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Abstract
We study various structures of general Volterra-type integral and weighted composi-
tion operators acting between two Fock-type spaces F p

ϕ and Fq
ϕ , where ϕ is a radial

function growing faster than the function z → |z|2/2. The main results show that the
unboundedness of theLaplacian ofϕ provides interesting results on the topological and
spectral structures of the operators in contrast to their actions on Fock spaces, where
the Laplacian of the weight function is bounded. We further describe the invertible
and unitary weighted composition operators. Finally, we show the spaces support no
supercyclic weighted composition operator with respect to the pointwise convergence
topology and hence with the weak and strong topologies.
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1 Introduction

It is known that generalizedVolterra-type integral andweighted composition operators
share some similar structures in some spaces of holomorphic functions. Both have
been extensively studied on Fock spaces, where the Laplacian of the weight function
is bounded; see for instance [5, 6, 11, 13]. In contrast, it seems rather not much is
known about the structures of both classes of operators on Fock-type spacesF p

ϕ when
the Laplacian of the weight function ϕ becomes unbounded over the complex plane
C. It is the main purpose of this work to investigate this case and show how the
unboundedness of the Laplacian plays a decisive role in determining the operators’
basic structures.

We begin by introducing the weight function ϕ and the Fock-type spacesF p
ϕ where

our work takes place. We consider a twice continuously differentiable function ϕ :
[0,∞) → [0,∞), and for each point z inC, we extend it by setting ϕ(z) = ϕ(|z|). We
further assume that its Laplacian �ϕ is positive and τ(z) � 1 whenever 0 ≤ |z| < 1
and τ(z) � (�ϕ(|z|))−1/2, otherwise, where τ is a radial differentiable function
satisfying the conditions

lim
r→∞ τ(r) = lim

r→∞ τ ′(r) = 0.

In addition, we require that either there exists a constant C > 0 such that τ(r)rC

increases for large r or

lim
r→∞ τ ′(r) log(τ (r)−1) = 0.

Here, the notation U (z) � V (z) (or equivalently V (z) � U (z)) means that there is a
constant C such that U (z) ≤ CV (z) holds for all z in the set of a question. We write
U (z) � V (z) if both U (z) � V (z) and V (z) � U (z).

We note that there are many examples of weights ϕ that satisfy the conditions
above. The power functions as ϕm(r) = rm, m > 2, the exponential type functions
ϕα(r) = eαr , α > 0, and ϕβ(r) = ee

βr
, β > 0, are all primary examples.

Let 0 < p < ∞, and ϕ and τ satisfy all the above mentioned admissibility condi-
tions. We define the Fock-type spaces F p

ϕ as spaces consisting of all entire functions
f on C for which

‖ f ‖p
p =

∫
C

| f (z)|pe−pϕ(z)dm(z) < ∞,

where m denotes the usual Lebesgue area measure on C. Several operators in F p
ϕ had

been extensively studied in the past; see for example, the embedding and Volterra-
type integral operators [2, 10], multiplication and the differential operators [10], and
composition operator [8, 9, 15]. The results in [8, 9] revealed the composition operator
manifests poorer basic structures when it acts between two different Fock-type spaces
in contrast to its action between classical Fock spaces. This happened due to the fast
growth of the Laplacian of ϕ. In this work, we study the general Volterra-type integral
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and weighted composition operators, and plan to enlighten how the fast growth of the
Laplacian of ϕ significantly changes their basic structures as well.

The rest of the manuscript is organized as follows. In Sect. 2, we consider problems
related to bounded, compact, and SchattenSp class generalVolterra-type integral oper-
ator. Theorems 2.1 and 2.3 provide answers to these problems. Section 3 is concerned
with weighted composition operator W(u,ψ). Corollary 3.1 identifies the bounded and
compact W(u,ψ). Then, we consider the operators Schatten Sp class problem where a
complete answer is given in Theorem 3.2. We further characterize the invertible and
unitary properties ofW(u,ψ) on F2

ϕ as stated in Theorem 3.4. We end this section with
Proposition 3.5 which shows that no weighted composition operator is supercyclic
with respect to the pointwise convergence topology and hence with the weak and
strong(norm) topologies on the Fock-type spaces. In Sect. 4, we present the proofs
of the results. For the sake of simplicity and generality, we may present the proof of
Theorem 2.3 at latter stage than all the other proofs.

2 The General Volterra-type Integral Operator V(g,Ã)

For pairs of holomorphic functions (g, ψ), the induced general Volterra-type integral
operator is defined by

V(g,ψ) f (z) =
∫ z

0
f (ψ(w))g′(w)dw.

There exists a lot of literature about V(g,ψ) which is difficult to give a proper and
complete review now. Thus, we may limit ourselves to the works most relevant for this
work and refer readers to [12, 13] and the references therein. One of the main reasons
the operators are worthy of study stems from their applications in linear isometries
[3].

Now, we are prepared to state our first main result about V(g,ψ). We express the
results in terms of the function M(g,ψ) defined by

M(g,ψ)(z) := |g′(z)|(1 + ϕ′(z))−1eϕ(ψ(z))−ϕ(z).

Theorem 2.1 Let (g, ψ) be a pair of nonconstant entire functions onC and 0 < p, q <

∞.

(i) If p = q, then V(g,ψ) : F p
ϕ → Fq

ϕ is bounded if and only if M(g,ψ) is uniformly
bounded over C, and compact if and only if M(g,ψ)(z) → 0 as |z| → ∞.

(ii) If p < q, then V(g,ψ) : F p
ϕ → Fq

ϕ is bounded (compact) if and only if M(g,ψ)(z) →
0 as |z| → ∞.

(iii) If p > q, then V(g,ψ) : F p
ϕ → Fq

ϕ is bounded (compact) if and only if M(g,ψ)

belongs to L
pq
p−q (C, dm).

As noted earlier, various properties of V(g,ψ) acting between classical Fock spaces
were extensively studied in [12, 13]. The statement in part (ii) of Theorem 2.1 provides
one remarkable difference with the corresponding results. Unlike the classical case,
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boundedness and compactness are equivalent when the operator acts between F p
ϕ and

Fq
ϕ whenever p �= q. As it will be seen in the proof, this property stems from the fast

growth of the Laplacian of ϕ. On the other hand, this growth of ϕ obviously makes
it possible that more pairs of symbols (g, ψ) are admissible for bounded(compact)
V(g,ψ) than the classical case. Thus, the operator enjoys a richer operator-theoretic
structure on the spaces F p

ϕ .
Note that Theorem 2.1 excludes the trivial cases where either ψ or g is a constant.

The operator V(g,ψ) reduces to zero whenever g is a constant. On the other hand, if
ψ = α is a constant, then an application of the estimate in (3.1) gives

‖V(g,ψ) f ‖q � | f (α)|‖u‖q .

In this case, V(g,ψ) : F p
ϕ → Fq

ϕ , p ≤ q is bounded if and only if u ∈ Fq
ϕ . Such trivial

cases will be excluded in the rest of the results as well.
The Volterra-type integral operator Vg is recovered upon choosing ψ(z) = z in

V(g,ψ). Thus, the following is a special case of Theorem 2.1.

