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1. Introduction

The purpose of this paper is to analyze the weak convergence of the finite element method for the second order
semilinear parabolic SPDEs of the following type in the Hilbert space H = [*(A)

dX(t) = [AX(¢) + F(X(£)]dt + dW(t), X(0)=Xo, e (0,T]. (1)

The model problem (1) is viewed in the Itd sense and the mild solution X(r) is sought in the Hilbert space H = [2(A)
where A ¢ R? (d = 1, 2, 3) is bounded with smooth boundary or is a convex polygon. In (1), the second order linear
operator A is not necessary self-adjoint and generates an analytic semigroup, F is a nonlinear operator satisfying a Lipschitz
condition. For technical reasons the initial data Xy € L?(A) is assumed to be deterministic. The norm and the inner product
in # are denoted respectively by ||.|| and (., .). Let Q : X —> H be a positive definite self-adjoint operator. In the model
problem (1), W is a Q-Wiener process in the filtered probability space (£2, F, (¥ );>0, P). Note that the noise W can be
represented as follows [1,2]

(o]
Wt x) =) JaeXplt), tel0,Tl, xe 4, (2)

i=1
where e; and g;, i € N are respectively the eigenfunctions and eigenvalues of Q and §; (i € N) are identically distributed
standard real-valued Brownian motions. Equations of type (1) are used to model many real-world phenomena such as oil
and gas recovery from hydrocarbon reservoirs and mining heat from geothermal reservoirs. However, analytical solutions
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of many SPDEs are rarely known. Therefore, numerical solutions are usually used to provide realistic approximations.
Stability and convergence are usually the main features of a numerical algorithm. Convergence of a numerical algorithm
aims to ensure that the proposed scheme converges with a certain rate to the true solution with respect to an appropriate
norm. The strong convergence is well understood (see e.g. [3-9]) while the weak convergence is not yet well understood,
see e.g., [10-19]. The weak convergence of the finite element method for stationary problem driven by spatial white
noise was investigated in [16]. In [10], the weak convergence of the finite element method was done for linear evolutive
SPDE with a linear self-adjoint operator and the test functions that satisfy an extra condition, namely [10, (1.8)]. Weak
convergence of the finite element method for linear SPDEs without the extra condition [10, (1.8)] was later investigated
in [20]. The weak convergence in space of semilinear SPDEs driven by multiplicative noise with nonlinear functions F or
B is more complicated than the linear case and was investigated for instance in [11] with nonlinear drift function F such
that F € C2(#). Note that the Malliavin calculus and the self-adjointness of the linear operator A is crucial while proving
the results in the above mentioned papers. For instance, the proofs in [11] use the projections onto the eigenspaces of
A. The drawback was that those projectors do not commute with the L?-projection P, in (19). In addition, note that if
F is a Nemytskii-type operator (i.e., is a mapping in the form u — F(u) = f(u(.)), where f € C2(R)), then in general
F ¢ C;(H), see [11, Section 2.3]. This excludes many interesting nonlinearities F. Therefore, it is interesting to investigate
the case where the nonlinearity can be of Nemytskii-type. Recently, Jianbo and Jialin [ 12] examined the weak convergence
in space under one-sided Lipschitz and polynomial growth of the nonlinear drift function F. However, the convergence
analysis in [12] was done only for one-dimensional SPDE with linear self-adjoint operator. The case of SPDEs with cubic
polynomial nonlinearity has been investigated in [21], but by the means of a spectral Galerkin method. Here the space
discretization is performed using the finite element method, more adapted to realistic applications. Andersson et al. [22]
used a more general setting by avoiding the Kolmogorov equation and by using the following linearization of the weak
error

1
Elp(X) — o(Y)] = E[(¢. X —Y)], where ¢ = / ¢'(eX + (1 —)Y)do.
0

The function ¢ being a test function. This approach was introduced in [23] for stochastic differential equations and in [24]
for stochastic partial differential equations. Although the setting in [22] seems to be more general, it is not clear how this
technique can work for more general second order not necessarily self-adjoint operator in (1) or (16), since the application
was only done for self-adjoint operator in [22, Section 5].

The aims of this paper is to fill that gap by providing an elegant weak convergence proof of the finite element method
for (1) with not necessary self-adjoint linear operator A and under weaker assumptions on F, namely Assumption 2.2.
To achieve our goal, we first write our weak error representation formula in an appropriate form (see Proposition 3.2)
by using Kolmogorov equation. We then split the linear operator in self-adjoint and non self-adjoint parts, and use
Malliavin calculus along with technical and careful estimates (see e.g. (63)-(70)). Although our approach follows some
lines as in [11], error estimate is more challenging since here in addition to the fact our linear operator is not necessarily
self-adjoint, we are working under weaker assumptions on the nonlinearity F. Our main result reveals how the weak
convergence order depends on the regularity of the noise, and is twice that of the strong convergence. More precisely,
we obtain convergence rate O (hzﬁ*), where B is the parameter defined in Assumption 2.2 and € > 0 is an arbitrarily
small number.

The rest of this paper is structured as follows. In Section 2 we recall some preliminaries and fundamental functional
spaces. Section 3 is devoted to the finite element discretization and weak error representation formula in space. In
Section 4, we investigate the weak error of the finite element method.

2. Mathematical setting and preliminaries
2.1. Preliminaries

Let £2 be a sample space and U a separable Hilbert space with norm ||.||y, we denote by £(U, #) the space of bounded
linear mappings from U to # endowed with the usual norm ||.|| o %) We denote by L?(£2, U) the Hilbert space of all
equivalence classes of square integrable U-valued random variables. By C,’,‘(H, U) we denote the space of not necessarily
bounded mappings g from ¥ to U that have continuous and bounded Fréchet derivatives Dg, D?g, ..., DXg. We endow
CK(H, U) with the semi norm |-lck(a.uy> Which for g € CK(H, U), 18 lck (v i the smallest constant K such that

sup ID"g(X)(@1, ... pu)llu <Kllp1ll -~ - lignll, &1,.... 40 €H, n=k
Xe

Let G™(U, V) be the space of Gateaux differentiable mappings with symmetric and strongly continuous derivative. We
denote by G;'(U, V) the subspace of functions of g"(U, V) with derivatives of polynomial growth, see e.g., [22, Section
2.1] for more details. We denote by £1(U, #) the set of nuclear operators from U to #H, £3(U, #) := HS(U, #) the space
of Hilbert-Schmidt operators from U to . As usual, £,(U, #) is endowed with the nuclear norm ||.|| z,(u,7), see e.g., [25].
For the seek of ease notations, we write £(U, U) =: £(U), £1(U, U) =: £1(U) and £,(U, U) =: £,(U).

2
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For | € £1(U) the trace of | is defined by

[e¢]

Tr(l) =) (lei, e}, (3)

i=1

where (e;)2, is an orthonormal basis of U. The norm in £,(U) is defined by

1
00 2
My = (Z ||lef||f]) < oo0. "
i=1

The space of Hilbert-Schmidt operators from Uy := Q%(H) to # is denoted by £9 = £,(Uy, H) = HS(Uy, H). As usual, Lg
is equipped with the norm

1
o0 2
1 1
g = 11Q2 llns = (Z ||le¢>,-||2) . e, (5)
i=1

where (¢;)icy is an orthonormal basis of #. Note that definitions (3), (4) and (5) are independent of the orthonormal bases
of U and #. The space Up equipped with (u, v)y, := <Q’%u, Q’% v> is a Hilbert space.

