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Airlines usually organize the passenger queue by letting certain groups of passengers enter the airplane 

in a specific order. The total boarding time of such airplane boarding policies can be estimated and com- 

pared by a Lorentzian metric based on the one used in Einstein’s theory of relativity. The metric accounts 

for aisle-clearing times that depend on the passengers’ queue positions, in particular when passengers 

in the back of the queue with increasing probability will have to wait for already seated aisle or middle 

seat passengers to rise up and let the others pass to a seat closer to the window. We provide closed-form 

expressions for the asymptotic total boarding time when the number of passengers is large, and prove 

that the best queue ordering with low congestion is according to decreasing luggage-handling time. The 

effect of seat interference amplifies the previously shown superiority of slow first vs. random boarding 

and fast first. That this ranking of policies also holds for realistic congestion is illustrated by both ana- 

lytical methods and simulations, and parameters are taken from empirical data. However, the result is 

non-trivial, as the ranking shifts for unrealistically high congestion. Based on the analytical results, we 

demonstrate that the slow-first policy can be improved by dividing the passengers into more than two 

groups based on their number of bin luggage items, and let the slowest groups with the most luggage 

items enter the queue first. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The airplane boarding process has been shown to be on the 

ritical path of the turnaround time that airplanes spend at the 

ate ( Neumann, 2019 ). While other time-critical processes, like fu- 

ling, are hard to shorten, there is a significant potential for reduc- 

ng the boarding time, which is the time from the first passenger 

ntering the airplane until the last passenger sits down. The board- 

ng time is influenced by several factors ( Hutter et al., 2019 ), and

ince cost reductions could be significant for every minute saved 

 Cook & Tanner, 2015; Nyquist & McFadden, 2008 ), airlines address 

his by implementing boarding policies. 

A boarding policy describes how the queue should be arranged 

rior to boarding, and typically, the passengers are divided into 

roups based on, e.g., designated row number, and then the groups 

nter the queue in a prescribed order. With the back-to-front pol- 
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passengers with the most bin luggage enter first, European Journal of O
cy, which is widely used in the US, the passengers who have 

esignated seats in the back of the airplane are allowed to enter 

rst, followed by groups heading for seats closer to the front rows 

 Delcea et al., 2018 ). In Europe many airlines apply the random 

oarding policy, without organizing the queue, except from usually 

etting passengers with special needs, like families with children 

nd disabled persons, enter first. This can, in fact, be considered 

s a slow-first policy, and that this courtesy to certain groups that 

end to be slow actually has associated benefits, will be further 

lucidated in this paper. 

In the last 20 years, there has been a large and growing body of 

ork on the analysis of airplane boarding procedures and policies 

see, e.g., Jaehn & Neumann, 2015; Willamowski & Tillmann, 2022 ). 

uch of the analysis of the boarding process is carried out by 

imulations with varying degrees of parameters and randomness, 

hich provide the flexibility needed to model different boarding 

cenarios and to examine different aspects of the boarding proce- 

ures ( Audenaert et al., 2009; Delcea et al., 2018; Ferrari & Nagel, 

005; Schultz, 2018; Steffen, 2008; Van Landeghem & Beuselinck, 

002 ). Another approach is mathematical programming, where the 
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oarding time can be written as a non-linear ( van den Briel et al.,

005 ) or linear ( Bazargan, 2007; Willamowski & Tillmann, 2022 ) 

rogram. The corresponding optimization introduces optimal solu- 

ions in some space of allowable policies. 

These approaches identified two different types of interferences 

interactions) between passengers, which make the boarding pro- 

ess less efficient and should therefore be minimized. The first is 

isle interference in which one passenger directly or indirectly pre- 

ents another passenger from getting to their designated row, by 

locking the aisle while getting organized to take their seat in the 

ow. The other type, seat interference, refers to the situation where 

pon arrival at the designated row, some passengers are blocking 

he passenger from getting to their designated seat, for example, 

hese other passengers are already seated in the aisle and middle 

eats of the row, and have to get up to allow the incoming pas-

enger to reach the window seat. Generally speaking, these studies 

how a trade-off between the minimization of boarding time, the 

mount of control that the policies exert on the passengers, and 

he difficulty of implementing them. 