Corollary 2.2 Let g be a nonconstant entire function on C and 0 < p, q < ∞. Then,

(i) If p = q, then Vg : F p
ϕ → Fq

ϕ is bounded if and only if |g|/(1 + ϕ′) is uniformly
bounded over C, and compact if and only if |g′(z)|/(1+ ϕ′(z)) → 0 as |z| → ∞.

(ii) If p < q, then Vg : F p
ϕ → Fq

ϕ is bounded (compact) if and only if |g′(z)|/(1 +
ϕ′(z)) → 0 as |z| → ∞.

(iii) If p > q, then Vg : F p
ϕ → Fq

ϕ is bounded (compact) if and only if g′/(1 + ϕ′)
belongs to L

pq
p−q (C, dm).

The first two parts in the corollary simplify the first part of Theorem 3 in [2]. In
contrast to the corresponding results on the classical Fock spaces, part (ii) asserts
that boundedness and compactness are equivalent. Observe that the corollary shows
a richer structure of Vg compared to its action on the classical setting, where this
operator is bounded only for polynomial symbols of degree at most two [13].

We now turn our attention to special class of compact V(g,ψ) on the Hilbert space
F2

ϕ , namely the Schatten Sp(F2
ϕ) class, and plan to prove the following.

Theorem 2.3 Let 1 < p < ∞ and (g, ψ) be a pair of nonconstant entire functions on
C such that V(g,ψ) is bounded on F2

ϕ . Then, V(g,ψ) belongs to the Schatten Sp(F2
ϕ)

class if and only if M(g,ψ) belongs to L p(C, dmψ), where

dmψ(z) = �ϕ(|ψ(z)|)dm(z).

The Schatten class membership of V(g,ψ) on the classical Fock space was investigated
in [12, 13]. Interestingly, comparing the result there with Theorem 2.3, we conclude
V(g,ψ) has a richer structure on F2

ϕ even if the integral factor �ϕ(|ψ(z)|) → ∞ as
|z| → ∞.
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3 TheWeighted Composition Operator

For a pair of holomorphic functions (u, ψ), we define the induced weighted composi-
tion operator W(u,ψ) by W(u,ψ) f = MuCψ f , where Cψ f = f ◦ ψ and Mu( f ) = u f
are, respectively, the composition and multiplication operators. As indicated earlier, in
[8, 9], we studied the operator Cψ acting between the spaces F p

ϕ and Fq
ϕ . In contrast

to the classical setting, for p �= q, it was proved that Cψ is bounded if and only if it
is compact. This happens due to the fast growth of the Laplacian of the radial weight
function ϕ. A natural question is whether a similar phenomenon happens with the
weighted composition operator W(u,ψ), bypassing any possible interplay between the
multiplier function u and ψ . As Corollary 3.1 shows, this is indeed the case.

A useful tool in the study of integral operators is Littlewood–Paley-type description
of the underlying spaces. For Fock-type spaces F p

ϕ , this was done in [2] and reads as

‖ f ‖p
p � | f (0)|p +

∫
C

| f ′(z)|p(1 + ϕ′(z))−pe−pϕ(z)dm(z), (3.1)

for any entire function f and 0 < p < ∞. An immediate consequence of (3.1) is
that by simply replacing the function |g′|/(1 + ϕ′) by the entire weight function u in
the proof of Theorem 2.1, we deduce the following interesting corollary, where all the
results are expressed in terms of the function

m(u,ψ)(z) := |u(z)|eϕ(ψ(z))−ϕ(z).

Corollary 3.1 Let (u, ψ) be a pair of nonconstant entire functions on C and 0 <

p, q < ∞. Then,

(i) If p = q, then W(u,ψ) : F p
ϕ → Fq

ϕ is bounded if and only if m(u,ψ) is uniformly
bounded over C, and compact if and only if m(u,ψ)(z) → 0 as |z| → ∞.

(ii) If p < q, thenW(u,ψ) : F p
ϕ → Fq

ϕ is bounded (compact) if andonly ifm(u,ψ)(z) →
0 as |z| → ∞.

(iii) If p > q, then W(u,ψ) : F p
ϕ → Fq

ϕ is bounded (compact) if and only if m(u,ψ)

belongs to L
pq
p−q (C, dm).

We remark that the discussion following Theorem 2.1 applies for the weighted com-
position operators as well. It is also worth noting that in [5], the result analogous to
Corollary 3.1 in the classical Fock spaces was simplified further to give an explicit
expression for the multiplier function u. The simplification relied heavily upon the
explicit expression of the reproducing kernel function. The lack of such expression
for the kernel in our current setting makes it difficult to give analogous formula for u.

We can now go further and describe all weighted composition operators which
belong to the Schatten Sp(F2

ϕ) class.

Theorem 3.2 Let (u, ψ) be a pair of nonconstant entire functions on C, 0 < p < ∞,
and W(u,ψ) is bounded on F2

ϕ . Then, W(u,ψ) belongs to the Schatten Sp(F2
ϕ) class if

and only if m(u,ψ) belongs to L p(C, dmψ), where

dmψ(z) = �ϕ(|ψ(z)|)dm(z).
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Unlike Corollary 3.1, where its proof can be directly obtained by simply replacing
g′/(1 + ψ ′) by the weight function u in the proof of Theorem 2.1, the proofs of
Theorems 2.3 and 3.2 do not necessarily follow one from the other. As it will be seen
in the next section, the conclusion in Lemma 4.2 fails to hold with a compact V(g,ψ)

while it does for a compact W(u,ψ).
We remark that Berezin-type integral transforms have been also among the forms

used to describe Schatten class membership of these class of operators on various
spaces of functions. The following proposition shows the corresponding Berezin-type
integral transform needs to be integrated against area measure weighted with the
unbounded Laplacian of ϕ.

Proposition 3.3 Let (u, ψ) be pair of nonconstant entire functions onC, 0 < p < ∞,
and W(u,ψ) is compact on F2

ϕ . Then,

(i) If 2 ≤ p < ∞ and W(u,ψ) belongs to the Schatten Sp(F2
ϕ) class, then

∫
C

‖W(u,ψ)kψ(z)‖p
2�ϕ(|ψ(z)|)dm(z) < ∞, (3.2)

where kψ(z) = Kψ(z)/‖Kψ(z)‖2 is the normalized reproducing kernel function at
the point ψ(z).

(ii) If 0 < p < 2 and (3.2) holds, then W(u,ψ) belongs to the Sp(F2
ϕ) class.

The analogous of these conditions on the classical setting have been proved to be
necessary and sufficient, see for instance [9]. The conditions are likely to be both
necessary and sufficient in F2

ϕ as well but remains to be verified. However, note that
the already obtained condition in Theorem 3.2 is simpler to apply than conditions
based on Berezin-type integral transforms.

3.1 Normal, Unitary and InvertibleW(u,Ã)

The normal, unitary and invertibleweighted composition operators on the classical set-
ting were characterized in [5]. The characterization there used effectively the explicit
expression of the reproducing kernel function again. In this section, we explore these
properties on the space F2

ϕ . We manage to represent the multiplier function u in terms
of the kernel function. However, the lack of an explicit and workable expression for
the kernel function still makes it difficult to simplify the representation further.