Since Malliavin calculus will be one of the key ingredients while examining weak convergence error, let us recall
from [11, Section 2] and [12] some of their useful properties. Let Z : L*([0, T]; Uy) — L?(£2) be an isonormal process,
i.e. for any ¢ € [2([0, T]; Up), the random variable Z(¢) is centered Gaussian and Z has the following covariance structure

E[Z(¢1), Z(¢2)] = (91, 02)i2q01109) - ©1- #1 € L([0, T1; Up).
For u € Uy, the Q-Wiener process W € L? ([0, T] x Up, L*(A)) by
W(tu =7 (xoq®u), tel[0,T], ue Uy,
where x stands for the indicator function. For u € Uy, the process W(t)u, t € [0, T] is a Brownian motion and satisfies
E[W(t)uW(s)v] = min(s, £){u, v)y,, u,veUy, s,tel0,T].
For N € N, let C,?(RN ) be the space of real-valued C* functions on RN with polynomial growth. We denote the family of
smooth real-valued cylindrical random variables by
S:={x =g@(¢1)..... Zpn)) : g € C(RY); ¢ € ([0, T]; Up); j=1,...,N}
and the corresponding family with values in H by
L

S(H) = {F:Z)@@hi:xl,...,mes, hi,....h € A, LGN}.

i=1

The Malliavin derivative of the random variable x = g (Z(¢1), ..., ¢n) € S is defined as the L*([0, T]; Up)-valued random
variable

N
Dy =Y g (Tg1),..., Tien)) ® ¢i.

i=1
Obviously Dy is an Up-valued stochastic process. We write for t > 0
N

Dix =), 0g @(@1), ..., Tlgn)) ® @i(t).
i=1

The Malliavin derivative of G = ZiL:] 8i (Z(@1), ..., Z(en)) ® hi € S(H) is defined by

L N
DG =) > g @) ... Ton) ® (i ® ¢i(s)) .

i=1 j=1

Since the Malliavin derivative operator D is closable (see e.g., [11, Section 2]), let us denote by D! the closure of S(#)
with respect to the Malliavin derivative equipped with the following norm

1
T 2
161212050, = <E[||G||2]+E[ f ||Dsc||zgds}> .
0
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For any o € C}(#, #), the following chain rules for Malliavin derivatives hold
Di(0(G)) = Do(G)D;G, D(0(G)) = Do(G).D G, u € Up, G € D"*(H), (6)
where D} := D;Gu is the derivative in the direction u, with
L N
DiGu =YY (W, ¢)u,difi @), ..., (gn)) ® hi,
i=1 j=1

where we equipped Uy with the inner product (u, v)y, := (Q‘%u, Q‘%v>.

Moreover, for any random variable G € D'?(#) and any predictable stochastic process @ € L*([0, T], 5‘2’), the following
holds

T T
E |:</ @ (t)dW(t), G>] =E |:/ (@(t), D:G) Lo dt] . (7)
0 0 2

In the rest of this paper, we consider % = L*(A).
2.2. Main assumptions and well-defined problem

To guarantee a unique mild solution of (1) and for the purpose of the convergence analysis, we make the following
assumptions.

Assumption 2.1. The linear operator A : D(A) C % —> 7 is negative and generates an analytic semigroup S(t) =: e*’.

Assumption 2.2. The covariance operator Q : H —> # satisfies the following estimate

[T Rk <c, pelol

Lo(H)

Assumption 2.3. The nonlinear operator F : # —> H is Lipschitz continuous and twice Fréchét differentiable, with
derivatives satisfying

_3 —nr/
I(=A)"2F'(ull < Lljull,  [(=A)""F"(v)(u1, uz)ll < Llluglllluzll, u, v, up, up € H,
for some § € (0, B) and n € (3, 1).

The following theorem guarantees the existence of the unique mild solution to (1).

Theorem 2.1 ([1, Theorem 7.2]). Let Assumptions 2.1, 2.3 and 2.2 be fulfilled. Then the SPDE (1) has up to modifications a
unique mild solution X : [0, T] x 2 —> H, which takes the following form

X(t) =S(6)Xo + / S(t — s)F(X(s))ds + / S(t —s)dw(s) (8)
0 0

P-as. and satisfies

T
P [/ IX(s)|I%ds < oo] =1.
0

Moreover, for all p > 1 there exists a positive constant C such that.
4

5 4
up IX(Dllzqa.0 < €A+ X0l sup IX(O1E g5, = € (1101 (9)
<t< ’

0<t<T

For an Lg-valued predictable stochastic process ¢ : [0, T] x 2 —> Lg such that
t
1
f ENG(S)Q 12, 0ds < 00, £ [0,T],
0
the following relation called It6 isometry holds

2 t
E - / ENG)Q 12, p0ds, € [0, T], (10)
0

/ $(s)AW(s)
0

see e.g., [1, Step 2 in Section 2.3.2] or [2, Proposition 2.3.5].

4
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In the sequel of this paper, the following proposition will be used.

Proposition 2.1 ([25]). Let I, I;.I, be three operators in Hilbert spaces, the following holds
(i) If 1 € £41(U) then

[Tr(Dl < Il 2y(w)- (11)
(i) If I € £() and Ly € £1(#), then Il L1, € £1() and
Tr(hlZ) = Tr(lzl1). (12)

(iii) If y € £o(U, H) and I, € £Lo(H, U), then I1], € £41(H) and

Ikl 2y < Mhlleyw, 2020l 2500,0)- (13)
(iv) Ifle (U, ") and |; € £;(U), j =1, 2, then ll; € £;(U, H) and

M50 2w, < Ml ew sl gjwy, J=1,2. (14)

(v) Ifl € £5(U, H), then its adjoint I* € £5(#H, U) and
17N o200y = Il 2ou,20)- (15)
We equip H® := D((—A))%, a € R with the norm |u]l, = ||(—A)%u||.

2.3. Second order semilinear parabolic SPDE

In the rest of this paper, we assume the linear operator A to be of second order. More precisely, we assume that our
SPDE (1) is a second order semilinear parabolic of the form
dX(t,x) = [V - (DVX(t, X)) — q - VX(t, x) + f(x, X(¢, x))ldt + dW(t, x), (16)

forx € A and t € [0, T], where the function f : A x R — R is twice continuously differentiable with globally bounded
derivatives. In the abstract framework (1), the linear operator A is the L*(A) realization [26, p. 812] of the following
differential operator

d

d
el ou ou
au= =30 (P05 + L a0 o= 0 (7)

ij=1 !
q = (Gi)1<i<a» Where Dy € L*°(A), q; € L*°(A) and there exists a constant ¢; > 0 such that

d
Y D = cile?. £ eRY xeq,

ij=1
the nonlinear function F : H — # is given by
(F)(x) =f(x,v(x)), x€ A, veEH, (18)
where f : A x R+ R is a smooth nonlinear function. If there exists ¢; > 0 such that
of 92 9%f
2| =< c(lzl + 1), |=(,2)| <¢, Z2)| =26, | 526, 2)| = ¢
If(§,2)l < ¢(lzl + 1) ’BZ(S ) = ¢ agaz(s )‘ i azz(f ) =¢r

forallzeR,i=1,...,d & =(&,&,...,&)" € A, then Assumption 2.3 is fulfilled. See e.g., [19, Example 3.2] or [27,
Example 5.1] for details.

