathematical technique used for modeling parallel
systems and graphical analysis of their characteristics (Jensen, 2013; Milner, 1997; Ullman,
1998). CPN is the combination of Petri Net and Standard ML (Emerson ¢ Sistla, 1996;
Virendra et al., 2005). CPN allows defining some user-defined data types along with some
standard declarations. It is a general-purpose modeling language and has the power to
model parallel systems and analyze their performance. Formal Definition of CPN is
presented below (Jensen ¢ Kristensen, 2009):
A netisatuple N= (P, T, A, %, C, N, E, G, I) where:

P is a set of places.

T is a set of transitions.

A is a set of arcs where PU T=P n A=T' n A=0

2 is a set of color sets

C is a color function, thatis, C: P> X

N is a node function. It maps A into (P x T) U (T x P).

E is an arc expression function. It maps each arc a € A into the expression e.

G is a guard function. It maps each transition t € T to a guard expression g. The output

of the guard expression should evaluate to Boolean value: true or false.

I is an initialization function. It maps each place p into an initialization expression i.

We can map each place into a multi-set of tokens in CPN through a mapping function
called Marking. Initial Marking reflects the initial state of a model. Final Marking
represents the final state of the system.

FORMAL MODEL OF CAROM

For modeling, high-level architecture and the components of the system are identified in
the first phase. After that, the identified components’ interaction points are defined for
the smooth implementation of the component-based architecture. Further, a mixture of
top-down and bottom-up approaches is adopted in this paper to model the framework.
CAROM uses some part of the local storage disk as a cache. Whenever a written request of
a new file is received, the complete file is stored in the reserved memory of each DC named
as cache.Whenever the cache is near to be filled, the file least recently used is removed
from the cache. It is distributed on #n + k data nodes after dividing into » chunks.
However, suppose a read request for a file is received. In that case, it is checked first in
the nearest DC. If it is found, then it is downloaded directly, without any computational

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 6/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Read

Regeneras fom chmiks and sore
Mearest DG DG aut of n+k ek D'
Direct Download Store in cache
Figure 2 File access process flow of CAROM. Full-size K&] DOTI: 10.7717/peerj-cs.351/fig-2
REQUEST _l
READ WRITE
—
r r
GET FROM REGENERATE STORE IN SPLIT AND
CACHE DATA CACHE DISTRIBUTE
RESPONSE
Figure 3 Hierarchical view of the model. Full-size k] DOT: 10.7717/peerj-cs.351/fig-3

cost. Whenever a request of that file is received that is not available in the cache. Data is
regenerated from n data nodes out of n + k (Ma et al., 2013). The strategy discussed above
is presented in the form of a flow chart (see Fig. 2).

Hierarchical view of model

Figure 3 depicts the hierarchical view of the model.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 7122

http://dx.doi.org/10.7717/peerj-cs.351/fig-2
http://dx.doi.org/10.7717/peerj-cs.351/fig-3
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

NO

ﬂext
\ers)
DATA DB3 ¢ [X1=X3 andlso X1=X2]
NO
X1 K
DB3]
D
NO ¢ X2
Next
Key2
DATA DB2 b
No
X3
DB2]
CacheMis],
(X1,"Remove Key") \/—\)
ﬂe " DBl \y
DATA
DBT]
(0,200,
Reconstruct
bata Store —
RecData in Distribute
DB

[Store-DB] bl

ReGenerate
Data

ReGenerjte-Data

@+wait() AllRequest

Request

Request

Remove
Key

REQUEST
read(req)

‘Wready
Exist In
Cache

DATA

Figure 4 Top level view of proposed scheme. Full-size k] DOT: 10.7717/peerj-cs.351/fig-4

Colored Petri nets model
In order to model the CAROM based framework using CPN, the components Sender,
Data Center, and Receiver are developed. The Data Center component is further extended
to Cache and DataNode sub-components, as shown in Fig. 3. Table 1 represents the color
sets used in the model. As data types, the color sets are mapped to the places of the
model given in Fig. 4. For instance, color set NO, in the third row of Table 1, is mapped to
the place KEY while color set DATA, in the fourth row of Table 1, is mapped to the place
Next_Key in the CPN model shown in Fig. 4. Moreover, product type color sets are
constructed by taking the cartesian product of the color sets. For instance, the color set
REQUEST in Table 1 is constructed using color sets NO, DATA, OP and NO.

Table 2 represents the list of variables used in the model. A variable v is used in the arc
inscription, and Type[v] € %, to fetch the data from the place. Further, the variables
construct arc expression, which is assigned to arc a through arc expression function

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 8/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-4
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Color sets of the model.