Theorem 3.4 Let (u, ψ) be a pair of nonconstant entire functions on C. Then,

(i) W(u,ψ) is a bounded invertible operator onF2
ϕ if and only ifψ(z) = az+b, |a| = 1

and there exists a positive constant C such that

1

C
≤ m(u,ψ)(z) ≤ C (3.3)

for all z ∈ C. In this case, W−1
(u,ψ) is itself a weighted composition operator with

symbol
( 1
u(ψ−1)

, ψ−1
)
.
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(ii) W(u,ψ) is a unitary operator on F2
ϕ if and only if ψ(z) = az + b, |a| = 1,

W ∗
(u,ψ) = W−1

(u,ψ) = W(
1

u(ψ−1)
,ψ−1

), where

u = ‖1‖−2
2

u(0)Kb ◦ ψ
, (3.4)

and ‖1‖2 refers to the norm of the constant function 1.
(iii) Let W(u,ψ) be a bounded normal operator on F2

ϕ and hence ψ(z) = az + b with
|a| ≤ 1. If either a �= 1 or a = 1 and b = 0, then

u = u(z0)Kz0

Kz0 ◦ ψ
, (3.5)

where z0 is the fixed point of ψ and u(z0) = u(0)‖1‖22Kz0(b).

In the context of part (iii), if z0 = 0, then as it will be seen in the proof, K0 is a
constant function. Relation (3.5) implies u is also a constant function. In this case,
W(u,ψ) is normal if and only if the corresponding composition operator Cψ is normal
on F2

ϕ . The latter obviously holds since it is diagnoseable with respect to the standard
orthonormal basis zm/‖zm‖2,m ≥ 0 in F2

ϕ .
In the rest of this section, we give some results on the linear dynamics of weighted

composition operators on F p
ϕ for 1 ≤ p < ∞. It turns out that like the classical

setting, no supercyclic weighted composition operator is supported on the spaces F p
ϕ

even in the case when the spaces are structured with weaker topologies.

3.2 Weak and �pt-supercyclicWeighted Composition Operators

The various linear dynamical structures of W(u,ψ) on the classical Fock spaces are
now well-understood including convex-cyclicity [7]. Whether the unboundedness of
the Laplacian of ϕ has an effect on the dynamical structures as it does for bounded-
ness, compactness and Schatten class membership is another noteworthy problem to
investigate. In this section, we plan to study the supercyclicity structure with respect to
the pointwise, weak and strong(norm) topologies in the spaces. It would be interesting
to know whether the cyclicity and convex-cyclicity results on the classical setting can
be extended to the spaces F p

ϕ as well.
We may begin by recalling some definitions related to the iterates of an operator. A

bounded linear operator T on a separable Banach spaceH is said to be hypercyclic if
there exists a vector f inH forwhich the orbit, Orb(T , f ) = { f , T f , T 2 f , T 3 f , . . .}
is dense inH. Such an f is called a hypercyclic vector for T . The operator is supercyclic
with vector f if the projective orbit,

Projorb(T , f ) = {
λT n f , λ ∈ C, n = 0, 1, 2, ...

}

is dense. For a comprehensive account of the theory of dynamics of continuous and lin-
ear operators, we refer to the monographs [1, 4]. The weak and τpt -supercyclicities are
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defined by simply replacing the norm topology above by these respective topologies on
the space. Clearly, weak supercyclicity is a stronger property than τpt -supercyclicity.
More generally, the next diagram exhibits the relations among the various forms of
cyclicities for bounded operators.

We will prove the following result.

Proposition 3.5 Let 1 ≤ p < ∞ and (u, ψ) be a pair of entire functions on C such
that W(u,ψ) is bounded onF p

ϕ . Then, W(u,ψ) cannot be supercyclic onF p
ϕ with respect

to the pointwise convergence topology.

As illustrated in the diagram above, pointwise topology is weaker than the weak
and strong topologies on F p

ϕ and hence the space supports no supercyclic (weakly)
weighted composition operators. The analogous statement on the classical Fock spaces
was proved in [7]. It turns out that the same conclusion remains enforce for F p

ϕ and
hence the unboundedness of the Laplacian has no effect in this regard. The questions
when the operator admits cyclic and convex-cyclic dynamical structures and how these
are related to the fast growth of theLaplacian ofϕ remain open for further investigation.

4 Proof of the Results

Before we pass to the proofs of the main results, we need some preliminary observa-
tions and backgrounds. We may begin by proving a few basic lemmas which provide
useful information about the growth and form of the symbol for the composition
operator. The lemmas will be used to prove our main results in the sequel.

Lemma 4.1 Let (g, ψ) be a pair of nonconstant entire functions on C. If M(g,ψ) is
bounded on C, then ψ(z) = az + b for some a, b ∈ C with |a| ≤ 1.

Proof It follows from the assumption that

M∞(g′, |z|) � 1 + ϕ′(z)
eϕ(ψ(z))−ϕ(z)

, (4.1)

where M∞(g′, |z|) is the integral mean of the function g′. From (4.1), definition of ϕ,
and the fact that M∞(g′, |z|) is a nondecreasing function of |z|, we get

lim sup
|z|→∞

ϕ(ψ(z)) − ϕ(z) ≤ 0. (4.2)

If not, one would find a sequence z j such that |z j | → ∞ as j → ∞,

lim sup
|z j |→∞

ϕ(ψ(z j )) − ϕ(z j ) > 0,
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and hence

M∞(g′, |z j |) � 1 + ϕ′(z j )
eϕ(ψ(z j ))−ϕ(z j )

, (4.3)

which gives a contradiction since the right-hand side expression in (4.3) tends to zero
when |z j | → ∞, while g′ is a nonzero function and M∞(g′, |z|) is a nondecreasing
function of |z|. By (4.2) and sinceψ is an entire functionwith its own power expansion,
we deduce ψ(z) = az + b with |a| ≤ 1.

Lemma 4.2 Let (u, ψ) be a pair of nonconstant entire functions on C. Then,

(i) If m(u,ψ) is bounded on C, then ψ(z) = az + b for some a, b ∈ C such that
|a| ≤ 1.

(ii) If m(u,ψ)(z) → 0 as |z| → ∞, then ψ(z) = az + b for some a, b ∈ C such that
|a| < 1.

We remark that part (ii) of Lemma 4.2 does not necessarily hold if we replace m(u,ψ)

by M(g,ψ) unless |g′(z)|/(1+ϕ′(z)) > 0 as |z| → ∞. Consequently, by Corollary 3.1
and Theorem 2.1, while compactness of W(u,ψ) implies ψ(z) = az + b with |a| < 1,
compactness of V(g,ψ) does not necessarily imply |a| < 1.

Proof Part (i) follows by arguing as in the previous lemma. Thus, we setψ(z) = az+b
with |a| ≤ 1 and proceed to show that |a| < 1 in part (ii). Aiming to argue in the
contrary, assume that |a| = 1. Then, we can choose a sequence of numbers zk such
that |zk | → ∞ (azkb) ≥ 0, and |u(zk)| �= 0 as k → ∞. Now, for sufficiently large
|zk |

|u(zk)|eϕ(azk+b)−ϕ(zk) ≥ |u(zk)|eϕ(
√

|zk |2+|b2)−ϕ(zk ) ≥ |u(zk)| > 0,

which gives a contradiction since u is a nonzero entire function.