As in [7,26], we introduce two spaces H and V, such that H C V; the two spaces depend on the boundary conditions
of A and the domain of the operator A. For Dirichlet (or first-type) boundary conditions we take

V=H=Hy(A)={veH'(A):v=0 on dA}.

For Robin (third-type) boundary condition and Neumann (second-type) boundary condition, which is a special case of
Robin boundary condition, we take V = H'(A) and

H={veH*(A):v/dva+ogu=0, on A}, <R,

where dv/dv 4 is the normal derivative of v and v 4 is the exterior pointing normal n = (n;) to the boundary of A4, given
by

d
v
/v, = UZ‘: n,-(x)D,'j(x)a—)g, X € dA.
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Using Green'’s formula and the boundary conditions, the corresponding bilinear form associated to —A is given by

d
ou ov
a(u,v) = dx, u,vev,
(. v) /Azyaxlax qu v

ij=1
for Dirichlet and Neumann boundary conditions, and

d

d
ou dv ou
a(u, v) = Djj— — + i—v | dx + uvdx, u,velV.
( U) ]; Z v an an Zlql aXi /QA o

ij=1 i=

for Robin boundary conditions. Note that A A is the infinitesimal generator of a bounded analytic semigroup S(t) = e on
L?(A) such that

1
S(t)y=e = — / e (Al — A)~lda, t >0,
27i c
where C denotes a path that surrounds the spectrum of A, see e.g., [26,28].
3. Finite element discretization and weak error representation formula

Let us now turn our attention to the discretization of problem (1). We start by splitting the domain A in finite triangles.
Let 7, be the triangulation with maximal length h satisfying the usual regularity assumptions. Let V;, C V be the space
of continuous functions that are piecewise linear over the triangulation 7;. We consider the projection P, from # to Vj
defined by

(Pru, x) =(u, x), u€M, xE€Vn (19)
The discrete operator Ay : V, —> V}, is defined by
(—And., x) = (=A)"*¢. (A" ?x) = a(p., x). . X € Vi, (20)

Note that (—A)*!/? stands for the adjoint of (—A)'/2. Like A, Ay is also a generator of analytic semigroup Sp(t) := e, As
any semigroup and its generator, A, and Sp(t) satisfy the smoothing properties of Theorem 2.1 with a uniform constant
C, independent of h. The semi-discrete version in space of problem (1) consists of finding X"(t) € Vj, t € (0, T] such that
X"0) = PyX, and

dX"(t) = [AnX"(t) + P.F(X"(£)))dt + PpdW(t), t € (0, T]. (21)

We note that A, and PyF satisfy the same assumptions as A and F respectively. Therefore, Theorem 2.1 ensures the
existence of the unique mild solution X"(t) of (21) such that

p
X' (Oiz.00 < C A+ XD, X' g, < € (1+1%15), o) (22)

for all p > 2. The mild solution of (21) is given by
t t
X"ty = Sp(t)xX"0) + / S(t — s)P,F(X"(s))ds + / St — s)PpdW(s). (23)
0 0

Let us introduce the Ritz representation operator R" : V — V,, defined by
(AR™, x) = ={(=A)"?v, (=A)"2x) = —a(v, x), vEV, x €V (24)

As in [17,29], we split A as follows: A = A; +A,, where A; and A, are respectively the self-adjoint and the non-selfadjoint
parts of A. Note that formally A, colrresponds to t1he second order derivative part of (17) and A, corresponds to the first
order derivative. Note that D((—A)2) = D((—A1)2) = D(A;) = V, where V = H(}(A) for Dirichlet boundary conditions
and V = H'(A) for Neumann or Robin boundary condition, see e.g., [29-31]. Note that the range of A, is a subspace of
H. We denote by A; ; and A, the discrete version of A; and A, respectively, see e.g., [29]. Note that Ay, : V4 —> Vj
satisfies

(Azd", x) = (A", x), V" x € Vi (25)
In the rest of this paper, for u" € Vj, and v € D((—A)% ), the notation (—Au", v) is understood in the following sense

(—Auh v) = (—A)Z U (—A)2v), UM eVh, veD(—A%)?). (26)
We also introduce the Ritz representation operator R’} : V. — V}, defined by

(AR, x) = —((—=AD"?v, (=AD)"?x), veV, x eV (27)

6
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We introduce the operator R’z1 : V. — V}, defined by
Rynv = A 1PhAav, i, AppRyv =PiAv, v eV, (28)

where AZ_L is the pseudo-inverse of A ; [1, Appendix B.2]. From (25), (28) and the definition of P, (cf. (19)), it follows
that

(AR5, x) = (A nRbv, x) = (PuAv, x) = (Av, X), v eV, x €V (29)
It is well known that the following estimate holds (see e.g., [11,26] or [32, Chapter 3])

[(=A Py = D(=A) "] 1y < CH*"™*, 0<a<n=T1, (30)

1

ARh TV AV 2y—28 _
[(AP R — 1A 7|y = W72 0 <5< <y <, (31)

1

8¢ ph — 2y—268

[(~A (R —D(=A) 7| 1 < R, 0<5<o <y <t (32)

Let us recall the following lemma, which will be useful in the rest of the paper.
Lemma 3.1 ([17, Lemma 3.1]). For p € [0, 1], (=A)’(=A*)7", (=A*)’(—=A)7", (=Ap)’(—=A};)~" and (—A};)°(—Ap)~" are
bounded operators in H.

Throughout this paper, C is a generic constant that may change from one place to another but is independent of the

space discretization parameter h.

Assumption 3.1. The test function ¢ € Q,f(?—t, R) is such that there exists some constants m > 2 and C > 0 such that
el iy < € L+ [ul™), uen, j=1,2.
Let us now move to the weak error representation formula. For ¢ € gﬁ(%, R), we define

u(t, ) = E (pX(t, ¥))) , (33)
where X(t, ¥) is the mild solution of (1) with initial value .

Proposition 3.1. Under Assumptions 2.1, 2.2 and 2.3, u(t, ¥) (33) is the unique strict solution to the following deterministic
PDE, called Kolmogorov equation

{%*;(t, W) = (AY + F(y), Du(t, v)) + 1Tr [D2u(t, v)Q], v € D(A), (34)
10, %)= g(¥). ¥ € D(A).