Another approach can be applied to boarding policies that di- 

ide passengers into a limited number of groups and where the 

equence of passengers within each group is random ( Bachmat 

t al., 20 06; 20 09; 2013; Erland et al., 2019; 2021; Frette & Hem-

er, 2012 ). In this approach, the boarding process is described by a 

odel with several parameters. It is possible to simulate the pro- 

ess, but instead an average boarding time estimate can in many 

ases be expressed by formulas that allow us to compare differ- 

nt policies analytically. The formulas describe the boarding time 

f the model with an accuracy that improves as the number of 

assengers N becomes large. The analysis of the model is geometri- 

al and more specifically provides an interpretation of the airplane 

oarding process in terms of space-time (Lorentzian) geometry —

he type of geometry that is also used for describing relativity the- 

ry. More specifically, airplane boarding is described via a wave 

ropagation in this geometry, and the boarding time estimate cor- 

esponds to the relativistic (proper) time needed for the waves to 

ompletely cover a domain, which in the airplane boarding case 

s taken to be the unit square. The advantage of the approach is 

hat it provides insights into what makes good policies and con- 

ects to several areas of mathematics and physics, which allow us 

o apply tools from those fields. The asymptotic formulas, which 

re exact when N → ∞ , allow us to consider large (theoretically 

nfinite) families of policies all at once. Moreover, the computabil- 

ty and accuracy do not decline when the number of passengers 

rows — unlike the case of mathematical programming, which in 

any cases cannot solve to optimality when N is large. 

One of the insights provided by the approach is that the con- 

estion k is an important parameter. Congestion is the ratio of to- 

al queue length when all passengers are standing one after the 

ther, to the total length of all aisles in the airplane. Some board- 

ng methods such as the back-to-front policy, are very performance 

ensitive to the value of k . Certain simulation approaches do not 

ave k as a parameter, but rather as an implicitly defined constant, 

nd the use of different constants can be used to explain discrep- 

ncies between results of different simulations. Other major results 

rom this approach include a complete analysis of back-to-front 

oarding policies, which shows that the usual implementations of 

uch policies are not effective in realistic scenarios ( Bachmat et al., 

013 ). More recently it has been shown how the total boarding 

ime is affected by dividing the passengers into two groups with 

ifferent aisle-clearing time distributions. If there is a fast group of 

assengers without luggage and a slower group of passengers with 

uggage, it is universally better (i.e., independent of model param- 

ters) to board the slow group first and then the fast group, com- 

ared to the other way around or mixing the two populations as 

n random boarding ( Erland et al., 2019; 2021 ). On the other hand,
2 
t is universally better to board the fast group first in order to min- 

mize the average boarding time of individual passengers ( Bachmat 

t al., 2021 ). 

The drawback of this geometrical approach is that in order to 

xplicitly solve the model by formulas instead of simulations, the 

odel needs to be simplistic so it can be described geometrically, 

nd in addition the geometric description has to be analytically 

ractable. For example, in order to set up the geometric interpreta- 

ion, it must be assumed that when passengers are not blocked 

experience aisle interference), they proceed to walk down the 

isle towards their designated row at infinite speed, i.e., they im- 

ediately reach a blocking passenger or arrive at their row. This 

implification means that differences in boarding times tend to be 

arger in the model than in simulations that take walking speed 

nto account. Similarly, the models did not take into account seat 

nterferences since it previously was not clear how to handle them 

n an analytically tractable fashion. Consequently, all the results 

bove were indicative of behavior in models that lacked/ignored 

arious realistic features, and it was not clear whether they hold 

nd to what extent when the features are added. 

The purpose of this paper is to show that we can to a large ex-

ent take seat interference into account in an analytically tractable 

ay with varying (in the boarding scenarios) degrees of explicit- 

ess. This allows us to examine the extent to which earlier model- 

ased insights remain true when seat interferences are supple- 

ented into the model. 