Next, we recall a few basic properties of the spaces F p
ϕ . The spaces were studied

by several authors in the past. We refer the reader to [2, 9, 10] for a more thorough
exposition. By Proposition A and Corollary 8 of [2], for a sufficiently large positive
number R, there exists a number η(R) such that for any w ∈ C with |w| > η(R),
there exists an entire function F(w,R) such that when z belongs to D(w, Rτ(w)),

|F(w,R)(z)|e−ϕ(z) � 1, (4.4)

where D(a, r) denotes the Euclidean disk centered at a and radius r > 0. Furthermore,
the functions F(w,R) belong to F p

ϕ for all p with norms estimated by

‖F(w,R)‖p
p � τ(w)2, η(R) ≤ |w|. (4.5)

An explicit expression for the kernel function inF2
ϕ is still an interesting open problem.

However, an asymptotic estimation of the norm

‖Kw‖22 � τ(w)−2e2ϕ(w) (4.6)
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holds for all w ∈ C.
For subharmonic functions ϕ and f , it also holds a local pointwise estimate

| f (z)|pe−βϕ(z) � 1

σ 2τ(z)2

∫
D(z,στ(z))

| f (w)|pe−βϕ(w)dm(w) (4.7)

for all finite exponent p, any real number β, and a small positive number σ : see
Lemma 7 of [2] for more details.

We end this section by recording the following covering lemma which will be
needed in the proof of Theorem 3.2.

Lemma 4.3 Let t : C → (0,∞) be a continuous function which satisfies |t(z) −
t(w)| ≤ 1

4 |z−w| for all z and w in C. We also assume that t(z) → 0 when |z| → ∞.
Then, there exists a sequence of points z j in C satisfying the following conditions.

(i) z j /∈ D(zk, t(zk)), j �= k;
(ii) C = ⋃

j D(z j , t(z j ));
(iii)

⋃
z∈D(z j ,t(z j )) D(z, t(z)) ⊂ D(z j , 3t(z j ));

(iv) The sequence D(z j , 3t(z j )) is a covering of C with finite multiplicity.

The lemma was proved in [2] by adopting an approach originally from [14].

4.1 Proof of Theorem 2.1

The notion of embedding has proved to be useful tool in the study of several opera-
tors. We plan to use it here too. Thus, aiming to reformulate our results in terms of
appropriate embedding maps, we may first set a pullback measure

μ(g,ψ,q)(E) =
∫

ψ−1(E)

( |g′(z)|
1 + ϕ′(z)

)q

e−qϕ(z)dm(z) (4.8)

for every Borel subset E of C, and note that (3.1) gives for each f in F p
ϕ

‖V(g,ψ) f ‖qq �
∫
C

|g′(z)|q
(1 + ϕ′(z))q

| f (ψ(z))|qe−qϕ(z)dm(z)

=
∫
C

| f (z)|qdμ(g,ψ,q)(z), (4.9)

where

dμ(g,ψ,q)(z) = |g′(ψ−1(z))|qe−qϕ(ψ−1(z))

(1 + ϕ′(ψ−1(z)))q
dm(ψ−1(z)).

It follows that V(g,ψ) : F p
ϕ → Fq

ϕ is bounded (compact) if and only if the embedding
map Id : F p

ϕ → Lq(C, μ(g,ψ,q)) is bounded (compact), respectively. We proceed to
use this equivalent reformulation to prove the assertions in Theorem 2.1.
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Part (i) and (ii): If p ≤ q, setting

S(w) := 1

τ
2q
p (w)

∫
D(w,δτ(w))

eqϕ(z)dμ(g,ψ,q)(z)

for some δ > 0, and taking (4.8) into account, we may rewrite S(w) as

S(w) = 1

τ
2q
p (w)

∫
D(w,δτ(w))

eqϕ(z)dμ(g,ψ,q)(z)

= 1

τ
2q
p (w)

∫
D(w,δτ(w))

|g′(ψ−1(z))|qeqϕ(z)

(1 + ϕ′(ψ−1(z)))q
e−qϕ(ψ−1(z))dm(ψ−1(z))

= 1

τ
2q
p (w)

∫
D(w,δτ(w))

Mq
(g,ψ)(ψ

−1(z))dm(ψ−1(z)). (4.10)

Now, by [2, Theorem 1] and (4.10), the embedding map Id : F p
ϕ → Lq(C, μ(g,ψ,q))

is bounded if and only if S is uniformly bounded on the complex plane. In other words,
V(g,ψ) : F p

ϕ → Fq
ϕ is bounded if and only if

sup
w∈C

S(w) = sup
w∈C

1

τ
2q
p (w)

∫
D(w,δτ(w))

Mq
(g,ψ)(ψ

−1(z))dm(ψ−1(z)) < ∞. (4.11)

Similarly, V(g,ψ) : F p
ϕ → Fq

ϕ is compact if and only if

lim|w|→∞ S(w) = lim|w|→∞
1

τ
2q
p (w)

∫
D(w,δτ(w))

Mq
(g,ψ)(ψ

−1(z))dm(ψ−1(z)) = 0.

(4.12)

Thus, we plan to show that the corresponding conditions for p ≤ q in Theorem 2.1
are equivalent to conditions (4.11) and (4.12). First note that by [2, Lemma 20]

ϕ′(w) + 1 � ϕ′(z) + 1 (4.13)

for all z in the disk D(w, δτ(w)). Furthermore, since |g′eϕ(ψ)|p is subharmonic,
applying the pointwise estimate in (4.7) and relation (4.10), we have

τ(w)
2p−2q

p Mq
(g,ψ)(w) � 1

τ
2q
p (w)

∫
D(w,δτ(w))

Mq
(g,ψ)(ψ

−1(z))dm(ψ−1(z)) (4.14)

for all w ∈ C and some δ > 0.
(i)We prove when p = q. Assume that M(g,ψ) is finite. Then by Lemma 4.1, ψ(z) =
az + b, 0 < |a| ≤ 1 and hence ψ−1(z) = z−b

a . It follows that

sup
w∈C

1

τ 2(w)

∫
D(w,δτ(w))

Mp
(g,ψ)(ψ

−1(z))dm(ψ−1(z))
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≤ sup
w∈C

1

τ 2(w)
sup

z∈D(w,δτ(w))

Mp
(g,ψ)(ψ

−1(z))
∫
D(w,δτ(w))

dm(ψ−1(z))

= |a|2 sup
w∈C

sup
z∈D(w,δτ(w))

Mp
(g,ψ)(ψ

−1(z)) ≤ |a|2 sup
w∈C

Mp
(g,ψ)(w) < ∞

and (4.11) holds as asserted.
Conversely, if (4.11) holds, then the relation in (4.14) obviously implies M(g,ψ) is

finite.
For compactness, arguing as in the boundedness part, we easily see that (4.12) holds

if and only if M(g,ψ)(z) → 0 as |z| → ∞.
(ii) Let p < q and suppose that (4.11) holds. We need to show that M(g,ψ)(z) → 0
as |z| → ∞. It follows from (4.14) and the admissibility condition for τ

M(g,ψ)(w) � τ
2q−2p
qp (w)

(
sup
w∈C

S(w)
)1/q

� τ
2q−2p

pq (w) → 0 as |w| → ∞.