Proof. The proof goes along the same lines as that of [1, Theorem 9.25]. Note that compared to [1, Theorem 9.25], here
we have assumed weaker assumptions on the nonlinearity F and on the noise W, which is assumed to be of trace class
in [1, Theorem 9.25]. However, the proof is exactly as in [1, Theorem 9.25]. In fact, the main ingredients in proving [1,
Theorem 9.25] are [ 1, Theorems 9.8 & 9.9], which themselves are consequences of [1, Lemma 9.2, Propositions 9.5 & 9.6].
Note that [1, Lemma 9.2] only requires Lipschitz condition on F and does not involves their first and second derivatives,
so it remains valid in our setting. As far as it concerns [1, Proposition 9.5 & Proposition 9.6], the main point is to estimate

te[0,T]

t p
sup E (/ IS(E — $)F'(s, Xn(s)) — F'(S,X)]-Y(S)Ild5> .
0

where X, is a sequence of processes converging to X in .#, with ., being the Banach space of all (equivalence
classes of) #-valued predictable stochastic processes Y defined on the time interval [0, T] with the norm |||Y||| =

1
(supte[wJ ||Y(t)||P)P. In our setting, using Assumption 2.3 leads to

t p
sup E ( / ISt = S)F'(s, Xas)) — F/(s,X)].Y(snms)
0

te[0,T]
¢ s - P
< sup E( f 1AVt — $)lL o I(—A) S F (s,xn(s))—F/(s,xn.v(snms)
te[0,T] 0
t s p t s p
< sup E(/ (r—s)-fnY(s)nds) < sup E[ sup [Y()|"] (/ (t—srfds)
te[0,T] 0 te[0,T] rel0,t] 0
< CE[ sup Y(1)IP] < oo, (35)
te[0,T]
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where at the last step we used the fact that Y € .#, This then shows the boundedness of the term I! in [1, Theorem 9.6]
and then the dominated convergence theorem can be applied. In our setting, since we are dealing with additive noise,
the term I,f in [1, theorem 9.6] vanishes and we get rid of the noise. The same argument as above applies in the rest of
the theory and we will not repeat it here. B

Remark 3.1.1 Along the same lines as the proof of [1, Theorem 9.25] (or Proposition 3.1), one can prove that for
Y € D((—A)2), u(t, ) is a strict solution to the following deterministic PDE

{%*;(n ¥) = = (=A% ¥ (<A Du(t, Y)) + (Fp), Dule, ) + 3T [D2pue, )]
w0, ¥) = ¢(y), ¥ € D((—A)?).

In fact, (36) is just a weak formulation of (34) by noticing that (Ay, Du(t, ¥)) = — (—Ay, Du(t, ¥)) = — <(—A)%w,
(~A)EDu(t, ).

(36)

Bearing (26) in mind, (36) can be written in the same form as (34) with ¢ € D(A%). Using the Riesz representation
theorem, we can identify the first order derivative of u(t, ) with respect to i € H denoted by Du(t, ¥) with an element
of H. This yields

D,LL([‘, w)((ﬁl) = (DI’L(L 1#)’ ¢1> ) ¢1 € H.

By the same arguments as in [1, Theorem 9.4, Remark 9.5] and (35), one shows that X(t, ¥) is twice differentiable with
respect to ¥y € H and the second derivative D?u(t, ¥) with a linear operator in #. Hence taking the derivative in both
sides of (33) yields

(Dult, ¥), 1) = E (¢ (X(¢£, ¥)) £i(1)) , (37)
where &;(t) is the mild solution of the following problem

dq(t) = [A&(6) + F' (X(t, ) £(D)]de,  &(0) = ¢1. (38)
Differentiating again (37) yields

(D?ult, ¥)pr, d2) = E (9" (X(E, ¥)) - (E1(t). &2(6))) + E (¢ X(£, ¥)) m2(0)) (39)
where &;(t) and &(t) satisfy (38) with initial values ¢ and ¢, respectively, and 7, satisfies

dn12(t) = [An12(8) + F (X(t, ¥)) m1.2(0) + F7 (X(£, ) (51(0), &(t))] dt,  11,2(0) = 0. (40)

Proposition 3.2 (Weak Error Representation Formula). Let Assumptions 2.1, 2.3 and 2.2 be fulfilled. For any ¢ € Cf(?—t, R)
the following weak error representation formula holds

E[p(X"(T)) — o(X(T))] = E[(T, X"(0)) — u(T, X(0))] + E fo T<Ahxh(s), Du(T — 5, X"(s))ds
+E /0 {005 (A DT — . XH(s) s
+E /0 ' (PuF (X"(s)) = F(X"(s)), D(T — 5, X"(s))) ds
+ %E /0 I [D*(T — 5, X"(5)) (PhQPy — Q)] d.

Proof. Let us introduce the following shift process
v(t, Xo) = w(T —t,X0), 0<t<T, (41)
where p is defined by (33) with ¥ = X,. Simple computations yields
v (0,X(0)) = w(T. X(0)) = E (@(X(T))), (T X"(T)) = u(0,X"(T)) = E (g(x"(1)).
Consequently, we have the following decomposition of the space weak error
E (¢ (X"(T)) — ¢ X(T)) = E (u(T, X"(T)) — v(0, X(0))) (42)
= E (v(0,X"(0)) — v(0, X(0))) + E (v(T, X"(T)) — v(x"(0), 0)).

8
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Applying the It6 formula [1, Theorem 4.32] to G(t, x) = v(t, X"(t)) in the interval [0, T] yields

T
o(T, X™(T)) — v(0, X"(0)) = / Du(s, X"(s))PpdW(s)
0
T
+ f [gl:(s,xh(s))+(Dv(s,Xh(s)),AhXh(s)+PhF(X"(s))>] ds
0

1 1 1\ *
+ 5T [Dzv(s, x"(s)) (Pth) (thf) ]ds. (43)
From the fact v(s, X"(s)) satisfies (36), it follows that
W pheyy U Ry — 1yh )1 h
S(5:X1(8) = = 52T = 5.X"(5)) = (=A)X"(s). (=A) DT — 5. X"())
1 1 1\*
— (FOX(9)). D(T = 5. X"(s) = 5Tr [D?(T = s.X")@? (@3) | (44)
Substituting (44) in (43) yields
T T
o(T, X"(T)) — v(0, X"(0)) = / Du(s, X"(s))PndW(s) + / (AnX"(s), DW(T — s, X"(s))) ds
0 0

T
+ / <(—A)%xh(s),(—A*)%DM(T—s,xh(s))>ds
0

+ f ' (PuF (X"(s)) = F(X"(s)), D(T — 5, X"(s))) ds (45)
0
n ;fOTTr [DZ,u(T — 5, X"(s)) (PhQ% (Q%)*P;: — Q3 (Q%)*)] ds.

Taking the expectation in both sides of (45) and using the fact that the expectation of the It0 integral vanishes, we arrive
at

;
E [o(T, X"(T)) — v(0,X"(0))] = IE/ (AnX"(s), DT — s, X"(s))) ds
0
T
+ IE/ <(—A)%x“(s),(—A*)%DM(T —s, Xh(s))> ds
0
T
+E / (PuF (X"(s)) — F(X"(s)), D(T — 5, X"(s))) ds
0

;
+ %E / Tr [D* (T — 5, X"(5)) (PaQPy — Q)] ds. (46)
0

Substituting (46) in (42) completes the proof of Proposition 3.2. ®

4. Weak error estimate

The main results of this section is formulated in the following theorem.