Color set

Defination

colset UNIT = unit;

colset BOOL = bool;

colset toa = int; closet NO = int;
colset DATA = string timed;
colset OP = string timed;

colset REQUEST = product NO x DATA x OP x NO timed;

colset File= product NO x DATA x toa timed;

colset ND=product NO x DATA timed;
colset RR=product NO x NO timed;
colset RRL=list RR timed;

colset nkd=product NO x NO x DATA;

colset RecData = list nkd timed;
colset PACKET = union Data:nkd timed ;
colset sendData= product NO x NO x DATA timed;

colset sendList=list sendData timed;
colset cache = product NO x DATA x NO timed;

colset CacheList = list cache timed;

colset CacheHit= product NO x CacheList timed;
colset rcvSplit = product NO x PACKET;

colset packet=list PACKET timed;

Unit color set
Boolean color set
Integer color sets
Timed string color set
Timed string color set

Timed product of color set NO of type int, color set DATA of type string, color set
OP of type string and color set NO of type int.

Timed product of color set NO of type int, color set DATA of type string and color
set toa of type int.

Timed product of color set NO of type int and color set DATA of type string.

Timed product of color set NO of type int and color set NO of type int.

Timed list of color set RR.

Product of color set NO of type int, color set NO of type int and color set DATA of
type string.

Timed list of color set nkd.

Union of type Data(int*int*string),

Timed product of color set NO of type int, color set NO of type int and color set
DATA of type string.

Timed list of color set sendData.

Timed product of color set NO of type int, color set DATA of type string and color
set NO of type int.

Timed list of color set cache.

Timed product of a color set NO of type int and color set CacheHit of type list.
Product of color set NO of type int and color set PACKET of type union.
Timed list of color set PACKET of type union.

Table 2 Variables of the model.
Variable Defination
var p:PACKET; Variables of colour set PACKET.
var pak:packet; Variable of colour set packet.
var d,data,next:DATA; Variables of colour set DATA.
var n,nl,id,k,k1,X1,X2,X3:NO; Variables of colour set NO.

var cl:CachelList;

Variables of colour set CacheList.

var sl:SendList; Variable of colour set SendList.

var c:cache; Variable of colour set cache.
var rd,sd:RecData; Variables of colour set RecData.
var req,e:REQUEST; Variables of colour set REQUEST.

E: A—»EXPRV while Type[E(a)] = C(p)MS where EXPR is the set of expressions and MS is a
multiset. A marking is a function M that maps each place p € P into a multiset of tokens,
that is, M(p) € C(p)MS. Table 3 shows values (tokens) to represent the initial marking.

Arc expressions are evaluated by assigning the values to the variables in the expressions.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 9/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Initializations of the model.

Initial marking

val dbl=1"[Data(1,1,"C"),Data(2,1,"0"),Data(3,1,"E"),Data(4,1,"P")] @0;
val db2=1"[Data(1,2,"0"), Data(2,2,"U"),Data(3,2,"D"),Data(4,2,"E")] @0;
val db3=1"[Data(1,3,"L"),Data(2,3,"R"),Data(3,3," "), Data(4,3,"T")]@0;

val AllRequest=1"(1,"COL","WRITE",0)@0 +++ 1'(2,"OUR","WRITE",0)@0+++ 1'(3,"ED ","WRITE",0)@0+++ 1'(1," ,"READ",0)@0+++ 1" (2," ",'READ",0)
@0+++ 2'(4,"PET","WRITE",0)@0+++ 1'(5,RI ","WRITE",0)@0+++ 1'(5," ","READ",0)@0;

Further, expressions can be converted into functions to be mapped to arcs. Table 4
represents the functions used in this model.

Main module

We first identified high-level components of the system, and then each component is
step-wise refined. For such a purpose, hierarchical colored Petri nets are appropriate
formalism to make the model more straightforward and understandable. Figure 4
depicts the top-level view of the model. This is a hierarchical model in which multiple
substitution transitions connect with places. A substitution transition has its own definition.
Therefore, groups are identified from the detailed Petri net model and converted into
substitution transitions. There are twenty places and ten transitions, including seven
substitution transitions, named Cache, Store-DB, DB1, DB2, DB3, ReGenerate-Data
and Receiver.

Cache module

This module aims to decide whether the data will be directly available from cache or
reconstruct it from n different data centers. Figure 5 shows the CPN cache module, and it
has ten places and four transitions. Two places are in-sockets and six are out-sockets.
Whenever a token is added in the place “Check Cache” with operation value “READ?, it is
sent to transition “Cache Checked”, which also receives a “cacheList” from the place
“Cache”. Function member is a Boolean function. It returns true if the key of token coming
from the place “Check Cache” is found from cacheList (see Table 4 for all declared
functions). If member function returns true, then the function retrieve will get the data
against key from the cache.