Next, by assuming that M(g,ψ)(w) → 0 as |w| → ∞, we proceed to show (4.12)
holds. Observe that the assumption and (3.1) imply g ∈ Fq

ϕ since

∫
C

|g′(z)|q
(1 + ϕ′(z))q

e−qϕ(z)dm(z) ≤ sup
z∈C

(
Mq

(g,ψ)(z)
) ∫

C

e−qϕ(ψ(z))dm(z) < ∞. (4.15)

It follows that there exists a positive constant C such that

1

τ
2q
p (w)

∫
D(w,δτ(w))

Mq
(g,ψ)(ψ

−1(z))dm(ψ−1(z)) = C |a|2 τ 2(w)

τ
2q
p (w)

Mq
(g,ψ)(ψ

−1(w))

= C |a|2τ 2p−2q
p (w)Mq

(g,ψ)(ψ
−1(w)).

To this end, taking into account (4.15) which shows that the weight function |g′|/(1+
ϕ′) grows at a rate slower than the rate at which the function e−ϕ decays and the
definition of τ , we deduce

τ
2p−2q

p (w)Mq
(g,ψ)(ψ

−1(w)) → 0

as |w| → ∞ and hence (4.12) follows.
Part (iii): Let 0 < q < p < ∞. Invoking the reformulation in (4.9) again, V(g,ψ) :
F p

ϕ → Fq
ϕ is bounded (compact), respectively, if and only if the embedding map

Id : F p
ϕ → Lq(μ(ψ,q)) is bounded (compact). By [2, Theorem 1], boundedness or

compactness of Id holds if and only if for some δ > 0, the function

G(z) := 1

τ 2(z)

∫
D(z,δτ (z))

eqϕ(w)dμ(g,ψ,q)(w)

= 1

τ 2(z)

∫
D(z,δτ (z))

Mq
(g,ψ)(ψ

−1(w))dm(ψ−1(w))
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belongs to L
p

p−q (C, dm). Thus, we plan to show that the condition in the theorem is

equivalent to this reformulation and assume first M(g,ψ) ∈ L
qp
p−q (C, dm). Applying

Hölder’s inequality

∫
C

|G(z)| p
p−q dm(z) =

∫
C

(
1

τ 2(z)

∫
D(z,δτ (z))

Mq
(g,ψ)(ψ

−1(w))dm(ψ−1(w))

) p
p−q

dm(z)

�
∫
C

τ−2(z)
∫
D(z,δτ (z))

M
pq
p−q

(g,ψ)(ψ
−1(w))dm(ψ−1(w))dm(z) =: G1.

Since w ∈ D(z, δτ (z)), by [2, Lemma 5], there exists a positive constant c with

1

c
τ(w) ≤ τ(z) ≤ cτ(w). (4.16)

Then, for any ζ ∈ D(z, δτ (z))

|ζ − w| ≤ |ζ − z| + |z − w| ≤ 2δτ(z) ≤ 2δcτ(w) = βτ(w), β := 2δc.

This shows that D(z, δτ (z)) ⊂ D(w, βτ(w)) which together with Fubini’s Theorem
and (4.16) again imply

G1 =
∫
C

τ−2(z)
∫
C

χD(z,δτ (z))(w)M
pq
p−q

(g,ψ)(ψ
−1(w))dm(ψ−1(w))dm(z)

≤
∫
C

M
pq
p−q

(g,ψ)(ψ
−1(w))

(∫
C

χD(w,βτ(w))(z)τ (z)−2dm(z)

)
dm(ψ−1(w))

=
∫
C

M
pq
p−q

(g,ψ)(ψ
−1(w))

(∫
D(w,βτ(w))

τ (z)−2dm(z)

)
dm(ψ−1(w))

�
∫
C

M
pq
p−q

(g,ψ)(ψ
−1(w))dm(ψ−1(w)) �

∫
C

M
pq
p−q

(g,ψ)(z)dm(z) < ∞,

where the last conclusion follows since ψ−1(w) = (w − b)/a and a �= 0.
To prove the sufficiency assertion, it suffices to show the local behavior of the

measure μ(u,ψ,q) in (4.11). Using the local estimate in (4.7), we have

∫
C

|G(z)| p
p−q dm(z) =

∫
C

(
1

τ 2(z)

∫
D(z,δτ (z))

Mq
(g,ψ)(ψ

−1(w))dm(ψ−1(w))

) p
p−q

dm(z)

�
∫
C

M
pq
p−q

(g,ψ)(z)dm(z),

and completes the proof of Theorem 2.1.
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4.2 Proof of Theorem 3.2

Sufficiency. We recall that a compact operator T belongs to the Schatten Sp class if
and only if the positive operator (T ∗T )p/2 belongs to the trace class S1. Furthermore,
T ∈ Sp if and only if T ∗ ∈ Sp and ‖T ‖Sp = ‖T ∗‖Sp . Thus, we may first consider

the case p < 2 and estimate the trace of
(
W(u,ψ)W ∗

(u,ψ)

)p/2 by

tr
(
(W(u,ψ)W

∗
(u,ψ))

p
2
) =

∫
C

〈(
W(u,ψ)W

∗
(u,ψ)kz

) p
2 , kz

〉
dm(z)

≤
∫
C

〈
W(u,ψ)W

∗
(u,ψ)kz, kz

〉 p
2
dm(z) =

∫
C

‖W ∗
(u,ψ)kz‖p

2 dm(z), (4.17)

where the inequality holds since 0 < p ≤ 2, W(u,ψ)W ∗
(u,ψ) is a positive operator, and

kz = Kz/‖Kz‖2 is a unit norm vector, see [16, Proposition 1.31]. On the other hand,
by the reproducing property of the kernel function,

W ∗
(u,ψ)Kw(z) = 〈

W ∗
(u,ψ)Kw, Kz

〉 = u(w)Kψ(w)(z) (4.18)

from which and estimate (4.6), we get

‖W ∗
(u,ψ)kw‖2 � |u(w)|τ(w)

τ(ψ(w))
eϕ(ψ(w))−ϕ(w).

This along with (4.17) and compactness of W(u,ψ) imply

tr
((
W(u,ψ)W

∗
(u,ψ)

) p
2
) ≤

∫
C

(
τ(w)

τ(ψ(w))

)p

|u(w)|pep(ϕ(ψ(w))−ϕ(w))dm(z)

�
∫
C

|u(w)|p
τ(ψ(w))2

ep(ϕ(ψ(w))−ϕ(w))dm(z) =
∫
C

mp
(u,ψ)(z)

dm(z)

τ 2(ψ(w))
< ∞,

where the last inequality follows by definition τ(w)p � τ 2(w) for all p ≤ 2. Con-

sidering this and condition (4.17), we conclude the trace of (
(
W(u,ψ)W ∗

(u,ψ)

) p
2 is

finite.
Suppose now that p ≥ 2 and recall that a compact map W(u,ψ) belongs to Sp if

and only if the sequence
(‖W(u,ψ)en‖2

)
belongs to �p for any orthonormal set {en} of

F2
ϕ [16, Theorem 1.33]. We have

∞∑
n=1

‖W(u,ψ)en‖p
2 =

∞∑
n=1

(∫
C

|en(ψ(z))|2|u(z)|2e−2ϕ(z)dm(z)

) p
2

. (4.19)

We may first dispose the case when p = 2. As it is known, W(u,ψ) belongs to the
Hilbert–Schmidt class S2(F2

ϕ) if and only if
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∞∑
n=1

‖W(u,ψ)en‖22 < ∞.

