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PREFACE

The author of this thesis has been employed as a Ph.D. research fellow in the software
engineering research group at the Department of Computer Science, Electrical Engin-
eering and Mathematical Science at Western Norway University of Applied Sciences.
The author has been enrolled into the PhD programme in Computer Science: Software
Engineering, Sensor Networks and Engineering Computing, with a specialisation on
software engineering.

The research presented in this thesis has been accomplished in cooperation with
the ALICE Collaboration at CERN, Meyrin, Switzerland, through a Project Associate
position.

This thesis is a monograph, organised in three parts. Part I is an overview of the
research field, related technologies and current state of the art. Part II describes the
contributions provided as part of the research work. Part III examines the use of
the contributions, in turn providing a discussion in light of the underlying Research
Question and broader scope.
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ABSTRACT

Grid computing is a method for automatically distributing batch-style computing
tasks on a global network of heterogeneous computing centres. ALICE (A Large Ion
Collider Experiment) – one of the four large experiments at the CERN LHC – uses Grid
resources to process large quantities of its collected data. While often compared to the
more centralised and often commercial Cloud Computing paradigm, Grid resources
tend to be geographically spread across multiple sites, containing computer clusters of
different characteristics. Loosely coupled and generally heterogeneous, both in terms
of hardware and software, these clusters come together to form a distributed system
across multiple administrative domains.

Heterogeneous clusters as found in Grid computing may create challenges from
having to cater to multiple system requirements, configurations and deployment
practices. To alleviate some of the challenges that may arise, concepts from Cloud
Computing have in recent times been applied to “cloudify” the Grid infrastructure.
Through the use of technologies such as virtualisation, a desired hardware and software
environment can be simulated on a range of underlying configurations. This allows
for the creation of homogeneous environments within an otherwise heterogeneous
Grid – an approach that is today utilised on numerous Grid sites. However, while
virtualisation has gained ground within the Grid, new practices and technologies
have since emerged. Specifically, containers and elasticity have rapidly risen in both
adoption and popularity, and today are often found used within the Cloud. While
often compared to traditional virtualisation, containers create an isolated environment
on the same operating system kernel, thus avoiding virtualisation overhead.

The ALICE experiment is currently exploring the use of newer Cloud concepts
within its Grid infrastructure. This comes as part of the development of a new Grid
middleware framework (JAliEn – the Java ALICE Environment), which presents an
opportunity to integrate these concepts directly within the core at a middleware level.
This potential integration forms the base of the underlying research question and
consequent contribution of the current thesis – to investigate ways to make ALICE
offline computing more flexible and easier to administer, through the use of Cloud
concepts and technologies. In turn constructing a new and optimised Grid workflow
that not only alleviates present challenges, but may also help satisfy the requirements
of the ALICE collaboration in the upcoming LHC Run 3.





SAMMENDRAG

Grid Computing er en teknikk for automatisk kjøring av større partier med distribuerte
maskinoppgaver på et global nettverk bestående av heterogene datasentre. ALICE (A
Large Ion Collider Experiment) – et av de fire store eksperimentene ved LHC på CERN
– bruker Grid ressurser til å behandle store mengder av sine samlede data. Til tross
for ofte å bli sammenlignet med det mer sentraliserte, og ofte kommersielle, Cloud
Computing (“nettsky”) paradigmet, pleier Grid ressurser å være geografisk spredt på
flere datasentre bestående av klustere av forskjellige karakteristikker. Til tross for å
være løst koblet, og med få avhengigheter, går disse klusterne sammen for å danne et
distribuert system fordelt over flere administrative domener.

Heterogene klustere, slik som de finnes innad i Grid Computing, kan skape
utfordringer ved å måtte tilrettelegge seg for flere forskjellige system-, konfigurasjons-
og distribusjonskrav. For å redusere utfordringene som kan oppstå, har konsept
og teknologier fra Cloud Computing i nyere tid blitt tatt i bruk for å gjøre Grid
databehandling mer lik skytjenester. Ved å bruke teknologier slik som virtualisering,
kan ønskede maskin- og programvaremiljøer bli simulert på et bredt utvalg av oppsett
og konfigurasjoner. Dette åpner opp for å kunne skape homogene miljøer av oppsett
innad i et ellers heterogent Grid miljø – en tilnærming som i dag brukes av en rekke
Grid datasentre. Mens virtualisering har økt i bruk og popularitet innad i Grid miljøer,
har imidlertid nye metoder, praksiser og teknologier begynt å dukke opp. Nærmere
bestemt har både konteinere og elastisk lastbalansering økt raskt i både popularitet
og bruk, og er i dag vanlig i sammenheng med skytjenester. Til tross for å ofte bli
sammenlignet med vanlig virtualisering, gir konteinere muligheten til å opprette flere
isolerte miljøer på toppen av samme systemkjerne, og unngår slik å påvirke ytelsen i
særlig grad.

ALICE eksperimentet utforsker nå bruken av nyere konsept og teknologier fra
Cloud Computing innad i sin Grid infrastruktur. Dette skjer som et ledd i utviklingen
av et nytt Grid rammeverk (JAliEn – Java ALICE Environment), noe som skaper
en mulighet for å kunne integrere disse konseptene og teknologiene direkte i selve
kjernen av rammeverket. Denne muligheten danner grunnlaget for det underliggende
forskningsspørsmålet og påfølgende bidraget i denne avhandlingen – å undersøke
måter for hvordan databehandling innad i ALICE kan gjøresmer fleksibelt samt enklere
å administrere, gjennom bruken av konsepter og teknologier fra Cloud Computing.
Som resultat dannes det en ny og optimert arbeidsflyt for Grid databehandling som
ikke kun bedrer på nåværende utfordringer, men som muligens også kan brukes til å
tilfredsstille behovene til ALICE kollaborasjonen for kommende Run 3 av LHC.





CONTRIBUTIONS

This dissertation describes a system past its initial stages of development (JAliEn1), and
contains contributions used for its setup and deployment in a production environment,
through the use of technologies such as containers. The work outlined in this thesis
was mainly carried out by the author, as part of a larger collaboration.

The original idea of a split JobAgent was conceived by Costin Grigoraş and Miguel
Martinez Pedreira. Guidance and setup for the VO-Boxes was provided by Maarten
Litmaath, who also carried out wider deployment beyond the initial test sites. Site
Sonar was created by Kalana Wĳethunga, and has incorporated code from the earlier
Grid Sonar project by Nikola Hardi. The work involving the creation and development
of the split agent, containerised VO-Boxes, as well as the further changes to JAliEn in
light of the Research Question was done by the author – with the details of this work
provided in Part II of this dissertation, as well as the subsequent Chapter 10. This
includes the initial setup and deployment process, as well as the configuration and
debugging necessary in order to achieve a functioning solution. The end result, as
described in Chapter 12, is in turn set to be further extended by other collaboration
members in correlation with the needs of the ALICE experiment.

1Final licence pending, and to be determined byALICE in the future. Binaries are currently distributed
under GPLv3 (https://www.gnu.org/licenses/gpl-3.0), due to included libraries.

https://www.gnu.org/licenses/gpl-3.0
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The utility model of computing - computing resources
delivered over the network in much the same way that
electricity or telephone service reaches our homes and
offices today - makes more sense than ever.

—Scott McNealy [1]
CHAPTER 1

INTRODUCTION

Grid Computing is a distributed computing paradigm consisting of computing centres
spread across the globe [2]. Being decentralised, loosely coupled and crossing multiple
administrative domains, these computing centres come together as one unified large-
scale system for executing batch-style computing jobs. The WLCG (Worldwide LHC
Computing Grid) is one such system, designed by CERN to aid in processing data
generated by the LHC (Large Hadron Collider) and its experiments [3][4][5].

ALICE (A Large Ion Collider Experiment) is one of four large experiments situated
at the CERN LHC ring, and is dedicated to the study of heavy-ion collisions [6].
During operation, the detector generates data at rates of the order of 100GB/s after
compression. Grid Computing is used extensively as one approach for accommodating
and processing this data. Through a dedicated software, known as a middleware,
computing tasks (“jobs”) from ALICE members are accepted, managed and executed
by distributing them among the individual computing centres in the Grid [7]. This
includes assigning a received job to a computer that satisfies the given requirements
of the job. However, unlike a centralised supercomputer, the hardware and software
available on the Grid may differ, and the availability may be shifting.

Certain Grid jobs have specific resource requirements. Consequently, finding a
compatible cluster, within the lowest possible network distance, is a priority. An
argument could be made to utilise a more centralised approach, such as Cloud
Computing, as opposed to a distributed system like a Grid – allowing access to a largely
uniform set of computing resources, and avoiding moving large quantities of data
[8]. However, the cost of using commercial services, such as Cloud Computing, for
LHC computing is generally prohibitive, with funding countries generally preferring
to provide computing resources from national infrastructure providers. An increasing
number of Grid sites have thus instead opted for adopting concepts from Cloud
Computing, such as virtualisation and elasticity, in their setup to bring over a subset of
the benefits – contributing to a more “cloudified” Grid [9][10].

While a number of established Cloud practices and related technologies have started
to appear on the Grid, these are largely implemented on top of existing platforms and
solutions. Furthermore, new practices and concepts have since emerged in the Cloud,
such as containerisation [11]. This thesis aims thus to explore means to benefit from
newer Cloud technologies within a Grid context, while also finding ways to incorporate
any potential benefits within the core of the Grid infrastructure used by ALICE.

This chapter will first provide a brief introduction to the ALICE experiment, Grid
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Computing and the underlying technologies that will be the focus of the thesis. Then,
present constraints and challenges within Grid computing will be discussed, followed
by paradigms and technologies of interest that may potentially ameliorate these
challenges. Relevant tools that have been used throughout the thesis will also be briefly
introduced. The research question underlying the thesis will be discussed at the end of
the chapter, followed by the approach and methods of research used to address it.

1.1 The ALICE Experiment

ALICE is one of in total eight – and one of four major – detector experiments situated
at the CERN LHC ring [6]. Optimised for studying of heavy ion collisions, where the
temperature and energy densities obtained in the collisions allow for the exploration
of quark-gluon plasma: a state of matter where quarks and gluons are de-confined.
This allows for the study of primordial conditions similar to those in the immediate
moments after the Big Bang.

While the main focus of the detector is towards heavier Pb-Pb collisions, it is also
used for the study of proton-proton and proton-nucleus collisions. This is done partially
as a normalisation for comparing with the heavy-ion collision data, but also to study
new aspects of physics at energies attainable by the LHC.

1.2 Computing in ALICE

The collisions within the ALICE detector have been recorded as data at a rate of 4GB/s
after compression [6]. In 2020/2021, the detector was upgraded in preparation for the
next run of the LHC, increasing the data rate to 3TB/s raw, and 100GB/s compressed
[12][13]. Consequently, the bulk of generated data far exceeds the capacity of any single
computing centre available to ALICE.

1.2.1 Grid Computing
An essential aid for handling and processing the masses of data generated by the
ALICE detector is through the WLCG (Worldwide LHC Computing Grid) [4]. A key
differentiator of Grid Computing from other remote computing paradigms, such as
Cloud Computing, is its many heterogeneous computing centres across the world.
These are generally smaller in size, where both hardware and software may differ not
only between centres, but also between individual nodes. The connection and transfer
rate between them may likewise differ. Nevertheless - together, these smaller centres
form a powerful, best-effort, system intended for batch-style execution of computing
jobs. This system provides a computing prowess equivalent of >1Mmodern CPU cores,
and is used to store more than 500PB of data [14][15].

Grid middlewares

Both Grid computing sites and their users interact with the WLCG through a Grid
Middleware: a software stack that is used to interface with participating resources in
the WLCG and handle assigned batch-type computing tasks (known as “jobs”) [16].
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For ALICE, the Grid middleware used for the past 10+ years has been known as AliEn
(The ALICE Environment) [7]. AliEn gives users a Unix-like directory tree and shell,
allowing users to browse files on the Grid (through an abstracted filesystem) and
perform simple commands (such as submitting Grid jobs).

1.2.2 Resource matching

Having largely heterogeneous computing centres, geographically spread in their
relative position to recorded data, creates a number of challenges in regards to offline1
data processing [17]. This is further exacerbated by users defining additional constraints
for their jobs, such as having specific hardware or a preferred software package. As it
is impractical to transfer large quantities of analysis data, it becomes a priority to find a
matching, compatible, computing node in geographical vicinity - or at a computing
centre with a connection that may compensate for the geographical distance.

1.3 Grid Computing: State of the art

Grid Computing has remained relevant despite the emergence of newer and more
commercially popular services, continuing to be themain platform for all computational
needs of the HEP (High Energy Physics) experiments at the LHC2. Available funding
being a key constraint, with CERN member states prioritising national computing
centres – and commercial services not being cost efficient for the intended large-scale
use. Nevertheless, services such as Cloud Computing have popularised virtualisation
and elasticity – technologies that may provide benefits within a Grid Computing
context.

1.3.1 Virtualisation

Virtualisation provides an abstraction layer over computing resources, allowing the
simulation of physical resources – which may in turn be used to partition hardware
into smaller, isolated, resource subsets for applications to run in [18]. These resource
subsets may be templated: allowing for quick deployment of certain hardware and
software combinations.

The use of virtualisationmay be used to greatly simplify the configuration of clusters.
Furthermore, with one-click deployment of ad-hoc virtual machines, portability of
each site is significantly improved. Another important gain of virtualisation is isolation.
A computing job may be restricted to a virtual machine, with possible faults and
crashes being contained within it. The virtual machine thus limits the impact on the
underlying host, and helps improve security. Furthermore, virtualisation/isolation
also provides means for performing resource management. By allocating a set number
of resources to each virtual machine, a single job in one of these machines will be
unable to consume all resources on the host. The number of virtual machines can also

1As opposed to online data systems that are tied to the run of a detector, offline systems process data
that has already been stored in a computer system.

2http://alimonitor.cern.ch/display?page=jobStatusSites_RUNNING
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be automatically scaled to match present demand, based on the resources available on
the host (commonly known as “elasticity”).

1.3.2 Grid Cloudification

Given the benefits described in the previous subsection, an increasing number of Grid
sites have started to adopt the concepts of virtualisation and elasticity, contributing to a
more “cloudified” Grid [9]. Deploying these concepts on existing Grid infrastructure
has however been a gradual process, with many sites only adopting these practices in
recent times. Consequently, while these concepts have risen in popularity within the
Grid, other technologies and concepts have since emerged in the Cloud.

Containers: Towards more portable environments

One technology that has gained significant traction within Cloud Computing is
containerisation [11]. Unlike virtual machines, containers do not require simulating a
separate hardware stack. Instead, native code is run in a “user space” encapsulation, an
approach often known as operating system virtualisation (i.e. creating a new environment
on top of the native kernel). With no virtualised hardware layers and no virtual
machine bootup, the theoretical impact on performance becomes negligible. Moreover,
the reduced complexity contributes to container launch being near instantaneous,
combined with a reduction in I/O delay (as data is not required to navigate through
multiple virtualised hardware layers). The latter is of particular interest, as delayed
I/O operations are a known bottleneck within virtualised systems – especially in a
data-centric environments such as the Grid.

1.3.3 CVMFS: The CERN VM Filesystem

In addition to technologies and practices from the Cloud, the Grid has also seen
the emergence of novel technologies, such as the CERN VM Filesystem (CVMFS)
[19]. Originally intended as a way to bootstrap lightweight virtual machine instances,
CVMFS has since become the default method for software distribution within the
WLCG and participating collaborations. It is implemented as a read only POSIX
(Portable Operating System Interface) filesystem, that may be mounted on top of an
existing filesystem tree – generally under /cvmfs [20]. Each entry in this filesystem
is cached on-demand, meaning that data is downloaded as it is read (from a central
repository), with no need to download every entry in the filesystem.

1.3.4 New technologies, old frameworks

Despite trends and technologies from Cloud Computing being deployed within the
Grid, limitations exist within these deployments. Specifically, such deployments must
currently be placed on top of the preexisting Grid implementations, and are in turn
restricted by the capabilities of the underlying software and hardware. While the
hardware is generally updated regularly, the software frameworks within large parts of
the Grid have remained the same for over a decade (Chapter 4). Consequently, many
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Cloud practices deployed within the Grid are not used to their full extent. To rectify
this, a full rewrite of existing Grid solutions is needed.

The ALICE collaboration is in the process of developing a new Grid software stack
intended to replace the aging AliEn middleware, in preparation for Run 3 of the
LHC [21]. With the data rate of the ALICE detector set to increase, concerns were
raised if AliEn would be able to scale to the needs of the collaboration. Specifically,
concerns have been raised regarding its ability to scale in terms of both deployment,
as well the extensibility of new features - especially given existing limitations of the
maintainability of the code (Section 2.6.2). Dubbed JAliEn, the new middleware is a
complete a rewrite of the original AliEn. Intended as a drop-in replacement, many of
the original approaches and concepts have consequently been brought over. As JAliEn
remains in development, there are still possibilities to take advantage of new trends
and technologies.

A way forward?

The current state of the art of Grid Computing presents an interesting intersection of
emerging trends and technologies – combinedwith theneeds of theALICE collaboration
for LHC Run 3. Containers are particularly an interesting technology, having no
virtualised hardware layers and no virtual machine bootup. The reduced complexity
contributes to container launch being near instantaneous, combined with a reduction in
I/O delay – a known bottleneck within virtualised systems [22][23]. With a significant
proportion of the ALICE Grid infrastructure running on virtualised hardware, there is
a significant potential for improvements by switching to container technologies. This
can be done on multiple levels within the Grid infrastructure:

• Containers could potentially be used to run the services required by the ALICE
collaboration on Grid sites (on “VO-Boxes”).

• Theymay also be used to create lightweightworker nodes – allowing jobs to be run
in their own homogenised execution environments in an otherwise heterogeneous
Grid. As an added benefit, these would also be simpler to deploy and configure,
as opposed to ”bare-metal“ workers.

• Additionally, given their low overhead, containers may potentially be integrated
directly within Grid middleware, and in that regard be automatically launched
when needed to strengthen isolation or provide a specific execution environment.

With the JAliEn middleware now in development, there is a potential path for realising
all of the above points, including the latter. Furthermore, with the emergence of CVMFS,
deploying these changes concurrently through multiple Grid sites becomes feasible.
As opposed to utilising Cloud technologies on top of preexisting Grid solutions, an
attempt could thus be made for combining several of the new trends and technologies
in a from-scratch approach, maximising the possible benefits.

Chapter 1 7
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1.4 Research question

This thesis aims to focus on applying the emerging trends and technologies found
within Cloud Computing – with a particular emphasis on containers, being a possible
future replacement for large parts of the virtualised Grid. With this in mind, the
following research question is initially produced:

How can one make ALICE offline computing more flexible and easier to administer by using
container technologies?

However, CVMFS has changed how software and configurations are distributed
across the Grid. This includes the way containers, their images and related software
are accessed. With both containers and CVMFS being adopted across services and
frameworks, this allows for a tighter integration between services. Specifically, it allows
for the exploration and creation of new computing models or workflows, for use within
ALICE. With this in mind, it becomes evident that the initial research question becomes
a limitation, and should be adjusted to expand the research focus:

Research Question (RQ):

How can a new Grid workflow be constructed, using new technologies, within the ALICE Grid
infrastructure to make ALICE offline computing more flexible and easier to administer?

1.4.1 Notes on RQ

To avoid ambiguity, the terms “flexible” and “easier to administer” are defined as being
able to scale freely in terms of use, while at the same reducing the number of steps
needed for deployment and utilisation. Specifically, taking inspiration from existing
limitations, any new solution should not be constrained in its ability to scale across
sites, as well as in its ability to scale in terms of new features and functionality – lest
it is to end up in the same situation as AliEn, where development has halted. This
provides for several quantitative properties to examine, such as:

• Active sites

• Active jobs

• Performance/stability

• Extensions

With the correlation between them being of particular interest. Furthermore, examining
the steps required for deployment provides an entrypoint for a quantitative comparison
between old and new solutions, in turn aiding in determining if something is easier to
administer.
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1.4.2 Research method
Given the scope of the RQ, the research work is consequently divided into three parts,
each corresponding to a set of tasks undertaken in order to answer the respective RQ:

• The first part investigates the introduction of new Cloud-related technologies
within CERN computing centres for backend services, as means for providing a
reliable infrastructure for VO-Boxes.

• The second part focuses on integration within JAliEn, constructing the foundation
for a newworkflowwhere themiddleware is capable of utilising new technologies
as needed to optimise Grid job execution.

• The third part explores means of deployment, combining the prior two parts
through a common distribution mechanism (e.g. CVMFS).

It must be noted that the above points will also need to take into account related
dependencies in setup and infrastructure, such the execution environment(s) and data
access. Furthermore, any new solution must also be compared to existing de-facto
standards in order to determine if RQ has been satisfied, in particular in regards to the
points in 1.4.1.

1.5 Outline

The thesis is composed of three parts. Part I provides an introduction and overview of
the research field, related technologies and current state of the art. Part II describes
the contributions provided as part of the research work. Lastly, Part III provides a
discussion on the contributions in light of the underlying RQ and broader scope.

Chapter 1 9





CHAPTER 2
GRID COMPUTING

This chapter provides a detailed overview of Grid Computing, along with a number of
its areas of application. Central technologies, protocols and configuration approaches
will be introduced, which will be a topic for discussion in forthcoming chapters. The
chapter will also introduce a number of common Grid deployments, including more
modern, virtualised, setups inspired by Cloud Computing.

2.1 Background

Grid Computing was first realised in the late 1990s, with the advance of the Internet
and high-speed networks [24]. Its inception was the general idea of using networks as
means for delivering computing resources from a remote source, much like a general
utility service - i.e. electricity orwater. The result is a form of non-interactive distributed
computing, composed of many loosely coupled computers acting together in order to
solve large computational problems.

The computers available in a Grid are generally a “best-effort” offering, provided
by individuals and organisations across the world – often for the purpose of a common
goal. Consequently, Grids often form a unified, large-scale, system that not only crosses
multiple administrative domains, but is also generally composed of heterogeneous
resources.

2.2 WLCG

With experiments at the LHC producing between 50 - 100 PB of data annually and
preparing for yet higher numbers, there is a great need for computing resources
[4]1. These experiments were consequently also the driving forces in establishing
a global Grid Computing network, organising it as the WLCG (Worldwide LHC
Computing Grid) project. Linking up national and international Grid infrastructures,
it consists of more than 170 computing centres in more than 40 countries, providing
>1M computer cores for processing data. The WLCG exists alongside global and
regional Grid infrastructures, such as the Open Science Grid (OSG)2, European Grid

1The data produced annually has since increased.
2https://osg-htc.org/
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Infrastructure (EGI) 3 and NordguGrid4 – all of which are peered together, allowing
them to interoperate and share workloads.

2.2.1 Tiers
The WLCG is organised into four levels (“tiers”) of computing centres, based on the
services provided by them (e.g. storage and/or data processing), labelled Tier 0 - Tier
3 [25]:

• Tier 0: Mainly composed of the CERN Data Centre, which is first and foremost
used for custodial storage of raw data generated by the detectors at the LHC. It
also performs a first pass processing on this data.

• Tier 1: Sites within this tier are considered to provide first-class support for the
Grid, viz. custodial storage for large portions of LHC data, as well as highly
contributing to its processing. The sites are maintained by round-the-clock
support, and are tightly connected together through a dedicated high-bandwidth
network.

• Tier 2: Tier 2 is mainly composed of universities or other scientific institutes,
providing resources capable of adequate computing power for specific analysis,
as well as a corresponding amount of non-custodial storage. The vast majority of
sites within the WLCG are Tier 2.

• Tier 3: There is no formal engagement between theWLCG and Tier 3 sites – these
may consist of local clusters within a university, up to large sites. Institutes in
Tier 3 make arrangements only with the LHC experiments they support and not
with WLCG.

2.2.2 Virtual Organisations (VOs)
Computing resources within the WLCG are shared between several collaborations
and users. Virtual Organisations (VOs) aim to facilitate the sharing of resources by
grouping together access rules and conditions into a VO, where its members share a
form of commonality between them – such as a common goal or requirements [26].
While a VO generally consists of a network of smaller groups and organisations, it thus
displays many of the characteristics of a formal organisation.