Our main findings are the following: 

1. When the passengers are divided into a limited number of 

groups, taking seat interferences into account still yields an 

analytically tractable model. 

2. When we have two passenger groups, and add seat interfer- 

ences into the model, boarding slow passengers first is bet- 

ter in realistic cases and in all cases below a certain conges- 

tion threshold. However, the result is not universal, in the 

sense that for some very high and unrealistic congestion val- 

ues, boarding the fast passengers first is better. The results 

are also observed in model simulations with a realistic num- 

ber of passengers. 

3. If there are more than two groups, ranking them in the or- 

der from slowest to fastest can be shown analytically to be 

optimal for low congestion. 

The structure of the paper is as follows. In Section 2 we give a

igh-level presentation of the boarding process model. This is fol- 

owed by analysis of the boarding time in Section 3 that allows 

or aisle-clearing times that depend continuously on the queue 

ocation. Expressions for the effective aisle-clearing time that in- 

lude seat interferences, with parameters derived from empirical 

ata are presented in Section 4 . The main result is presented in 

ection 5 where we compare and rank the three main policies un- 

er consideration — slow first, fast first, and random boarding. In 

ection 6 we suggest a new improved policy that aims to narrow 

he gap to what we show is an optimal (but infeasible) policy. We 

nd the paper with a discussion in Section 7 . 

. General high level model description 

We explain our modeling approach at a high level. In par- 

icular we point out the challenges at the various stages of the 

oarding time estimation and what makes it sometimes analyti- 

ally tractable. A more detailed description of the model is found 

n Bachmat (2014) and Erland et al. (2019) . 
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Fig. 1. Geometric representation of the boarding process with N = 8 passengers and two seats per row. (a) The queue advances step-wise, and each passenger is represented 

by a circle with designated row number. At each time step, the queue moves forward, and passengers arriving at their designated rows sit down simultaneously. The wave 

front of passengers who take their seat at that time step is marked by red arrows and color coded. (b) Each point in the queue-row-diagram represents a passenger, indicated 

by initial queue position and designated row number. Passengers who do not sit down in the first time step have been blocked by at least one passenger in a preceding wave 

front, and such blocking relations are indicated by arrows. Passengers who consecutively block each other form blocking paths, and the boarding time T = 4 is determined 

by the sum of aisle-clearing times of the passengers in the maximal path (the connected dashed lines). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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1 In Fig. 1 , k = 1 since ρ = 1 , d = 2 w , n a = 1 , and s = 2 . 
.1. Geometric representation of the boarding process 

We consider the boarding process from the time the first pas- 

enger enters the airplane, until the last passenger is seated. We 

ssume that a passenger cannot proceed before any other passen- 

ers in the aisle has cleared the aisle and is seated, as illustrated 

y the example in Fig. 1 (a). The time a passenger needs to move

efore halting at the next blocking passenger is considered negligi- 

le compared to the aisle-clearing time of the blocking passenger. 

In Fig. 1 (b) the passengers are represented as points in a square. 

he first coordinate is the location of the passenger in the boarding 

ueue, while the second coordinate represents the designated row 

umber of the passenger. In the remainder of the paper we will 

efer to the normalized queue and row location, and in terms of 

hese coordinates, all passengers will be represented as points in 

he unit square. 

Note that the distribution of points representing passengers in 

he unit square will vary according to the airline boarding policy 

mployed. Policies that do not couple the row location and queue 

ocation will lead to a uniformly random distribution (when the 

umber of passengers N → ∞ ), while others such as back-to-front 

ill lead to non-uniform distributions. The policies considered in 

his paper will lead to a uniform distribution. 