In this case, (4.19) and (4.6) give

∞∑
n=1

‖W(u,ψ)en‖22 =
∫
C

( ∞∑
n=1

|en(ψ(z))|2
)

|u(z)|2e−2ϕ(z)dm(z)

�
∫
C

τ−2(ψ(z))|u(z)|2e2ϕ(ψ(z))−2ϕ(z)dm(z)

=
∫
C

τ−2(ψ(z))m2
(u,ψ)(z)dm(z) < ∞.

Now for p > 2, applying Hölder’s inequality for the integral in (4.19), we deduce

In :=
( ∫

C

|en(ψ(z))|2|u(z)|2e−2ϕ(z)dm(z)

) p
2

≤
( ∫

C

|en(ψ(z))|2|u(z)|pe−pϕ(z)e(p−2)ϕ(ψ(z))dm(z)

)

×
( ∫

C

|en(ψ(z))|2e−ϕ(ψ(z))dm(z)

) p−2
2

.

Upon performing a change of variables

∫
C

|en(ψ(z))|2e−ϕ(ψ(z))dm(z) � ‖en‖2 = 1,

which implies

In �
∫
C

|en(ψ(z))|2|u(z)|pe−pϕ(z)e(p−2)ϕ(ψ(z))dm(z).

On the other hand, because of the reproducing property of the kernel and Parseval’s
identity,

Kw(z) =
∞∑
n=1

en(z)en(w) and ‖Kw‖22 =
∞∑
n=1

|en(w)|2. (4.20)

From (4.20) and the estimate in (4.6), we obtain

∞∑
n=1

|en(ψ(z))|2 � τ−2(ψ(z))e2ϕ(ψ(z)),
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and hence

∞∑
n=1

‖W(u,ψ)en‖p
2 �

∞∑
n=1

In �
∫
C

|u(z)|p
τ(ψ(z))2

ep(ϕ(ψ(z))−ϕ(z))dm(z)

=
∫
C

mp
(u,ψ)(z)

dm(z)

τ 2(ψ(z))
�

∫
C

mp
(u,ψ)(z)�ϕ(ψ(z))dm(z) < ∞,

Therefore, the sufficiency condition follows.
Necessity. Now let us prove the necessity assertion. We may again follow two

cases and assume first 0 < p < 2. Since W(u,ψ) is assumed to be in Sp, the operator
W ∗

(u,ψ)W(u,ψ) belongs to Sp/2(F2
ϕ). Then, there exists an orthonormal basis (en) for

F2
ϕ such that (W(u,ψ))

∗W(u,ψ) has the canonical decomposition

W ∗
(u,ψ)W(u,ψ) f =

∞∑
n=1

λn〈 f , en〉en, (4.21)

where (λn) is the sequence of the singular values of the positive operatorW(u,ψ)W ∗
(u,ψ).

We recall that the operator W ∗
(u,ψ)W(u,ψ) with the above decomposition belongs to

Sp(F2
ϕ) if and only if

‖W ∗
(u,ψ)W(u,ψ)‖p

Sp
=

∞∑
n=1

|λn|p < ∞. (4.22)

On the other hand, estimate (4.6) yields

∫
C

mp
(u,ψ)(z)

τ 2(ψ(z))
dm(z) �

∫
C

|u(z)|p
τ 2(ψ(z))

ep
(
ϕ(ψ(z))−ϕ(z)

) ‖Kψ(z)‖22
τ−2(ψ(z))e2ϕ(ψ(z))

dm(z)

=
∞∑
n=1

∫
C

|u(z)|pe−pϕ(z)|en(ψ(z))|2e(p−2)ϕ(ψ(z))dm(z).

Applying Hölder’s inequality with exponent 2
p > 1, we observe that the above sum is

bounded by

∞∑
n=1

( ∫
C

|u(z)|2e−2ϕ(z)|en(ψ(z))|2dm(z)

) p
2

×
(∫

C

|en(ψ(z))|2e−2ϕ(ψ(z))dm(z)

) 2−p
2

. (4.23)
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It follows from our assumptionW(u,ψ) is a compact operator and hence by Lemma 4.2,
ψ(z) = az + b with 0 < |a| < 1. From this and definition of τ ,

∫
C

|en(ψ(z))|2e−2ϕ(ψ(z))dm(z) = |a|2. (4.24)

Then, the sum in (4.23) is bounded (up to a constant multiple) by

∞∑
n=1

(∫
C

|u(z)|2e−2ϕ(z)|en(ψ(z))|2dm(z)

) p
2 �

∞∑
n=1

(〈W ∗
(u,ψ)W(u,ψ)en, en〉

) p
2

=
∞∑
n=1

λ
p/2
n = ‖W ∗

(u,ψ)W(u,ψ)‖p/2
Sp/2

= ‖W(u,ψ)‖p
Sp

< ∞.

Suppose now that 2 ≤ p < ∞ and letW(u,ψ) be in Sp(F2
ϕ) class. Then, it is compact,

and by Lemma 4.2 again, ψ(z) = az + b, 0 < |a| < 1. Let ek be an orthonormal
basis in F2

ϕ . Using the sequence in Lemma 4.3, define an operator T by T ek(z) =
fψ(zk )(z) = Fψ(zk)(z)/τ(ψ(zk)). Observe that by (4.5), fψ(zk ) is a sequence of unit
norm functions in the spaces and by [2, Proposition 9], T is a bounded operator inF2

ϕ .
Consequently, by [16, Theorem 1.33]

∞∑
k=1

‖W(u,ψ) fψ(zk )‖p
2 =

∞∑
k=1

‖W(u,ψ)T ek‖p
2 ,

which together with Lemma 4.3 implies

∞∑
k=1

1

τ(ψ(zk))p

( ∫
D(ψ(zk),τ (ψ(zk )))

|u(z)|2e2ϕ(ψ(z))−2ϕ(z)dm(z)

)p/2

�
∞∑
k=1

( ∫
D(ψ(zk ),τ (ψ(zk )))

|u(z)|2| f(ψ(zk ))(ψ(z))|2e−2ϕ(z)dm(z)

)p/2

�
∞∑
k=1

‖W(u,ψ) fψ(zk )‖p
2 < ∞.

On the other hand, if δ is sufficiently small, using (4.7), we get

∫
C

mp
(u,ψ)(z)

τ (ψ(z))2
dm(z) �

∞∑
k=1

∫
D(ψ(zk),δτ (ψ(zk )))

Sp(z)

τ (ψ(z))p
dm(z)

τ (ψ(z))2

�
∞∑
k=1

1

τ(ψ(zk))p

∫
D(ψ(zk),δτ (ψ(zk )))

Sp(z)
dm(z)

τ (ψ(z))2
,
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where

Sp(z) =
(∫

D(ψ(z),δτ (ψ(z)))
|u(w)|2e2ϕ(ψ(w))−2ϕ(w)dm(w)

)p/2

.