VO-Boxes

Computing clusters participating in the WLCG may provide VO-specific edge services
in the form of a VO-Box: a dedicated machine serving as the cluster entrypoint for
computing activities at a given site. It allows jobs to be submitted and handled, and
enables the storage and network connectivity of a site to be monitored. This in turn to
inform decisions on where to let jobs read their input data from and where to let them
store their output results. While originally universal across deployments and VOs,

3https://www.egi.eu/
4http://www.nordugrid.org/
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most Grid collaborations have since moved away from their use, incorporating the
needed functionality directly into the central services of their respective middleware
stack. VOboxes nevertheless remain vital in the ALICE Grid computing model, where
they serve as the host for a key AliEn service known as the Computing Element (Section
2.6.1).

2.3 Jobs

A job is the unit of execution within Grid Computing: it describes something to be
executed, at some point, within the Grid5. This is commonly a shell script used to
bootstrap and start a larger application, requested by a user. It could however be
anything compatible with the operating system (OS) / execution environment of
the Grid node assigned to the job, be it a shell script, Python script or precompiled
package. The one commonality shared between jobs is their batch-style, non-interactive,
approach, where all inputs are prepared in advance, and outputs are written to files.
Within the WLCG, and in the context of ALICE, jobs are used for providing offline
processing of experiment data, through running the ROOT framework (Section 2.4).

Users may specify the requirements for a job and its execution, as well as other
properties such as the location and output files, through a job specification file. The
format of this file differs depending on the Grid middleware used. For ALICE and
its middleware, AliEn, the Job Description Language (JDL) is used, where each file
consists of lines in an attribute = "expression"; format.

2.4 ROOT

ROOT is a framework used for data handling and processing, aimed at solving analysis
challenges within high-energy physics [27]. It is today used across high-energy physics
experiments, other scientific fields – and also in the commercial world. It is object-
oriented, consisting of numerous classes that are grouped by functionality into shared
libraries. These libraries are largely self-contained and can be loaded by adding include
statements as required for specific tasks. ROOT provides packages and libraries for a
range of such tasks, e.g.:

• Histogramming and graphing

• 2D/3D data visualisation

• Curve fitting

• Statistics

• Matrix algebra

An essential feature for the above is data, which is stored in ROOT files: a compressed,
self-descriptive, binary format. Here, data may be contained in a structure known as a

5The term job may in some cases also denote the scheduled job/task of a local batch queue system at
a site. To avoid ambiguity, this thesis will instead use the term task in these cases.
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tree, which in turn consists of branches and leaves. Entries can be retrieved by advancing
the tree index, providing fast access to data by avoiding memory allocation problems.

ROOT has the ability to interfacewith Gridmiddlewares and related tools, including
the file catalogue (Section 2.6.5) for the fetching of additional data files (if not already
provided in the JDL). This is enabled through an abstract interface known as TGrid,
with TAliEn being the implementation of it used by ALICE and the AliEn middleware
[28].

2.5 Software Distribution

CVMFS (The CERN VM File-system) is the current default for software distribution
within the WLCG: a read only, networked, file-system that may be mounted onto an
existing file tree [19]. Software can run directly from CVMFS, without needing explicit
installations. Instead, each file is downloaded as it is read. If a software is properly
unpacked, avoiding large singular files, launch can be near-instantaneous, as files are
fetched and cached locally on demand.

CVMFS was originally intended as a way to bootstrap lightweight virtual machines
(VMs) (hence the ’VM’ in the name) for job execution, where all OS specifics/configur-
ations/packages would be fetched only as required after loading the kernel, ensuring
compatibility and avoiding overhead [29].

Software distribution within ALICE has traditionally relied on a service known
as PackMan6 [30]. As the name implies, it acts as a common package manager for
Grid-related packages, though without the need for administrator privileges, as each
package can be deployed in a cluster file system area dedicated to ALICE. Due to
scalability issues, it was later intended to be replaced with a torrent-based approach,
before the advance of CVMFS [31].

2.6 Grid middleware

A Grid middleware is the software stack used to interface with participating re-
sources/clusters within the Grid, and may be composed of multiple components,
services and protocols [2][16]. Together, these form the very core of the Grid and
provide a shell for users, handle job distribution among available computing nodes, be-
sides providing the tools necessary for each component (e.g. servers, storage, network)
to participate in the Grid. These include data management tools, secure envelopes for
transfers and relevant Application Programming Interfaces (APIs).

2.6.1 AliEn - The ALICE Environment
As brieflymentioned in Section 1.2.1, the middleware used7 by the ALICE collaboration
is AliEn (The ALICE Environment) [7]. Written mainly in Perl, with additions of
shell/C++, and composed of multiple interdependent components, it extends to all
parts of the ALICE Grid, be it the user facing shell, the central services or the computing

6Initially spelled “PacMan”. Not to be confused with the PacMan package manager used within Arch
Linux based distributions (https://archlinux.org/pacman/).

7At the time of project start.
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nodes. This section aims to provide an overview of how these interdependent
components come together to form one distributed Grid system. Specifically, the
execution of a Grid job within AliEn can be subdivided into five unique actors: the
user, central services, computing element, batch queue and compute node/JobAgent.

User

User-facing interactions within the AliEn Grid are done through a client shell. It
provides POSIX-like calls and a filesystem abstraction over the distributed files stored
across the Grid. It also allows users to specify/create JDL files, and submit these into
the Grid for execution.

Central Services

The central services consist of the components required for database connections,
configuration (e.g. LDAP (Lightweight Directory Access Protocol)) and file lookup, as
well as authentication handling. They also host the Job Broker, which examines the
JDLs submitted by users to attempt to find Grid sites that match the requirements.

Computing Element

The Computing Element (CE) is the service responsible for generating work across the
worker nodes in a cluster. It is located within the VO-Box for the cluster, and queries
the Job Broker within the Central Services for matching jobs. Should there be any
compatible jobs available, the CE will then generate a startup script for a JobAgent, and
have it inserted into the batch queue of the local cluster.

Batch queue

Sites maintain a back-end queue of scheduled tasks through a resource manager, and
distribute these among the connected computing nodes in the site. In the context
of AliEn, these tasks are scripts used to start the JobAgent process on each node.
The specific batch queue implementation used may differ between Grid sites, and
may be behind a gatekeeper service that in turn interfaces with the queue. The term
Computing Element (CE) is also used for such a gatekeeper service (as for the AliEn
middleware component in the above subsection). To avoid ambiguity, the term CE
is used throughout this thesis solely to refer to the AliEn middleware component,
while the term Local Resource Management System (LRMS) will be used for the
aforementioned gatekeeper service. Common options for such systems, translating
Grid jobs into local batch system tasks, include HTCondor, Slurm8 and TORQUE
[32][33][34][35][36]. AliEn may also interface with other middlewares, such as ARC
(Advanced Resource Connector) from NordguGrid, in a similar manner (Section 2.6.4)
[37].

8Formerly SLURM (Simple Linux Utility for Resource Management).

Chapter 2 15



Grid Computing

Computing node

The computing node (or “worker node” (WN)) is a machine running jobs for the
resource management system at a Grid site. It contains a process that pulls scheduled
tasks from the local work queue. AliEn tasks are all used to start JobAgents – processes
used to again pull and then execute Grid jobs from the central queue, matching the
configuration of the node. This approach is known as late-binding, where a dedicated
pilot process, a pilot job, provides the final job matching. As opposed to early-binding,
where a job is already specified in advance, having it provided at runtime allows for
coordination between the resources available at the worker node, and the requirements
of the job. This approach has in many ways proved to be successful, improving
reliability and efficiency of job execution, and is today a de-facto standard across the
WLCG [38].

2.6.2 Limitations of AliEn
TheAliEnmiddleware has been used reliably in production for over a decadewithin the
ALICE collaboration. However, deprecated code has accumulated over this timespan,
resulting in a large trailing dependency backlog, where over 250 dependencies have to
be bundled at all times. Furthermore having a majority of the code written in Perl also
comes with another consequence: as other languages have succeeded Perl in terms
of adoption and popularity, such as Python, dedicated interfaces need to be used
whenever utilising code from other projects. In turn, the maintainability of AliEn has
gradually decreased with time, exacerbating the implementation of new features and
improvements.

There is also a core limitation present within AliEn, specifically, the lack of a
common API. Instead, AliEn relies on SOAP (Simple Object Access Protocol) calls,
commonly used to forward direct database calls to the central services. This approach
comes with two issues attached:

• As these SOAP calls are carried on top of HTTPS (Hypertext Transfer Protocol
Secure), states are not saved. This results in often having to re-authenticate in-
coming calls, and given the quantities of calls received by the central services,
significant computing resources become needed to handle authentication. Con-
sequently, a dedicated accelerator had to be installed at the central services in an
attempt to alleviate the pressure of incoming requests.

• The central services consist of multiple components, each listening to their own
ports, that in turn accept and ultimately forward calls to the backend database.
This consequently leads to multiple components having to fight for access and
write rights to the same database, in turn creating potential contention and
lock-up issues.

The above points have contributed to making the scaling of AliEn unpredictable: with
part of the back-end and central machinery already having scaling difficulties, adding
more potential load from sites, resources, JobAgents and possibly multicore jobs,
only adds to this uncertainty - in addition to the previously mentioned difficulties
of maintainability. With the ALICE detector set to multiply its data rate for Run 3,
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concerns were thus raised if AliEn would be able to scale to the needs of the ALICE
collaboration [39].

2.6.3 JAliEn – The Java ALICE Environment
Given the above concerns, adecisionwas consequentlymade to create anewmiddleware
for the ALICE collaboration – rewritten from scratch, and in a more maintainable
language. This decision led to the creation of JAliEn: The Java ALICE Environment
[21].

JAliEn is a drop-in replacement for the AliEn middleware written in Java, replacing
the aging Perl modules of AliEn with a more maintainable OOD (Object-Oriented
Design) approach. Being a drop-in replacement, it contains components/actors
equivalent to those described in Section 2.6.1: a JCentral component to provide the
central services, a new JobAgent, a new CE and the JShell for user interactions. There
are also a number of key differences:

• There is now a central API, based on serialisable Java objects, with direct JCentral
connections possible from any component.

• A new authentication mechanism based around authentication tokens. These are
full X.509 certificates, where the Distinguished Name (DN) field is used to divide
the tokens into groups corresponding to Grid roles, with each role given specific
privileges and limitations.

• Introduction of a JBox component running alongside all JAliEn instances, handling
upstream authentication based on a full user certificate, as well as a translation
between Java serialised objects.

• Additional database (DB) backends, based around Cassandra/Scylla [40][41].

• Support for load-balancing, where multiple JCentral instances may run in unison
to improve scalability.

• TJAliEn, a new implementation of TGrid for JAliEn.

As the middleware is still in active development, a number of features are still being
modified, and their availability during production rollout may change.

2.6.4 Other middleware solutions

CERN Collaborations

The use of the AliEn middleware, and upcoming JAliEn, is tailored to ALICE and its
needs. Alternative frameworks from other experiments can be found utilised across the
WLCG, such asDIRAC (in LargeHadronCollider beauty (LHCb)), PanDA (in A Toroidal
LHC Apparatus (ATLAS)) and the CMS workflow management system / glideinWMS
(in Compact Muon Solenoid (CMS)) [42][43][44]. Their underlying approaches and
system architectures are found to share many similarities: late-binding, pilot-based
job execution, a central task queue and running the vast majority of jobs as close to
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their input data as feasible. The crucial difference between (J)AliEn and the other
frameworks is in the dependence on VO-Boxes at sites, which are essential elements in
the former, while absent in the latter.

A further difference lies in the handling of proxy certificates (Section 2.6.6). In
AliEn, all jobs at a given site use the proxy certificate of the VO-Box operator at that
site, with the file catalogue checking and recording on the behalf of which user job
output files are to be stored. In JAliEn, at the time of writing, jobs are still submitted
with proxy certificates at the vast majority of sites, but such certificates are no longer
used at sites where the VO-Box submits its jobs directly to the batch system. Each job
script submitted by a VO-Box comes equipped with a JAliEn JobAgent token to be
used for fetching a task from the JAliEn central task queue (Section 7.2). In the other
three frameworks, all pilot jobs are submitted by the central services, typically located
at CERN, using a small number of robot identities. When a pilot is assigned a given
task from the central queue of the experiment, it may also receive a proxy certificate
of the user who submitted that task and will then run the task with that credential
instead of its own. Furthermore, PanDA and GlideinWMS have already switched to
the use of WLCG tokens to submit their jobs (where applicable), as the WLCG is set
to shift away from the use of X.509 proxy certificates in the future [45]. However, all
jobs remain equipped with proxy certificates for the time being, in particular because
there are no production Storage Elements yet that support WLCG tokens for data
management operations. At the time of writing, token support for job submission has
been implemented and tested in both JAliEn and DIRAC – but not put into production
yet.

As will be seen in Section 12.2, the approaches taken by the various frameworks to
adapt to a changing computing landscape have significant differences. These large-scale,
distributed systems tend to be very domain-specific, having to work with higher-level
frameworks and services that would have been hard to generalize across multiple
experiments. That said, PanDA, GlideinWMS and DIRAC have all found uses outside
of CERN [46][47][48].

Grid infrastructures

While CERN collaborations, such as ALICE, have their ownmiddleware, they will need
to interact with global and regional Grid infrastructures that may likewise provide
middleware stacks in some form. The extent to which this is done varies, where some
provide common toolkits used to build a functioning Grid, while others provide a full
Grid middleware suite, reminiscent of that found within LHC experiments.

As an example, EGI performs software verification on a set of products and solutions
from third-party providers, where provisioned software becomes integrated in what
is known as the Unified Middleware Distribution (UMD) stack - tested and verified
software that can be used for Grid purposes within the EGI [49]. EGI also runs a
catch-all DIRAC workload management service for VOs that cannot afford to run their
own instances.

OSG, on the other hand, provides a CE/LRMS implementation based around
HTCondor, which provides access to the resources within its infrastructure [50].
NorduGrid takes this approach a step further through the use of ARC, a purpose-built
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dedicated Grid-middleware suite, used to interface with all its computing resources.
The ARC Computing Element has been designed to be able to function as an edge
service for HPC (High-Performance Computing) clusters whose computing nodes
do not have access to the internet. The ARC CE can download job input data onto a
shared file system and upload the job output data from that same shared file system.
For pilot-based workloads, whose input and output data are not known in advance,
a translation service is available to convert such workloads into fully-defined jobs as
expected by the participating clusters [51]. In order to utilise the resources provided
by ARC clusters, (J)AliEn uses a dedicated ARC interface to submit jobs, similar to that
of an LRMS system.

2.6.5 Storage

Section 2.6.1 mentions that users are presented with a filesystem abstraction when
viewing files on the Grid, appearing as a common Unix file tree. Within ALICE, this
is handled by AliEn (and its successor JAliEn), which provides a file abstraction by
utilising pointers. The user-facing file catalogue is composed of a database of Logical
File Names (LFNs), providing the Unix-like directory tree. Each LFN points to a GUID
(the Global Unique Identifier), which provides uniqueness9 across the file abstractions
in the catalogue and their specific versions, and points to a set of Physical File Names
(PFNs), each of which holds a copy of the logical file in its respective Storage Element
(SE) in the Grid. This is illustrated in Figure 2.1.

Fig. 2.1: Catalogue mapping within AliEn, where the user-facing LFN is mapped to a
GUID, which in turn is used to map to the PFNs of a file [7].

9Generally through a dedicated hash algorithm, to prevent re-using values.
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SEs are commonly powered by XRootD, a highly scalable file server which is a
de-facto standard across the WLCG [52]. It runs on the Storage Elements positioned
across Grid sites, allowing them to provide data storage in addition job execution10.
Alternatives to XRootD, such as dCache, are also supported by AliEn [53].

2.6.6 Security

Security within the WLCG is modelled after the Grid Security Infrastructure (GSI),
initially introduced with the now defunct Globus Toolkit middleware [54][55]. It
introduces a set of tools, libraries and protocols for providing the following foundations
for a secure Grid:

• Authentication: Validating the authenticity of an entity.

• Authorisation: Providing access specific to that entity.

• Data integrity: Ensure data is not altered during transmission.

• Data confidentiality: Ensure data is only read by intended entities.

The above terms are mainly satisfied through the use of PKI (Public Key Infrastructure),
an asymmetric key cryptography that gives each user/entity a private and a public
key – where each key can be used to decrypt the contents encrypted by the other, and
vice-versa [56].

Each entity is given a certificate mapping them to a user identity, signed by the
private key of a Certificate Authority (CA), a participant of the PKI considered trusted,
andwhichmay be verified through a corresponding public key, providing authentication.
The user identity may be mapped to specific permissions as needed, which in turn
provide means for enforcing authorisation. Encryption using public/private keys
is likewise also used to provide data confidentiality, where data is encrypted using
the public key of the receiver, and decrypted using their private key. The data
transferred using this approach is generally a unique key, exchanged for the purpose
of establishing a shared secret, in turn allowing the use of simpler/more performant
symmetric encryption algorithms.

Lastly, data integrity is achieved by generating and comparing hashes of the encrypted
data messages, before sending and after receiving. Should the hashes differ, it would
indicate that the contents have been altered.

X.509

At the heart of GSI is X.509: a defined standard for the format of PKI certificates. It
outlines fields for subject, issuing CA, validity and other information considered relevant.
The standard also outlines the use of a certificate revocation list, used to identify
certificates that have been revoked by the issuing CA before its expiration date.

10It must however be noted that not all Grid sites have their own SE.
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Proxy certificates

Another central aspect of security within the WLCG is the use of proxy certificates.
These are short lived certificates that are issued on behalf of a user, valid between a
few hours and up to a few days. Their purpose is to allow services to act on behalf
of the user, such as a job on a remote site needing access to the files of said user. It
would thus need to take on the identity of that user for a short duration – something
which could technically be achieved by transferring the private key, albeit with a high
risk of compromising security. To reduce this risk, a separate certificate is instead
generated, commonly known as a proxy. It comes with its own private/public key pair,
while being signed with the private key of the generating user. This allows it to have
equivalent privileges, albeit for a significantly shorter timespan.

2.7 Limitations of Grid Computing

While Grid computing is an essential tool for handling large quantities of data, such
as those generated by ALICE, it is not without limitations. Being centred around
batch-style execution of computing jobs, makes it not only unsuitable for interactive
tasks, but also for time sensitive workloads, as there is no guarantee that a specific job
will be executed within a certain timeframe. Furthermore, there is a lack of flexibility
in terms of dynamic scaling, as computing resources are unable to instantly scale
up, or down, based on demand. While this can be ameliorated to an extent based
on the deployment type (Section 2.8), hardware must still be physically installed and
thereafter configured before it can be put to use. Lastly, the Grid is largely heterogeneous,
where the available computing resources may differ in several regards, such as in their
hardware architecture, OS, installed packages, versions, and individual configurations,
and likewise in terms of their availability and data proximity – requiring extra care to
be taken in regards to job execution.

2.8 Deployments

This section examines possible site deployments of AliEn/JAliEn, highlighting current
trends in contrast to more “traditional” approaches.

2.8.1 Traditional

The initial means of deploying AliEn at a computing site have required dedicated
machines for each purpose, with their software stackmanually installed andmaintained
by a site admin. This generally includes a dedicated front end machine serving as a
VO-Box, with a local installation of AliEn for running the CE service, as well as local
installations of any other required services, and their dependencies. The computing
nodes use the shared VO-Box installation of AliEn, which is called by the agent script
when an ALICE job is started by the batch queue. Site-specific configuration for AliEn
is pulled centrally from LDAP, which can be overridden if necessary in the ~/.alien
directory. The deployment is illustrated in Figure 2.2.

Chapter 2 21



Grid Computing

Fig. 2.2: A traditional AliEn site, with persistent worker nodes.

Traditional with CVMFS

With the emergence of CVMFS, it is now standard to run AliEn, and related packages,
directly from it – substituting any local versions in the PATH with the CVMFS binary.
This provides not only a simple way to set up aworking environment, but also facilitates
maintenance, as new versions are periodically pushed to CVMFS.

2.8.2 Virtualised
As opposed to manually configuring each machine in a site cluster, configuration can
be made simpler through the use of virtualisation11. The computing resources at a Grid
site may in this case be split up into multiple virtual machines, e.g. one per available
CPU. Each of these run on the same preconfigured image, providing the exact same
OS and environment as preferred for job execution, further simplifying configuration
without having to resort to configuration management tools.

Elastic pool of resources

The use of virtualisation within a site can be taken one step further, by pooling the
computing resources – i.e. combining all resources across site nodes through a
common resource manager. This allows a Grid computing site to act more akin to
Cloud Computing, where virtual machines may be launched on demand as jobs are

11More on this in Section 3.2.
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assigned to the site, allowing unused resources to be freed and repurposed. Solutions,
such as VMBatch, allow this functionality to be integrated directly within the local
batch queue [57]. Figure 2.3 illustrates such a deployment.

Fig. 2.3: A virtualised AliEn site, with a persistent resource pool that creates virtual
worker nodes when needed.
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CHAPTER 3
CLOUD COMPUTING

Cloud Computing provides an alternative approach to networked computing resources.
With a large user base and commercial backing, it has popularised several novel
technologies, such as virtualisation, containers and elasticity. This chapter provides
an overview of Cloud Computing, introducing key concepts, technologies, as well as
highlighting differences to Grid Computing.

3.1 Background

Cloud Computing shares many characteristics with Grid Computing, and is often
labelled as its successor given its commercial success – despite originating orthogonally
to Grids [58]. The first mention of it can be traced back to the mid-90s, roughly the
same time as when Grid Computing was realised, though its origin is more closely
related to that of virtualisation: the ability to split computing resources into multiple
instances, that in turn may be configured with their own unique environments [18].
The advances in networking, and common access to the Internet, that emerged in the
1990s provided the possibility to offer these virtualised instances commercially over a
network. As the sizes of data centres have since vastly grown, so to have the capabilities
of Cloud Computing.

3.2 Virtualisation

As brieflymentioned in the above section, virtualisation providesmeans to split physical
hardware into smaller, virtualised hardware stacks, that may in turn be customised
and configured with their own runtime environments. In other words, it allows for the
software implementation of a computer, a virtual machine (VM), that may be used to
execute software like a traditional, physical machine. The concept emerged in the early
days of computing at IBM, when the hardware costs were high, and the support for
multiple concurrent users was limited [59].

Virtualisation works through the use of a hypervisor, a service that creates virtual
hardware abstractions on topof thephysical hardware. Eachof these virtual abstractions
may in turn run their own complete OS and software stacks, and appear as normal
machines to end users. Hypervisors may run directly on top of the physical hardware
(known as “bare metal” or Type 1 hypervisors), or on top of a preexisting OS (known
as a Type 2 hypervisor). This is illustrated in Figure 3.1.
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Fig. 3.1: Type 1 and Type 2 hypervisor stacks side-by-side. The latter running the VM
instances on top of a preexisting host OS.

The term “virtual machine” is in this thesis used interchangeably with what is also
known as a “system virtual machine”: a full hardware abstraction layer that may be
used to run several, full, OS stacks on the same physical hardware. The term VM may,
however, in some specified occasions also be used for a “process virtual machine”.
Also known as Managed Runtime Environments (MREs), this is generally an OS layer
abstraction, used by programming languages to ensure portability across OS platforms.
A common example is the JVM: The Java Virtual Machine, which allows cross platform
compatibility for Java applications, granted the target platform is capable of running
the JVM [60].

3.3 Service Models

The types of services Cloud Computing providers may offer differ depending on the
intended goal / requirements, and may ultimately be categorised as three distinct
models based on their level of abstraction [8]. These are commonly known as:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

3.3.1 Software as a Service (SaaS)
SaaS enables users to access and utilise applications running within a Cloud Infrastruc-
ture, generally through a web-browser or a thin client. All underlying infrastructure,
such as network, servers and storage, are handled by the Cloud provider, allowing
users a straightforward way to access a preconfigured application over a network.
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3.3.2 Platform as a Service (PaaS)
PaaS lowers the abstraction one level, compared to SaaS, and enables users to deploy
their own applications onto a preexisting infrastructure offered and maintained by a
Cloud provider. The applications may in turn be created using libraries, languages
and tools supported by the provider.

3.3.3 Infrastructure as a Service (IaaS)
IaaS descends one level below PaaS, allowing users to not only deploy their own
applications, but also decide on the underlying OS and its configurations. In other
words, IaaS gives users full access to their own virtual machine, which may be set
up and configured in any way needed by the user, be it as an application, server or
database. The underlying hardware and network connectivity are maintained by the
Cloud provider.

3.4 Containers

While virtualisation and virtual machines have been considered to be at the very core
of Cloud Computing, the rise of containers has contributed to a shift in this perception –
a technology that provides many of the benefits of virtualisation, without the overhead
of having virtualised hardware, and which is now a staple within Cloud Computing
[11] [61].