Further, the function sends data to place “Cache Hit” and restores that data object in the
cache. In contrast, function updateLife will increment the value of the life of this object by
1. On the other side, if the function member returns false, then the key is sent to all
available data centers through “CacheMiss”.

Whenever a token is reached in place “Send to Cache” with operation value “WRITE”, it
causes enabling of the transition “Store_in_Cache” which can only be fired when the
cache is not full. Moreover, if the cache is not full and no data object is found with the same
key, then token is sent to place “Cache” and inserted on the head of the cacheList. However,
if the cache is full, then the token waits in place “Send to Cache” until the function
sort arranges the cacheList with respect to life of data objects. Further, the data object
having the least life is removed from cache, and it is sent to place “Split & Distribute”. If the

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 10/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Functions of the model.

Function

Purpose

fun check(n,k) = if(n>k) then n else k;

fun wait() = discrete(10,100);

fun checkl(n,k) = if n=k then k+1 else k;

fun success() = discrete(1,10)<=9;

fun successl(n,d) = if success() then 1'(n,d) else empty;

fun success2(k) = if success() then 1'k else empty;

fun transmit(n,k,d) = if n=k then 1'd else empty;

fun transmitl(n,k) = if n>k then 1'k else empty;

fun read(req:REQUEST) = if #3(req)="READ" then 1'(#1(req)) else
empty;

fun write(req:REQUEST)= if #3(req)="WRITE" then 1'req else
empty;

fun length [] = 0 | length (h :: t) = 1+length t;

fun cacheMember(req:REQUEST,[])=false | cacheMember(req,(n,d,
k):t)=if(#1(req))=n then true else cacheMember(reg,t);

fun store(req:REQUEST,cl:CacheList) = ifcacheMember (req,cl) then
cl else (#1(req),#2(req),#4(req))::cl;

fun member (k1,[]) = false | member (k1,(k2,v2,k3)::t) =if k1=k2 then
true else member (k1,t);

fun member2((k,n,d),[])=false| member2((k,n,d),(k1,n1,d1):t)=if
k=k1 andalso n=n1 andalso d=d1 then true else member2((k,n,d),t);

fun remDup((k,n,d),sd)= if member2((k,n,d),sd) then sd
else (k,n,d)::sd;

fun insert((k,n,d),[])=[(k,n,d)] | insert((k,n,d),(k1,n1,d1):t)=if
n<=nl then (k,n,d):(kl,nl,d1):t else (k1,n1,d1):insert((k,n,d),t);

fun insert1((n,d,k),[])=[(n,d,k)] | insert1((n,d,k),(n1,d1,k1):t)=if
k<=Kk1 then (n,d,k)::(n1,d1,k1):t else (n1,d1,kl):insert1((n,d,k),t);

fun insert3((k,n,d),[])=[(k,n,d)] | insert3((k,n,d),(k1,n1,d1):t)=if
n<nl then (k,n,d)::(k1,n1,d1)=t else (k1,n1,d1)::insert3((k,n,d),t);

fun sort[] = [] | sort ((n,d,k):t)= insertl((n,d,k),sort t);

fun sort1[]=[] | sortl((k,n,d):t) = insert3((k,n,d),sortl t);

fun memberl1(k1,[])=false | member1 (k1,(k,k2,v2):t)= if k1=k2 then
true else member1(kl,t);

fun recData(k,nl1,d,rd)=if memberl(nl,rd) then rd else insert((k,nl,
d),rd);

fun checkDB(k,[])=false | checkDB(k,Data(k1,k2,v)::t) = if k=k1 then
true else checkDB(k,t);

fun recD1(k,Data(k1,k2,v)::t,rd, recData)=if k=k1then recData(k1,k2,
v,rd) else recD1(k,t,rd,recData);

fun found(k,pak,rd,recD1)=if checkDB(k,pak) then recD1(k,pak,rd,
recData) else rd;

fun notFound(k,pak)=if checkDB(k,pak) then empty else 1'k;

fun retrieve(kl,[]) = "NOT FOUND" | retrieve (k1,(k2,v2,k3)::t) = if
k1=k2 then v2 else retrieve(kl,t);

Enable transition if first token has greater value
Wait for a random time unit between 10 and 100
Increment if both tokens have same value

To check either random number is less than 9
Enable transition if random number is less than 9
Enable transition if random number is less than 9
Enable transition if both tokens have same value
Enable transition if first token has greater value

Enable transition with 1st argument of request if 3rd argument of request is
“READ”
Enable transition with whole request if 3rd argument of request is “WRITE”

Return length of a list

Check either a file exist in cache or not
Store a file on cache

Check either a token exist in a list or not
Check either a token exist in a list or not
Remove duplications

Insert in a list

Insert in a list

Insert in a list

Sort with respect to least frequently used
Sort with respect to least frequently used

Check either a token exist in a list or not
Reconstruct data

Check data in data base

Enable transition if data is regenerated
Enable transition if data is found in data base

Enable transition if data is not found in data base

Retrieve data from data base

(Continued)

Rizwan Ali et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.351

11/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 (continued).