It follows that

∞∑
k=1

1

τ(ψ(zk))p

∫
D(ψ(zk ),δτ (ψ(zk)))

Sp(z)
dm(z)

τ 2(ψ(z))

�
∞∑
k=1

1

τ p(ψ(zk))

( ∫
D(ψ(zk ),δτ (ψ(zk)))

|u(w)|2e2ϕ(ψ(w))−2ϕ(w)dm(w)

)p/2

,

and completes the proof.

4.3 Proof of Proposition 3.3

Note that sinceW(u,ψ) is compact inF2
ϕ , it admits a Schmidt decomposition, and there

exist an orthonormal basis (en)n∈N of F2
ϕ and a sequence of nonnegative numbers

(λ(n,u,ψ)) with λ(n,u,ψ) → 0 as n → ∞ such that for all f in F2
ϕ ,

W(u,ψ) f =
∞∑
n=1

λ(n,u,ψ)〈 f , en〉en . (4.25)

Then, W(u,ψ) with such a decomposition belongs to Sp(F2
ϕ) if and only if

‖W(u,ψ)‖p
Sp

=
∞∑
n=1

|λ(n,u,ψ)|p < ∞. (4.26)

Applying (4.25), in particular to the kernel function, we obtain the relation

‖W(u,ψ)Kψ(z)‖22 =
∞∑
n=1

|λ(n,u,ψ)|2|en(ψ(z))|2,

and from which and (4.6) we have

∫
C

‖W(u,ψ)kψ(z)‖p
2

dm(z)

τ (ψ(z))2

�
∫
C

( ∞∑
n=1

|λ(n,u,ψ)|2|en(ψ(z))|2
) p

2

τ(ψ(z))pe−pϕ(ψ(z)) dm(z)

τ 2(ψ(z))
. (4.27)
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Wemay now consider two different cases depending on the size of the exponent p and
proceed first to show the necessity for the case p > 2. Applying Hölder’s inequality
to the sum shows that the left-hand side in (4.27) is bounded by

∫
C

∞∑
n=1

|λ(n,g,ψ)|p|en(ψ(z))|2
( ∞∑

n=1

|en(ψ(z))|2
) p−2

2

τ p(ψ(z))e−pϕ(ψ(z)) dm(z)

τ 2(ψ(z))

�
∞∑
n=1

|λ(n,u,ψ)|p
∫
C

|en(ψ(z))|2e−2ϕ(ψ(z))dm(z) �
∞∑
n=1

|λ(n,u,ψ)|p = ‖W(u,ψ)‖p
Sp

,

where the last equality follows from (4.26).
(ii) To prove the sufficiency for 0 < p < 2, observe that by estimate (4.6)

‖W(u,ψ)‖p
Sp

=
∞∑
n=1

|λ(n,u,ψ)|p‖en‖22 �
∞∑
n=1

|λ(n,u,ψ)|p
∫
C

|en(ψ(z))|2 ‖Kψ(z)‖−2
2

τ 2(ψ(z))
dm(z).

Since p < 2, Hölder’s inequality applied with exponent 2/p and subsequently
invoking relations (4.3) give

‖W(u,ψ)‖p
Sp

≤
∫
C

( ∞∑
n=1

|λ(n,u,ψ)|2|en(ψ(z))|2
) p

2
( ∞∑

n=1

|en(ψ(z))|2
) 2−p

2 ‖Kψ(z)‖−2
2

τ 2(ψ(z))
dm(z)

=
∫
C

( ∞∑
n=1

|λ(n,u,ψ)|2|en(ψ(z))|2
) p

2 ‖Kψ(z)‖−p
2

τ 2(ψ(z))
dm(z)

=
∫
C

‖W(u,ψ)kψ(z)‖p
2

dm(z)

τ 2(ψ(z))
�

∫
C

‖W(u,ψ)kψ(z)‖p
2�ϕ(|ψ(z)|)dm(z).

4.4 Proof of Theorem 3.4

Part (i): Suppose thatW(u,ψ) is a bounded invertible operator. Then by Proposition 3.1
and Lemma 4.2, it follows that ψ(z) = az + b, |a| ≤ 1. The adjoint operator W ∗

(u,ψ)

is also invertible and hence there exists a positive constant c such that

‖W ∗
(u,ψ)Kz‖22 ≥ c‖Kz‖22 (4.28)

for all z ∈ C. By (4.18), we have

W ∗
(u,ψ)Kz = u(z)Kψ(z)

which together with the estimates (4.6) and (4.28) yield

|u(z)|2‖Kψ(z)‖22
‖Kz‖22

� |u(z)|2e2ϕ(ψ(z))−2ϕ(z) τ 2(z)

τ 2(ψ(z))

� |u(z)|2e2ϕ(ψ(z))−2ϕ(z) = m2
(u,ψ)(z) � c, (4.29)
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where we used the growth assumption on ϕ to compare τ(z) and τ(az+b) for |a| ≤ 1.
The relation (4.29) shows u has no zeros in C. Furthermore, since ψ is nonconstant
and hence a �= 0, replacing z by ψ−1(z) = (z − b)/a in (4.29) gives

e2ϕ(ψ−1(z))−2ϕ(z)

|u(ψ−1(z))|2 = m2
(1/u(ψ−1),ψ−1)

(z) � 1

c
(4.30)

for all z ∈ C. It follows fromCorollary 3.1 that theweighted composition operatorwith
symbol (1/u(ψ−1), ψ−1) is bounded in F2

ϕ . Then, Lemma 4.2 implies that |1/a| ≤ 1
which together with |a| ≤ 1 gives the assertion |a| = 1.

Conversely, assume that ψ(z) = az + b, |a| = 1 and condition (3.3) holds. By
(3.3), the multiplier function u has no zero in C. Applying Corollary 3.1, both Wu,ψ

and W(1/u(ψ−1),ψ−1)) are bounded. A simple computation shows

W(u,ψ)W(1/u(ψ−1),ψ−1) f = W(1/u(ψ−1),ψ−1)W(u,ψ) f = f .

for each f ∈ F2
ϕ . Thus, W(u,ψ) is invertible and W−1

(u,ψ) = W(1/u(ψ−1),ψ−1)).
Part (ii): Recall that an operator is unitary if it is invertible and its inverse and adjoint
coincides.Assume thatW(u,ψ) is unitary. Thenbypart (i),W

−1
(u,ψ) = W(1/u(ψ−1),ψ−1) =

W ∗
(u,ψ) and for each f ∈ F2

ϕ

W(u,ψ)W
∗
(u,ψ) f = W ∗

(u,ψ)W(u,ψ) f = f .