Containers provide distinct runtime environments for applications, in many ways
akin to that of VM, but achieves this through the use of features available in the
Linux kernel. Through the use of technologies such as cgroups, chroot, seccomp and
namespaces, unique and isolated environments may be created, each with their own
filesystem, root account and packages. This can be used to not only create self-contained
application/service wrappers, but also to run multiple Linux distributions side-by-side
on top of the same Linux kernel – creating an end-result similar to a virtual machine.
A comparison can be seen in Figure 3.2.

3.4.1 Container types
The above section mentions two possible uses of containers: to create a self-contained
runtime for applications, and to run multiple services reminiscent to that of a VM.
These use-cases utilise two distinct types of containers: (operating) system containers,
and application containers [62].

System containers provide a user-space isolation that allows for the installation of
different packages, libraries and file hierarchies. The end result may be a complete
Linux distribution, providing a similar end-result to a VM, sans the use of a hypervisor.
This results in the ability to run multiple processes in a portable environment, while
avoiding any performance impact coming from the use of hardware virtualisation, in
addition to having rapid startup times.

Application containers are the most popular/common form of containerisation.
Intended for wrapping single applications/processes as independent packages, they
allow for greater portability, as well as more control over security, resource restrictions
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Fig. 3.2: Containers compared to a Type 1 hypervisor. The former do not need a
hypervisor or guest OS, instead using a container framework to wrap applications and
binaries in their own isolated environments.

and use of dependencies. By placing and shipping an application within its own
container, the risks of inconsistencies, unreliability and compatibility issues may be
greatly reduced.

3.4.2 Container frameworks

While containers mainly utilise existing capabilities of the Linux kernel1, their rapid
ascent to popularity can be attributed to the release and availability of tools such as
Docker – tools that use the available kernel features to create a framework and format
for running, deploying and sharing containers easily [65]. Containers may here be
defined as ready-to-go images, stored in a central repository for sharing, and largely
deployed automatically. Other common container frameworks are Podman, Singularity
and LXC (Linux Containers), with the first two frameworks, as well as Docker, being
intended for application containers, and the third for system containers [66][67][68].

3.5 Cloud deployment types

Cloud Computing may be deployed through multiple means, where the ownership,
location and size of the deployment may differ [8]. These means of deployment may
be summarised into four distinct deployment types, where each has its own intended
uses and benefits:

1Containers are also natively available on FreeBSD and Windows, but with some limitations [63][64].
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3.5.1 Public Cloud
As the name implies, public clouds are accessible to the general public over the internet,
be it as a paid subscription or free of charge. It is the most common deployment
type, and characterised by having all essential infrastructure managed by the service
providers. This has the benefit of enabling lower costs, higher scalability and reduced
management at the cost of privacy/security, as all data will be located off-premises.

3.5.2 Private Cloud
From a technical perspective, a private Cloud has few differences from a public Cloud –
with the exception of it being managed and/or owned by a private entity, that in turn
restricts usage to only those allowed access by said entity. This is generally a specific
company, which hosts physical servers on-premise, and limits access to its own users.
While this approach provides more privacy compared to a public Cloud, it requires
having to maintain local servers on-site. This reduces the scaling flexibility found in
publicly managed Clouds, as upgrading capacity will require investing in physical
hardware.

3.5.3 Community Cloud
A community Cloud can in many ways be seen as an extension to a private Cloud,
where the infrastructure may be managed and shared by multiple private entities and
their users. This may aid in cooperation between the participating entities, as well as
help offload costs.

3.5.4 Hybrid Cloud
Ahybrid Cloud combines the approaches of both public- and private Clouds, in attempt
to bring together the benefits of both. This results in a mix of on-premise, privately
managed, resources, and remote resources managed by a Cloud service provider,
which are bound together through a form of communication/data exchange. The end
result may, as an example, allow a company to run their applications on a remote
Cloud, where the capacity may scale depending on demand, while the authentication
handlers of said applications may be hosted privately, to allow for more secure data
handling.

3.6 Characteristics

Given the properties of Cloud Computing described throughout this chapter, the key
characteristics may be reduced to the following key points:

• Remote access to interactive resources – Users may access remote resources over a
network to perform tasks, including those considered mainly interactive.

• On-demand resources – Resources may quickly be scaled up or down through the
Cloud provider.
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• On-demand self service – Users may provision additional computing resources as
needed through an online portal/API, without requiring human interaction.

• Measured service – Resources may be monitored, combined with a metering
capability, to provide detailed usage statistics, which in turn may be used to
optimise the service.

• Elasticity – Resources may be scaled up or down, automatically, depending on
load/demand.

• Multitenancy – Resources are shared across a large pool of users, lowering costs,
and increasing flexibility.

• Maintenance and configuration – Maintenance is primarily handled by the Cloud
provider, which also offers preconfigured deployments.

3.7 Grid benefits

Within a Grid Computing context, the characteristics of Cloud Computing present
interesting possibilities that in turn may be used to overcome shortcomings found in
Grid Computing. In particular, Cloud Computing presents three key areas that may be
beneficial if applied within the Grid:

• Virtualisation – Grid Computing consists of largely heterogeneous resources.
Through virtualisation, preconfigured environments, tailored for specific jobs,
may be created. This in turnmay not only simplify configuration, but also be used
towards creating a more homogeneous Grid – having a uniform environment
across sites for jobs.

• Elasticity – Virtualisation within the Grid may be taken one step further, by
launching a tailored VM instance to execute jobs as they come. The whole Grid
site may in that case be set up as a shared resource pool (as mentioned in Section
2.8.2), where unused resources may be repurposed.

• Containerisation – Containers allow us to take the above suggestion even further:
not only can we launch tailored virtualised instances when new jobs are detected,
but we can incorporate similar features directly in the Grid middleware, thanks
to the small overhead of containers.
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CHAPTER 4
STATE OF THE ART

This chapter provides an overview of the state of the ALICE Grid and infrastructure,
as well as related site deployments at CERN, at the time of project commencement.
The aim being to highlight how relevant technologies are being utilised, as well as
identifying their potential issues and bottlenecks.

4.1 Central infrastructure

The central infrastructure is in this chapter used to refer to the backend servers providing
the main upstream API – mainly serving the middleware central services – as well as
credential databases and storage, physically located at CERN. In addition, there are
also several VO-Boxes present, providing entry points for several ALICE Grid clusters
at CERN.

4.1.1 Central Services

At the time of project commencement, the Grid central services are dedicated to serving
the AliEn middleware. There is a smaller number of JCentral instances coexisting on
the same machines intended for JAliEn, solely intended for development and testing,
and otherwise not used in production. Storage, authentication and LDAP are shared
between the AliEn/JAliEn instances.

4.1.2 VO-Boxes

In addition to the central services, a number of ALICE Grid sites can also be found
at CERN, each handling a fraction of the jobs. These sites are among the largest, and
together account for roughly half of all ALICE jobs1. Their VO-Boxes are all virtualised,
existing only as VMs spread across a number of dedicated “alienvm” machines. There
are in total five alienvm machines, all of which utilise Ubuntu2 as the base OS, with
VMWare as their hypervisor.

1As reported on Alimonitor http://alimonitor.cern.ch/ [69]
2Spread across multiple Ubuntu LTS versions (14.04 - 18.04).
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Package Management

Across all CERNVO-Boxes, both packages and installation are handled throughCVMFS,
running all services directly from the shared filesystem. Packman has been completely
phased out.

Worker Nodes

Worker nodes for the CERN sites are taken from a pool of dedicated machines, shared
across all LHC experiments, and maintained by CERN IT – this in contrast to the
VO-Boxes, which are handled directly by the ALICEOffline team. Nodes are up-to-date,
and in this case come with CentOS 7, with required packages for most jobs as well as
CVMFS access.

4.2 Sites

A key attribute of the Grid is its heterogeneity – being composed of many distributed
computing sites with different properties. Consequently, sites differ not only in
regards to their batch systems or nodes, but also in their use of new and emerging
technologies/practices. Key traits of the Grid at the time of project commencement are
summarised here3:

Distributions

CERN has earlier collaborated with Fermilab to create the Scientific Linux (SL)
GNU/Linux distribution, based off the commercial RedHat distribution [70]. SL6 has
been the default recommendation for use within the Grid, be it on the computing
nodes or VO-Boxes. However, CERN then discontinued SL in favour of CentOS [71],
starting with CentOS 7 as the successor [72]. The WLCG is thus largely composed of
CentOS 7 nodes, though with a significant portion still on SL6, waiting to be updated.
However, not all Grid sites follow the recommendations, and a small number of sites
can be found to use a version of Fedora4 (largely compatible with CentOS) or Ubuntu5.

Site Services

Site services refer to the VO-Boxes and their associated services, including the CE and
batch queue system. As implied in the above section, most site VO-Boxes run on either
CentOS 7 or SL6. CentOS 7 sites are more likely to run the AliEn CE directly from
CVMFS, while some SL6 sites also have local installations. A few sites, such as GSI6
Darmstadt, also run their VO-Boxes in a VM. The most common system for resource
management is HTCondor, with Slurm and ARC also being popular options. Other
systems, such as TORQUE, are also used.

3Data gathered using probing scripts and LDAP records (Section 10.1.3).
4https://getfedora.org/
5https://ubuntu.com/
6Gesellschaft für Schwerionenforschung.
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4.3 Middleware

Use of Cloud-related technologies

Asmentioned in Section 3.7, the use of Cloud-related technologies within a Grid context
can be advantageous. Consequently, a number of sites have started to incorporate
these within their local job execution workflows – this generally through the use of
virtualisation. Some sites only utilise virtualisation here as means to simplify setup
and configuration, with a static number of VMs acting as replacement for physical
hosts, though a growing number have their setups configured as a collection of pooled
resources (Section 2.8.2) – an approach that has been extensively documented and
tested [10]. Some LHC experiments already have job workflows using containers, as
opposed to using VMs [73][74].

The consequences of the above Grid properties and site choices are further discussed
in Chapter 10.

4.3 Middleware

4.3.1 AliEn
The AliEn middleware has driven the ALICE Grid for over a decade, and remains the
only production middleware at project start within ALICE, for both the central services
and site nodes. Development efforts have however shifted towards JAliEn, with AliEn
now only receiving small maintenance patches. Furthermore, there is no longer any
central development repository for AliEn, with all patches being applied directly to
the AliEn CVMFS repository instead.

4.3.2 JAliEn
While JAliEn is positioned as the successor to AliEn, it remains under heavy develop-
ment at project commencement [21]. It is consequently not used at any site, though as
mentioned in Section 4.1.1, JAliEn central services are present and available, providing
the needed APIs for testing.

In its initial state, JAliEn implements a large subset of the core AliEn functionality:
it provides the minimum necessary API endpoints, and means to start and run jobs
– albeit through a barebones approach, lacking a number of essential steps related
to authentication, reporting and file handling. Furthermore, as the main priority is
to first cover the functionality of AliEn, new features of JAliEn remain unused or
unimplemented. This is a central point of Chapter 7.

4.4 Potential issues and bottlenecks

The state of the art described in this chapter presents an intersection of new and
established practices, with trends from the Cloud making their way into Grid sites
and services. While these trends, together with the new middleware developments of
JAliEn, may be beneficial, bottlenecks may be present in their current use/deployment.
Specifically, a number of concerns may be raised based on the descriptions presented
earlier in the chapter, listed below.
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4.4.1 Subset of features
Unlike a true Cloud with dedicated resources, a majority of Grid sites utilising
Cloud resources deploy these on top of existing configurations, in turn preventing
additional functionality: e.g. as opposed to creating a resource pool, VMs are
deployed as replacements for physical hosts. While this brings the benefit of a
simplified configuration, other features, such as elasticity, are absent. Furthermore,
from a middleware perspective (both AliEn and JAliEn), jobs and their pilot processes
are unaware of Cloud features/functionality, or of being executed in a virtualised
environment. Having this ability could allow the middleware to not only better handle
jobs (e.g. adding safeguards against VM issues), but also even provide means for the
middleware to handle elasticity directly, by automatically launching VMs/containers
for incoming jobs.

4.4.2 Increased complexity
Deploying a Cloud-inspired setup on top of existing configurations may initially be
convenient for the sake of easily gaining access to new features. This may however
come at a cost: both the old and new configurations will need to be maintained, as well
as any intermediary wrapper used to combine them. Not only will this reduce benefits
provided by using Cloud related technologies (simpler setup and configuration), but
likewise also affect reliability and potentially increase fragmentation (see subsection
below). One of the reasons for AliEn falling behind in development may be attributed
to an accumulation of new modules being added on top over time.

4.4.3 Reliability
Installing new features and services on top of existing solutions increases the deploy-
ment stack. This opens up more potential sources of error, that in turn may cause the
full stack of services to fail. There is also an increased risk of encountering performance
issues, as data and settings may need to propagate through several software layers. A
custom solution/wrapper may also be needed to make these services properly work
together – as ad-hoc solutions being used by sites in order to adapt to VMs, containers
and elasticity, may encounter issues in the long term.

4.4.4 Fragmentation
While the Grid already exists as a heterogeneous and fragmented system in terms of
configuration, the combination of multiple ad-hoc approaches for integrating Cloud-
related technologies, aswell as the adoption ofmultiple new technologies frommultiple
vendors, makes the Grid even more fragmented than before. Where both sysadmins
and software previously knew, to an extent, what to expect from execution on the Grid,
new knowledge will now be needed in order to adapt to the changes.

34 Chapter 4



Part II

CONTRIBUTION





Adapting old programs to fit new machines usually means
adapting new machines to behave like old ones.

—Alan Perlis [75] CHAPTER 5
FOUNDATIONS FOR A NEW GRID WORKFLOW

Having introduced core concepts and technologies in Chapter 2 and Chapter 3,
combined with having examined possible concerns and bottlenecks in Chapter 4, this
chapter returns attention to the thesis RQ. Consequences of the current state of the
art will be discussed, followed by relevant approaches for potentially improving the
situation. Afterwards, related work will be discussed, before drafting a foundation for
a possible new workflow for the ALICE Grid.

5.1 Adapting to a changing landscape

Chapter 4 describes the current state of the ALICE grid as an intersection of new
and established practices. A recurring theme in this description is the deployment of
Cloud-related technologies, such as virtualisation, on top of existing configurations.
While it provides means to quickly gain access to new features without having to
drastically change infrastructure, there are also a number of caveats to this approach
(as discussed in Section 4.4). The negative consequences of one of these caveats, the
increased stack from adding VMs within existing clusters, have already been a source
of issues for the central service hosts within CERN: networking may occasionally shut
down, without warning or log entries, resulting in service hosts having to be constantly
monitored, with on-call personnel having to reboot and relaunch services. This is
but one of many sites within the Grid, and with Run 3 of the LHC looming – with
its increased processing and storage needs – having any reliability or performance
concerns is unsettling.

As opposed to shoehorning new computing models and technologies on top of
existing solutions, a better approach may be to create a new solution, fully embracing
and integrating new computing paradigms wherever these may be the most beneficial.
This is of particular interest due to three current developments at project start:

• The emergence of containers, increasingly being embraced within the Grid

– Potential for both coexisting with, and replacing, VMs in service hosting,
execution and infrastructure.

• The now rapid development of JAliEn

– Can in many ways be seen as a “blank canvas” with core features implemen-
ted, ready for extensions.
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• Full adoption of CVMFS

– A quick, centralised, way of rolling out software across sites.

It must be noted that a completely new solution, which also fully embraces new
paradigms and computing models, cannot simply be a deployment or component.
Large adjustments to the current Grid stack would be needed – in turn requiring a
reimagined Grid workflow.

5.1.1 Defining a Grid workflow
The term Grid workflow has been used recurringly when discussing the possibilities
of adopting new technologies within the Grid. Whereas a workflow would normally
indicate a set of sequences of tasks required for completing a process, a Grid workflow
would in this case be the steps and sequences needed for achieving job execution. As
the Grid forms a distributed system, the resulting workflow encompasses not only the
sequences directly responsible for launching the job, but also other central processes,
such as data transfers, storage and package distribution.

5.1.2 Rationale for a new solution
The creation of a new solutionmust be seen in light of available technologies and options,
and likewise be put up against the limitations and drawbacks found within current
Grid deployments. Specifically, if there is great incentive to pursue the development of
something new, as opposed to continuing with the Grid as it is. However, given the
issues discussed in Section 4.4, as well as the beginning of Section 5.1, combined with
the increased needs for reliable and performant computing resources in preparation
for Run 3 of the LHC, the foreseen improvements are deemed crucial for future success.
Furthermore, the new JAliEn middleware is also set to be put in production before Run
3: consequently, one way or another, the ALICE Grid is set to change in the near future
– making this an optimal time for embracing a new, modernised, Grid workflow.

5.2 Building a new solution

A new solution should be able to replace the need for ad-hoc deployments of Cloud-
related technologies on Grid sites. It should also be able to do this in a manner reducing
issues, drawbacks and limitations. This section will investigate potential approaches
for how this can be achieved.

5.2.1 Containers
Given large portions of the Grid stack are virtualised, containers are of particular
interest for any new solution: having less complexity, their low overhead bodes well
for both performance and reliability. Furthermore, their layered approach to storage
reduces disk space requirements, in turnmaking themmore portable and easier to scale.
At the same time, their feature set largely overlaps with that of VMs. As mentioned in
Section 1.3.4, containers may therefore possibly be integrated on all “levels” of a Grid
framework:
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• On worker nodes – providing Grid jobs with a tailored execution environment
for their purpose.

• On central services and VO-Boxes – providing ready-to-go host configurations.

• In the middleware – automating the use and deployment of containers within
the Grid.

While there is currently no native use of virtualisationwithin the AliEnmiddleware, the
two former points would in this case be replacing the fragmented ad-hoc virtualisation
approaches currently used by ALICE Grid sites.

It must be noted that natively incorporating containers within a Grid workflow
raises questions on how to best approach this process. First and foremost, a decision
is needed on what container platform(s) (toolkits) to support and use. At the time of
project commencement, Docker is the de-facto container standard in terms of both
deployments and container format, but is challenged within HPC, and increasingly in
the Grid, by newcomer Singularity [65][67].

Docker

Docker is one of the more popular container platforms, having a rich API and a mature
codebase. It is highly standardised and documented, with a centralised online hub for
container images. Though initially designed to run enterprise microservices, it has
since been adopted to serve a number of use-cases, including HPC and sites in the
WLCG. A Docker instance will start with elevated privileges, and requires the presence
of a background service running as root to function.

Singularity

At a glance, Singularity can be seen as a light-weight alternative to Docker, also
providing a container framework, though with less overhead. There is likewise support
for both the Docker image format and the Docker hub. However, Singularity was
mainly designed for an HPC use-case scenario, and a number of tailored distinctions
are present for that reason. Given its HPC background, it comes bundled with tighter
integration to tools and batch systems such as Slurm . Furthermore, it is designed to
not require any system, architectural or workflow changes to improve the integration
with HPC: it supports numerous resource managers and multiple system architectures.
There is also native support for access to GPU (Graphics Processing Unit) resources.
To facilitate image distribution, single file container images are utilised. A dedicated
online repository for Singularity images is also available.

Other platforms

Other container frameworks, including CoreOS Rkt1, Podman2 and Kata3, were also
considered. However, the two former remain in early stages of development, while the

1https://github.com/rkt/rkt
2https://podman.io
3https://katacontainers.io/
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latter – Kata – base their containers on small virtual machines, a novel approach which
still requires having an (albeit small) virtualised stack. Granted, Singularity is likewise
a new framework, but its emphasis on HPC, which has a significant requirements
overlap with Grid computing (see discussion below), makes it a compelling alternative
nevertheless.

Comparison

The core distinctions between Singularity and Docker can be observed in how container
isolation and user privileges are handled. While a Docker container starts with
escalated privileges, a Singularity container will maintain the same user context as used
outside the container. To gain root access, a container must be launched as root. This
improves container isolation, which in turn may contribute to improving security (e.g.
making breaking out of the container harder). Furthermore, file access is determined
by a dedicated launch wrapper code (the file system is isolated, with the writeable
areas being whitelisted), and user code can only interact with its own processes. Unlike
when using tools such as glexec4, there is no UID (User Identifier) switching required.
Resource management is left to the batch-system.

Unlike more common enterprise-oriented tasks, which is the target of Docker, HPC
tasks tend to use fewer, larger, containers carrying a given environment and all its
required dependencies. As a result, Singularity is optimised for images that target
a single application (often with complicated stacks or difficult dependencies), using
the smallest number of namespaces possible. In the context of HPC, this gives it a
lighter footprint and, potentially, better performance. Unlike Docker, it is also a single
executable.

Concerns and decisions

The general goal for a containerised worker node within the WLCGwould be to deploy
a preconfigured environment, with its dependencies, for the execution of a job. In
this aspect, the use-case closely resembles that found within HPC - one container, one
environment, one application. Consequently, this use-case therefore also corresponds
well with Singularity. In addition to a theoretical gain in performance over enterprise-
oriented container platforms (such as Docker) in these scenarios, Singularity can also
provide a number of equivalent features without requiring elevated privileges. There
is no need for a background service operating as root, and commands such as create,
import, export and mount are available to all users.

Given the above, it would be natural to focus on the integration and use of
Singularity within the Grid. However, Singularity is a relatively new platform, and has
not been tested in production as rigorously as Docker. Furthermore, being lightweight,
Singularity has fewer features than Docker – especially in terms of networking and
fine grained container isolation. That said, given Singularity provides a large subset of
the functionality found within Docker, without requiring elevated privileges, the case
for Singularity is compelling nonetheless: combined with its ability to run standalone,

4Used to associate certificate credentials to local Unix accounts [76].
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this would greatly simplify the process of having it deployed on sites, as it would not
require any additional actions on behalf of site admins.

Should Singularity nevertheless end up being too limited in its feature set, a possible
solution could be to fork it – creating a new container platform specifically tailored
to the WLCG. This platform could then in turn be used as a base for a new Grid
framework.

5.2.2 Grid middleware
Containers alone do not make a new Grid framework: while promising in many
aspects, containers will need to somehow be natively integrated in the distributed
process of job execution. Otherwise, it would be no different from the current ad-hoc
solutions. As briefly suggested in the previous section, one approach for achieving this
would be to build a new solution from the base of Singularity, integrating all necessary
tools/features within it, and deploying it at Grid sites.

A different approach to the above could be to harness the Grid middleware itself:
containers being both lightweight and portable presents an opportunity to have these
built-in as a feature. This approach is particularly interesting when considering a new
middleware framework is in development: JAliEn. Being built from the ground up as a
complete rewrite, yet with the core necessities for job execution already implemented,
it presents a blank canvas for new features and enhancements. This would not only
allow for the integration of containers in the workflow, but also open up for more
core workflow changes from within the Grid framework itself, creating an opportune
entrypoint for embracing and integrating new technologies and features. Specifically,
the JAliEn middleware could be developed further to allow for:

• Isolating the executing job payload from the underlying host

– Prevent potentially malicious executables from breaking/breaching the
worker node. Better control the use of resources.

• Better integration of its own features

– JAliEn comeswith a new authentication scheme based around token-passing,
which is not fully utilised.

• A streamlined, universal, deployment method

– A one-click solution to allow for the adoption of the new middleware,
independent of site.

– Where a key component in enabling the above features would be the integration of
Cloud-related technologies directly within the middleware.

5.2.3 Handling containers
Using the Grid middleware to handle container deployment provides a way for
naturally integrating containers within the execution process, while at the same time
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removing the need for many of the current ad-hoc solutions. It would also allow both
the middleware and the payload to be more aware of jobs running in their own isolated
environments, and thus be able to act on this when needed (e.g. in case of a failure).
However, the Grid is composed of many distributed components, and not everything
is handled by the middleware.

VO-Boxes are an integral part of the ALICE Grid: providing an entrypoint for
individual clusters. Being both complex and time-consuming to set up, having a
VM template may assist in both configuring and deploying these. Furthermore, for
AliEn, worker nodes are required to occasionally connect to the VO-Boxes, making it
essential to keep them alive. Cloud solutions, such as VMs, may simplify the process
of monitoring and restarting.

Within JAliEn, containers may be introduced as another step in the job execution
process (as discussed in the previous subsection). However, this process would not
include VO-Boxes, as these remain outside of the main execution chain. Unless the
process of containerisation is extended beyond just job execution, VO-Boxes would thus
be left as-is, spread across VMs and physical hosts depending on the site configuration.
As mentioned earlier in Section 5.1, this is concerning for multiple reasons.