Function Purpose

fun cacheHit(member,retrieve k,cl) = if member(k,cl) then 1 retrieve Signal to show data is available in cache
(k,cl) else empty;

fun cacheMis(member,k,cl)= if member(k,cl) then empty else 1'k; Signal to show data is not available in cache

fun SendTok(k1,k2,k3,k4) = if k3="WRITE" then 3" (k1,k2,k3,k4) else Enable either read or write transition
1 (k1,k2,k3,k4);

fun updateLife(k,(k1,v1,k2):t) = if k=k1 then (k1,v1,k2+1) =t else Update frequency
updateLife(k,t);
fun SplitData(n,d)= let val p1 = packetLength; fun splitdata (n,k,d) = Split data

let val d1 = String.size(d) in if d1<=p1 then [(n,k,d)] else (n,k,
substring (d,0,p1)):: splitdata(n,k+1,substring(d,p1,d1-p1)) end; in
splitdata(n,1,d) end;
fun Split(k,data) = (List.map(fn (n,nl,d)=>Data(n,n1,d))(SplitData Split data in n+k chunks
(k,data)));

Split
&
istribute

hd(cl) [Oufis

cache

if cacheMember(req,cl)
then 1’ "Already Exist”

Sort
Cache

Remove

LRU

Al
TacheList eoeieapny sl- Bl
< Cache
| th{cl)<c3|
Hlendth(cl) = o DATA
store(req,cl) Store req d
in
()] Cache I o
REQUEST
« 4
CachelList if member(k,cl)
- then updateLife(k,cl)
else cl
3 @+50
eMi aqber k,cl}@+50 - k
Cocremis) = Cache
b > cacheMis{member,k,cl)@+50 Checked :
NO cacheMis{member, k,cl)@+50 NO
cacheHit{member, retrieve,k,cl)
DATA
Figure 5 Cache module. Full-size K&] DOT: 10.7717/peerj-cs.351/fig-5

cache is not full but the cacheList has a record with the same key, then token will be sent to
place “Already Exist In Cache” by firing the transition “Send to Cache”.

Store in DB module

Figure 6 shows the Store in DB module of the model. It has two places and one transition.
One place is in-socket and one place is out-socket. Whenever the cache is full, the data
object with the least life is removed from the cache, and a token is added in the place
“Split & Distribute”. This token enables the transition “Split Data”. Then function Split is

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 12/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-5
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

split | SPIt(#1(c),#2(c)

m Data

)] ' PACKET

Figure 6 Store in DB module. Full-size k&l DOT: 10.7717/peerj-cs.351/fig-6

rd 1
found(k,pal:,rd,recD1) 1 db1 @+ wait()

1é pak palk
@ GetData DB1 D1
I : palk SN pipak

packet
l notFound(k pal) .
P
NO

Distribute

PACKET

Figure 7 DB module. Full-size 4] DOT: 10.7717/peerj-cs.351/fig-7

called, which divides the data value into n data chunks. All the n chunks are sent to place
“Distribute” for distribution among n + k databases.

DB module

This module is to retrieve the n data chunks from » + k data centers. DB module contains
three in-sockets and two out-sockets. Figure 7 illustrates the DB module of the model.
It has seven places and two transitions. Three places are in-sockets, two places are
out-sockets and one place is in-out-socket. Whenever a token is reached in place
“Distribute”, it is stored in the database along with its unique key. Whenever a token
having a key is added in the place “CacheMiss”, transition “GetData” will check the
data chunks against that key. If it is found, then the data chunk and its key will be sent to
place “Reconstruct Data”, which will get n data chunks from » + k data bases to re-generate
the original data with the tolerance of k failures.

Regenerate data module

This module is to combine # data chunks to reconstruct data into its original form.
Figure 8 shows the ReGenerate-Data module of the model. This module has nine places
and four transitions. Two places are in-out-sockets and four are out-sockets. In this
module, when we need to reconstruct data the place “Reconstruct_Data” receives all data
chunks against the search key from all available databases. Transition “RecD” remains
enable until all data chucks move from place “Reconstruct_Data”. Then, on arc between
the transition “RecD” and the place “Rec” the function remDup (see Table 4) is called, and
it removes all the duplications of data chunks. After that, the function sortI is called.