We proceed to show that u has the form in (3.4). Letting f = Kz in the above relation
and applying (4.18)

W(u,ψ)W
∗
(u,ψ)Kz = W(u,ψ)u(z)Kψ(z) = uu(z)Kψ(z) ◦ ψ = Kz,

from which setting z = 0 in particular gives

uu(0)Kb ◦ ψ = K0. (4.31)

Considering the standard orthonormal basis en(z) = zn/‖zn‖2, n ≥ 0 where we set
e0 = 1/‖1‖2 and the series representation in (4.20)

K0(w) =
∞∑
n=0

en(w)en(0) = 1

‖1‖22
(4.32)

for each w ∈ C. From which and by (4.31), Kb ◦ ψ has no zero. Since u has no zeros
either, we conclude

u = K0

u(0)Kb(ψ)
= ‖1‖−2

2

u(0)Kb ◦ ψ
.
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To prove the converse, assume that u has the form in (3.4) and�(z) = ‖1‖22u(0)Kb(z).
Then for each f ∈ F2

ϕ , we have

W(�,ψ−1)W(u,ψ) f = W(�,ψ−1)(u f (ψ)) = �u(ψ−1) f (ψ(ψ−1))

= ‖1‖22u(0)Kb(z)
‖1‖−2

2

u(0)Kb(ψ(ψ−1))
f = f .

Similarly,W(u,ψ)W(�,ψ−1) f = f . Thus,W ∗
(u,ψ) = W−1

(u,ψ) = W(�,ψ−1) and completes
the proof of this part.
Part (iii): Recall that an operator T on a Hilbert space is normal if it commutes with
its adjoint T ∗. The assumption implies ψ(z) = az + b fixes the point z0 = b/(1− a)

when a �= 1 and z0 = 0, or a = 1 and b = 0. Applying W ∗
(u,ψ) to Kz0

W ∗
(u,ψ)Kz0 = u(z0)Kψ(z0) = u(z0)Kz0 ,

which shows that u(z0) is an eigenvalue ofW ∗
(u,ψ) with eigenvector Kz0 . SinceW(u,ψ)

is normal, Kz0 is also an eigenvector of W(u,ψ) with eigenvalue u(z0) and

W(u,ψ)Kz0 = u(z)Kz0 ◦ ψ = u(z0)Kz0

from which we conclude

u(z) = u(z0)Kz0

Kz0 ◦ ψ
.

Evaluating both sides of the preceding equation at 0 and applying (4.32) yield u(z0) =
u(0)‖1‖22Kz0(b), and completes the proof.

4.5 Proof of Proposition 3.5

Let f be any vector in F p
ϕ . Then, its orbit under W(u,ψ) has elements of the form

Wn
(u,ψ) f = f (ψn)

n−1∏
j=0

u ◦ ψ j (4.33)

for all nonnegative integers n and ψ0 is the identity map.
Assume on the contrary that there exists a τpt -supercyclic vector f inF2

ϕ . It follows
that neither the multiplier function u nor the vector f has zeros inC. This is because if
any of themvanishes at pointw, then (4.33) implies that every element in the projective
orbit of f vanishes at w which extends to the closure resulting a contradiction.

Next, since W(u,ψ) is bounded, by Lemma 4.2, we may set ψ(z) = az + b, with
|a| ≤ 1. It follows the map ψ fixes the point z0 = b

1−a for a �= 1 and z0 = 0, or a = 1
and b = 0. Then, the rest of the proof follows exactly the same arguments used in the
proof of Theorem 1.7 in [7].
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4.6 Proof of Theorem 2.3

The proofs for p ≥ 2 and the sufficiency part for 0 < p < 2 are quite similar to
the corresponding proof of Theorem 3.2 by simply replacing |u| by |g′|/(1+ ψ ′) and
making some trivial adjustments. Thus, we only need to prove the necessity of the
condition for 1 < p < 2. To this end, observe that an immediate consequence of
(4.20) and Parseval’s identity is that

∂

∂w
Kw(z) =

∞∑
n=1

en(z)e′
n(w), and

∥∥∥ ∂

∂w
Kw

∥∥∥2
2

=
∞∑
n=1

|e′
n(w)|2. (4.34)

By [2, Lemma 22], we further have

∥∥∥ ∂

∂w
Kw

∥∥∥2
2

=
∞∑
n=1

|e′
n(w)|2 � (ϕ′(w))2‖Kw‖22. (4.35)

On the other hand, by the relation in (3.1), the inner product

〈 f , g〉D = f (0)g(0) +
∫
C

f ′(z)g′(z) e−2ϕ(z)

(1 + ϕ′(z))2
dm(z) (4.36)

gives a norm on F2
ψ equivalent to the usual one.

For 1 < p < ∞, V(g,ψ) belongs to the Schatten Sp(F2
ϕ) class if and only if

∞∑
n=1

|〈V(g,ψ)en, en〉D|p < ∞.

for any orthonormal basis (en) in the space with respect to the inner product in (4.36);
see [16, Theorem1.27] for more. Since p > 1, by Hölder’s inequality

∞∑
n=1

|〈V(g,ψ)en, en〉D|p ≤
∞∑
n=1

(∫
C

|en(ψ(z))e′
n(z)|

|g′(z)|e−2ϕ(z)

(1 + ϕ′(z))2
dm(z)

)p

≤
∞∑
n=1

∫
C

|g′(z)|p
(1 + ϕ′(z))2

|en(ψ(z))|p|e′
n(z)|2−pe−2ϕ(z)dm(z)

×
( ∫

C

|e′
n(z)|2

(1 + ϕ′(z))2
e−2ϕ(z)dm(z)

)p−1

�
∫
C

|g′(z)|p
(1 + ϕ′(z))2

∞∑
n=1

(|en(ψ(z))|p|e′
n(z)|2−p)e−2ϕ(z)dm(z) (4.37)
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Similarly, since p < 2, applying Hölder’s inequality to the sum above again and using
(4.6) and (4.35)

∞∑
n=1

|en(ψ(z))|p|e′
n(z)|2−p ≤

( ∞∑
n=1

|en(ψ(z))|2
)p/2( ∞∑

n=1

|e′
n(z)|2

)(2−p)/2

= ‖Kψ(z)‖p
2

∥∥∥ ∂

∂z
Kz

∥∥∥2−p

2
� ‖Kψ(z)‖p

2

(‖Kz‖2ϕ′(z)
)2−p

� epϕ(ψ(z))+(2−p)ϕ(z)(ϕ′2−p(z))

τ p(ψ(z))(τ 2−p(z))
. (4.38)

Next, we claim

ϕ′2−p(z)

τ (ψ(z))p(τ 2−p(z))
� ϕ′p(z)

τ 2(ψ(z))
(4.39)

for all 1 < p < 2 and sufficiently large z. But this follows rather easily since by
definition of τ

ϕ′(z))2(1−p) � τ 2−p(z)

τ 2−p(ψ(z))

as |z| → ∞. Setting the estimate in (4.39) and (4.38) in (4.37)

∞∑
n=1

|〈V(g,ψ)en, en〉D|p �
∫
C

|g′(z)|p
(1 + ϕ′(z))2

epϕ(ψ(z))−pϕ(z)(ϕ′(z))p

τ 2(ψ(z))
dm(z)

�
∫
C

Mp
(g,ψ)(z)

dm(z)

τ 2(ψ(z))
�

∫
C

Mp
(g,ψ)(z)�ϕ(|ψ(z)|)dm(z) < ∞

and completes the proof.
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