Having VO-Boxes containerised would provide many of the benefits of using VMs,
in a smaller software stack, potentially avoiding issues such as those mentioned in 5.1.
The containerisation would however have to come from outside JAliEn, as the VO-Box
is managed by sysadmins – meaning that a new approach, outside the middleware
itself, is needed for this purpose.

Section 5.2.2 suggests a one-click, universal, approach for deploying the new Grid
middleware. While this would initially suggest that worker nodes may simply spin
up a container for jobs, as opposed to being preconfigured in advance, this could also
apply to the VO-Boxes: a one click, universal, container for quickly having all necessary
site services up and running. The initial setup will need to be prepared by a site
admin, but as opposed to setting up multiple services and configurations, it should
only require one step. As VO-Boxes also include the Grid middleware CE service, this
approach may also serve as a quick way for migrating to JAliEn – as a JAliEn CE will
submit startup scripts for its own new JobAgents to the local batch queue.

5.2.4 Distribution

One question raised for the above approach, and the integration of containers within the
Grid middleware in general, is how to provide the containerised environment: i.e. both
the container runtime and any compatible image(s) would need to be made available
to both the JAliEn middleware and site admins. While the container runtime, such as
Singularity, could be preinstalled, the containers themselves would need to be updated
occasionally. For job execution, the image could be pulled/propagated alongside jobs,
while this would not apply to other container use-cases (such as VO-Boxes).

As mentioned in Section 4.1.2, the default mechanism for package management at
project commencement is through CVMFS. However, being a distributed filesystem,
it provides benefits beyond just package management. Binaries and files are read
on-demand, and these may not necessarily be bound to a specific build or package. If a
container image is converted to a directory, and spread onto CVMFS, a container would
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be able to launch instantaneously, as individual files would be downloaded on-the-go
as needed5. Images as a directory are natively supported by Singularity, and with all
ALICE Grid sites having access to CVMFS, deploying an image here would make it
easily available for all. Furthermore, the Singularity binary is capable of running in a
standalone mode, meaning the runtime itself could be placed in CVMFS, and thereafter
called by JAliEn, worker nodes or (admin) users as needed. In other words, CVMFS
may provide simple distribution of both runtime and environments throughout the
ALICE Grid, if used accordingly6.

5.3 Related work

The process of establishing a new Grid middleware framework solution can be seen in
light of the work described in Ref. [10], which covers many aspects of incorporating
Cloud technologies within an ALICE Grid context – applying concepts such as
virtualisation, multitenancy and elasticity, and technologies such as CernVM [10].
Much of this work was however confined to a specific T2 site. By building a new Grid
workflow from the middleware as a base, this could potentially be ameliorated – with
no need for a dedicated setup process, and quick adoption across all ALICE Grid sites.

Outside of ALICE

Other LHC collaborations are likewise investigating a tighter integration of Cloud-
related technologies, such as containers, within their Grid workflows. From before, the
ATLAS, CMS and LHCb collaborations already utilise VMs and Cloud resources either
indirectly through local site configurations as ALICE, or directly through middleware
interfaces (e.g. through Harvester on ATLAS PanDA (Section 12.2), and vmdirac on
LHCb DIRAC [77]). More recently, there are also efforts to bring containers directly
into the job execution process, across all of the aforementioned collaborations.

5.4 Drafting a new Grid workflow

Following the discussions on how to approach the building of a new Grid workflow in
the previous Section 5.2, this section will proceed with creating a draft for a complete
solution based on the insights gained.

A containerised JAliEn

A draft for a complete solution is shown in Figure 5.1. As can be seen in this figure,
the JAliEn middleware is to be the very core of the new solution, with the workflow
incorporated. However, core steps that may previously have gained benefit from VMs
are now containerised, including the JobAgent and payload execution. This can be
made possible through the new security model found within JAliEn, detailed further
in Chapter 7.

5This idea is at the very core of the original CernVM project.
6As opposed to uploading everything contained within large image files, which would not benefit

from the on-demand read found within CVMFS.
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Fig. 5.1: A drafted new Grid workflow, using JAliEn and containers. Both JAliEn
binaries and the container image are all taken from CVMFS. Some dependencies (such
as Java) are provided within the container image, while Singularity is expected to be
preinstalled on the hosts. This draft is in part inspired by the presentation on possible
containerisation within JAliEn that is available from Ref. [78].
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Furthermore, the use of JAliEn should likewise aid in term of scaling performance.
Asmentioned Section 2.6.3, the middleware contains several changes aimed at reducing
previous key bottlenecks within AliEn, such as a new authentication scheme, a proper
API and load-balancing features. As deployment and rollout takes places, the central
services should consequently be able to handle the number of active jobs across sites,
without unmanageable system load on the central machines – and more importantly,
without impacting their ability to provide the necessary services. This will however also
depend on the final implementation of the job pilot component, as excessive requests
and calls may overturn the new scaling capabilities. The end result post-deployment
will be further examined in Chapter 11.

One-click VO-Boxes

VO-Boxes need to be reliable. By having these migrated onto containers, the lack
of a hypervisor should provide for more direct access to resources, in turn possibly
reducing I/O delay and minimising system load, while at the same time making them
both portable and easy to deploy. Furthermore, having a smaller deployment stack
should also provide for less potential sources of error.

Deployment can further be simplified through container management tools. As
opposed to having to meticulously configure each VO-Box, simply pulling and running
a stored image should suffice. This could also speed up JAliEn adoption, as the new
CE may already be included in the image.

Singularity

At the core of the push for containers is Singularity (known asApptainer as ofNovember
30, 20217), which with its extra low overhead for HPC-like tasks and unprivileged (non-
root) mode, makes it the best suitable candidate for use within the Grid. Furthermore,
the developers are actively listening for feedback, and have been willing to include
additional features considered useful for the Grid (See Section 10.1.2).

More reliance on CVMFS

CVMFS can be used as a single source for both binaries and images, and be tied together
with an existing build system to automatically deploy new changes to runtime and
containers across all sites. Furthermore, core system components may also be placed
in CVMFS, just enough for JAliEn to start, which will thereafter set up an environment
as preferred for jobs. This would make both the OS distribution and configuration
of worker nodes moot, presuming a preconfigured container may be automatically
launched by JAliEn with the necessary environment.

7On November 30, 2021, Singularity became Apptainer, with the first stable release made available at
very end of this project. Consequently, development was mainly done using Singularity builds, with
Apptainer only being deployed post initial rollout.
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5.5 Remainder of Part II

The rest of Part II is organised as follows: Chapter 6 will investigate approaches
for creating a new, containerised, VO-Box, akin to what has been described in this
chapter. Chapter 7 examines the JAliEn middleware, its current state and needed
improvements for a new Grid workflow. Based on the findings here, Chapter 8 will
outline the development and changes involved, resulting in a new, containerised,
JobAgent. Moving on to other core services, Chapter 9 will examine further changes,
and needed steps towards deploying a new solution into production.
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CHAPTER 6
CONTAINERS FOR VO-BOXES

VO-Boxes host essential site services, and should consequently be reliable, straightfor-
ward to set up and simple to maintain. VMs have contributed to achieving this, but not
without caveats (Section 5.1). This chapter will examine how VO-Boxes may instead by
placed in containers, consequently reducing the software stack and possibly reducing
some of the current VM drawbacks and limitations. Afterwards, the end result will be
put in a broader scope, examining how it may be further integrated with a possible
new Grid workflow.

6.1 Anatomy of a VO-Box

The primary function of a VO-Box is to serve as an entrypoint for the ALICE VO at a
site, allowing incoming jobs to be scheduled on the site worker nodes (as discussed in
Section 2.2.2). The main service responsible for this is the batch system, while several
ALICE job management processes are hosted on the VO-Box. The batch system chosen
by the site generally provides a submit command, allowing a command or script to
be submitted into the local batch queue, and in turn eventually be executed on an
available worker. Scripts, containing the work to be executed on workers, are provided
to VO-Boxes by the AliEn CE service, which is also hosted here – matching suitable jobs
with the site, and in turn generating the script used to start new job agents. Thereafter
calling the submit command provided by the batch system or by a gatekeeper service,
translating Grid jobs into local batch system tasks.

In addition to the batch system and AliEn CE machinery, more components are
required for a VO-Box. Authentication, which is handled through X.509 certificate
proxies, must be provided (i.e. means to verify and renew), as well as means for
privilegedVOmembers to access theVO-Box itself, e.g. formaintenance or configuration
changes. The latter is provided by GSISSH, a modified version of OpenSSH with
support for credential forwarding [79]. Furthermore, a number of monitoring processes
are also hosted on the VO-Box, some as part of MonALISA. There are also other, more
common, tools running on VO-Boxes, with specific configurations, such as rsyslog and
iptables.

As a whole, the following services are required for a VO-Box [80]:

• Batch system client (e.g. HTCondor, Slurm, TORQUE)

• AliEn Computing Element (CE) and related services, MonALISA
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• GSISSH - for login access, if desired

• Proxy renewal service

• Cron (for periodically running tasks)

• Rsyslog

Or in other words, a VO-Box is not a single service, despite often being considered as
one unit.

Within larger computing clusters, it is common to partition the available worker
nodes into several smaller sites – allowing for more control on where to send jobs, and
for which nodes. Consequently, this requires the use of multiple VO-Boxes. As opposed
to having multiple physical hosts for each VO-Box, a sole host may also achieve this by
having each VO-Box running as a VM. Within such a configuration, each VO-Box will
have its own IP (Internet Protocol) and MAC (Media Access Control) address, and all
routing specifics are handled by the hypervisor. This may however create problems if
one wants to achieve the same through the use of containers.

Most common container frameworks, such as Singularity, are application containers
(Section 3.4.1). As opposed to system containers, these are intended to run a single
application/service, and thereafter terminate. Furthermore, networking is generally
handled by bridging the connections as needed per application. This is close to the
exact opposite to the needs of a VO-Box, which is composed of multiple services, and
where several VO-Boxes may be running on the same host – meaning each service for
each VO-Box must also be bridged without overlap.

6.2 Container challenges

Application containers are mainly intended as an execution wrapper for a single
process, providing a suitable environment with all required dependencies satisfied.
As seen in the previous section, this in turn creates two challenges for using such
containers to run VO-Boxes:

• Process handling

– Application containers are tied to the execution of a specific process. Once
that process finishes, the container will terminate alongside it. This makes
service management within the container limited, while also making the
container prone to exiting if the “main” process should crash, in turn also
terminating all other processes.

• Networking

– Relying on the default bridging approach used by application containers
requires having connections forwarded between the host and the container
for each process. Not onlywould setting this up requiremore steps compared
to a VM (and thereby going against the goal of the RQ), but also create
challenges in setting up multiple VO-Box containers on the same host.
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Furthermore, as will be seen in Section 6.5, other challenges are also present, which are
not immediately apparent.

Granted, the challenges above may all be attributed to the use of application
containers, whereas system containers would behave more like VMs, as is already
common in the Grid. Targeting a framework intended for system containers, such as
LXC, would potentially avoid these. However, many of the benefits associated with
containers would also be lost – and in particular the lightweight portability.

The forthcoming sections will attempt to resolve the challenges mentioned above,
in turn enabling the use of application containers for VO-Box use.

6.3 Handling networking

Before attempting to run VO-Box services in a container, a functioning approach to
networking is required. By default, this is handled through bridging in application
containers such as Singularity andDocker. Here, containers communicate to the outside
world through an intermediary bridge interface provided by the container framework,
which forwards packets from and to the host network interface and between containers.
It also maps internal ports of service instances running inside the containers onto
network facing ports on the host. While this is a largely straightforward approach
when having single process containers, and when each container is responsible for a
different service, it becomes less transparent when applied to VO-Boxes. With several
running processes in each container, and the processes being identical between them,
ports need to be remapped to avoid overlap on the host – and with multiple containers
all with multiple identical services, this will need to be done for a large set of processes,
which in turn can be hard to track. Furthermore, site configurations for each VO-Box
are handled through a central LDAP service, which identifies individual VO-Boxes
through their IP addresses and hostnames. Using the default bridging approach, each
VO-Box container would have the same IP/hostname combination as for the host,
making them indistinguishable from each other.

6.3.1 MACVLAN
A more suitable approach for networking VO-Box containers could come from
MACVLAN: a feature that allows for the creation of several virtual network inter-
faces, on top of an existing physical interface [81]. Each of the virtual interfaces may
have a unique MAC address, and its own IP address. This is illustrated in Figure 6.1.

When applied to containers, MACVLAN provides for convenient networking –
allowing each container a uniqueMAC address and IP, and in turn allowing it to appear
as a conventional host/VM on the network. This would allow VO-Box containers to
act as drop-in replacements for existing solutions, without any changes to existing
network configurations at sites. As of Linux 3.9, the feature is available as a production
(non-experimental) feature directly in the kernel. However, this is not a guarantee that
support is available within all container frameworks.

Section 5.2.1 raises concerns that despite the advantages of Singularity, it remains
limited in features, especially in regards to networking. This becomes particularly
evident when hoping to utilise connectivity beyond what is provided through the
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Fig. 6.1: Overview of theMACVLAN architecture for a network of two containers. Each
container is assigned a unique virtual interface, on top of the physical host interface –
each with its own MAC and IP address [82].

default bridging. In other words, there is no direct support for MACVLAN/IPVLAN1.
However, the lack of direct support is not a showstopper by itself – the feature is natively
available in the kernel, and workarounds exist. By providing Singularity with the -net
flag, a new container will in that case be launched in a new network namespace. Once
running, it is possible to manually create a new MACVLAN interface, set up routing,
and attach the newly launched container to it. Unfortunately, this approach comes with
major drawbacks: it requires identifying the namespace ID of the container, which
changes when relaunched, and manually processing a number of commands requiring
root privileges. This procedure will also need to be repeated every time the container
is restarted. Granted, this could be automated through scripting, but arguments may
be made if this would be a worthwhile replacement for the current VMs and ad-hoc
scripts present on ALICE Grid sites.

6.3.2 From Singularity to Docker for VO-Boxes

When re-examining the benefits of Singularity, it becomes evident that many of its
selling points are mainly relevant for job execution, and not necessarily for the hosting of
services as within VO-Boxes. Consequently, it makes sense to turn instead to a container
framework more suited for this purpose. While several alternatives exist (Section 5.2.1),
Docker remains the more mature option for its developed feature-set. Specifically,
it has a comprehensive networking stack, with support for a number of networking

1Similar to MACVLAN, albeit one layer up, IPVLAN allows assigning multiple IPs to a single
interface. The MAC address, however, remains the same [83].
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configurations, including built-in support for both MACVLAN and IPVLAN. While
it is not as portable as Singularity, still requiring a background service to function,
as well as a proper admin-approved installation on the host, these drawbacks can be
considered acceptable for the use-case: a VO-Box is expected to continuously operate
for months without restart, and is generally managed by a site administrator. With
this in mind, the target container framework is thus shifted from Singularity over to
Docker in the context of VO-Boxes – but remains the same for job execution and JAliEn
(Chapter 8).

6.3.3 MACVLAN on Docker

In contrast to the limited networking options of Singularity, Docker allows for defining
alternative networking configurations to the default bridge – including MACVLAN.
Once a MACVLAN bridge interface has been created (by providing Docker with the
host network subnet and gateway), new containers may be attached to it through the
-net flag at launch. IPs and MAC addresses can be automatically assigned from a
predefined subnet pool, or manually given to the container. In the latter case, this
allows a container to be a direct drop-in replacement for a VM VO-Box, assuming
its previous IP and MAC addresses, without needing any changes to the back-end
network.

Containers are not completely identical to VMs in a network

A container connected to the local network through a Docker MACVLAN will largely
appear as a conventional VM/host, having its own IP and MAC, but not completely.
There is no support for DHCP (Dynamic Host Configuration Protocol), with IPs
instead being assigned either by Docker or by hand. Furthermore, certain networking
configurations have to be handled from within the configuration of Docker, even if this
was earlier possible from within a VM or a physical host – including the DNS (Domain
Name System) configuration. The latter is a potential pitfall, as settings from earlier
VMs reapplied in a container will simply not persist, in turn causing issues in name
resolution.

6.4 Handling startup and service management

Another key difference between VMs and application containers, such as Singularity
and Docker, is the lack of an init system – the core component responsible for launching
required processes at system boot, and managing their lifecycle2. As application
containers are intended for running a single process, mainly providing an environment
wrapper, the container is generally disposed of after its main process terminates.
Indeed, an argument can be made that if a user ever has the need for more than
once process in each container, then that user has misunderstood the core concept of
containerisation.

2External tools, such as Docker-compose (https://docs.docker.com/compose/) and Kubernetes
(https://kubernetes.io/), exist – though these are aimed at managing the lifecycle of multiple
containers, and not the services within each.
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Despite the argument above, use-cases for containers running multiple services
exist, with Docker even acknowledging the existence of tools that may be used for
this purpose, such as SupervisorD [84][85]. In the context of VO-Boxes, it must be
emphasised that in a way, the container acts as one process, despite being composed of
multiple processes. Many of these are tightly integrated, and some are core system
components, which makes spreading them onto multiple containers convoluted. In
other words, the VO-Box represents a use-case where it makes sense to have one
container for multiple processes.

6.4.1 Making an init system

Docker containers may be preconfigured through a Dockerfile, a recipe containing all
files to be copied, configurations to be set, and commands to be run after downloading
a specified base container image. This will in turn create a new, ready to be deployed,
container image. Dockerfiles also allow for specifying an entrypoint, which is the
initial process to be run when the container is launched. This may be any executable,
including a shell script, through which additional processes may again be launched.

The above approach presents a method for havingmultiple running processes when
a container starts – or in other words, a very simple custom init system. However, it
still lacks features pertaining to lifecycle management, such as automatic restarts and
log handling.

6.4.2 A piece of SysVinit and SystemD for containers

An observation can be made that SysVinit, the init system within CentOS 63, has many
similarities to the simple init system described in the previous subsection: it simply
starts a selection of management scripts at launch. However, each of these management
scripts is tailor-made to handle the lifecycle of a specific application/service. One
approach for achieving the same result in containers can thus be to copy over these
management scripts through a Dockerfile, and have a simple init script start them
at launch. Furthermore, a function can be made to make a similar syntax available
within the containers, e.g. enabling the use of “service start|stop”, as expected
from SysVinit. An example of such a function can be found in the top half of Figure
6.2. In essence, this creates a simple SysVinit clone for containers, which will be
indistinguishable from a VM/physical machine by users.

While a successful deployment was made of such a SysVinit clone [82], it was
subsequently dropped because of system changes: CentOS 7, as well as a majority of
Linux distributions, have now abandoned Upstart/SysVinit in favour of SystemD [87].
This init system is more tightly integrated with both the system and the kernel, and
does not rely on service scripts for management. This would not only mean that all
service scripts used within the SysVinit clone would need to be manually maintained,
but also that scripts and services relying on SystemD calls, if used within VM/physical
VO-Boxes, would not be compatible with containerised VO-Boxes. A different approach
is needed.

3It must be noted that unlike prior CentOS versions, CentOS 6 uses Upstart in reality, but with
SysVinit-like scripts [86].
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#Function to give users sysvinit-like call for service scripts
RUN echo ’service () { /services/"$@"; }’ >> /etc/bashrc

-----------------------------------------------------------------

#Function to give users/scripts systemd-like call for supervisor
RUN echo ’systemctl () { supervisorctl "$@"; }’ >> /etc/bashrc

Fig. 6.2: By wrapping service scripts (upper half) and SupervisorD (lower half) in a
function that mimics the syntax of proper init systems (such as SysVinit and SystemD),
existing scripts and applications can be reused within the containers without changes.

Section 6.4 mentions SupervisorD as a tool for managing multiple processes within
containers. While originally not intended to be an init replacement, it provides many
of the desired features, such as automatic startup, lifecycle management and logging
options. As opposed to re-using existing service scripts and configurations, as was
the case for the SysVinit clone, each process to be managed by it requires a separate
service entry in its configuration – one of the reasons why it was initially not considered.
However, once set up, managing startup entries in a single configuration file should
be far less prone to requiring changes/maintenance, compared to having to maintain
multiple startup scripts as with the SysVinit approach.

Given the above, SupervisorD has thus been chosen as the method for managing
services within VO-Box containers4. Granted, as most CentOS 7 applications now
expect the presence of SystemD for both management and log offloading, all can be
configured to run in a standalone mode, and with logs again written to file, allowing for
SupervisorD to take on themanagement role. Furthermore, aswith the SysVinit clone, a
function can be used (Figure 6.2 (bottom)) to provide a SystemD like syntax (systemctl
start|stop), to allow cross compatibility for scripts expecting its presence on the
system. This should in turn make containerised VO-Boxes indistinguishable from their
VM/physical counterparts from the perspective of a user.

6.5 Other challenges

With the transition from VMs to containers, challenges related to both process handling
and networking were expected – the two areas that largely differ within containers
(Section 6.2). However, other challenges were also encountered in the process of
containerising VO-Boxes, that in turn need special configurations to overcome.

6.5.1 CVMFS
Modern VO-Boxes need CVMFS to function. This is a result of it not only being the
default method for fetching required software and packages, but also because it hosts

4Dockerfile: https://gitlab.cern.ch/jalien/dockervobox/-/blob/master/Dockerfile
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configuration files and essential tools (scripts) used by other applications. Furthermore,
newer software, such as JAliEn, requires the presence of CVMFS in order to be able
to function at all, independently of how it is installed (as will be discussed in Section
9.1.1). Consequently, all VO-Boxes must have a working CVMFS installation, providing
the /cvmfs directory.

VMs provide CVMFS in the same manner as physical hosts: by installing the
CVMFS package, andmaintaining a separate CVMFS cache for each VM. This approach
would however not be optimal for containers, as giving each container its own cache
would make them far less portable, and possibly duplicate large amounts of data.
As containers allow for the bind-mounting of directories, a better approach can thus
be to solely install CVMFS on the host, and thereafter bind-mount /cvmfs within
each container. This would remove the need for installing CVMFS in each individual
container, as well as avoid duplicate CVMFS caches on the same physical host.

Bind-mounting is a convenient approach for gaining access to CVMFS across
containers, but it is not perfect. Due to a bug in autofs – the service responsible for
automatically mounting /cvmfs repositories on-demand – containers may at times be
unable to access the CVMFS instance on the host5. Instead, the error message “Too
many symbolic links” is shown. The bug was traced to being triggered only when
containers were launched before the needed CVMFS repositories were mounted on
the host. In other words, simply accessing the ALICE CVMFS repository with a cd
before launching the containers would avoid this issue – or disabling autofs alltogether,
instead using a script or system service (e.g. SystemD), to automatically mount the
needed repositories at boot time.

6.5.2 File descriptors

File descriptors are a construct used within Unix-like systems to identify file and socket
resources, used in the interface between user and kernel space. In other words, all open
files are referred to by the kernel through file descriptors. Within VMs, each machine is
given its own kernel on top of the virtual hardware stack. This is however not the case
with containerisation, as the kernel is shared across all containers running on the same
physical host. Consequently, this may lead to behaviour not seen in VMs for VO-Boxes.

A VO-Box has several services and responsibilities, and in the case of AliEn, also
monitors the executing JobAgents across the site worker nodes (WNs). As a result,
each VO-Box instance needs to keep track of a large number of files. For a conventional
VM or physical VO-Box, this is not an issue. For containers, however, the shared
kernel between the VO-Box instances will quickly cause the open file descriptor limit
to be reached, causing each container to silently fail. When having more than one
containerised VO-Box instance per kernel, the default limit for the maximum open
file descriptors must thus be raised on the host using ulimit (for the soft limit), or by
editing /etc/security/limits.conf (soft and hard limits).

5https://github.com/apptainer/singularity/issues/347
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6.6 Adapting to Docker

In section 6.3.2, Singularity was dropped in favour of Docker for VO-Boxes. While
the more comprehensive feature-set and network stack make it more suitable for
running VO-Boxes, it also adds more complexity. Where Singularity can be seen as a
simple namespace wrapper, Docker also comes with more mechanisms for container
isolation, runs through a persistent background process, and by default uses a copy-
on-write layered filesystem. In order to best utilise this container framework, several
considerations and adjustments were required.