The main parameters in the airplane boarding model are listed 

elow: 

• N — the number of passengers in the airplane, R is the num- 

ber of rows. 
• ˜ q — the initial queue position of a passenger, q = ˜ q /N is the 

normalized queue position. 
• ˜ r — the designated row number of a passenger, r = ̃  r /R is the 

normalized row position. 
• k — the congestion, i.e., the ratio of the total length the 

queue of all passengers as they stand in the aisle and the 

total aisle length of the airplane. Let ρ be the occupancy 

of the plane, s the number of seats per row, n a the num- 

ber of aisles, d the distance between consecutive rows and 

w the distance between passengers in the aisle(s). Then k = 

ρsw/ (n a d) . The congestion k reflects both how densely the 
3 
passengers stand in the aisle and the interior design of the 

airplane. 1 

• h — the number of seats per row segment. E.g., if there are 

n a = 1 aisle in the airplane and s = 6 seats per row, h = 3 . 
• Y q — the aisle-clearing time needed for a passenger to orga- 

nize bin luggage and take a seat after reaching one’s row. 

Y q depends on the queue position q and is a sum of the 

luggage-handling time X , and the waiting time W for al- 

ready seated passengers to give way. In Fig. 1 all passengers 

have an aisle-clearing time of Y q ≡ 1 time steps. The effec- 

tive aisle-clearing time τY (q ) is an intrinsic parameter in the 

asymptotic estimate of the total boarding time and is de- 

termined by the distribution of Y q only. Explicit expressions 

are generally not available, except when Y q ≡ c is constant, 

in which case τY = c. 
• p — the proportion of passengers that are designated as slow 

passengers with long luggage-handling time. The remaining 

fraction, 1 − p, are considered fast. 

We assume that only the front door of the airplane is used, and 

or convenience we use a single aisle, i.e., n a = 1 and a realistic

umber of N = 180 passengers with full occupancy ρ = 1 as the 

efault. 

.2. Wave fronts, maximal paths and space-time geometry 

Once the passengers are represented geometrically in the unit 

quare as outlined above, we can describe the boarding process as 

 “wave propagation” in the unit square, where the wave fronts 

epresent passengers who sit down at roughly the same time 

color-coded in Fig. 1 (b)). The process ends when the last wave 

ront covers the last remaining passengers, and when the aisle- 

learing time is one time unit as in Fig. 1 , the boarding time is

iven by the number of fronts. However, when passengers have 

ifferent aisle-clearing times, the computation of boarding time is 

ot so straightforward. 

A dual way to consider the boarding time, is to consider for 

very passenger the passenger who last blocked them from get- 
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τ

ing to their row, and then recursively, the passenger who blocked 

he passenger who blocked and so forth until reaching a passen- 

er who was not blocked by anyone and proceeded unobstructed 

o their designated row when the boarding started. This creates 

or each passenger, a path or sequence of passengers each being 

locked by the next one. Plotting these paths in the unit square 

rovides a system of paths, starting at every point representing 

 passenger and ending usually very near the origin. In Fig. 1 (b), 

he path of the last passenger sitting down is shown as connected 

ashed lines ending up in a passenger in the first wave front. 

The next steps are intended to relate these paths that have a 

iscrete number of segments to a continuous geometry, so we can 

se the rich structure and tools associated to the continuous ge- 

metry. We let the number of passengers N go to infinity and es- 

ablish a geometric law of large numbers that leads to a continu- 

us geometry description. As N → ∞ , we just scale the length of

he airplane (i.e., the number of rows) and keep the other parame- 

ers fixed. These parameters describe the airplane boarding process 

nd consist of the congestion parameter k , a given airline board- 

ng policy, and a description of the characteristics of the passenger 

opulation. When N → ∞ , the boarding process can be described 

s a wave propagation in a continuous geometry that is given by 

 boarding scenario dependent space-time structure (Lorentzian 

etric) on the unit square ( Bachmat, 2014 ). 