Theorem 4.1. Let X(t) and X"(t) be the mild solution of (1) and (21) respectively. Let Assumptions 2.3, 2.2 and 3.1 be fulfilled.
Then the following error estimate holds

E[p(X(T)) — o(X"(T)]| < Ch*~<,
where ¢ is any test function satisfying Assumption 2.2 and C is a constant independent of h.

In order to prove Theorem 4.1, we need some preliminaries results.

4.1. Preliminaries estimates

The proof of Theorem 4.1 relies heavily on the regularity estimates of the solution to the Kolmogorov equation (34),
which we provide in the next lemma. Such regularity results were also obtained for instance in [18]. But here we
emphasize that we are working under weaker assumptions on the nonlinearity F.

9
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Lemma 4.1. Let Assumptions 2.1, 2.3, 2.2 and 3.1 be fulfilled. For any y € [0, 1) and y1, y» € [0, 1) such that 0 < y1+y, < 1,
there exist constants C,, C,, and C,, ,, such that

I(—ARY DUt Y < Gt ™7, I(=AR2D* W (t, W) (—AR)Y [l 3ty < Gy (1+E771772), (47)
I(—ArY D" (t, )l < Gyt 71, I(—AR)2D* " (8, Y )(—AR)Y [l 230y < Gy (14 E771772), (48)

for any t, t1, t; € [0, T], where ¥ € V,, and p(t, ) is given by (33).
Proof. Let us start with the first estimate of (48). The mild solution of (38) is given by
t
N = Sien+ [ St — IPF X, v el (49)
0

Taking the norm in both sides of (49), inserting an appropriate power of —A; yields

€I

< [ISh(E)(—ARY (—An) 7 11l + / 1Sh(t — $)(—An)2 (—Ap)™ 2 PuF'(X"(s, Y ))EN(s) 1 ds
0

< IS(t)(—An) (—An) 7 1| + / 1(=AR)2Sh(t — s)(—An)™ 2 PuF'(X"(s, Y ))EN(s) 1 ds
0

< IS(t)(—An) (—An) ™ 1| + /0 (—An)2Sa(t — $)l| 2 I(—An)~ 2 PoF (X"(s, w))EN(s) .

Using the smoothing properties of the semigroup, [29, (3.12)] and Assumption 2.3 yields

A

HERON < 1(=An) Sh(E e | (—An) ™ 1l + C /0 (t — 5)7 2 [I(—An)™ 2PuF'(X"(s, ¥))EN(s) | ds

IA

Ct I(—An) " all + C f (t = s) 2 I(=A)"2F (X" (s, ¥))E"(s)llds
0

IA

t 3
CE [(—An) " | + C / (t — )} &R ds.
0

Applying the generalized Gronwall inequality (see e.g., [33, Lemma 6.3] or [28, Lemma 7.1.1]) to the preceding inequality
yields

IEFON < CEI(=A) 7 all.
Using (33), Assumption 3.1 and Proposition 2.1, it follows from the preceding inequality that

D" (t, )il < E (/X (e wDILIENON) < CEIX'OI™ 7 I(=An " ¢
< GV I(=AR) Tl

Using Cauchy-Schwarz inequality and the preceding inequality, it follows that

(=AY DU (E, ¥), ¢1)| = [(Du" (€. ). (=AY d1)| < CEV (A7 (—An) 1l = CE7 . (50)
Since we can identify Du"(t, ) with an element in %, it follows from (50) that

=AY DU(E )l < CE7, e .
This completes the proof of the first estimate of (48). Using Lemma 3.1 yields

I(—AR) De"(E, Y)II < II(—An) (—=AR) 7 e I(=ARY DUt )l < CE7, 4 € H.

This proves the second estimate of (48). It remains to prove (47). Note that the mild solution of the process satisfying
(40) is given by

nh () = /0 Sh(t — ) [PaF (X"(s, ¥)).1] 5(5) + PuF" (X" (s, ¥))(E1(s), £5(5))] ds. (51)

10
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Taking the norm in both sides of (51), inserting an appropriate power of Ap, using the smoothing properties of the
semigroup and [29, (3.12)] (or [17, (70)]) yields

Ik o)) < /0 15t — XA (—An) B s, ) ()l
+ /0 IS — XA (A B (s, )ENS), £ s
< /0 I ARESHE — el (—An) B (s, ) ()1
+ /0 I ARYISH(E — SHIECH—Ay) B (s, YI)ENS), E(s) Il ds
<c /0 (¢ — 5 1Ay S, y (5

+C / (t = s) (=AY "F"(X"(s, ¥ )NEN(s), &5(s))llds.
0

Using (48) and Assumption 2.3, it follows from the above inequality that

t 5 t
Il (0l < C / (6 =573 Il (s)lds + C / (£ — sy ENS)IERs)lds
0 0

IA

c / (6 =573 Il (s)llds + C / (£ = )75 72 (= Ap) o [ (~An)2 I ds
0 0

IA

t
e[ (—AR) " palll(—AR) >l + Cf (t —S)fglln’f,z(s)llds, (52)
0

where at the last step we used the estimate

t
2

t 5 t
/ (t—s) s 72ds = / (t—s)"sT"72ds 4+ / (t—s) "'sTT2ds
0 0 L
5 t
< Ct*"[ s ds + Ct*”*h[ (t —s)ds < Ctlnre,
0 0
Applying the generalized Gronwall inequality ([33, Lemma 6.3] or [28, Lemma 7.1.1]) to (52) yields
I 50 < CE 7277 (—AR) 1 |1 (—An)2 @l (53)
From (39), it follows by using (50), (53), Assumption 3.1 and Proposition 2.1, it follows that
(D21, )1, a)| < Eflle" X"y DIIETONE O] +E [l X"t v )lIm (0]
EIX"(E, v)I™ 2 1ERONIE O + EIX"CE, )™ Hina, 200
C (7772 4 t177177270) ||(—AR) 71 [[1I(—An)2 @l
CE2[(=Ar) " 1 | II(—An)? 1,
where at the last step we used the fact 1 — n > 0. Using the preceding inequality, it follows that
[((—AR2D? " (t, ) (—=An) 1, a)| = [(DP (¥ )(—An) $1, (—An)2 )|
< a2l (54)
Taking the supremum over ¢, ¢, € H such that ||¢¢]l, |¢2]l < 1, it follows from (54) that
(=452 D2 " (t, ¥ )(—An) " gy < CE7772

A

INIA IA

Using Lemma 3.1, it follows from the above inequality that
I(=An)2D* it Y ) —=A) N2y < I(—An)2(—AR) 21l e | (—AR Y2 D2 (6, 9 )(—An) | 30y
< Ct_yl_VZ .
The proof of the lemma is thus completed. =

The following lemma will be useful in the rest of this paper. Its proof in the case of linear self-adjoint operator A and
nonlinear function F € le(H, ‘H) can be found in [11, lemma 3.1]. Here, we are working under weaker assumptions on F,
namely Assumption 2.3 and with not neccesarily self-adjoint operator Ap.