6.6.1 Kernel access

By default, Docker limits the access privileges containerised processes have to the
kernel. This is a safeguard that is put in place in order to prevent rogue processes/users
from potentially breaking out of the container, and gaining access to the underlying
host – possibly as root, as this is a requirement for the Docker runtime. As a preventive
measure, all access to kernel capabilities6 is therefore disabled, unless explicitly
permitted by the user on container startup. Unfortunately, this creates problems for
multiple networking tools commonly used within VO-Boxes, such as netstat and
dnsmasq, which simply refuse to function, even when executed as root. In an attempt to
work around this issue, individual capability unitswere given to new containers, such as
CAP_NET_ADMIN, but as more tools were used within the containerised VO-Boxes, more
such capabilities had to be given. In the end, a decision was made to run all VO-Box
containers as “privileged”, without any kernel isolation. While this may present means
for possibly breaking container isolation, the involved risk was considered acceptable
given the benefits – as these containerised VO-Boxes would only be handled by site
administrators. Furthermore, Singularity, which was the tool originally suggested for
the containerised VO-Boxes, does not provide any kernel isolation at all.

6.6.2 Keeping containers alive

One of the main benefits of Singularity over Docker is its lack of background services
and other processes, simply existing as a namespace wrapper for a given process.
This is in stark contrast to Docker, where each container depends on being able
to communicate with the background dockerd. Should this process terminate, all
executing containers will be forced to terminate alongside it. Not only presents this
a single point of failure for all containers on a host, but also challenges for reloading
configurations and applying updates.

Starting with Docker 1.12, a feature known as “live restore” is available, allowing
containers to avoid being killed if dockerd should terminate [88]. While not perfect,
it allows containers to keep running independently for short durations, giving any
terminated background service time to recover, or sysadmins time to update the system.
It will however not work for larger Docker updates, as the containers will be unable
to reconnect to the service due to the larger changes. Furthermore, containers can

6Linux divides the kernel access associated with superuser actions into distinct units, known as
capabilities.
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only stay alive independently for a few days, as they depend on the dockerd service
for, among other things, offloading their logs. If absent for too long, the container
log-buffers will eventually overflow and crash the containers.

The live restore feature remains far from the serviceless flexibility of Singularity,
but it nevertheless aids in adding more redundancy to the system. While it remains an
optional feature within Docker, it has thus been enabled for the containerised VO-Box
hosts.

6.6.3 Flattening images
Docker uses a layered copy-on-write filesystem for its images, where all changes
committed to a container image are written on a separate layer, without changing the
base image itself. This allows multiple containers to reuse the same images, storing
only their own changes in a separate layer, and consequently saving storage by avoiding
unnecessary duplication of data – one of the very reasons why containers tend to
have a lower storage footprint, and in turn increasing their portability. In other words,
whenever additional changes are required for a container, these changes are stored as a
separate layer on top of the existing container image.

Consecutive changes are also each stored in their own layer, stacked on top of any
prior adjustments applied to a container. However, every additional layer applied on
top of a container image introduces a slight I/O delay. While the delay caused by a
single layer is largely negligible, as more layers are stacked on top of each other, it
will gradually start to visibly impact performance (more on this in Section 6.7). As
the VO-Box containers use images where changes remain frequent due to testing and
development, this becomes an issue.

To avoid having to navigate several layers, in turn causing I/O delays, a solution is
to flatten the container images once changes have stabilised. This is a feature available
in Docker, where all layers are collapsed into a single-layer base image. It is a manual
process, triggered when exporting images onto archives for sharing. Consequently, to
avoid any possible overhead and performance penalties, all VO-Box images have been
flattened by exporting and re-importing their images before deployment.

6.7 Viability of containerised VO-Boxes

To test the viability of having containerised VO-Boxes, the findings describedwithin this
chapterwere used to deploymultiple instances in production for ALICE in July 2017[82].
These were monitored for prolonged durations, and with different configurations –
testing different approaches to network, init and storage. The overall experience from
these tests can be described as positive, with only minor caveats.

Figure 6.3 and Figure 6.4 depict two instances of containerised VO-Boxes being
used in production, in comparison to a VM counterpart for the same time interval,
for both the number of concurrent jobs7 and the underlying load on the system8.
Despite the container VO-Box being configured to manage more jobs (Figure 6.3),

7As AliEn JobAgents need constant communication with the VO-box, issues encountered by it can be
reflected in the job throughput.

8The Unix load average can give an indication of overhead and current I/O load.
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Fig. 6.3: Number of running production jobs for a containerised VO-Box (green), and a
traditional VM VO-Box (magenta) over a two week period[82].

Fig. 6.4: Unix load average on the host for the containerised VO-Box (green), and
traditional VM VO-Box (magenta), from Figure 6.3 [82].
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without any apparent issues, its host can also be seen to have less system load than
that of the VM (6.4) – despite running on older hardware (one Intel generation behind).
Furthermore, initial experiences from using the container VO-Boxes also suggest them
being less prone to faults and connectivity issues – something which has plagued
their VM counterparts. To further confirm this observation, a VM VO-Box known for
underperforming and having occasional network freezes (“CERN-CORONA”) was
converted and redeployed as a container in November of the same year9. With the
reduced deployment stack provided by containers, it was theorised these issues could
be avoided. Post deployment, no further network freezes were observed, and an
immediate gain in the number of concurrent jobs was seen (Figure 6.5).

Fig. 6.5: Running production jobs for the VO-Box “CERN-CORONA”, before and after
its conversion from VM to container (early November 2017) [82].

The deployment of containerised VO-Boxes in production has, however, not been
a flawless process. Many of the key points presented in Section 6.5 and Section 6.6
were only discovered after encountering them in production, such as the increased
I/O latency of layered images10. Nevertheless, once properly set up and configured,
containerised VO-Boxes have achieved good results in terms of both performance and
stability throughout an initial one-year testing period, and the remaining VO-Box VMs
at CERN have all been replaced with containers since. With these positive results in
mind, the next step is to move beyond the VO-Boxes, towards modernising the job
execution flow.

9Despite debugging attempts, the exact cause for these original issues was never found.
10Flattened images were already used for the above figures.
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CHAPTER 7
THE STATE OF JALIEN

The JAliEn middleware is in an interesting position, with core functionality largely
implemented, while at the same time being open to better utilising new features and
technologies. In many ways, it can be considered a “blank canvas” for the integration
of new functionality. This creates an opportunity not only for better utilisation of new
features within JAliEn, but also for integrating it with new technologies – making
it a core component for how a new Grid workflow may be organised (as in Section
5.4). This chapter will thus examine the JAliEn middleware in more detail, outlining
its current status, and steps needed and taken in order to bring it in line with the
discussion in Chapter 5.

7.1 A closer look at the JAliEn architecture

The layout of the JAliEn service model in many ways resembles that of AliEn (discussed
in Section 2.6.1) with the same core actors:

• User

• Central services (CS)

• Computing Element (CE)

• Batch queue (BQ)

• Computing node (job agent (JA))

Out of these five actors, three are directly a part (component) of the JAliEn middleware
(CS, CE, JA), while interfaces are provided for interacting with the other two (User, BQ)
– again, in many ways similar to AliEn. The general idea for this approach has been
to allow JAliEn to be a drop-in replacement for AliEn, while also allowing JAliEn to
function in tandem with the legacy solution, when the latter is being phased out.

The right-side box of Figure 7.1 (“Future interaction model”) depicts the initial plan
for JAliEn and its interaction model between actors, with a comparison to the original
AliEn to the left (“Current interaction model”). While largely similar at a glance, it can
also be seen to introduce a set of new components as mentioned in 2.6.3, such as the
JCentral and JBox.
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Fig. 7.1: Initial JAliEn architecture (right), in comparison with the existing AliEn (left)
[21].

The JCentral is the authoritative source for all upstream API calls, and correspond-
ingly handles any and all incoming requests: doing lookups in the file catalogue,
database and/or taskqueue as needed. This differs from AliEn, which is split into
different services for each purpose. AliEn services have each their own individual
TCP (Transmission Control Protocol) port, with their own security constraints and
back-end technologies, whereas the JCentral listens to a single TCP port, together with
TLS (Transport Layer Security) for authentication.

The JBox is the main authentication handler within JAliEn, with a running instance
present all around where upstream/downstream communication is needed: be it
the central services, a VO-Box CE, computing node JobAgent or any connecting user
interfacing with the shell. The authentication itself is very different from JAliEn – as
opposed to the use of proxy certificates, full X.509 certificates are used instead (further
discussed in Section 7.2).

A closer look at Figure 7.1 also reveals another component, which has not previously
been discussed: the JSite. This was intended to be a connection multiplexer, in order to
avoid having too many concurrent connections coming from site nodes. The nodes
would instead connect to the JSite, which would thereafter forward the requests
upstream through a single connection. However, better load balancing is another new
feature within JAliEn (Section 2.6.3), and the number of JCentral instances may be
scaled up or down depending on load – which efficiently handled the load during
early testing. Consequently, the JSite has since been dropped from JAliEn (after the
initial creation of the earlier figure), as the JCentral should be sufficiently capable of
enduring high loads even without it.
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7.2 Security within JAliEn

As mentioned in the section above, JAliEn forgoes using proxy certificates for common
X.509 certificates. This is done through a novel approach: these certificates have been
implemented as token certificates [89]. Each token certificate is a time-limited X.509
certificate used to represent different roles within the Grid, such as the user, a job or
JobAgent. The roles are provided within the DN field of each token, signed by an
internal certificate authority (CA).

Each Grid role comes with a different set of privileges and limitations – just enough
for what is required by each role. Specifically, there are three roles (a.k.a. identities ):

• User: Represents a Grid user, and comes with the same rights as defined by their
Grid identity certificate – but only valid for a much shorter time, e.g. 48 hours.

• Job: Represents a Grid job, with privileges as needed for job execution, such as
being able to fetch/upload files as needed by the executable.

• JobAgent: Represents the JobAgent process that manages Grid job execution on
computing nodes, with permissions for fetching new jobs, updating traces and
monitoring.

Additionally, restrictions are placed on which identities may request what tokens.
Specifically, a job token may only be requested by a JobAgent, while a JobAgent token
may only be requested by a CE – as the CE is responsible for generating the JobAgent
startup scripts, as mentioned in Section 2.6.1. The CE, in turn, uses a host token, which
is largely similar to a user token, albeit with a default validity of 12 months. Users may
obtain a corresponding user token by presenting JAliEn with a valid Grid certificate.

7.3 Initial state of JAliEn

At the time of project commencement, JAliEnwas not being actively usedwithin ALICE.
Its development was nevertheless advanced, and picking up pace with the approach of
Run 3 of the LHC. In practice, it contained roughly the functionality needed to execute
Grid jobs, albeit with a number of caveats.

First, the solution as a whole was largely untested, with new components being
developed at different stages, and not necessarily fully intercompatible. Also, the
provided functionality only allowed for the minimum required to run an executable,
with limited file handling and upload support, and with some conditions being
unhandled (more on this in Section 8.4). Furthermore, it also relied on the old AliEn
central services to handle specific calls, such as unimplemented calls in the JAliEn
user shell (JShell), and also for the job optimiser – a component used to transition jobs
inserted into the central queue to a state where they can be picked up and executed by
JobAgents at site computing nodes.

7.3.1 Confirming state
As mentioned above, JAliEn should be in a state where it is capable of running a
payload executable. Specifically, it should be possible to pull a job from the central task
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queue (which is implemented using a database, shared between AliEn and JAliEn), and
have that executable run and in some form upload the results. This was ascertained by
the original JAliEn developers, as well as through inspection of the code1. There were
however several caveats to this functionality.

Some services can be shared between JAliEn and AliEn, such as the optimiser,
database backends and shell (jobs submitted through either the AliEn shell and JShell
are indistinguishable). This sharing of services was a requirement for the above JAliEn
functionality to work, as there was no JAliEn CE running on any site (at the time of
project commencement), no optimiser to transition inserted jobs in the taskqueue and
there were limits to the features provided in the JShell.

Nevertheless, to confirm that the already implemented code functions as intended,
a test was made to verify the functionality on the Grid. As there were no JAliEn
sites, and consequently no CEs to start JAliEn JobAgents on worker nodes, this had
to be done through a special approach: by piggybacking on top of AliEn jobs, using
the existing infrastructure. As opposed to a production payload, a JDL would be
created pointing to a startup script for a JAliEn JobAgent – similar to the startup scripts
generated by CEs, which are afterwards inserted into the local batch queue. This was
possible from the fact that JAliEn JobAgents communicate directly with JCentral (for
which test instances were already available, as mentioned earlier in Section 4.1.1), and
do not need to ping a local site CE. Instead, JobAgents may assume the identity of any
site, if so instructed in the startup script. The only requirement is a valid JobAgent
token, which was generated in advance for this purpose.

Figure 7.2 depicts the testing approach described above, where an AliEn JobAgent
will consequently launch a JAliEn JobAgent, which in turns takes on the identity of a
separate JAliEn site, and pulls a queued job for that site from JCentral. For this test,
the corresponding results were a success, as jobs were able to be both executed and
successfully saved. However, while this may confirm that a subset of features expected
within JAliEn function as intended, the solution remains far from complete – as will be
the topic of the following section.

7.3.2 Initial limitations

While Section 7.3 confirms the ability of JAliEn to execute Grid jobs, several limitations
may also be drawn from it. Specifically, the following three limitations were seen
during testing:

• Computing Elements – As development of JAliEn has progressed, the CE code
needs to be updated to reflect the changes, with consequently no CE instances or
sites being available for testing, as discussed in the previous section.

• Shell features – The JAliEn shell is not fully featured, with file creation having to
be done from within the legacy AliEn.

• File upload/download – File handling is limited, with not all options being recognised
for the download of input files, and conversely for the upload of output files.

1https://gitlab.cern.ch/jalien/jalien
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Fig. 7.2: Using an AliEn JobAgent to launch a JAliEn JobAgent as payload.

Furthermore, compared to the original goals/features of JAliEn (from Section 2.6.3), a
number of additional observations may also be made:

• Database – The improved JAliEn database backends were intended to run on
Scylla [41] – an alternative implementation of Apache Cassandra [40] aimed at
low-latency and high throughput, in turn set to provide sizeable performance
benefits. However, this transition has yet to be made.

• Distribution – For the test in the previous section, JAliEn (its JobAgent) had to
be transferred as an inputfile, as there is no fully automated way of distributing
JAliEn components.

• Authentication – Authentication handling is implemented, but remains liberal for
the permissions of each role. Furthermore, the new security model based around
tokens is partially used to emulate the legacy implementation within AliEn.

While not all of the above points are critical, some will nevertheless become central
when folding JAliEn into a new Grid workflow, as will be seen later.

7.4 JAliEn for a new Grid workflow

Section 5.4 envisions JAliEn at the core of how a new, containerised, Grid workflowmay
function. However, given the limitations in the above sections, adopting the existing
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JAliEn into this vision may have more benefits. A number of the issues mentioned
may be directly derived from the current state of the JAliEn JobAgent, the CE (which is
closely tied to the JA), and the distribution mechanisms – all of which are set to change
for the draft in Section 5.4. This provides an excellent entrypoint for any changes, as the
creation of a new Grid workflow may not only have its own merits, but also possibly
help improve the JAliEn Grid middleware itself, readying it for the start of Run 3.

A key change proposed in Section 5.4 is the introduction of a containerised JobAgent,
allowing jobs to automatically run in a suitable preconfigured environment, without
the need for manual setup. However, containerisation is also a powerful mechanism for
isolation, preventing malicious code inside the containerised wrapper from potentially
harming the host system or other users on it. This may in turn provide an ample
starting point for integrating JAliEn into a new workflow.

Container isolation may be used to overcome existing limitations within the JAliEn
security, while at the same time natively integrating containers within the middleware.
This would involve modifying/creating a new JobAgent, suitable for this purpose.
Furthermore, changes from here may be further propagated to the CE, being closely
tied to how JobAgents are executed, and in turn onwards to the distribution model
from there. In other words, the JobAgent provides a convenient approach to start
integrating the drafted changes of Section 5.4, gradually moving up the execution stack
and hierarchy of JAliEn.

The next chapter will detail the necessary changes to the JobAgent to achieve this,
with the CE to follow after that.
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CHAPTER 8
ISOLATING GRID JOBS

Grid jobs are executed through a dedicated job pilot process, known as the JobAgent
within AliEn. This remains the same within JAliEn, which implements its own version
of it. The initial version of the JobAgent within JAliEn has been mainly aimed at
replicating the feature set of the original, in turn forgoing new development and
intended features. This chapter aims to rectify this through the introduction of a new,
“two layered” JobAgent, which utilises containers to improve on both security and
compatibility.

8.1 The purpose of a JobAgent

As introduced in Chapter 2, the JobAgent is the middleware component responsible
for executing Grid jobs. It is started by a site batch queue (BQ) system, on worker
nodes associated with that site, having been submitted by the Computing Element
(CE) when it detected waiting Grid jobs compatible with the given site. Specifically, it
is the process that, in the end, will start the executable specified in the JDL of a job.

The JobAgent works by pulling jobs from the central queue. After a site CE has
identified a potential job match, it will submit a shell script to the BQ of the site, that
in turn launches a JobAgent when executed on a worker node. Once started, the
JobAgent will contact the central queue1, and pulls the first job that matches with the
local conditions and the configuration of the JobAgent. By examining the JDL, it will
fetch any necessary input files, packages, as well as the main executable. The latter
will afterwards be started as a child process once all preparations are done, where the
JobAgent will also provide monitoring while the execution is ongoing. When a job
completes, the JobAgent is additionally responsible for uploading any output files, as
requested by the JDL, and cleanup of leftover files and processes.

To summarise, the responsibilities of the JobAgent are as follows:

• Job Matching – Find a job in the central queue compatible with the current
computing node / site

• Environment preparation – Examine the job JDL and install any required packages

• File download – Fetch input files specified in the JDL

1Note that the main matching logic is handled by the JobBroker, a central service, once it receives
worker node information from a JA.
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• Job execution – Launch the payload executable

• Monitoring – Monitor the payload execution, providing traces and status updates

• File upload – Upon completion, upload the specified output files

• Cleanup – Remove leftover files and processes, and prepare for matching a new
job

As mentioned in Section 7.2, JAliEn uses a new token-based form for authentication,
where each Grid role has a token with permissions just enough to fulfill that specific
role, be it a user, job or JobAgent. However, as can be seen in the section above, the
responsibilities of a JobAgent are not solely confined to those of the JobAgent role, but
also include tasks related to job execution. Consequently, in order to satisfy all of the
original responsibilities of the JobAgent, its initial JAliEn implementation requires both
a job- and JobAgent token in order to function. This arguably defeats the purpose of
the new, token-based, authentication model, as permissions are no longer limited by
each role.

Fig. 8.1: A split, two layered, JobAgent. As opposed to directly starting the payload in
a container, as in Figure 5.1, the JobAgent is instead split into two separate components,
where the JobWrapper takes care of job execution within the container. This allows the
JobAgent to have a separate token, and more control over the containerisation – now
spanning across the isolation through two instances [90].
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8.2 A new JAliEn JobAgent

To rectify the limitations of the JAliEn JobAgent, and following discussions with
the teams concerned, a proposal was made for the creation of a new split (“two
layered”) JobAgent: having one component dedicated for job matching and monitoring
(JobAgent role), and a separate for job execution (job role). This would allow for fully
harnessing the presence of the new fine-grained token certificates, so to introduce more
isolation within Grid job execution. Furthermore, this isolation enables the adoption
of containerisation, which in turn may also be used to further strengthen it – and to
integrate JAliEn with the vision of Section 5.4.

A proposal for how the split JobAgent may be realised is drafted in Figure 8.1. As
illustrated in the figure, the original JobAgent has here been split into two separate,
independent2, processes: A JobAgent and a JobWrapper – each with its own JVM, and no
shared resources. The JobAgent maintains all tasks related to matching/management
and monitoring, while the JobWrapper only handles job execution (existing only as a
wrapper for the payload). This also includes the fetching/uploading of files, as is also
permitted by the job role/token.

Having the JobAgent split into two independent components simplifies the process
of containerisation, as the task of initialising and managing the container may be
folded into the existing monitoring tasks performed by the JobAgent – making it
possible to build support for containerisation within the middleware itself, without
having to rely on external scripts. This includes both launching the container, with a
correct environment – as well as checking for underlying support for containers in the
first place. However, as will be seen in the subsequent sections, this also introduces
additional challenges.

8.2.1 Requirements for two layers
Figure 8.1 depicts the JobAgent starting the JobWrapper as an independent subprocess.
In order to make it fully independent, it would need to be launched by a shell call,
similar to that of the JobAgent – not using native Java APIs. However, not using
native Java APIs comes with the caveat that the JobAgent (JA) process will have less
information, and also, less means for managing and monitoring the JobWrapper (JW)
process. This creates novel challenges, generally uncommon within Java:

• Data transfer – Job matching is performed by the JobAgent. This means all
necessary files required for job execution will thus be fetched by the JA, while
being needed by the JobWrapper for execution. Furthermore, the JW also requires
a job token for its permissions, which may be requested by the JA. In other words,
there is need for data exchange between the JA and JW, in order to transfer
necessities such as

– Job JDLs
– Site info
– Configuration options

2Separate/independent processes are necessary to isolate between roles and their active tokens.

Chapter 8 67



Isolating Grid Jobs

– Environment variables
– Tokens

• Monitoring – One of the JA responsibilities is to update the central traces with
information regarding the status and progress of job execution. With the JW being
an independent process, this information is not available to the JA by default.
In other words, there is need for a two-way passing of information between the
disconnected JA and JW.

• Process management – The JA must monitor the JW and payload, however, it is also
required to act on it: killing processes that run past their TTL (Time to Live), or
overuse their allocated resources. With the JW being independent, the JA has
no trivial method of identifying individual processes (i.e. which one is the JW,
which one is the payload/children). Even if the payload has exceeded limits and
must be terminated, the JW may still have pending operations, such as uploading
error logs, and should thus avoid being terminated prematurely.

And importantly, the above points must be achieved in a manner that may also work
while being containerised –which by design is intended to prevent trivial communication
between the container/host.

8.2.2 Achieving two layers
The challenges outlined in the previous subsection may largely be attributed to the
lack of communication between the two now independent components. Consequently,
means are needed for allowing communication between the two, in a manner also
compatible with the use of containers. By itself, this is not a unique challenge, as
other use-cases that require communication between processes inside/outside the
encapsulation of a container are common, here often using bind-mounts and shared
files, as well as Unix sockets to exchange data. However, these approaches largely work
through breaking down parts of the isolation between container and host, allowing
for more access. More novel means of communication and resource sharing, such
as through the use of a shared memory region, could be possible. This however
comes at the cost of further increasing complexity, which will exacerbate long-term
maintainability.

A makeshift data pipe for communications

For the implementation, a different approach has been chosen altogether3. It must be
noted that the JW is nevertheless a subprocess of the JA, and while direct Java APIs
for management are unavailable, OS specifics – i.e. that of the targeted Linux/Unix
platform – still apply. This creates an opportunity for data exchange between the
processes from within Java, without having to go through other means. Specifically,
as the parent process, the JA can spawn the JW in a way that allows the JA to send
messages to the JW standard input (STDIN) and read messages from the JW standard
output (STDOUT). The communication goes through a pair of pipes or a socket pair,

3https://gitlab.cern.ch/jalien/jalien/-/merge_requests/21
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created in advance and subsequently tied to STDIN and/or STDOUT as desired. This
is a common way for propagating input messages to subprocesses, and is available as
an OutputStream from the process once started. However, this OutputStream may
also be used to transfer serialised data, such as JDLs, tokens and other variables. The
only requirement is that the data is read in the same order as sent, within the receiving
process (JW). This enables the creation of a makeshift data-pipe: serialise and send
data from the JA by writing to the STDIN of the JW, and receive data by reading from
its STDOUT.

The benefit of the above approach is not only in its simplicity, but also in it functioning
when the JW is being executed within a container. Singularity will conveniently create
container processes that start with STDIN, STDOUT and STDERR (Standard Error)
inherited from itself, as if those processes had been created outside of the container.
Also, as the “/proc” virtual file system is shared between host and container, the JA
could even make use of that to connect to the JW, for example if the latter’s STDIN and
STDOUT were set up in a way to allow such a rendezvous. This approach turned out
to have some caveats, however, as STDIN/STDOUT were observed to become polluted
with occasional strings and characters as more child processes are spawned, making it
impossible to transfer additional serialised data once the JW has fully started. While
that problem remains to be debugged further, basic communication between the JA
and JW may afterwards be handled through Unix signals instead, as will be discussed
later below.