A space-time structure defines a class of permissible curves, 

hich in physics describes the motions of objects at or under the 

peed of light (causal trajectories). It also provides a weight to 

ach of these curves. In physics, this corresponds to the time pass- 

ng on a clock that is attached to an object whose trajectory is 

raced by the curve. In the case of airplane boarding, the maxi- 

al weight of permissible curves starting in a particular point in 

he unit square, provides a normalized estimate of the amount of 

ime it will take a passenger with those coordinates to sit down in 

he given boarding scenario. In physics, such maximal curves cor- 

espond to trajectories of objects who are only influenced by grav- 

ty, i.e., free falling objects. Such curves are called geodesics. In air- 

lane boarding there is an added complication, since such maximal 

urves may sometimes have segments that lie on the boundary of 

he unit square domain. Thus, maximal curves are composed of 

oundary segments and geodesic segments that lie in the interior 

f the square. The boarding time is the maximal time of any pas- 

enger to sit down. Hence, it is given as the maximal curve weight 

n the space-time structure. Consequently, computing the (normal- 

zed version of the) boarding time amounts to finding the curve of 

aximal weight and computing its weight. 

.3. Curvature and explicit solutions of maximal curve weights 

Given the geometric structure, the next steps in the analysis at- 

empt to explicitly solve for the boarding time. As noted above, 

he curve of maximal weight can have portions on the boundary 

f the unit square and will also have portions in the interior of 

he square. The mixture of boundary and interior curve segments, 

epends on the parameters of the boarding scenario. This breaks 

p the parameter space into different pieces, which depend on the 

ombinatorics of this mix. The weight of the boundary pieces is 

iven by some integrals, which often can be solved explicitly. For 

he interior segments we have to find the maximizing curve, which 

mounts to solving the geodesic equation with the appropriate 

oundary conditions for the given Lorentzian metric (space-time 

tructure). In general, the geodesic equation is given by a second 

rder ODE, which is an Euler-Lagrange equation. However, there 

s no reason to expect that it is possible to explicitly solve the 

DE. The main exception is a flat space-time structure, which cor- 

esponds to special (rather than general) relativity. In the case of a 

at space-time in standard coordinates (corresponding to the point 
4 
f view of an object at rest), the solutions to the geodesic equa- 

ion are simply straight lines. However, sometimes the flat space is 

iven in non-standard coordinates, and we need to change coordi- 

ates to standard ones. 

Given a space-time structure (in any coordinate system) there 

s a point dependent (local) quantity that we can compute, called 

he curvature, which provides a criterion to determine whether the 

pace-time is flat. The criterion is that the curvature has to van- 

sh at every point. By an amazing stroke of luck, when seat inter- 

erences were ignored, the space-time structures that correspond 

o reasonable boarding scenarios, correspond to locally flat space- 

ime structures. That is, the unit square can be broken into sub- 

omains, and on each sub-domain the curvature vanishes, and we 

an find the coordinate change to standard coordinates ( Bachmat, 

019; Bachmat et al., 2005 ). 

From a technical standpoint, the main results of this paper 

how that even after taking seat interference into account, the cor- 

esponding structures are still flat. In addition, we can in many 

ases go further and explicitly compute the maximal curve weight 

nd compare boarding policies in terms of total boarding time. 

.4. Curve weight integral 

The total boarding time with a finite number of passengers is 

etermined by the heaviest path , that is the path that has a max- 

mal sum of aisle-clearing times. When the number of passengers 

 → ∞ , the heaviest path approaches a heaviest causal curve . If we

ssume that the aisle-clearing time of each passenger is determin- 

stically given by the passengers’ normalized queue and row po- 

ition, Y = τ (q, r) , the weight of a curve r(q ) when the passen-

ers are uniformly distributed in the unit square, can be defined 

y ( Bachmat, 2014 ) 

(r) = 

∫ q 1 

q 0 

τ (q, r (q )) 
√ 

r ′ (q ) + k [1 − r(q )] dq. (1) 

A curve is called causal when the square root in the integral is 

eal, and this indicates the ability of one passenger on the curve 

o block the next passenger on the curve. The square root mea- 

ures the number of passengers along the causal curve, and this is 

eighted by the respective aisle-clearing time τ (q, r(q )) along the 

ame part of the curve. 

The heaviest causal curve r ∗(q ) is the one maximizing the inte- 

ral. Since the normalized queue and row number (q, r) of all pas- 

engers are within the unit square, the heaviest causal curve must 

bey the same restriction. In addition, r ∗ must be continuous and 

onnect the points (0,0) and (1,1) ( Bachmat, 2014 ). 