11
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Lemma4.2. Let Assumptions 2.1, 2.2 and 2.3 be fulfilled. Then the Malliavin derivative of X"(t) satisfies the following regularity
estimate

|:H —Ah DSX (t)H }sc, 0<s<t<T.
£2

Proof. The proof goes along the sames lines as that of [11, Lemma 3.1]. Since here we are working under weaker
assumptions on the nonlinearity F, let us provide details of the proof. For u € Uy, differentiating both sides of (23) and
employing (6) yields

t
DUXM(t) = Su(t — s)Ppu + / Sn(t — r)PuDE(X"(r)).D X" (r)dr. (55)
S
Taking the norm in both sides of (55), inserting an appropriate power of Ap, using the smoothing properties of the

semigroup Sy(t), [17, (70)] (or [10, (2.4)]) and Assumption 2.3 yields

1-8
2

B-1 2
EIDIXHOI? < St - 5)—An) 7 (~An) T Pou

t
+ / EJISu(t — r)(—An)} (—Ay)~ 2 PuDE(X"(r) DX Pdr
2

< ]\(—Ahﬁsh(t—s)H;H) (0" Pua

+ f E [I(=A0¥ St = P20l (~A0) 2 PF (X (r)DEX"(1)]? ] i

IA

ct — s I(—A) T ul? + C / (t = r)E||(=A) 2F (X"(r))DX"(r)|2dr

IA

t
o= IEAE a4 ¢ [ rmioiiar (56)
N
Applying the generalized Gronwall inequality ([33, Lemma 6.3] or [28, Lemma 7.1.1]) to (56) yields
EIDIX(O)? < €t — sV (~A)7 ul, (57)

From (55), we obtain
(—A) T DEXM() = (—Ap) T Su(t — S)Phu + / (—Aw) T Sy(t — r)PWDE(X"(r)). D X"(r)dr (58)

Taking the norm in both sides of (58), using elementary inequalities, the boundedness of (—Ah) , the smoothing
properties of Sy(t), Assumption 2.3, taking the expectation in both sides, using [17, (70)] (or [10, (2.4)]) and (57) yields

S

IEH( —an= “xh(t)H2

IA

2
208t = 92 | (407 P

+2 / 1(=A) 7" 1200 BIISH(E — r)(—An)? (—An)™ 2 PLDF(X"(r)) DX ()] 2dr

IA

Cl—A) 7 ull® + / I(=AR)2 Sh(t — DI2 0 EI(=AR)~2 PhF (X)) DX ()] %dr

IA

Cl=A) 7 ul + f (£ = 1) PEl(=A) F(X"(r)DEX" ()| 2dr

IA

t
CII(—A)%UIIZJr/ — 1) EIDIX()2dr < ClI(—A) ' ul?
N

+ / (£ =10 — P (=AY T ulPdr

B—1 _ B-1 B—1
< ClI(=A) 7 ul® + C(t — )P [(—A) Z ul® < ClI(—A)Z ul)?, (59)

12
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where at the last step we used the estimate

t s t
f (t =m0 —s)ldr = / (t—r)8(r —s)fldr + ﬁ (t —r)5(r —s)fldr

tts

C(r—s)—'*f ’ (r—s)ﬂ-1dr+C(t—s)ﬁ—1/ (r —s)dr

tis
2

IA

IA

ct—syf?<c.
Note that the estimate in (59) is uniform with respect to u € Up. Let (u;);eny be an orthonormal basis of Uy. Using the
definition of £ and (59) yields
g1 By g1 B-1
EI(=An) 2 DIX"(0)l%g = B D EI(—An) = DIXM(OI7 < C Y I=A) 2 will? = CI(—A) "= ullfy < oo.
ieN ieN
This completes the proof of the lemma. &

Lemma 4.3 ([6, Lemma 11]). Under Assumption 2.2, the following holds

B-1 1
[=an"=" P <c

Lo(H) —

With the above preparation we are now ready to prove the main result of this section.
4.2. Proof of Theorem 4.1

Using Proposition 3.2 yields
IE[e(X"(T)) — o(X(TV]| < |E[u(T,X"(0)) — wu(T, X(O)|

;
+ |E / (AnX"(s), D(T — s, X"(s))) ds
0

T
+ / ]E<(—A)%Xh(s),(—A*)%D,u(T—s,Xh(s))>ds
0

T
+ |E / (PuF (X"(s)) — F(X"(s)), D(T — 5, X"(s))) ds
0

T
+ %Ef Tr [D* (T — 5, X"(5)) (PsQPy — Q)] ds
0

=t L]+ 2] + 3] + [L4]. (60)

In the following subsections, we estimate I, ..., I; separately.

4.2.1. Estimate of I
Bearing in mind that X(’; = PyXp, X(0) = X and using the chain rule it follows that

1
L =E / (DT, Xo + t(PnXo — Xo)), PrXo — Xo) dtj|
0

1
=E / ((—A)‘”?(—A)l‘?Du(T,xo+t(Phxo—xo)),Phxo—xo)dt}
LJO

1 *
= | [ (A 5Durxo + (2o~ Xo). ()42 (Ph—l)xo)dr]
LJO

Using Lemma 4.1, Proposition 2.1(v) and (30) yields

1
'I”SEU
0

<t [y e,

L(H)

(—A)~EDu(T, Xo + t(PiXo — Xo))| | (=AY +5)" Py — %o dt]

€ ] € *
< CT_”?/ H ((Ph —1)(—A)-1+7) H dt < Ch><. (61)
0 L(H)

13
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4.2.2. Estimate of I
Let us recall that A = A1 + A,, where A; is the self-adjoint part and A, the non self-adjoint part. Hence, the expression
of I can be decomposed as follows

T
L=E [ / ((Arn — ADX"(0), Du(T — t,xh(t))>dt}
0

T
+E |:/ ((A2.n — A2)X™(t), D(T — £, X" (1)) dt] =: Iy + I, (62)
0

where we also used (26). Note that from (19), (27) and (20), one can easily check that Rh = A} ;PhAL Using the later

relation, the fact that P,A;X"(t) € Vi, X(t) € Vi, and P,D(T — t, X"'(t)) € V4, it follows by using the definition of P, (19)
that

((Arn — ADX™(0), D(T — £, X"(£))) = ((PhArn — A1PRX"(2), D(T — £, X"(t)))
(Xh (A1.hPh — PhA)DI(T — t, X" (1))
= (X"(t), Ay nPn (1 — A jPrA1) Di(T — £, X" (1))
= (x"(¢t ),AL,.,Ph (1—RY) Di(T — £, X"(1))). (63)

Using the mild form of X"(t) (23) yields the following decomposition

T
Iy =E / (Sn(t)PuXo, A1nPn (I—R’})D,u(T—t,Xh(t)))dt]

T t
+E / </ Su(t — $)PyF(X"(s))ds, Ay Py (l—R’;)DM(T—r,x"(t))>dt]
0 0

T t
+ E / </ Su(t — $)PrdW(s), A1.nPp (I—R'{)Du(T—t,X”(t))>dt]
LJO 0

S oy ) (64)

Let us start with the estimate oflzl1 Using the equivalence of norms [29] [|(—A1)*v]| = [[(=A)*v]l, v € D((—A)*), @ € [0, 1],
I(—=Arn) vl ~ I(—Ap)*vll, v € D(—A)*) N Vy, a € [0, 1], [6, Lemma 1], Lemma 4.1 and (32), it follows that