Managing the JW and its processes

An interesting problem that arises from the division of the JobAgent, is where the
exact cutoff line should be between the two processes. This is straightforward for
responsibilities which are determined by the permissions granted by the tokens, but
for other tasks – such as tracking the job status and updating the traces, this is not as
trivial – as it is permitted independently of the JobAgent and Job roles, and caveats are
associated with giving it to either:

• Monitoring is generally associated with the JobAgent role. However, in the two-
layered approach, the JA does not have any information regarding the progress
of a job, as this is handled by the JW.

• The JW has a more fine-grained overview of both the status of the payload, and
the overall progress of the job. Should the JW however fail, the JA – which is
responsible for matching new jobs – would have no indication on how to proceed,
not knowing if a job had failed, completed or how to otherwise act on it.

As a compromise, a consensus for amiddle groundwas reached: all general monitoring,
such as tracking the TTL and resource use, would continue to be tracked by the JA. Job
specifics, like tracking the Job progress, would be handled by the JW. However, the JW
is to occasionally write the job status to a file – allowing the JA to know the state of a
job in case the JW should encounter any issues, and to an extent, continue in its stead.
This should allow for the best of both worlds, and avoid increasing the responsibilities
of JW: instead, allowing the JW to exist as mainly an execution wrapper, with the JA
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being able to monitor and (partially) recover from failures if the JW should crash or be
terminated – updating the status and starting a new JW instance.

The JobAgent remains responsible for the majority of monitoring tasks, and this
includes keeping payloads within their given resource and TTL limits. Should a process
exceed any of these, it is the responsibility of the JA to terminate it. This is trivial within
the original JAliEn JA, as the payload is a direct child. For the two-layer JA, it is instead
handled by the JW, which introduces additional complexity – and even more when
running it containerised.

The JA will occasionally need to terminate a payload. However, this must be done
in a manner without disturbing the JW – which will update job states and upload logs.
In other words, the JA must somehow identify which of its children is the executing
payload, and only kill this specific process. One way is through counting, assuming
that each subprocess is spawned in order, and grabbing the PID (Process Identifier) of
the first positioned process relative to the JW (provided as a table). Unfortunately, this
will not work when introducing containers, as frameworks such as Singularity launch
multiple springboard processes in-between, shifting the positions/PIDs.

When the JW is launched, the command string used for launching the JA is repeated,
but with the classname changed to that of the JW. However, this string may be further
modified before execution – allowing for the addition of a unique identifier, that in
turn may make it possible to easily find it back in a list of processes. Consequently,
the unique JobID for the job to be executed is added as a JVM ID, enabling the JA to
identify and fetch the PID of the JW process among all executing processes. Granted,
while this will allow the JA to identify the JW and not the payload (job), it provides the
JA with means to signal the JW with an intent – by sending a SIGTERM, which may
be caught4 by the JW, and in turn be set to terminate the payload, and proceed with
uploading files and logs.

8.2.3 Enabling containers

Splitting the JobAgent into two separate layers as described in Section 8.2.2 is essential
for providing an entrypoint for integrating containers with JAliEn. However, upon
achieving a two-layered JA, what remains is to encapsulate the now independent JW
process.

The end of Section 8.2.2 describes away for identifying the JWprocess, bymodifying
the original launch command string intended to start it. Likewise, this string may also
be further modified to add the appropriate calls for launching the command inside a
container. There are however two questions that must be answered in order to realise
this:

• The exact appropriate calls, i.e. determining if a job should run containerised, and
how it should be launched.

• How to ensure the container has an appropriate environment, which is capable
of executing the job – and initially starting the JW.

4Built-in feature of Java.
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In order to supply the JobAgent with answers to the above questions, a separate
“containerizer”5 module has been created, aimed at simplifying the process of container-
isation6 7.

The containerizer lives in its own separate package, consisting ofmultiple Java classes
implementing a factory-like pattern, intended to provide the correct containerisation
when called by the JA. Specifically, it takes the launch string, intended to start the
JobWrapper, and wraps it in the necessary commands needed for having the process
start in a container. This is done by probing the host for the presence of a container
framework (such as Singularity), and attempting to first launch a test inside it. Should
this test succeed, the containerizer will in that case proceed with wrapping the JW
launch string in a similar command as for the successful test – which the JA will then
launch as usual, unaware of it now being set to run inside a container or not. Given
that a factory pattern is used, there is also support for adding additional containerizers:
while Singularity is the initial target, the technology itself remains rapidly developing,
with new frameworks emerging, such as Podman. As JAliEn is expected to be used in
production for a decade or longer, being locked to a single container framework as new
solutions and improvements arrive is a cause for concern. Therefore, to prevent vendor
lock-in, additional containerizers may be added – small Java classes that provide the
necessary commands needed to use a specific container framework. When called, the
factory will then probe each of the containerizers until a compatible one is found for
the host, and proceed with using it for wrapping and returning the JW launch string
back to the JA. An overview of this implementation outlined in Figure 8.2.

Having a dedicated containerizer also aids in simplifying that the correct environ-
ment is initialised within each container. In order to successfully start the JW process
here, a requirement is that all the necessary packages, including Java, are already
present in the container. A possibility is to manually update the container image (dis-
cussed in Section 8.3) to have it reflect the requirements and current packages within
CVMFS. This would however mean a duplication of work, as each change intended for
CVMFS would also need to be reflected within the image. Therefore, as the contain-
erizer can adjust the startup call used for the JW, it may instead ensure that CVMFS
is mounted within the container, and add an additional call to alienv – a tool used to
automatically change the system environment variables to point to the packages and
tools provided in CVMFS, as opposed to using the system binaries (discussed in detail
in Section 9.1.1). This ensures that the JW, and consequently the payload, always start
with a known environment as made available in CVMFS.

8.2.4 Enabling GPU support

The use of GPUs as accelerators to speed up job execution within the Grid has become
more prevalent in recent years, and has become a requested feature for JAliEn [91].
However, the use of this feature within JAliEn must consider the use of containers,
which by default will isolate the payload from additional hardware resources, such as

5Note the use of US spelling here, for bringing it in line with the rest of the naming scheme within
JAliEn.

6https://gitlab.cern.ch/jalien/jalien/-/merge_requests/21
7https://gitlab.cern.ch/jalien/jalien/-/commit/ebf39429fc589d7c39d83884d985c4c185cfcc46
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Fig. 8.2: Overview of the JAliEn Containerizer. The factory class calls on the Con-
tainerizer, which in turn will probe each of the Containerizers for compatibility, and
return whichever is compatible, based on a predetermined preferred order. “Singu-
larityCVMFS” is a custom CVMFS-based Singularity runtime, discussed in Section
10.1.4.

GPUs. Singularity requires certain flags to be provided in order to allow the container
access to GPU resources – with an individual flag for AMD and Nvidia cards. These
flags may however not be trivially passed to Singularity for all instances, as the absence
of either AMD or Nvidia hardware when a flag has been passed earlier will prevent
the container from executing – in turn failing the job.

In order to pass Singularity the correct flags at the correct time, the containerizer
from the previous subsection has consequently been extended to also probe for com-
patible hardware, before providing the JobWrapper launch string with the appropriate
containerisation commands8. This is done in a manner similar to how Singularity de-
tects the presence of GPUs: for Nvidia, the presence of /dev/nvidia[0-9] files will be
checked, as each dedicated system GPU will have an nvidia entry added, numerated
in order. Conversely, and in a similar manner, the presence of the /dev/kfd file will be
checked for AMD. Once these files are detected, the appropriate flags are added to
Singularity, allowing jobs to use the GPUs from inside their container.

One thing to note is that some sites restrict theGPUsmade available to jobs, using spe-
cific environment variables to only expose some of their resources. Consequently, these
variables (CUDA_VISIBLE_DEVICES (Nvidia) and ROCR_VISIBLE_DEVICES (AMD))
need to be made available within each container. While this could be inserted
by the JobAgent, the containerizer has instead been extended to provide this function-
ality – as this is the location of both the main containerisation code, and the initial
check for GPU support.

8https://gitlab.cern.ch/jalien/jalien/-/merge_requests/108
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8.2.5 Meta variables

One of the benefits of containers is their ability to provide a clean, uniform, environment
across sites for job execution. However, occasionally site- or network specifics require
the presence of additional environment variables being made available for the payload.
In such situations, these variables and their values must somehow be propagated into
the container environment.

In order to provide sites and their admins means to propagate their custom
environment variables to the payload containers, the concept of meta variables has been
introduced9. This allows any environment variables in need of being propagated to the
payload to be defined in a separate variable known as META_VARIABLES, which will be
picked up and forwarded by the CE, and afterwards examined by the JA once started
on a worker node. The specified list of variables and their values are sent to the JW
through the makeshift pipe from Section 8.2.2 – in turn making them available for the
payload.

8.3 A container for the JAliEn JobAgent

Chapter 6 details the creation of a container for VO-Box use. While the initial proposal
for a newGridworkflow suggested the use of a common container, based on Singularity,
for both the VO-Box and JobAgent, the shift to Docker for the VO-Box containers has
changed this outlook. Consequently, a dedicated container image is required for the
JA – specifically, for the JW – that is capable of executing payloads. This comes with
a number of requirements that must be met, in terms of both configurations as well
as available packages. As mentioned in Section 8.2.3, alienv ensures that a number of
packages from CVMFS are automatically loaded into the environment. Furthermore,
the JW will also load additional packages into the environment as specified in the JDL
of the payload. For these cases, it is sufficient to ensure that the subdirectory /cvmfs is
available in the image, in order to allow bind-mounts for all versions of Singularity
(more on this in Section 10.1.4)10. However, payloads may also expect the presence of
other packages that are largely taken for granted within Grid worker nodes, which the
absence of would cause jobs to fail.

A major question is which are the exact packages needed on a worker node in order
for jobs to execute successfully. While there is a meta-package available, known as
HEP_OSlibs11, complete with a large collection of every package and library deemed
to be possibly needed, its large size and overlap with packages in CVMFS make it
best avoided if possible. In other words, the only means through which to know the
exact packages needed would be by trial-and-error, attempting to run jobs, and adding
additional packages the absence of which caused jobs to fail. This exact approach
was taken by the Grid team at GSI12 Darmstadt for their own containerised Grid
implementation, who graciously shared the list of packages successfully used by their

9https://gitlab.cern.ch/jalien/jalien/-/commit/21141af89aeb08452a0fe63306cdc831b7a99d49
10And as mentioned in Section 6.5.1, to avoid duplicate CVMFS caches, it is more beneficial to have

CVMFS installed on the host, and bind-mounted into each container.
11https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs
12Gesellschaft für Schwerionenforschung.
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site in production as a Singularity definition file13.
Using the obtained package list, a new Singularity image was created. Based on

CentOS 7, the CERN recommended distribution at the time, it contains the packages
provided above, as well as a number of additional debug packages, such as strace, to
simplify development. Furthermore, it also contains pre-created /cvmfs and /workdir
directories, used for bind-mounting, and will be the topic of Section 10.1.4.

A path to faster OS updates

By harnessing the fact that every job is to run containerised, quick OS updates become
a possibility, in turn allowing production jobs to target later OS versions earlier. This is
generally a slow and tedious process, as site admins would need to update all their
worker nodes – and this has to be done across all sites. Through a distributed container
image, that may be shared through CVMFS, it should suffice to simply share the image,
and have it automatically pulled by the newly launched JobAgents. This could be used
to quickly migrate all ALICE sites e.g. to CentOS 8, with minimal intervention needed.

8.4 Requirements for production

Before the now split and containerised JobAgent may be tested on a site or put in
production, the remaining gaps in its functionality must first be filled. Specifically,
Section 7.3 and Section 7.3.2 identify the following missing functionality:

• File handling is limited, with incomplete parsing of JDL files and reduced upload
options, as well as registration of uploaded files in the central catalogue not being
fully implemented for all conditions.

• Job states are simplified compared to AliEn, diverging in logic and making job
progress harder to interpret.

• Cleanup is limited, with files and processes being left as-is.

To rectify the above limitations, the following changes have been proposed and
implemented within the new JAliEn JobAgent:

• A new file parsing scheme – The list of files to upload will be taken across all outputs
provided in the JDL (i.e. both for legacy (AliEn) and current (JAliEn) syntaxes,
as well as combined). Duplicates are removed if found. Furthermore, detection
of files to be uploaded is done recursively, allowing files to be collected across
subdirectories, as supported by AliEn14 15.

• Archive registration – AliEn allows for the upload of files as a single archive, having
its contents displayed as individual files in the catalogue – in turn allowing
for browsing and downloading them individually. The same functionality has
been implemented within JAliEn through a new API call bookArchiveContents,

13The Singularity equivalent of a Dockerfile (Section 6.4.1).
14https://gitlab.cern.ch/jalien/jalien/-/merge_requests/57
15https://gitlab.cern.ch/jalien/jalien/-/merge_requests/89
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which generates a new GUID and PFN, where the latter is composed of the PFN
of the archive, combined with the filename of the archive entry16.

• Upload of error files – If a job fails, the JA will no longer simply terminate with an
error, but proceed with uploading error logs as provided in the JDL. If this entry
is missing in the JDL, a default set of logs will be uploaded17 18.

• Adding missing job states – Job states and their transitions are now similar to
those of AliEn, with the exception of SAVED, previously an intermediary state
between the completion of file upload and the files having been registered in the
catalogue by an AliEn central service. In JAliEn, the registration of uploaded files
is instead handled by the JA and the intermediary state is thus no longer needed.
Additionally a new job state, ERROR_S has been introduced, for situations where
a specified outputfile in the JDL was not found. This condition will be ignored if
the job ends in an ERROR state19.

8.5 Moving outside the JobAgent

The creation of a split, two-layered, JobAgent as described in this chapter, has allowed
for a built-in containerisation of the payload, directly within JAliEn – in turn ensuring a
uniform execution environment across all sites20, as visualised in Section 5.4. However,
the JobAgent is but one component of the overall job execution workflow, and changes
made here will also need to be reflected throughout the rest of the Grid middleware –
as will be described in the next chapter.

16https://gitlab.cern.ch/jalien/jalien/-/merge_requests/101
17https://gitlab.cern.ch/jalien/jalien/-/merge_requests/55
18https://gitlab.cern.ch/jalien/jalien/-/commit/800ffcc91456d64f13640ffed681e710c30cdcc7
19https://gitlab.cern.ch/jalien/jalien/-/commit/c8d964d1f98a520cd3ad29438b81f3fafb69e98c
20Provided deployment is a success, as will be discussed in Chapter 10.
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CHAPTER 9
CONSTRUCTING A GRID WORKFLOW

Chapters 6 and 8 saw the creation of containerised versions of both the VO-Box and the
JobAgent. While essential for realising the draft provided in Section 5.4, they remain
as separate containerised units, with little consideration given to the current state of
other components. Consequently, questions remain for terms of distribution, build
and integration with other services. As will be seen, components, such as the CE,
will need updating in order to function with the larger changes of the new JobAgent.
This chapter will move beyond the core containerised services of both the VO-Box and
JobAgent, and describe the changes needed to adapt and use these services towards
the construction of a new Grid workflow.

9.1 The JAliEn Computing Element

As mentioned in Section 2.6.1, the Computing Element (CE) is responsible for distrib-
uting jobs on worker nodes on Grid sites. This is done by querying the central services
for pending jobs, and generating JobAgent startup scripts – which in turn are placed in
the local batch queue of a Grid site, and afterwards executed on the individual worker
nodes. Within JAliEn, the CE is also responsible for requesting JobAgent tokens, which
are fetched from the central services and inserted into the JobAgent startup script.

In Chapter 8, the JobAgent component was split in two, resulting in a separate
JobWrapper component being responsible for the payload execution. The JW may
in turn be containerised by the JA – which provides it with everything needed for
executing both it and the payload. However, it remains the responsibility of the CE to
provide the JA with a sufficient environment for starting it.

9.1.1 Preparing the JobAgent script
There are a number of necessities that must be provided in the JA startup script, in
order for it to execute successfully. Specifically, the following must be present:

• VO-Box hostname

• The associated site name

• Users allowed to submit to the site and/or users blocked from using it

• JobAgent token
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• JobAgent startup call

For the latter, this involves a call to java, providing it with the path of the JAliEn jar, and
the JobAgent class. This is the same command that will again be used when starting
the JW (Section 8.2.2), albeit with the initial class replaced.

Section 7.3 mentions that at project start, no JAliEn CEs were running, or available
for testing. While fully capable of generating JA startup scripts, the CE had also
not been updated to reflect changes in directories and file naming as development
had progressed. Furthermore, means were needed for ensuring that the JAliEn
dependencies, as well as JAliEn itself, were available on the nodes when the startup
script was set to be executed.

To ensure the availability of the necessary files at startup, the JAliEn CE contained a
hardcoded URL (Uniform Resource Locator) that was used to fetch a precompiled jar –
as well as a hardcoded CVMFS reference for Java. This was however problematic, as
both hardcoded paths pointed to old binaries, no longer compatible with more recent
changes. Consequently, when testing JAliEn in Section 7.3, the CE could not be used,
and all necessary binaries had to be provided as input files, and executed on top of an
AliEn JobAgent. A better approach is needed.

Alienv and CVMFS

As opposed to using hardcoded paths and URLs, more automated means are needed
for ensuring that correct and up-to-date binaries are made available to the startup
scripts. This is a convenient use-case for alienv.

Alienv is an auxiliary product providing a shell script alienv for changing the system
environment, based on EnvironmentModules [92]. It updates the existing environment,
mainly by prefixing the various "PATH" variables with directories in CVMFS that
correspond to the requested version of a supported product. In other words, if a system
without Java needs it to execute a binary, a call like “alienv enter Java” may be
made. This will update the environment with the Java binaries in CVMFS, allowing a
user to simply call java, as if it was natively installed on the host system.

Alienv is tightly interconnected with Alibuild, an automated build system that
tracks dependencies across Alienv environments [93][94], and allows for automatically
pushing completedpackage builds toCVMFS– including their ownAlienv environment.
Releases are organised in tags, with a dependency tree to support interdependent tags
and environments – with the specific tags and build recipes as used by ALICE stored
in the public alidist1 repository.

An Alienv tag is generally used to represent the corresponding Git tag of a package,
allowing new versions to easily be made available in CVMFS, complete with an
environment providing all dependencies as needed2. Consequently, Alienv provides
a convenient mechanism for giving the JAliEn JobAgent startup script everything it
needs to start and run the JobAgent.

1https://github.com/alisw/alidist
2E.g. an Alienv tag labelled JAliEn 1.3.0 corresponds to tag 1.3.0 in the JAliEn respository.
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Harnessing alienv

Prior to any changes, a preexisting Alienv entry is already available for JAliEn - allowing
the use of “alienv enter JAliEn“ to enter an environment with everything needed
to start a JAliEn instance – be it the ComputingElement (with some provisions), JShell
or a JobAgent. To achieve this, the environment contains paths to CVMFS for binaries
and other files such as:

• Java

• JAliEn jars

• JAliEn starter (jar wrapper)

• OpenSSL

• XRootD

• SQLite

• Certificate Authorities

By default, the Alienv call will set up the latest tag that has been made available
through Alidist, while a specific version may also be provided, e.g.: alienv enter
JAliEn/1.3.0-1. While the latest JAliEn tag provided within Alienv for JAliEn was
initially outdated, having it updated to point to the very latest JAliEn tag in Git is a
straightforward process – simply updating the build recipe to point to the repository
of the updated tag. What is arguably more interesting, is how to best integrate the use
of Alienv within the CE, in order to always provide the correct files and environment
for JobAgent startup.

Alienv is but one of many executables that will occasionally need to be called
from CVMFS by JAliEn3. To avoid hardcoding their directories throughout JAliEn,
all CVMFS calls have consequently been moved to a separate CVMFS class – in turn
separating the base CVMFS call from the desired executable. In other words, this class
handles the specifics of each executable call from CVMFS, such as Alienv, with the base
path to CVMFS easily changed. This allows the CE to request a specific environment
for the JobAgent startup, where the CVMFS class will automatically provide it with
the correct call and version.

The handling of the correct version is done through three separate means:

• Environment – If JAliEn is already running in an environment provided by Alienv,
the same tag as used for the environment will be returned to the CE when asked.

• Binary – If there is no indication of Alienv being used, the same tag as used for the
binary will be returned. This is propagated to JAliEn from Git upon compilation.

• Manual – In order to easily switch between versions, an option has also been
provided to manually specify the desired tag. This can be done in a separate Java
properties file named version.properties.

3Other examples include cleanup scripts and SiteSonar tests, which will be discussed later.

Chapter 9 79



Constructing a Grid workflow

Through these means, together with Alibuild/Alidist, the JobAgent may be started
solely through the use of its startup script. As a consequence, there is no need to
preinstall JAliEn binaries on the worker nodes – everything needed to start the JobAgent
is initialised through the startup script and Alienv.

9.1.2 Managing CEs
The JAliEn CE may be run by manually compiling the source code, and thereafter
executing the corresponding jar file. With the changes for ensuring the availability
of the necessary binaries and other files in the previous subsection, the JAliEn CE
has everything it needs to be able to run. However, having to manually pull and
compile the code for every release is a tedious process. Combined with occasional
JVM incompatibilities, which may prevent successful compilations, it would encourage
leaving older versions of the JAliEn CE running for longer. In contrast to JAliEn, the
legacy AliEn CE may be fully run from CVMFS, without requiring prior installation
– ensuring availability of the latest version. It would be optimal to allow this for the
JAliEn CE as well.

As seen in Section 9.1.1, an Alienv entry is already provided for JAliEn, which has
also been updated to reflect the latest corresponding Git tag. Like for the JobAgent,
this may be used to provide the latest version of the CE to VO-Boxes, directly from
CVMFS – both being part of the same JAliEn jar. A few changes were however needed
for this to be fully transparent:

• Albeit a single jar binary is used for JAliEn, that binary is never called directly,
but instead called by a separate jalien script provided by Alienv. This script
needed to be adjusted in order for the CE to be a valid choice. Furthermore, the
default memory options for the JVM provided also needed to be increased, as the
CE is a larger component that is set to be executing for months at a time.

• While proper monitoring of the JAliEn CE remains to be provided, a separate
PID-file is now generated at start time, allowing the JAliEn CE to be picked up as
a valid AliEn service by existing monitoring services.

• The same directory structures were adapted within JAliEn as for AliEn, allowing
logs and temporary files to be placed as expected byusers – and likewise adjustable
in LDAP the same way as for AliEn.

• Most of the configurations read from LDAP will now be updated automatically
when changed, which avoids having to restart the CE manually in order to have
them applied.

• In case of connection errors, the JAliEn CE would default to throwing a Java
exception, and terminate. Instead, the connection will now be retried, allowing
the CE to run uninterrupted in case of network fluctuations, or high load.

Furthermore, the JAliEn CE also featured a JBox, used for maintaining connections. The
intention behind this addition was initially to allow the VO-Box to act as a multiplexer
for connections in earlier designs, but it is now left unused once the CE has initialised
itself - and was thus removed.
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Management Scripts

The jalien script provided by Alienv may be further wrapped in a separate manage-
ment script, which in turn automatically initialises Alienv, sets the correct environment
for certificate paths, provides monitoring and otherwise manages the lifecycle of the
CE – allowing for automatic restarts if the service should terminate unexpectedly. A
bare-bones version of such a script was created while using the JAliEn CE for devel-
opment and early deployments4, with a separate project by colleagues in the ALICE
Grid team providing a production-ready version of such scripts towards the end of the
project5.

9.2 Putting pieces together

Chapter 6 introduced a containerised VO-Box, for use by sites to host their services,
such as the CE, while Chapter 8 presented a split, two-layered, JobAgent, with a
containerised job execution wrapper. Within the context of the draft in Section 5.4,
these two components may each be used to provide new workflows within their own
corner of the Grid, though in a limited scope when compared to the Grid as a whole.
However, as each of these components come into deployment, they may further be
used together as building blocks for creating a cohesive, new, Grid workflow.

9.2.1 A shift in responsibilities through JAliEn

In addition to its initial focus on the CE, Section 9.1 also introduces Alienv and
Alibuild/Alidist –which combinedwith CVMFS providemeans for automatic versioning,
builds and distribution. Specifically, Alienv provides modern means to deploy new
versions of JAliEn across the Grid: once a new version is tagged in the Git repository,
the updated tag may afterwards be propagated to Alidist, where Alibuild will pull
the latest changes and start the build process – before pushing the latest tag to the
Grid, with the new tag correspondingly being made available within Alienv. This
is the mechanism used by the CE in 9.1 to make sure each JobAgent binary is made
available to the startup scripts on individual worker nodes. Here, it must be noted that
the latest tag automatically becomes the new default. This means that whenever there
is an update to JAliEn, each subsequently launched JobAgent may automatically use
the very latest version of it – shifting the responsibility for versioning from the site
admins, to the ALICE Grid team.