When the aisle-clearing times Y are stochastic, τ (q, r) in Eq. 

1) can be replaced by an effective aisle-clearing time τY (q, r) , 

hich is independent of k ( Bachmat, 2019 ). In this paper, we con- 

ider boarding policies where the aisle-clearing time distribution 

epends on q only, such that τY (q, r) = τY (q ) (for brevity we will

sually write τ (q ) in the following). 

For the three main policies analyzed in this paper, we assume 

hat the passengers can be divided into two groups according to 

heir anticipated aisle-clearing time when seat interferences are 

ot taken into account. The slow group with larger effective aisle- 

learing time τS could be those with overhead-bin luggage, while 

he fast ones without luggage are characterized by τF . Without seat 

nterference, the resulting effective aisle-clearing time function 

(q ) is constant within the respective q -intervals of each group, 

(q ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

τS when q ∈ [0 , p] , τF when q ∈ (p, 1] , Slow first (SF) 

τF when q ∈ [0 , 1 − p] , 

τS when q ∈ (1 − p, 1] , Fast first (FF) 

τA � 

√ 

τS p + τF ( 1 − p) when q ∈ [0 , 1] , Random boarding . 

(2) 
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Fig. 2. Illustration of effective aisle-clearing time as a function of normalized queue position q for the three studied policies. There are p = 40% slow passengers, and the 

effective luggage-handling time is τF = 1 and τS = 2 for the fast and the slow group, respectively. (a) τ (q ) without seat interference as in Eq. (2) . (b) Seat interference and 

the time it takes to wait for already sitting passengers to give way often has a non-linear effect on τ (q ) . Here we have used that τ 2 (q ) ≈ 〈 Y 2 〉 as in Eq. (21) with h = 3 . 
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his τ (q ) has been applied previously in the literature for the 

hree mentioned policies ( Bachmat et al., 2021; Erland et al., 2019; 

021 ). In Section 4 we derive approximate expressions for τ (q ) 

hat take seat interference into account — and hence depend con- 

inuously on q . Both cases — with and without seat interference —

re exemplified in Fig. 2 . 

. Asymptotic total boarding time 

While estimates of the asymptotic total boarding time previ- 

usly have been obtained for piecewise constant τ (q ) , the major 

ontribution of this section is to provide estimates also when τ (q ) 

aries continuously. Let r ∗ be the heaviest causal curve from (0,0) 

o (1,1) within the unit square that maximizes W(r) in Eq. (1) . 

he total boarding time converges to a multiple of the weight of 

 

∗ ( Bachmat, 2014 ), 

T √ 

N 

a.s. → 2 W(r ∗) . 

The result is based on a general formula by Myrheim (1978) . 

he average total boarding time is asymptotically given by 

 T 〉 ∼ 2 

√ 

N W(r ∗) ≡ ˆ T . (3) 

he asymptotic boarding time ˆ T is a leading term. For finite N and 

or realistic values of k , the average boarding time 〈 T 〉 is over-

stimated by a relative error of order o(N 

− 1 
4 ) ( Bachmat et al., 

013 ). 

The result in Eq. (3) is used below to derive analytical expres- 

ions for the asymptotic boarding time for the three main policies 

nder consideration in this paper: random boarding, slow first and 

ast first. We exploit that the heaviest causal curve r ∗ that maxi- 

izes Eq. (1) with integrand L (q, r, r ′ ) can be found by solving the

uler-Lagrange equation 

∂L 

∂r 
− d 

dq 

∂L 

∂r ′ = 0 . (4) 

he estimate for the total boarding time is found by multiplying 

he weight of the solution W(r ∗) with 2 
√ 

N . 
5 
.1. Total boarding time when k = 0 

When k = 0 , passengers are paper thin, and the solution of 

q. (4) when L is the integrand of Eq. (1) , is given by 

 

∗′ (q ) = aτ 2 (q ) 

⇓ 

r ∗(q ) = a 

∫ q 

0 

τ 2 (ρ) dρ + b = 

∫ q 
0 τ

2 (ρ) dρ∫ 1 
0 τ

2 (ρ) dρ
, (5) 

here the constants a, b in the last line are determined by the 

oundary conditions r ∗(0) = 0 and r ∗(1) = 1 . 