It sorts data chunks to recontruct the data. The place “Reconstruct” holds the token with
data in its original form. This place sends data the place “Reg Data”, which sends the data
towards substitution transition “Receiver”.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 13/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-6
http://dx.doi.org/10.7717/peerj-cs.351/fig-7
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

[(0,100,")]
Reconstruct
if #2(hd(rd))=100 D
then r N/ RecData
else ti(rd)
[length(rd)> 1]
rd 11
[length(sd)=23]
sd sd
RecD Rec Lk
it #1(hd(rd))<>} if #1(hd(rd))=k 1
then 1°k then remDup(hd(rd),sd)
else empty else sd Recata sorti(sd)
k
% if rd=[]
NO H
rd then empty e
else ti(rd) RECDRES

[n<>3 andalso rd<>[]] 1°(0,")

(n+1,d~(#3(hd(rd)))
R Reconstruct
(n.,d)

ND
(n,d)

Figure 8 Regenerate data module. Full-size K&] DOT: 10.7717/peerj-cs.351/fig-8

MO
I

@+ wait()

@+ wait()

NO

@+ wait{)

transmitifid,k) et ’\;\ success2(id) [raneminl
l Ack l‘ VN(; l Acl ' Td
Figure 9 Receiver module. Full-size K&l DOTI: 10.7717/peerj-cs.351/fig-9

Receiver module

Figure 9 shows the Receiver module. This module is to ensure that data is ultimately
transmitted and received by the user. The receiver module has fifteen places and eleven
transiotions. Two places are in-sockets and one is out-socket. In this module, whenever a
token is reached in Place “Y” or “CacheHit” it is sent towards the place “Send Queue”.
When token from the place “Send Queue” enables the transition “SendI” then chances of

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 14/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-8
http://dx.doi.org/10.7717/peerj-cs.351/fig-9
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Fin Metwork ReGereraeDai: Cathe Storef@ ZBL D32 [e: brcer

E\

(4L "Rersee Kes |

P

-

viaw Sit Cmate Man Net

LI AL TN

M { QT TR
[4] "
= ./{\ (oo

L{ERE]

Figure 10 Partial simulation of the module. Full-size K&l DOT: 10.7717/peerj-cs.351/fig-10

token lost are 90% over a network. If the token is lost, then place “Timer” will receive
the token. That token will be sent again to avoid the deadlock situation. If the token is sent
to place C to enable the transition “Receiver” then the transition sends data in place
“Response.” Further, the transition “TransmitAck” sends acknowledgment towards the
place “Ack Received”, which on receiving the token enables the transition “Remove” which
causes to remove that token from the place “SendQueue”.

SIMULATION

Numerous reenactment tools are used to demonstrate and execute a framework, like,
process model, SocNetV, Network Workbench. However, it is essential to mention that
CPN based formalism supports simulation through CPN Tools. To check the behaviour of
the proposed model, we run several manual and ten fully automated simulations of the
proposed model with CPN Tools. Figure 10 represents a partial simulation of the model
through its intermediate marking (state). In order to get the average completion time

of total requests to get both cached and non-cached data, ten simulations are performed
(see Table 6). Further, Table 6 shows that simulation 2 gives the high completion time to
get cached and non-cached data.

ANALYSIS

To analyze the performance of the proposed model, we performed the following:

Verification of model

State-space analysis of the proposed model is performed to monitor the proposed strategy's
possible behavior and amend them accordingly (see Table 5).

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 15/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-10
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 State space report of the model.
Statistics for O-graph

State Space
State Space

Nodes: 56744
Arcs: 56746
Secs: 300
Status: 56746
Scc Graph

Nodes: 56744
Arcs: 56746
Secs: 2

Boundedness Properties

Best Integer Bounds Upper Lower
Cache ' Cache 1 1 1
DB1 'DB1 1 1 1
Main ’ Check_Cache 3 0
Main ‘' Request 9 3
Main ' Send_to_Cache 4 0
Main ' Response 6 0
Network ' Next_Receive 1 1
Network ' Next_Send 1 1

Liveness Properties

Dead Markings

409 [543, 2369, 6744, 7430, ...]
Dead Transition Instances

None

Live Transition Instances

None

Fairness Properties

No infinite occurance sequences.