9.2.2 A common execution environment

Section 8.2 introduced a new, split, JobAgent, which in turn could start and execute its
second layer within a container. A dedicated container image was likewise made for
this purpose (Section 8.3): based on CentOS 7, it contains everything needed to run a
job. This image will likewise be distributed through CVMFS, and provides a uniform
execution environment for jobs, independent of site or worker node. If Singularity (or

4https://jalien.docs.cern.ch/site/ce_guide/
5https://gitlab.cern.ch/jalien/vobox-scripts
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any other container framework) could be made available across all sites and worker
nodes, that would shift the responsibility for managing the execution environment
also away from site admins, and in a more centralised direction – as in the previous
subsection. This will be discussed in detail in Section 10.1.

9.2.3 A common VO-Box configuration
Chapter 6 introduced a containerised VO-Box, that could be used to launch a number
of required VO-Box services automatically. Combined with the management scripts in
Section 9.1.2, it can also be used to quickly launch a JAliEn CE, directly from CVMFS.
Should the containerised VO-Box be adopted across Grid sites, it would be yet another
step towards a more centralised and homogeneous set of configurations being used
within the Grid, as with the above subsections.

As can be seen in the above sections, there is a shift towards a more homogeneous
workflow – with more automated steps for deployment centred around CVMFS.

9.3 From draft to reality

Following the discussion of Section 9.2, there are now ample means available for
constructing a new Grid workflow. However, it remains to be fully deployed – not
only testing one component at a time, but their interactions as a whole. Furthermore,
it would need to be scaled, adjusted for possible differences and incompatibilities
between sites, and put in production across the Grid – if deemed suitable. This will be
the focus of Part III, followed by an evaluation of the end results in light of the initial
RQ, and the further impact of the work within Grid and distributed computing.
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If deploying software is hard, time-consuming, and re-
quires resources from another team, then developers will
often build everything into the existing application in order
to avoid suffering the new deployment penalty.

—Karl Matthias [95]
CHAPTER 10
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Part II presents a foundation for a new workflow: a one-click containerised VO-Box,
a two-layered JobAgent with automatic containerisation, a standardised container
image, powered by the new JAliEn middleware – and all bound together through a
common distribution mechanism around CVMFS. When combined, it allows Grid jobs
to not only run isolated from the underlying worker nodes, but also in a standardised
environment across sites. However, questions remain in terms of wider deployment,
adoption and compatibility for such a workflow across the Grid.

10.1 Probing for compatibility

At the very core, two conditions must be satisfied in order to fully utilise the devel-
opments outlined in Part II: the availability of CVMFS (for software distribution) and
Singularity (for containerisation)1. For the former, this is an existing requirement across
all Grid sites, now being the default for software distribution (Section 4.1.2). However,
for the latter, the availability of Singularity is not as guaranteed. Sites have been in-
formed of the desire to have Singularity installed on worker nodes, but it has remained
up to each site to go through with this.

10.1.1 Not every installation of Singularity is equal
To further complicate the availability of Singularity, it must also be mentioned that
Singularity may be installed in two different manners – with each having a different
subset of available functionality:

• Privileged – This is the default configuration, provided when installing Singularity
through a package manager. It needs to be setuid-root, as it enables features which
require elevated permissions, such as mounting single-file images and the ability
to freely bind-mount directories within containers.

• Unprivileged – In this mode, Singularity runs without setuid-root. This makes it
more secure, as no additional privileges are given, executing as the same user both
inside and outside the container. This also allows it to run from an installation
outside of the root file system. However, at the time of project commencement, it

1The exception being the VO-Boxes, which, if containerised, need to run on Docker.
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is unable to bind mount directories from outside the container, and may only run
extracted images – appearing as directories in the filesystem.

The container image described in Section 8.3 has been created in the format of a directory
tree – this allows parts to be loaded on demand, without having to fetch a single large
file before execution. It may theoretically also be run by unprivileged Singularity, as
no elevation of privileges is required for mounting it on the filesystem. However, it
does require the availability of bind-mounts in order to be used in production – i.e.
being able to mount directories from the host inside the container – as the job working
directory, where files are fetched and the payload executed, must be made available. In
other words, there is a need for not only having Singularity available on worker nodes,
but even as a privileged instance.

10.1.2 From overlay to underlay
Privileged Singularity contains the functionality needed to bind-mount directories on
the host within containers. However, a privileged installation alone is not a guarantee
that this functionality is made available for the JobAgent. Specifically, this requires the
overlay option to be enabled in its configuration file – which is disabled by default. In
other words, it does not suffice to have sites install Singularity: they will also need to
enable the corresponding option.

Expecting every Grid site to provide a privileged installation of Singularity is not
realistic. Historically, Grid sites tend to be conservative in the permissions they provide
jobs with, aiming to minimise the damage caused by misbehaving or even malicious
Grid jobs. Assuming all will provide Singularity with elevated permissions, let alone
with overlay enabled, is thus not an option.

ALICE is not the only experiment at CERN drafting the use of containers within
its Grid execution workflow. Consequently, a dedicated WLCG Containers Working
Group has also been formed2, allowing WLCG stakeholders to discuss container
specific issues and approaches across experiments. Here, the issue of needing a
privileged/configured Singularity for bind-mounting is likewise a relevant concern
across the members of the working group. As a result, a possible solution was pitched
in that forum: as opposed to bind-mounting a local folder into a read-only image,
instead start from a local directory with read-write permissions and bind-mount the
image subdirectories on top of it – which should be possible even without elevated
privileges. This suggestion was later pitched to the developers of Singularity, and
finally included as the underlay option3.

Underlay enables bind-mounts, even on unprivileged installations of Singularity.
However, it too has to be enabled in the Singularity configuration and requires a recent
version of Singularity.

10.1.3 Configurations across the Grid
In order to better understand the software and configuration landscapes across the
Grid, and consequently gain insight into howmany sites would benefit to which extents

2https://twiki.cern.ch/twiki/bin/view/LCG/WLCGContainers
3https://github.com/apptainer/singularity/issues/1207
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from the new JobAgent, a test was constructed to probe the configuration of the worker
nodes within the Grid. Submitted as a common Grid job, the test consists of a script
that scrapes the host and Singularity configurations of the worker node it lands on,
and saving the results for inspection. A large number of instances of the test job were
submitted, in order to cover as large a proportion of sites/nodes as possible, with the
results being sanitised to avoid duplicates.

The results gained from the test jobs can be seen in Figure 10.1. To summarise, the
following can be extracted from the figure:

Singularity unavailable 22%

Singularity unable to launch 6%

Underlay not supported 70%

Underlay disabled 1.9%
Underlay enabled 0.1%

Fig. 10.1: Overview of Singularity compatibility across probed sites, with only 0.1% of
worker nodes having a working installation of Singularity with underlay enabled.

• A majority of Grid worker nodes have Singularity installed on the system (78%)

• A significant subset of worker nodes have a broken installation (6%)

• Only a handful of worker nodes have a version supporting underlay (2%)– with
only 0.1% having it enabled.

• As an interesting side-note, a sizeable number of sites that do not support
Singularity are capable of running it directly from CVMFS standalone thanks to
their recent kernel (13%). This will be a central point for distributing Singularity
in Section 10.1.4.

The above results are discouraging, as this would imply that the vast majority of
sites and worker nodes are unable to support the new containerised JAliEn JobAgent
implementation. A solution or workaround is needed.
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10.1.4 Working around site incompatibilities
With only a handful of sites found to have a suitable configuration in the previous
subsection, a different approach is needed for deployment. Specifically, underlay (or
overlay) is required for bind-mounting writable directories within container images
that are read-only, which will always be the case when having the container of Section
8.3 in CVMFS. This is a requirement not only for accessing the working directory,
prepared in advance by the JobAgent, inside the container, but also for mounting
CVMFS inside it – to be used by jobs.

Another unprivileged way of bind-mounting

It must be noted that an exception exists for the requirement of elevated privileges (or
underlay) in the context of bind-mounting: it is only required if the directory does not
already exist within the container image. In other words, bind mounting /tmp from
the host onto /tmp in a CentOS 7 container will always work, as it exists within the
container image. This provides an opportunity for creating a workaround for the lack
of support for overlay/underlay on Grid sites and their worker nodes.

While the initial testing of the split, containerised, JAliEn JobAgent was done using a
generic CentOS 7 image, the creation of a custom image in 8.3 opens up possibilities for
further customisation. Specifically, dedicated directories for both CVMFS and the job
may be created in advance within the image, allowing for unprivileged bind-mounts
on all Singularity enabled sites, without the need for newer versions of Singularity of
special configurations. This is not a completely transparent process from the perspective
of the JobAgent, as job working directories are assigned unique identifiers based on
the job ID. Furthermore, the new container must be made available on worker nodes
across all Grid sites.

To work around the above issues, the new JAliEn container of Section 8.3 has been
published within CVMFS, under a new directory dedicated to container releases for
ALICE4. This container has also been equipped with two new directories: /cvmfs,
for CVMFS access, and also a /workdir for the job working directory. Correspond-
ingly, this path has been hardcoded within the JAliEn JobAgent, where the unique
directory for each particular job is now mounted here when containers are enabled:
e.g. /scratch/ALICE/jobs/alien-job-1234will become /workdirwhen executed
in the container. The JobAgent will handle the necessary preparations, making the
process transparent for jobs. This allows the new JAliEn JobAgent to be containerised
on all sites supporting Singularity in Section 10.1.3.

As an added benefit, the hardcoded handling of directories within the JobAgent
also allows for having the standard temporary directory (/tmp) inside the job working
directory (/workdir/tmp). This prevents jobs from filling up the temporary directories
of Grid nodes, as everything in /workdir is cleaned up once execution completes.

A custom Singularity through CVMFS

The original approach to Singularity relies on sites both installing and maintaining
it. As evident in Section 10.1.3, this approach has its caveats: versions may be

4/cvmfs/alice.cern.ch/containers/fs/singularity/centos7.
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outdated, misconfigured or simply broken. This aligns well with the experiences of
other members of the WLCG Containers Working Group – where it was unanimously
decided to encourage the use of standalone, unprivileged, instances of Singularity from
CVMFS instead.

As opposed to system installations of Singularity, and due to their unprivileged
mode of operations, standalone installations of Singularity consequently rely on the
availability of user namespaces for containerisation. By default, this featurewas disabled5
in CentOS. To avoid on relying on site admins and local Singularity configurations,
one final configuration change is needed.

It must be mentioned that the default setting of having user namespaces disabled
within an enterprise-focuseddistribution, such asCentOS, is done for a reason: enabling
user namespaces comes with an additional risk for exploits [96]. That said, the Open
Science Grid project has deemed this as an acceptable risk, as the Linux kernel is far
more reviewed than Singularity [97]. Furthermore, the additional privileges obtained
through user namespaces are limited.

Starting with CentOS 7.6 [98], user namespaces are enabled by default. In response
to the emergence of sites supporting user namespaces, either manually enabled by site
admins or as sites gradually upgrade to newer OS releases, a custom Singularity build
was created for use with JAliEn, and consequently deployed to CVMFS6. Through a
custom containerizer (Section 8.2.3), it allows sites to run jobs containerised using a fully
configured, standalone, Singularity build – without any additional steps required by
site admins, provided a recent version of CentOS is installed.

10.1.5 Tracking sites and their worker node configurations

Having both a workaround for achieving unprivileged bindmounts, as well as a custom
Singularity build in CVMFS, again raises the question: how many sites are compatible
with running jobs containerised, using the new JobAgent? This is but one of several
questions which have emerged during development – what is the default JDK (Java
Development Kit) on most worker nodes? Is there support for underlay? Is a specific
package available? Or as in Section 10.1.3, is Singularity available across the Grid? – In
other words, a need exists to have an idea of the configurations of worker nodes at sites
within the Grid.

In preparation for a potential update to CentOS 8, possibly affecting the use of the
containerised JAliEn JobAgent (as suggested in Section 8.3)7, the need for having more
insight into the heterogeneous configuration landscape within the Grid was made even
more apparent: is it realistic to target CentOS 8 for Grid jobs? Which would imply the
usability of Singularity on all Grid sites.

The probing script used in Section 10.1.3 can be used for gaining the above
information, but it has its limits, as data must be extracted and processed manually.
A project dedicated to reworking such scripts, in turn creating a separate tool for
analysing the status of Grid worker nodes, was pitched to, and later accepted by, Google

5The number of user namespaces set to 0.
6/cvmfs/alice.cern.ch/containers/bin/singularity/current
7These plans were put on hold, as CentOS 8 was discontinued by RedHat [99].
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Summer of Code8. This project led to the creation of Site Sonar: a dedicated tool for
discovering the configuration of Grid worker nodes across the Grid. Various properties
to check or probe for may be queried through its interface, with results shown per site.
While initially based on a similar probing test job as in Section 10.1.3, the logic was
later reworked to have it composed of several testing modules in CVMFS – with the
JobAgent modified to call these upon startup. This gives full coverage over all Grid
nodes in operation, as SiteSonar tests will be run each time a JobAgent is started.

SiteSonar has proved to be an essential tool throughout this project, allowing for
gaining an overview of the Grid as a whole (as in Section 4.2), investigating container
(Singularity) support, and asking sites to adjust their configurations accordingly, if
possible9. Through the use of SiteSonar, it has also been verified that with the combined
use of the unprivileged bind-mount workaround, and custom build of Singularity in
CVMFS, the vast majority of Grid worker nodes are now capable of running the new,
containerised, JAliEn JobAgent.

10.2 Initial deployment

Having confirmed compatibility across Grid worker nodes in the previous section, it
remains for all components to be fully deployed, as discussed in Section 9.2 and Section
9.3. In this regard, this section outlines the additional steps required for achieving a
fully working deployment.

10.2.1 Running the new JAliEn JobAgent
While the new JAliEn JobAgent was able to run by piggybacking on the legacy AliEn
in Section 7.3, this was far from being a flawless process. Specifically, ALICE Grid jobs
come equipped with a hard memory limit for execution across all sites, which is set to 8
GB. When that happens to be exceeded, the guilty process will be forcefully terminated.
However, Java has an aggressive behaviour towards memory, which cannot be fully
overridden – which in turn creates problems for deployment.

Physical memory to be allocated by Java may be set through the dedicated -Xms
(minimum) and -Xmx (maximum) flags. These flags do not apply to the amount of
virtual memory allocated by Java, however, where it will always allocate a specific
amount relative to the total amount of physical memory on the host. The implications
of this are that if a JobAgent is to start on a worker node with a large amount of available
physical memory (>200 GB), the Java instance responsible for executing the JobAgent
will quickly surpass 15 GB of allocated virtual memory. While this is not something
that would normally be considered an issue – as this memory is not truly used, but
only allocated “just in case” – resource monitoring within the Grid often does not
differentiate between physical and virtual memory, resulting in the JobAgent being
terminated shortly after startup.

The above behaviour remains the same irrespective of the JAliEn JobAgent running
on top of the legacy AliEn (as in 7.3), or natively after updating the JAliEn CE (Section

8https://hepsoftwarefoundation.org/gsoc/2020/proposal_ALICEgridcontainers.html
9Collected data may currently only be viewed internally at CERN, while the individual tests are

located in CVMFS (/cvmfs/alice.cern.ch/sitesonar/sitesonar.d).
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9.1). From a Java perspective, this allocation of virtual memory is immutable, and
may not be tweaked or adjusted as for physical memory. This means that for a large
number of sites, the JAliEn JobAgent will simply be unable to run – irrespective of it
using containers or not.

To prevent Java from allocating virtual memory above the 8 GB threshold (and
to leave as much memory available as possible for the job payload), a workaround
using 32-bit JDK binaries has been applied to the JobAgent. This makes Java unable
to address and detect more than 4 GB of physical memory, which in turn greatly
limits the allocation of virtual memory (<120 MB). To avoid impacting other tools
relying on Java, this change has not been propagated to Alienv, but only applied to the
JobAgent, using a separate JDK in a dedicated 32-bit directory in CVMFS (but likewise
maintained by the CVMFS class from 9.1.1, to avoid fragmentation), with the Java path
correspondingly inserted by the CE in the JobAgent startup script.

Support for larger memory thresholds was later implemented. However, despite
this change, the above workaround has remained in place. Using 32-bit binaries greatly
reduces the memory overhead observed by hosts, leaving more for the job payload.

10.2.2 Bundling system libraries
The use of 32-bit binaries for running the JAliEn JobAgent, as described in the previous
subsection, has its benefits. However, starting with CentOS 7, 32-bit libraries, which
are required for running 32-bit Java, are no longer preinstalled by default. While this
could normally be solved through containerisation, the initial call to Java happens far
too early in the chain: before the JobAgent has had a chance to start, and before there is
a containerised JobWrapper.

Upon switching to 32-bit Java, nearly all CentOS 7 sites were unable to execute Grid
jobs when tested. As all remaining CentOS 6 sites were also going to switch to CentOS
7, this would mean a complete halt in job execution10. Furthermore, having all sites
install 32-bit libraries is not a feasible option either, as this is a slow and tedious process,
which may not succeed: it comes down to the possibilities at individual sites and their
responsiveness. It was for this very reason decided to attempt a switch to CentOS
8 solely through containers in Section 10.1.5. As the HEP_OSlibs package (which is
installed across worker nodes) only supports 64-bit dependencies, a different approach
has thus been taken for executing the JAliEn JobAgent.

The specific libraries required by the 32-bit JDK are mainly related to Glibc – an
implementation of the C-standard library provided by the GNU Project, which is the
system default on CentOS 7. This brings forward a potential workaround: as Java,
packages and containers may all be distributed through CVMFS, staying independent
of the environment provided on the host system, a possibility could be to include the
required 32-bit libraries through CVMFS as well.

Bundling system libraries in CVMFS has proved to be possible, although being far
more convoluted compared to the above examples, as it requires patching both JDK
binaries and the corresponding libraries. Specifically, the following are needed:

• Libraries required to be placed in CVMFS

10The support for larger memory thresholds, as described near the end of Section 10.2.1 was only
made available towards the end of the project.
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– libc

– ld-linux

– libdl

– libnsl

– libnss

– libpthread

– libresolv

– librt

– libz

– libm

• JDK patches

– Change interpreter for the java binary to CVMFS ld-linux
– Set rpath to CVMFS library directory for java binary, server libjvm and
client libjvm

• Library patches

– Set rpath to CVMFS library directory for ld-linux and libnss_dns

– Overwrite “LD_LIBRARY_PATH” in ld-linux with a string that will not
match any environment variable11

The 32-bit libraries placed in CVMFS were taken from a 64-bit CentOS installation,
after installing the optional 32-bit compatibility libraries. The libraries were patched
directly using patchelf and sed, without modifying the original source code. The
hexedit utility was used for checking and determining where patches were needed.

With the above changes, the JAliEn JobAgent may run on arbitrary configurations
using the 32-bit JDK, irrespective of the host OS. As Java relies on the kernel for
spawning subprocesses, the payloads started by the JobAgent will retain the full 64-bit
address space.

It must be noted that the shift towards providing all required system libraries in
CVMFS introduces another significant change: not only are the containers provided
centrally, but also all of the environment and dependencies needed to launch them,
and subsequently the JobAgent and the payload. Combining everything, the following
can now be provided directly through CVMFS:

• A dedicated, custom, container to run jobs in

• Singularity to start the container

• JAliEn for managing Singularity

• JAliEn dependencies

11To prevent libraries getting picked up from LD_LIBRARY_PATH.
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• Java runtime for starting JAliEn

• Glibc & other libraries for launching the Java runtime

In other words, the changes introduced to universally support a 32-bit JDK can be said
to provide its very own OS in CVMFS, used to bootstrap the environment needed for
starting a JobAgent, and subsequently its Singularity container. Consequently, the
JAliEn JobAgent can now run almost anywhere in the Grid, provided CVMFS and
a recent Linux kernel (>=3.10-957, Section 10.1.4) are present. This deployment of a
32-bit JDK and libraries is completely transparent for sites, and will automatically be
picked up by JAliEn once run.

10.3 Results as deployed

Combining the findings described in this chapter, together with the developments
throughout Part II, provides everything needed to deploy a new Grid workflow. This
section will describe and provide a full overview of the end results as deployed within
the ALICE Grid, and view them in light of the initial draft of Section 5.4. Specifically,
highlighting that three core concepts have emerged.

10.3.1 A containerised workflow
Figure 10.2 depicts the newworkflow as deployed first at CERN, and later scaled across
ALICE Grid sites. In many ways reminiscent of the draft from Section 5.4, it presents
JAliEn as the managing instance, handling startup, containerisation and job execution.
While similar, it also differs from the initial draft in several ways. As opposed to
everything being in a unified container, mainly based on top of Singularity, there are
instead two separate images, for two separate use-cases: job (worker node) and CE
(VO-Box), where the latter is based on Docker, because of its more advanced networking
stack. Furthermore, there is only one layer of containerisation within the JobAgent, in
contrast to the draft where containers could be seen used for the JobWrapper, and again
for the payload. That idea was put on hold for the time being because of instabilities
experienced with nested containerisation. For further isolation, a site may launch each
batch job inside its own (Docker or Singularity) container – a feature now supported
by some batch systems.

10.3.2 Automatic build and distribution
Section 5.4 opens up the idea of better harnessing CVMFS for distribution, allowing for
more automatic updates and deployment, without the need to involve site admins. In
Figure 10.2, it can be seen that everything is now indeed taken directly from CVMFS,
with changes pushed through Alidist. This applies not only to the JAliEn and Java
binaries, as containers, libraries and dependencies are all taken from CVMFS as well.
While notmentioned in Section 5.4 or its initial draft, Figure 10.2 also features versioning
through the use of Alienv. This implies not only more transparency for users/admins,
but also ensures having a consistent, up-to-date Grid, and in turn less concerns about
old versions being used for too long.
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Fig. 10.2: Deployed version of the new Grid workflow. Both the VO-Box and payload
(via JobWrapper) are run in their own containers, taken from CVMFS, and based on a
central repository. The JobAgent has been split in two, with all libraries needed to start
it at sites taken from CVMFS – meaning no installation is needed in advance.
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10.3.3 A more homogeneous Grid
A common trend throughout the development is the increasing homogeneity, compared
with the draft of Section 5.4. While jobs are executed in a standardised environment
through the container, as seen in Figure 10.2, this also applies to site services, which
have their own dedicated VO-Box container. Additionally, as seen in the previous
subsection, it can be expected that JAliEn versions are likely to be the same across sites
– including those on the VO-Boxes, as JAliEn is likewise fetched from CVMFS there,
as illustrated in Figure 10.2 . Furthermore, as described in Section 10.2.2, for worker
nodes that are not containerised, all the necessary system libraries for starting JAliEn
are also provided through CVMFS, meaning the only requirement from the perspective
of a worker node is a recent Linux kernel. All of these instances can be maintained
centrally and distributed through CVMFS – shifting the responsibility away from the
sites themselves.
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CHAPTER 11
RESULTS AND EVALUATION

This chapter turns the focus back onto the original RQ of Section 1.4, aiming to examine
the developments of Part II, as well as the consequences of deployment specifics from
Chapter 10, in light of it. Specifically, to determine if the core of the RQ was met –
making ALICE computing more flexible and easier to administer – by examining the
direct outcomes, and determining if there are any corresponding gains.

11.1 Wider adoption

Chapter 10 described an initial deployment of the developments of Part II within a
limited scope at CERN. This was initially done through a test site known as Juno1,
allowing for the testing of features and functionality, without disturbing production
jobs submitted by others. As components became feature-complete, these were moved
outside Juno, and deployed within “true” production environments at CERN – before
being scaled and deployed on sites throughout the Grid.

11.1.1 Container VO-Boxes

Within CERN

The containerised VO-Box described in Chapter 6 was, as implied above, initially
deployed only for the test site Juno at CERN. However, as the instabilities of existing
VO-Boxes, as mentioned in Section 5.1, persisted, being able to migrate sites to
an alternative became pressing – and multiple problematic CERN VO-Boxes were
consequently converted to containerised instances. As described in Section 6.7, this
initial migration was a success, with previously troubled VO-Boxes now showing stable
performance and less load on the underlying host system.

The containerised VO-Box was initially based on Scientific Linux CERN (SLC) 6.
This was partially done to mimic the “tried-and-tested” setup found within SLC 6,
so as to avoid issues possibly related to CentOS 7 – but also to be able to re-use the
existing init scripts. Once a full init replacement was completed for the containerised
VO-Box (Section 6.4.1), the image was consequently updated to CentOS 7. With a large
number of ALICE VO-Boxes still on SLC 6 at the time, the new containerised VO-Box
thus provided an ample upgrade path.