1
Y|

T
= ‘E [ / (ALaSHOPXo, Py (1= R}) (—A1) M5 (=AD" 5 Du(T — £, X" (1)) dr]
0

T
= ’E [ / (=100~ 5Sh(EOPXo, (~A1w)5 Pr (1 = BE) (—A0)™ 3 (=)' EDR(T — £, X'(1) dt]
0

T
< €8 [ 1A S0Pl (~Aua) Py (1~ R (A1) 341" DT — X0
0

.
8 [ 1-A" S0Pl (A% (1= R (A0 (A" SDu(T — e X0
0

<
T
< [ CIEIADE (1= R (A oo -4 EDuT - e x| ae
0
T
< CE / S I—ADE (1= RE) (=A™ oy [ (—AY<Dia(T — £, XP(e)) | e
0
T € €
< Chz*/ tTHI(T — ¢)" M adt < ch?e. (65)
0

For the estimate of If]), using Assumption 2.3 the equivalence of norms [29] |[(—A1)*v| = |[(=A)*v]||, v € D((—A)*),
a €10, 1], [I(—Avn)*vll = I(—An)*vll, v € D((—A)*) N V4, @ € [0, 3], [6, Lemma 1], Lemma 4.1 and (32). This yields

T t
M—‘ [ / < / Al,hsh(r—s)PhF(x"(s))ds,Ph(l—R’;)DM(T—r,x"(t>)>dt]‘
0 0

T t
_ ‘E [ / < / (—A1 )~ 2Su(t — )PAF(X"(5))ds,
0 0

(—A1)PU(L = R)(=A) 3 (=A)'EDR(T — £, XM(e) de |

14
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<E / ' / A IS — SIPEKN (A1) Pyl — REY—A7)~

(—/: )lngu(T — £.X"(1)) || dsdt

E /0 ' / A — PN AT — R—A)E g

% [I(=A1)' " 2Du(T — £, X"(0)) | dsdr

Ch“/OT/O (t—s) 2T — ) " adsdr < Ch*~*. (66)

IA

IA

Let us now estimate IS). Using the integration by parts formula in the Malliavin sense (7) and the chain rules yields

3)
I

T t
E[/ <A1,,1/ sh(t—s)Pde(s),Ph(l—R’;)DM(T—t,xh(t))>dr]
0 0

T t
=E [/ / (A1nSh(t = $)Ph. Pa(1 — ROD? (T — £, XM(E)D(X" (1)) 10 dsdt] : (67)
0 0 9

Inserting appropriate powers of A and Ay in (67), using Cauchy’s inequality, Lemmas 4.1, 3.1, 4.2, the equivalence of
norms [29] [[(—Aq1)*v]| & (=A) v, v € D(—A)*), & € [0, 1], (A1) ]| = [(—An)*v], v € D(—A))NVy, « € [0, 3], [6,
Lemma 1] and (32), it follows that

| = ‘ [/ / _Alh TSt — ) Ah) p ( Ah) z Ph,

(—A) 2 P = RI=A) 2 (=407 DT — £ XHODAX (1)) o]det

‘62
1-8 B-1
<E (~Aun) 2 Si(t — ) (—An) 7 (—A)'T Py 0
2
[y Rt~ R A DT — £ XHODXIE)| |, dde
2
1+p—€ 1-8 B-1
< E/ (—Aun) (A" sh(r—s)Hm) an'n
2
u
x H E u(T—r,xh(r))( A7 ewT oxto) asi
2
< Ch*~ f/ / (T — t)"“dsdt < Ch*~<. (68)
Substituting (68), (66) and (65) in (64) yields
1| < Ch*P=2. (69)

Let us now estimate I,,. First of all, since X"(t) € V}, and Az,hRg = PyA,, it holds that
A pX"(1) = AX"(t) = Ag hREX"(£) — AsX"(£) = (Ph — DAX"(t). (70)

Substituting (70) in the expression of I, in (60) and using the mild form of X/(t) (see (23)) yields the following
decomposition

T

Ly =E f (Ph — DAX"(1), D (T—t,Xh(t))>dt]
0
T

=E f A,X"( Ph—l)D/L(T—t,Xh(t))>dt]
0

(A2Sh(t)PXo, (Pn — DD(T — £, X"(1)) dt:|

A / W(t — S)PadW(s), (Py — DDu(T — t,Xh(t))> dt:|

0
I(z) 10, (71)
15

+E / < /Sht—s)PhF( h(s))ds,(Ph—I)Dp,(T—t,Xh(t))>dt:|
+
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Now let us start with the estimate of I%). Using the estimate [|Ayv]| < CII(—A)% vll,v e D((—A)% ) (cf. [29]), the equivalence
of norms ||(—Ah)%v|| R ||(—A)%v||, v € V4, (30) and Lemma 4.1 yields

T
152 |—‘ [ / (Azshmphxo,(m—1)(—A)—f‘+%(—A)f‘-%Du<T—r,x“(t»)dt]

0

IA

T
B [ 1asiopxal |7, — 00-4) 7+ -AP 50T ~ x|
0

IA

T
C/ (A2 SEPXO (P — IX(—A) P+ || oy (T — £) P+ 5t
0

IA

T
1 _B+E _B+E
C/ I(=An)2Sn(t — $)PXollI(Pr — D(—A) #F2 || 20 (T — £) P24t
0

IA

T
Chzﬂ’ff £73(T — t)P+5de < ch2P—. (72)
0

Let us move tq the estimattle of I,. Using the estimate ||Ayv]|| < C||(—A)%v||, v E D((—A)%) (cf. [29]), the equivalence of
norms ||[(—Ap)2v| & ||[(—A)2v]|, v € V4, (30), Lemma 4.1, Theorem 2.1 and Assumption 2.3 yields

-H1

E
X

T t
<A2 / S(t — $)PhF(X"(s))ds, (P, — I)X(—A) P+ 2(~AY~2DW(T — ¢, xh(t>)> dt]
0

IA

/ AsS(t — $)PRF(X"(s))ds
0

H(Ph —I)(—A) P (—AYEDW(T — ¢, xh(r))H dt

IA

I
T t

/ ( I(=A)2Sn(t — s)PhF(X"(s»nds) 1Py = (=AY "5l 230y
0

H(—A)ﬂ—%DM(T — . x™ “ dt

T t
Ch*~¢ f E( / ||(—Ah)fsh(t—s)||am||xh(s)||ds> (T — ¢ty P2de

ch2h- Ze/ f (t — ) 2(T — t) P~ Sdsdt < Ch2P~<. (73)

IA

IA

Let us now estimate I22 . Using the integration by parts formula in the Malliavin sense (see (7)) and the chain rules yields
T ¢
) =E [ f <A2 / S(t — $)PhdW/(s), (Py — D(T —t, x*'(t))> dr]
0 0

T t
=E |:f / (AaSh(t — )Py, (Py — DD*u(T — £, X"(£))D(X" (1)) 0 dsdt} '
o Jo 0

Note that using the equivalence of norms ||(—Ah)%v|| ~ ||(—A)%v||, v E D((—A)%) (cf. [29, (2.12)]) and the interpolation

inequality yields
1
Cl=A vl < I(=A vl < C'I(=A)vll, veD(-A)NVh, ac€ [0, 2]. (74)