Performance analysis
To evaluate the performance of the modeled strategy, average delay, throughput, and
average queue lengths are collected by performing ten simulations of the model. For such
purpose, monitors are applied on the transitions “Check Request”, “Cache Checked”, “Split
Data”, “Get Data”, “Reg Data” and “Receive” and places “CacheHit”, “CacheMis1”, “Split”,
“Reconstruct Data” and “Response”. Statistical analysis of output data is performed.
Standard behavioral properties and trace patterns generated by our model are analyzed
by state space report. Table 5 illustrates the partial statistics generated by state space with
300 s. It reveals that the occurrence Graph (O-graph) has 56,744 nodes and 56,744 arcs.
Further, these statistics also depict the boundedness properties. The Upper bound
shows the maximum number of tokens in a place, while the lower bound shows the
minimum number of tokens that can be added to a specific place. It shows that places

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 16/22

http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Completion time.

Completion time

Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation 5
Simulation 6
Simulation 7
Simulation 8
Simulation 9

Simulation 10

CACHED
114
148
98
107
102
929
133
87
127
118

NON CACHED
187
205
151
162
132
144
161
142
174
149

Nodes InPath(1,4913)

Figure 11 State space graph.

Full-size k&l DOI: 10.7717/peerj-cs.351/fig-11

Cache, DBI, Next_Receive and Next_Send have both upper and lower bound 1, which
means these places always have one token.

However, the upper bound of the place “Request” is 9, while it's lower bound is 3.

Further, place “Response” has upper bound 6 and lower bound equal to zero. It shows that

at most 6 requests from place “Request” has been fulfilled and stored in place “Response”.

Liveness properties disclose that there exist 409 dead markings. Dead markings are

those markings that have no enabled binding elements. Such dead markings are

interpreted as final or terminal markings and not deadlock states of the modeled system.

The state-space specifies that the model is partially correct and generated results are

correct. Therefore, the state-space analysis conveys that the modeled system behaves

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351

17/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-11
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

COMPLETION TIME

400
350
300
250
200
150

I e\ e

50

s CACHED ese NON CACHED

Figure 12 Completion time. Full-size &l DOI: 10.7717/peerj-cs.351/fig-12

according to the requirements and the specifications. Further, the model preserves the
properties required for the utilization of storage resources.

The full state space of CPN has 56,744 nodes and 56,744 arcs, which cannot be depicted
in the reachability graph. Therefore, Fig. 11 shows a graphical representation of state space
from marking M 1-M 4913 by skipping some intermediate markings. In CPN Tools,
data collection monitors are applied to compute the average completion time. Table 6
depicts the average completion time of total requests to get both cached and non-cached
data for ten simulations.

Figure 12 also represents the completion time for each simulation performed. It shows
that in each simulation, cached data takes less time than non-cached. Therefore, it shows
that the proposed approach improves storage resource utilization. Further, it validates
the precision of our approach.

CONCLUSION

This research is about the issues of data storage and retrieval from cloud-based data
centers. Storage cost and bandwidth latency are the two major factors that influence the
performance of a system. To reduce the bandwidth latency, most cloud service providers
are using multiple copies of data, each on a separate data center across the world.
Moreover, data centers are expensive to build and also are unfriendly to the environment.
Erasure codes are the techniques that store data of n chunks in n + k data places. However,
erasure codes need some extra computation time to regenerate the data. CAROM
combined both techniques for dual benefits.

This research formally modeled CAROM using CPN formalism. Furthermore, we
formally verified our model with space state analysis. Moreover, we formally analyzed the
performance of our model by performing several simulations using monitors in

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 18/22

http://dx.doi.org/10.7717/peerj-cs.351/fig-12
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

CPN-Tools. Performance reports generated by CPN-Tools show that the model
outperforms the others. In the presented model, the cache size is fixed. The cache is
replaced by using the Least Frequently Used replacement algorithm. In the future, we will
use some heuristic algorithms to resize and replace the cache in cloud-based systems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Muhammad Rizwan Ali conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, and approved the final draft.

e Farooq Ahmad conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

e Muhammad Hasanain Chaudary performed the computation work, prepared figures
and/or tables, and approved the final draft.

e Zuhaib Ashfaq Khan conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

e Mohammed A. Alqahtani performed the experiments, performed the computation
work, prepared figures and/or tables, and approved the final draft.

o Jehad Saad Alqurni performed the experiments, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

e Zahid Ullah performed the computation work, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

e Wasim Ullah Khan performed the experiments, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Raw data are available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.351#supplemental-information.