1Short for “JAliEn Uno”.
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Given the observed instabilities of the VM VO-Boxes at CERN, with some still on
SLC 6 – with a rapidly approaching EOL (End of Life)2 – all remaining VM VO-Boxes
were moved to the new containerised option. As of mid November 2020, all production
VO-Box instances at CERN are containerised.

Outside CERN

For the majority of other ALICE sites, the matter of migrating/upgrading existing
VO-Boxes was not as urgent as for CERN, where the VO-Boxes need to handle by far
the largest numbers of concurrent jobs. Many had stable, already upgraded, setups, in
turn giving little incentive to changes. Furthermore, the updated JAliEn CE can run
directly from CVMFS, without requiring additional installations and configurations –
and as will be seen in the next section, this is the core component for adapting to the
new workflow. However, for new or redeployed VO-Boxes, the containerised option
provides a quick path for achieving a working setup. Consequently, at a number of
ALICE Grid sites, VO-Box VMs were replaced with containerised instances.

11.1.2 JAliEn
Migrating sites over to JAliEn is a very different process compared to the VO-Boxes.
While the latter are mainly responsible for providing an entrypoint at an ALICE
site, and letting the middleware submit jobs to the batch system of a site (through
the CE) – JAliEn is a middleware choice that is not necessarily tied to the VO-Box
implementation. A broken VO-Box may prevent new jobs from being able to run on a
site, while any JAliEn faults may cause all jobs at the site to break and fail, damage
files or possibly abuse system resources. In other words, care must be taken to ensure
proper job execution within JAliEn itself, and also to update and adjust JAliEn to ensure
compatibility with as many sites as possible. This entails migrating only a limited
number of Grid sites over from AliEn to JAliEn at a time, to avoid potentially reducing
the capacity of the Grid, and to avoid creating “black holes” for jobs – where incoming
jobs would be accepted and started by JAliEn, but then fail due to JAliEn errors or site
incompatibilities.

Despite the above concerns, the changes outlined in Chapter 9 provide key benefits
from the adoption of JAliEn and a new workflow: everything needed can be taken
directly from CVMFS, requiring only a working VO-Box, CVMFS and a recent Linux
kernel (on the worker nodes). While care must still be taken, this should nevertheless
drastically reduce the steps needed for migrating from AliEn to JAliEn.

Within CERN

As in Section 11.1.1 for the containerised VO-Boxes, CERN sites were the first to be
migrated to JAliEn. Albeit in this case as a continuation of the deployment of the
containerised VO-Boxes, and not because of specific issues/errors – instead pioneering
new software within more controlled environments, informally referred to as (virtual)
“sites”, each submitting jobs to resources at their hosting site. The first production
site to be migrated was CERN-ZENITH, and based on the experiences with this site,

2SLC 6 EOL was on November 30th 2020 [100].
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adjustments were made and two further sites were migrated. As of mid January 2022,
all CERN sites have been migrated to JAliEn.

Outside CERN

By only having to convert the VO-Box services, migrating to JAliEn has been made
straightforward for site admins – not requiring any additional action on the worker
nodes. Furthermore, thanks to the startup scripts from Section 9.1.2, this process is
also streamlined and automated through CVMFS. Consequently, other ALICE sites
have been gradually moved to JAliEn by the ALICE Grid team. MonALISA provides
an overview of sites running JAliEn, together with their version tags [101]. As of
November 2022, nearly all sites have been migrated, with the single remaining site
expected to be completed soon.

Containerised JobAgents

Through the containerised JobAgents, no additional configuration is needed on worker
nodes when migrating to JAliEn - as the startup script and JobAgent will bring the full
environment directly from CVMFS. As stated in Section 10.1.5, the vast majority of
worker nodes should be able to run the custom Singularity build provided in CVMFS -
with SiteSonar likewise indicating that all sites should have anOSwith user namespaces
to be enabled, e.g. a recent version of CentOS3. Consequently, upon switching sites
to JAliEn, nearly all ALICE grid jobs are now being run inside the preconfigured
environment provided in the job container (Section 8.3). At any site, local conditions
may hamper the use of the job container and would need to be investigated case by
case.

11.2 Consequences and gains of wider adoption

The wider adoption described in Section 11.1, and in particular for JAliEn, brings the
workflow depicted in Section 10.3 to life – and into full production use. This in turn
comes with a number of gains, and also wider consequences:

• Simplified distribution – As new versions are tagged in Git, these may automatically
be pulled, compiled and pushed to CVMFS, thus made available for all. This not
only goes for the JAliEn middleware, but may likewise apply to containers, such
as both the VO-Box and job container – which each have their own dedicated
repositories.

• Fast deployment of new middleware versions – Having access to all binaries in CVMFS
through Alienv allows for quick updates of the JAliEn middleware: unless a
specific version is given, simply restarting the CE will have it pick up the very
latest tag, launching the latest version of the JAliEn CE, which in turn will let the
latest version of JAliEn be invoked by the JobAgent startup script.

3As everything needed to bootstrap the JobAgent is in CVMFS, this can be any Linux-based OS,
including Ubuntu. The only requirement is having user namespaces enabled, and kernel >=3.10-957.
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• Fast OS updates – As suggested in Section 8.3, containers provide means for
quickly deploying OS updates. This applies to both VO-Boxes, and worker nodes
– and in particular to the latter, where it suffices to simply put the updated image
in CVMFS, and update the associated production symlink. Here, there is no
intervention needed by site admins.

• Towards a more homogeneous Grid – Having close to all jobs run in the same
containerised environment takes a big step towards a more homogeneous Grid.
That said, as the underlying hosts remain heterogeneous, differences may still
be observed – or some sites may simply run without using containerisation, for
various reasons. Nevertheless, having the majority of all Grid jobs run in an
identical environment brings more predictability in terms of how the payload
will behave.

• Changeable environments – There are generally few options for accessing worker
nodes on Grid sites. While the VO-Box serves as an entrypoint, such is mainly
for accessing the batch queue system of the sites – which thereafter distributes
submitted work onto worker nodes. By having most jobs run containerised,
convenientmeans become available for tweaking the environment for the payloads
on worker nodes. By modifying the container image in CVMFS, additional
packages may be included, configurations may tweaked or environment variables
forwarded, as needed.

• Shift in responsibilities – Having a single image for all jobs, a single image for
VO-Boxes and all necessary libraries in CVMFS, effectively shifts responsibilities,
earlier imposed on site admins, to the ALICE Grid team.

• Performance improvements – As mentioned in Section 6.7, going from a VM VO-Box
to a container was observed to allow handling more jobs, while at the same time
having less load on the underlying host. Additionally, upon wider deployment,
it was noticed that JAliEn requires less time for both starting, and finalising jobs,
compared to AliEn.

• Multicore – Having a newmiddleware distributed across the Grid, opens up more
possibilities in terms of adding functionality. As will be seen in Section 12.4, this
has allowed other features to be introduced, in particular multicore support.

While the above mainly outlines positive gains of the new containerised, and JAliEn-
based, workflow, it must be noted that it also comes with caveats. These may largely be
attributed to JAliEn – and specifically the new JobAgent. It behaves differently to that
of AliEn in many respects, not only due to being rewritten from scratch, but also for
accommodating the changes outlined in Chapter 8 – which in turn can cause problems
for legacy job payloads still targeting the original AliEn JobAgent4. Furthermore, the
switch to a newmiddleware framework, which is also containerised, adds unfamiliarity
to users and site admins5. While largely intended to be a drop-in replacement, there

4E.g. expecting a directory structure as provided by AliEn.
5Several sites did not realise their ALICE jobs were now running containerised until noticing that the

payloads started to behave differently.
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are nevertheless some configuration changes required e.g. in central LDAP, as well as
new options being available, which may be unknown.

11.3 Evaluating results

Having outlined the wider deployment of the new solution, and the gains and
consequences of it, this section aims to turn the focus back towards the original RQ.
Specifically, the RQ of Section 1.4 asks:

RQ: How can a new Grid workflow be constructed, using new technologies, within the ALICE
Grid infrastructure to make ALICE offline computing more flexible and easier to administer?

In response to this RQ, a draft was made in Section 5.4, presenting a new, reorganised,
Gridworkflow – benefiting from both new container technologies, and newmiddleware
solutions. This resulted in the final product as described in Section 10.3. Using this
as a base, this section will attempt to resolve if the provided solution – the new Grid
workflow – serves as an answer to the original question, and to what extent it may be
considered both flexible and easier to administer.

In order to provide aid in terms of definition, Section 1.4.1 clarifies the target of
the RQ is finding a workflow that reduces the steps required for both deployment,
and utilisation, within ALICE offline computing, while also being able to scale freely
(i.e. not constrained to an initial deployment, being able to scale both in terms of
deployment size and features). This provides means for quantitative observations.

Flexibility

Flexibility, as defined earlier, entails being able to scale freely in terms of both size
and features. As shown in Section 11.1, the new Grid workflow is now available on
nearly all ALICE Grid sites. At a glance, this would suggest that, at the very least, it
is not constrained in its ability to scale across sites. Examining this further, it can be
accredited to a number of attributes of the new workflow.

Figure 11.1 can be seen to show the underlying Unix load for several central
machines, hosting both AliEn and the JAliEn central services. On the 19th of March
2021, the first major site (CERN-ZENITH) was converted to JAliEn, with a major rollout
across sites taking place at the beginning of 2022 – and the penultimate AliEn site
converted in October 2022. This can likewise be observed in the figure. As migration
progressed, a gradual decrease in occasional load spikes, as well as a decrease in overall
load, became an emerging pattern. During this period, the amount of running jobs
remained approximately the same throughout (Figure 11.2).

There are some discrepancies in the aforementioned pattern, most notably a
disproportionate increase in load for some of the central servers, and in particular for
aliendb4. Upon investigation, the cause is likely accredited to an uneven rotation of IPs
in the front-end DNS alias for the central services, with more work being directed to
aliendb4 instead of e.g. aliendb3. Nevertheless, upon a complete migration of around
706 active sites, the central services have remained as stable, if not more so, as for the
legacy services.

6http://alimonitor.cern.ch/stats?page=proxies
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Fig. 11.1: Unix load on central machines over a three year duration, containing the
time before, during and after migration. The prefix “aliendb6” is reserved for back-end
database servers.
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Fig. 11.2: Number of total active jobs across ALICE Grid sites, and their states, for the
same duration as in Figure 11.1.
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While both load, and the number of concurrent jobs, have remained stable upon the
deployment of the new workflow, there has been no degradation to the jobs themselves.
Figure 11.3 depicts the accumulated number of failed jobs per failure type – in the
period before, during and after migration. While a gradual rise in the newly introduced
ERROR_S state (Section 8.4) can be seen as adoption increases, there is no significant
change or increase across the other error states. Furthermore, as legacy jobs are phased
out and otherwise updated to account for possibly missing outputfiles, the number of
ERROR_S states can also be seen to flatten over time.

Fig. 11.3: Cumulative number of failed jobs per failure type (states), for the same
duration as in Figure 11.1, and Figure 11.2.

Given the above, scalability has thus been a success. Likewise, the solution can be
shown to be versatile to the addition of features – not only may new packages and
features easily be provided to worker nodes through the use of containers, but the new
JAliEn Grid workflow has already been host to multiple extensions of its feature set
through parallel developments – such as the CE scripts of Section 9.1.2, Site Sonar of
Section 10.1.5, and as will be seen in Section 12.4, support for multicore jobs. In other
words, the new Grid workflow has shown to be highly flexible.

Administration

Being easier to administer has several implications. For this contribution, this has been
defined as something that is simpler to:
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• Deploy

• Configure

• Update

• Debug

Looking back at the results from Section 11.2, it becomes evident that the new Grid
workflow provides easier administration when defined as above:

• Deploy – Deployment within an ALICE site now requires minimal action. Given
preexisting LDAP entries for a site, the following are now available:

– Preconfigured VO-Box container and job container

– Automated CE scripts in CVMFS

– Required binaries and other files in CVMFS

In other words, given a recent Linux kernel, a Docker installation and CVMFS,
there is a significant reduction in number of steps needed to deploy a full Grid
site: launch a VO-Box container and start the CE using the scripts in CVMFS. The
CEwill thereafter generate JobAgent startup scripts that read and load everything
else they need directly from CVMFS.

The above comes in stark contrast to the previous solution based around AliEn,
where the VO-Box setup comprised many more steps. As a rough estimate, such
as setup would typically require the following:

– Installation and initial setup of the VO-Box host

– Configuration of VO-Box services

∗ AliEn services
∗ An intermediary HTCondor service, if AliEn will target HTCondor

resources
∗ Aproxy renewal service, if AliEnwill targetHTCondor orARC resources
∗ VOMS client configuration, ditto
∗ A GSISSH service, should the VO-Box be externally accessible
∗ Various cron jobs
∗ The VO-Box firewall

In other words, considering each of the above points a “step”, at least 8 unique
steps (counting the configuration of each service) would be required. Only
some of those steps could be done semi-automatically, starting from a VO-Box
configuration file. For JAliEn, and the containerised VO-Box, this may now be
reduced down to roughly 3 unique steps.
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• Configure – One of the more demanding earlier configuration challenges was
to gain a fully working VO-Box, as it requires the configuration of multiple
services that need to work in unison. Within the new Grid workflow, this is
greatly simplified, as a preconfigured container image is available. Instead of
configuring each VO-Box service, there is now mainly need for providing a single
configuration: for the container framework (Docker). In the rough estimate above,
this reduces the number of VO-Box configuration steps from 7 to just one (1).

A similar argument can also be made for the worker nodes, which use containers
by default. To allow ALICE jobs to profit from containers, a worker node needs
to allow Singularity to run either from a system installation with a suitable
configuration, or from CVMFS, by enabling user namespaces – now done by
default on later Linux kernels, including those found in recent versions of CentOS
(Section 10.1.4). Once containers are able to launch, the responsibilities for
configuration are shifted to the container maintainers. As the desired container
image is determined via an invocation of Alienv, the worker nodes need to satisfy
the package dependencies of the latter, as was already the case for AliEn.

• Update – As mentioned in Section 11.2, updating takes minimal effort, as new
versions are automatically pushed to CVMFS. This allows the CE to automatically
change to the latest version, simply by restarting (reloading Alienv). The same
also holds for OS updates, as these are now tied to the container images. Updating
the job container applies the change across all containerised worker nodes, which
is also done automatically through CVMFS. This implies that where a site admin
would previously need to maintain the underlying OS version and packages for
the VO-Box and the site worker nodes, no more actions in this regard are now
required, as these responsibilities are instead shifted to the ALICE Grid team.
What used to be several items to maintain (e.g. 3 “steps” considering maintaining
the underlying OS, packages and general configurations as one each, then times
the number of WNs on the site), is now instead reduced to 0 – none7.

• Debug – Faults, issues and errors, at some point, are arguably inevitable. However,
moving towardsmore homogeneous environments for both VO-Boxes andworker
nodes through containerisation, narrows down potential faults, as it can be
assumed that the environments for jobs, and across containerised VO-Boxes, are
largely the same between sites. This allows easier pinpointing of potential issues:
whereas an issue could have arisen from any prior configuration step, and/or
due to particularities in how the AliEn software stack behaves on individual
WNs, errors are in this case mainly limited to site-specific configurations. Issues
pertaining to the configuration of theVO-Box, theWNOS, execution environments
and packages can now be debugged centrally. At the very least, these issues are
roughly 4 sources of potential errors which need to be considered a lot less by
site admins.

Figure 11.4 presents a summary of the number reduced steps/items from the above
points, that come as a consequence of switching to the new workflow. It must be

7Assuming the underlying host OS will be supported beyond the lifetime of the hardware.
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Fig. 11.4: Estimation of the number of reduced steps / items of responsibility for each
of the defined points in Section 11.3. Blue represents the number of reduced unique
steps / items of responsibility as needed for the VO-Box, while red has to be applied
across the cluster / WNs.

emphasised that it is only a rough estimate, and the size and difficulty of each step /
configuration task will vary. Items that must be repeated for eachWN in the cluster, not
just the VO-Box, are coloured red to highlight that these can be particularly demanding.
While the numbers of reduced steps may only be estimations, they definitely help
creating a Grid workflow that is easier to administer.

Chapter 11 107





CHAPTER 12
THOUGHTS AND PERSPECTIVES

Having previously discussed the results and consequences in regards to the original
RQ in Chapter 11, the current chapter aims to examine the implications of the achieved
workflow within ALICE and beyond. Alternative approaches as achieved by other
Grid collaborations will also be examined and put in perspective. Furthermore, related
developments and future work will be discussed, before a conclusion is given.

12.1 ALICE in Run 3

Asmentioned in Section 1.2.1 and Ref. [102], ALICE has been preparing for Run 3 of the
LHC, which started in June 2022 [103]. With the needs of the ALICE collaboration set
to greatly increase (Section 1.2), both in terms of storage and raw computing prowess,
having a new and modern middleware framework available from the start has been
essential.

Throughout the development of this thesis, JAliEn has been brought to a production-
ready state, capable of seamlessly executingGrid jobs, and acting standalone, essentially
without the need to rely on legacy AliEn services1 – and has since had a successful
deployment both initially within CERN, and throughout the Grid (Section 11.1.2).
Post-deployment, it is now the default for job execution across the ALICE Grid, with
the transition being largely transparent to end-users – and has also already shown
to provide initial performance benefits (Section 11.2). As will be seen in Section 12.4,
these benefits are already set to further increase thanks to future work.

12.2 Other novel Grid workflows

As was seen in Section 5.3, other Grid collaborations were likewise investigating means
for tighter integration of containers and more novel technologies within their Grid
workflows at the time of project start – and have consequently created their own takes.
These approaches have their own benefits and drawbacks, with some being more
similar to that of ALICE than others.

1The exception being in regard to the optimiser, still in development.
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12.2.1 ATLAS PanDA
An approach akin to that of ALICE can be found within ATLAS and their Grid
middleware PanDA, where the job pilot has likewise been completely rewritten from
scratch [104]. Known as Pilot 2, it comes with a workflow mechanism that allows it to
change run modes based on where the job is being executed, e.g. for HPC. It achieves
this by being highly modular, where the provided pilot stack can be used as much, or
as little, as needed. This is further simplified though a new component known as the
Harvester, acting as an in-between service for the job-pilot for external communication
and data staging [105]. The pilot will also provide a suitable environment for the
payload through containerisation, which is in turn loaded from CVMFS and the CERN
container registry – and set depending on the requirements for the job.

The usage of a new, rewritten, job-pilot is reminiscent of the approach taken by
JAliEn. However, in-practice, it can likewise be considered the exact opposite: while the
PanDA Pilot 2 uses its modular design and containerisation to better cater for a variety
of configurations and setups, the new JAliEn JobAgent instead creates a more uniform
environment across sites, by offloading core libraries into CVMFS, and thereafter using
them to launch a container providing a familiar execution environment across all jobs.

12.2.2 LHCb DIRAC
Like both ALICE and ATLAS, LHCb and their DIRAC stack also provide a new,
rewritten, job-pilot [106][107]. Known as Pilot 3.0, it launches and runs independent of
DIRAC, with no prerequisites for the environment on the worker node. Instead, it will
fetch all required DIRAC runtimes and set up the environment – which in turn will
launch the JobAgent process responsible for job-matching and monitoring. While this
is largely similar to the previous pilot, the new iteration of it can be enhanced through
extensions, adapting to specific workflows as needed. The latter is, as with ATLAS
and PanDA, intended to better adapt to opportunistic resources and HPCs. In this
regard, it also introduces the concept of “inner CEs”, which allows jobs to be wrapped
in a different user ID, or a Singularity container. The latter not only for the purpose
of payload isolation, but also to better adapt the environment – adjusting the OS and
DIRAC versions as desired for the user job.

The approach taken by LHCb and DIRAC largely mirrors that of ATLAS and PanDA,
with the aim of being able to better adjust jobs and their workflows to different resource
setups.

12.2.3 CMS glideinWMS
The glideinWMS framework mainly exists as a thin layer built on top of the HTCondor
batch system, and this is likewise reflected in its approach to containerisation. As
opposed to any direct pilot or framework changes, Singularity is instead integrated
as part of the pilot wrapper script [108]. As an analogue of JAliEn, this would be the
startup script mentioned in Section 9.1, but with the logic of probing for compatibility
and setting up the runtime, from Section 8.2.3. This provides convenient means for
quick integration with Singularity, gaining access to its core features. Specifically, the
isolation provided by containerisation is intended as a replacement for gLExec [76],
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while its runtime environment facilitates backwards compatibility as sites upgrade
to later distributions [109]. Furthermore, and not too unlike JAliEn, sites (and not
individual jobs) are allowed to select their own container images, given they are
available in CVMFS.

While there are major changes to neither the infrastructure nor the executing pilot,
the approach of CMS is in many ways very similar to that of JAliEn: as opposed
to adapting to a wide variety of configurations, the pilot instead fully relies on
containerisation to provide for both isolation and compatibility – which it attempts
to achieve by being both lightweight and having few requirements for running.
Furthermore, as opposed to each job being able to select their environment, a smaller
set of predefined containers are set on a site level.

12.2.4 Thoughts on adapting to opportunistic resources
Being more versatile in regard to the kind of configurations that are supported is
a great strength of the approaches taken by both PanDA and DIRAC, in particular
for HPC and supercomputers – which have limited compatibility with JAliEn, due
to often having very specific configuration requirements. The same also applies
for the software, which can be adjusted to always run in a compatible container.
However, the approach also introduces more complexity, both in terms of initial setup
and maintainability. While this can be offset by larger development teams, such an
approach is not scalable for ALICE. Furthermore, giving users the ability to specify
any container in a common registry, for each job, paves the way for continued use of
deprecated analysis frameworks, in turn creating more fragmentation. While such
an approach was considered for JAliEn and the new JobAgent, it was eventually
abandoned because of these concerns.

12.3 Impact outside of ALICE

ALICE has designed and developed a new middleware with built-in containerisation
from the very beginning, in turn removing the need for various ad-hoc solutions, and
further moving the Grid into a more homogeneous direction, as well as reducing the
work required from site admins. JAliEn itself is specifically designed to meet the
particular needs of the ALICE collaboration, but as now seen in Section 12.2, other
Grid collaborations have likewise developed their own takes of how to best incorporate
novel technologies. While it remains to be seen which approach proves to be the most
beneficial in the long-term, other virtual organisations may take inspiration from the
ALICE (and other) experiences in the years to come – in a mutual effort to modernise
the Grid as a whole.

12.4 Collaborations and future work

As discussed towards the end of Section 11.3, the new ALICE Grid workflow has been
flexible in terms of extending its functionality. Specifically, the development pertaining
to this thesis has not been done in a vacuum, but in active cooperation with several
other ALICE collaboration members.
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It must be noted that JAliEn has since been extended with support for multicore
jobs, as required by the new data processing framework that will be used for Run 3.
Furthermore, SiteSonar has become an essential tool for monitoring the properties of
worker nodes across the ALICE Grid. It has also been extended with web front-ends
for configuration of the tests (Ref. [110]) and visualisation of the results.

Within the core functionality, and as briefly mentioned in Section 12.1, the only
remaining component not available within JAliEn is the optimiser – the service
responsible for translating complex data processing tasks into multiple sub-jobs that
in turn can be picked up by worker nodes at Grid sites. Because of its sheer size,
developing the JAliEn counterpart is part of a separate project.

12.5 Conclusion and final remarks

Heterogeneous clusters, as found within Grid computing, create challenges by having
to cater to multiple system requirements, configurations and deployment practices.
Through the use of Cloud-related technologies, such as virtualisation, these challenges
have to an extent been alleviated in the past – by “cloudifying” Grid Computing centres,
allowing for the creation of more homogeneous environments within an otherwise
heterogeneous Grid. This process is however not without its own caveats, requiring
ad-hoc solutions and a larger deployment stack.

Containers, in part due to their lightweight aspects, provide means to avoid the
above issues. By having them integrated within the next-generation Grid middleware
for ALICE, JAliEn, a new Grid workflow has consequently been constructed. Utilising
containers at the very core, together with other modern approaches and technologies
such as CVMFS, past limitations and shortcomings have been overcome, in turn
creating a new workflow that may, as seen in Section 11.3, aid in making ALICE offline
computing both more flexible and easier to administer. In addition, it has also enabled
the deployment of JAliEn in production in a timely manner – helping ALICE get ready
for Run 3 and beyond!
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