Inserting appropriate powers of A and A, in the expression of I 2 ) and using Cauchy-Schwarz’s inequality yields

13)|_‘ [/ / AxSh(t — $)Pp, (Pp — I)(—

(A" DT — €, X"(0)A z"(—A)”zm(xh(t)))Eg]dsdt
<E NN I (G C
(—A )‘”‘ DUl — £ XA 2 (4 i) codsdt
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H) ’ B ‘L(’H)
x H(—A)?szh(t)H dsdt. (75)
E

x [ = =) 7F DT — £ X)) -A) 7"

Using Lemmas 4.1, 3.1, (74) and (30) yields

< Ch'? =

(—An 55, t—s)” (T — )¢

L(H)
<Ch”ﬂ/ / (t—s) —1+h (T—t)2
< Ch”ﬁ/ /(t—s)_H?(T—t)_
< Chl+/3/

Substituting (76), (73) and (72) in (71) yields

(—A) sz“(t)H dsdt
£3

A1
2

7 (—An) "2 (—Ay) DSXh(t)HLOdsdt
2

(ST}

(A T DX (r)H dsdt
Te

(—An" 55, t—s)H (H)(T—r)—%dsdt < c2c. (76)

Ilp| < Ch?P. (77)
Substituting (77) and (69) in (62) yields
I, < Ch?. (78)

4.2.3. Estimate of Iz and I
Let us start by estimating I5. Inserting powers of A in the expression of I3 (see (60)) yields

T
5=E / (P, — DF(X"(t)), DT — t,X"(t)))dt]
0

r ,rT
=E / (F(X“(t)),(Ph—I)D/L(T—t,X“(t)))dt]
0

T
—E / (F(x”(r)),@h—l)(—A)—“i(—A)ﬁ—?Du(T—r,x”(t>>>dt]. (79)
0

Using (30), Lemma 4.1, Assumption 2.3 and Theorem 2.1 yields

T
I <E [ / IECXENINI(Py — D(—A) P2 (—AY~2Du(T — t,xh(t))ndt}
0
T
< CE [ | I = DAYy -2t — 3000 dr}
T
< Chzﬂ—f/ (T — t) P+adt < Ch?~<. (80)
0

Now let us move to the estimate of I,. We decompose I, as follows

1 T
ls = JE / Tr [D?w(T — ¢, X"(£))(PhQPy — QPy + QPy — Q)] dt
1 T
= EIE/ Tr [D* (T — t, X"(t))(P, — 1)QP,] dt
0
T
+ %IE/ Tr [D?w(T — t, X"()Q(Py — D)] dt =: Iy1 + Lsp. (81)
0

Using Proposition 2.1 and inserting an appropriate power of A yields

T
| = ;‘E / Tr [Qiphnzu(r—t,x"(t))(m—I)Qi]dr‘
0

IA

T
CE / o ) (R B
0 L1(H)

cs [ Jaln (0% ) () v = xh0n (oE )
((_ 7/3721+e)*(1)h 1y ((—A)%)* ((_A)g)*Q%
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IA
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= CE/T HQ% ( (A %;]Phy ((—A)%YDZM(T —t, X"(t)) (( _ayt ‘)*

Lo(H)
<[ (7F) e Tred| | a
. .
< CE/(; H ((—A) 2 th ) (- A)l_zﬁ)*Dz*u(T—t,Xh(*t)) ((—A)#> 00
% H(_A #> (Pr — 1" <(_A)#) <(_A)%) K Lz(H)dt
— CIE/ 0] x [152¢)de.
Using Proposition 2.1, Lemmas 4.1, 4.3 and 3.1 yields
o= (T red) (a7) phur — oxie) (AT )|
- [(en ) B (n ) (o nal)]
Y S T
” ( it e)*(_A)”Z”(—A)#DZM(T—t,X“(t))(—A)%(—A)%
((—A)T> £(H) H(—A)?PhQ% 00
< [(=0™5) ™| e D — e xtox-a) " |
e L(H)
H( - ((_A)%ﬁ) £(H)
< C(T—1)"5.
Using (30), Proposition 2.1, Lemmas 4.3 and 3.1 yields
0 = (o™= ) - (%) () e,
= | e -0 (o) o e
< H((—A)T(Ph—l)(—/\) “6) o H (—A ) o
= | e-nen | f(Ea) T ea Tl
<o (=T ) | JeaTed| s
L(H) Ly(H)

Substituting (84) and (83) in (82) yields
T
[I41] < Chzﬁ_e/ (T —t)""2dt < Ch2P—<,
0

Let us move to the estimate of I4,. Using Proposition 2.1 yields

T
Iy = 1@/ Tr [Dz,u(T — 6, X"(£))Q2 Q2 (P, —I)] dt
2 Jy
1 T 1 2 h 1
=52 [ m[ee - notur - e x|
2 Jy
T
<58 [ Jeden-votur - extonl], | a
0

L1(H)

Inserting appropriate powers of A, using again Proposition 2.1 and Assumption 2.2 yields

dt

L1(H)

| < CE/OT [@d (=) (=)'2") (= DD2u(r — £, X0

T p1n®
< CE/O o (-7

(=) ey = 0027 — . X0

18

dt
Lo(H)

Lo(H)

(82)

(83)

(84)

(85)

(86)
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>*

( de
H ((_A)# "(Py — DD2(T — £, XM(6))Q
(

H ((_A)%)*(Ph —DD?u(T — t, X"(t))Q 2 o

Lo(H)

A

@)

=
S—.
2

T

=

e

dt
La(H)

A
(D)
=

IA
@)
=

g1
2 dt
Lo(H)

Q7

(—A)'F" )" (P — DD (T — £, X)) —A)'T" (—A)

e[ | (7)) AT e e -

dt

Du(T — t, X(£)(—A) 2"
Lo(H)

‘c(m H(—A)%Q%

1-8

/ [(=a%) ()T (=)' (s — DDP(T — £, X)X

IA

: CIE/ ()| de. (87)
Using Lemmas 4.3, 4.1 and (30) yields
B-1

e < [(®) n ], oon

2Py — DD2(T — £, X"(0))(—A)

2 (Py — DD2U(T — £, X"(0))(—A)' T

1-8
2

‘L(’H)

IA

cli

‘ﬂ(%)

= 2(T — t. X(0)(—A) T

(Py —I)(—A) 2"

IA

cli

’ ’H)
1-8
2

IA

¢ H(— (Ph—I(—A) "7 D*u(T — t, X'(t)(—A) 2"

1+
- |
L(H) L(H)
Ch?P=¢(T — t)~ %5, (88)

Substituting (88) in (87) yields

IA

|lyp] < Ch?P—e /T(T —ty "idr < Ch¥e. (89)
Substituting (89) and(285) in (72) yields

4] < Ch?P—<. (90)
Substituting (90), (80), (69) and (61) in (60) yields

Elp(X"(T)) — (X(T)]| < Ch*~<.
This completes the proof of Theorem 4.1.
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