REFERENCES

Adil SH, Raza K, Ahmed U, Ali SSA, Hashmani M. 2015. Cloud task scheduling using nature
inspired meta-heuristic algorithm. In: 2015 International Conference on Open Source Systems &
Technologies (ICOSST). Piscataway: IEEE, 158-164.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 19/22

http://dx.doi.org/10.7717/peerj-cs.351#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.351#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.351#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Ahmed M, Chowdhury ASMR, Ahmed M, Rafee MMH. 2012. An advanced survey on cloud
computing and state-of-the-art research issues. IJCSI International Journal of Computer Science
Issues 9(1):201-207.

Beloglazov A, Abawajy J, Buyya R. 2012. Energy-aware resource allocation heuristics for efficient

management of data centers for cloud computing. Future Generation Computer Systems
28(5):755-768 DOI 10.1016/j.future.2011.04.017.

Buyya R, Ranjan R, Calheiros RN. 2010. Intercloud: utility-oriented federation of cloud
computing environments for scaling of application services. In: International Conference on
Algorithms and Architectures for Parallel Processing, Berlin: Springer, 13-31.

Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. 2009. Cloud computing and emerging IT
platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Generation
Computer Systems 25(6):599-616 DOI 10.1016/j.future.2008.12.001.

De Assung¢ido MD, Di Costanzo A, Buyya R. 2010. A cost-benefit analysis of using cloud
computing to extend the capacity of clusters. Cluster Computing 13(3):335-347
DOI 10.1007/s10586-010-0131-x.

Dillon T, Wu C, Chang E. 2010. Cloud computing: issues and challenges. In: Advanced
Information Networking and Applications (AINA), 2010 24th IEEE International Conference on,
IEEE, 27-33.

Emerson EA, Sistla AP. 1996. Symmetry and model checking. Formal Methods in System Design
9(1):105-131 DOI 10.1007/BF00625970.

Gan GN, Huang TL, Gao S. 2010. Genetic simulated annealing algorithm for task scheduling
based on cloud computing environment. In: Intelligent Computing and Integrated Systems
(ICISS), 2010 International Conference on, IEEE, 60-63.

Hosseinimotlagh S, Khunjush F, Samadzadeh R. 2015. SEATS: smart energy-aware task
scheduling in real-time cloud computing. Journal of Supercomputing 71(1):45-66
DOI 10.1007/s11227-014-1276-9.

Javadi B, Abawajy J, Buyya R. 2012. Failure-aware resource provisioning for hybrid Cloud
infrastructure. Journal of Parallel and Distributed Computing 72(10):1318-1331
DOI 10.1016/j.jpdc.2012.06.012.

Jensen K. 2013. Coloured Petri nets: basic concepts, analysis methods and practical use. Vol. 1.
Berlin: Springer Science & Business Media.

Jensen K, Kristensen LM. 2009. Coloured Petri nets: modelling and validation of concurrent
systems. Berlin: Springer Science & Business Media.

Kamboj S, Ghumman NS. 2016. A survey on cloud computing and its types. In: 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIACom).
Piscataway: IEEE, 2971-2974.

Klein C, Maggio M, Arzén KE, Hernandez-Rodriguez F. 2014. Brownout: Building more robust
cloud applications. In: Proceedings of the 36th International Conference on Software Engineering,
ACM, 700-711.

Kumar P, Verma A. 2012. Independent task scheduling in cloud computing by improved genetic
algorithm. International Journal of Advanced Research in Computer Science and Software
Engineering 2(5).

Lee YC, Zomaya AY. 2012. Energy efficient utilization of resources in cloud computing systems.
Journal of Supercomputing 60(2):268-280 DOI 10.1007/s11227-010-0421-3.

Ma Y, Nandagopal T, Puttaswamy KP, Banerjee S. 2013. An ensemble of replication and erasure
codes for cloud file systems. In: INFOCOM, 2013 Proceedings. Piscataway: IEEE, 1276-1284.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 20/22

http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/s10586-010-0131-x
http://dx.doi.org/10.1007/BF00625970
http://dx.doi.org/10.1007/s11227-014-1276-9
http://dx.doi.org/10.1016/j.jpdc.2012.06.012
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Mastelic T, Oleksiak A, Claussen H, Brandic I, Pierson JM, Vasilakos AV. 2015. Cloud
computing: survey on energy efficiency. ACM Computing Surveys 47(2):33-36
DOI 10.1145/2656204.

Mateescu G, Gentzsch W, Ribbens CJ. 2011. Hybrid computing—where HPC meets grid and
cloud computing. Future Generation Computer Systems 27(5):440-453
DOI 10.1016/j.future.2010.11.003.

Mateljan V, Cigi¢ D, Ogrizovi¢ D. 2010. Cloud database-as-a-service (DaaS)-ROL In: The 33rd
International Convention MIPRO. Piscataway: IEEE, 1185-1188.

Mathew T, Sekaran KC, Jose J. 2014. Study and analysis of various task scheduling algorithms in
the cloud computing environment. In: ICACCI, 2014 International Conference on Advances in
Computing, Communications and Informatics. Piscataway: IEEE, 658-664.

Mattess M, Vecchiola C, Buyya R. 2010. Managing peak loads by leasing cloud infrastructure
services from a spot market. In: 2010 12th IEEE International Conference on High Performance
Computing and Communications (HPCC). Piscataway: IEEE, 180-188.

Mell P, Grance T. 2011. The NIST definition of cloud computing. Washington, D.C.: U.S.
Department of Commerce.

Mhedheb Y, Jrad F, Tao J, Zhao], Kolodziej J, Streit A. 2013. Load and thermal-aware VM
scheduling on the cloud. In: International Conference on Algorithms and Architectures for
Parallel Processing, Cham: Springer, 101-114.

Milner R. 1997. The definition of standard ML: revised. Cambridge: MIT Press.

Patterson DA. 2008. The data center is the computer. Communications of the ACM 51(1):105
DOI 10.1145/1327452.1327491.

Sajid M, Raza Z. 2013. Cloud computing: issues & challenges. International Conference on Cloud,
Big Data and Trust 20(13):13-15.

Shen Y, Bao Z, Qin X, Shen J. 2017. Adaptive task scheduling strategy in cloud: when energy
consumption meets performance guarantee. World Wide Web—Internet and Web Information
Systems 20(2):155-173.

Ullman JD. 1998. Elements of ML programming ML97 edition. Vol. 2. Upper Saddle River: Prentice
Hall.

Varghese B, Buyya R. 2018. Next generation cloud computing: New trends and research
directions. Future Generation Computer Systems 79:849-861 DOI 10.1016/j.future.2017.09.020.

Virendra M, Jadliwala M, Chandrasekaran M, Upadhyaya S. 2005. Quantifying trust in mobile
ad-hoc networks. In: Integration of Knowledge Intensive Multi-Agent Systems, 2005. Piscataway:
IEEE, 65-70.

Wu CM, Chang RS, Chan HY. 2014. A green energy-efficient scheduling algorithm using the
DVES technique for cloud datacenters. Future Generation Computer Systems 37:141-147
DOI 10.1016/j.future.2013.06.009.

Xia Y, Zhou M, Luo X, Pang S, Zhu Q. 2015. A stochastic approach to analysis of energy-aware
DVS-enabled cloud datacenters. IEEE Transactions on Systems, Man, and Cybernetics: Systems
45(1):73-83 DOI 10.1109/TSMC.2014.2331022.

Yuan H, Bi J, Tan W, Li BH. 2017. Temporal task scheduling with constrained service delay for
profit maximization in hybrid clouds. IEEE Transactions on Automation Science and
Engineering 14(1):337-348 DOI 10.1109/TASE.2016.2526781.

Zhan ZH, Liu XF, Gong YJ, Zhang J, Chung HSH, Li Y. 2015. Cloud computing resource

scheduling and a survey of its evolutionary approaches. ACM Computing Surveys 47(4):63
DOI 10.1145/2788397.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 21/22

http://dx.doi.org/10.1145/2656204
http://dx.doi.org/10.1016/j.future.2010.11.003
http://dx.doi.org/10.1145/1327452.1327491
http://dx.doi.org/10.1016/j.future.2017.09.020
http://dx.doi.org/10.1016/j.future.2013.06.009
http://dx.doi.org/10.1109/TSMC.2014.2331022
http://dx.doi.org/10.1109/TASE.2016.2526781
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

PeerJ Computer Science

Zhao Q, Xiong C, Yu C, Zhang C, Zhao X. 2016. A new energy-aware task scheduling method for
data-intensive applications in the cloud. Journal of Network and Computer Applications 59:14—-
27 DOI 10.1016/j.jnca.2015.05.001.

Zuo L, Shu L, Dong S, Zhu C, Hara T. 2015. A multi-objective optimization scheduling method
based on the ant colony algorithm in cloud computing. IEEE Access 3:2687-2699
DOI 10.1109/ACCESS.2015.2508940.

Rizwan Ali et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.351 22/22

http://dx.doi.org/10.1016/j.jnca.2015.05.001
http://dx.doi.org/10.1109/ACCESS.2015.2508940
http://dx.doi.org/10.7717/peerj-cs.351
https://peerj.com/computer-science/

	Petri Net based modeling and analysis for improved resource utilization in cloud computing
	Introduction
	Related work
	Colored petri nets
	Formal model of carom
	Simulation
	Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