The corresponding total boarding time is from Eq. (3) 

 T 〉 ∼ 2 

√ 

N 

√ ∫ 1 

0 

τ 2 (q ) dq . (6) 

f seat interference is not taken into account and there is, e.g., two 

roups, each having a fixed effective aisle-clearing time τS , τF as in 

ig. 2 (a), then the ordering of the groups in the queue will not af-

ect the total boarding time in Eq. (6) . This argument easily extends 

o situations with more groups, but as we show in Section 5 , the

ituation is more complex when seat interferences are taken into 

ccount. However, if two groups are mixed (as in random board- 

ng), the effective aisle-clearing time is slightly larger than the sec- 

nd moment approximation in Eq. (2) , and the boarding time in 

q. (6) will be somewhat larger than for policies where the groups 

re separated ( Erland et al., 2021 ). 

.2. Total boarding time for small k > 0 

In order to solve the Euler-Lagrange equation in Eq. (4) that 

aximizes Eq. (1) when k > 0 , we first make a transformation of 

ariables ( Bachmat, 2014 ), 

 = 

ln (x ) 

k 
x = e kq 

r = 1 + kxy y = 

r − 1 

ke kq 
. 

(7) 

hen (by a slight abuse of notation) Eq. (1) reads 

(y ) = 

∫ x 1 

x 0 

τ

(
ln (x ) 

k 

)√ 

y ′ (x ) dx. (8) 

hat the corresponding metric is flat is shown in Appendix A . 
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Fig. 3. Illustration of heaviest curves for random boarding in both sets of coordinates in Eq. (7) . We have used τ 2 (q ) = 1 + Bq + Cq 2 as in Fig. 2 (b). In the xy -coordinates, 

the curve is constrained to the region above the gray-shaded area defined by y = −1 / (kx ) (mapped from the baseline r ≡ 0 ). (a) With small congestion k = 0 . 2 , y ∗ and r ∗ are 

defined by Eq. (9) . (b) For larger congestion k = 0 . 9 , the heaviest curves are piecewise, and y ∗P and r ∗P leave the baseline in x = x k and q = q k , respectively (see Eq. (12) ). 
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2 If τ (q ) is discontinuous in a point q = q d , there might not be a solution to Eq. 

(14) . Then x k = e kq d , and the heaviest curve still takes the form in Eq. (12) . However, 

a is determined by y ∗P (e k ) = 0 and not by the smoothness condition in Eq. (13) (see 

Eq. (29) in Appendix C.1 for the calculation of the corresponding weight for the 
With a flat metric, it is possible to find the heaviest curve y ∗

hat maximizes Eq. (8) , 

 

∗(x ) = a 

∫ x 

1 

τ 2 

(
ln (z) 

k 

)
d z + b = 

1 

k 

∫ x 
1 τ

2 
(

ln (z) 
k 

)
d z ∫ e k 

1 τ 2 
(

ln (x ) 
k 

)
d x 

− 1 

k 
. (9) 

he required start and end points of the transformed curve, 

 

∗(1) = −1 /k and y ∗(e k ) = 0 , determine the constants a, b. An ex-

mple of such a curve, in both xy - and qr-space, is shown in

ig. 3 (a). 

The corresponding maximal curve weight in Eq. (8) is 

(y ∗) = 

√ ∫ 1 

0 

τ 2 ( q ) e kq dq . (10) 

Note that the total boarding time 〈 T 〉 ∼ 2 
√ 

N W(y ∗) increases

ubstantially if k is large and τ 2 (q ) is increasing. If seat interfer- 

nce is ignored, it immediately follows that the slow-first policy 

ith decreasing effective aisle-clearing time is superior to the fast- 

rst policy. In Section 5 we show that this also holds when seat 

nterference is taken into account. 

The curve y ∗ in Eq. (9) is only valid for the calculation of the

symptotic total boarding time if the corresponding curve r ∗ (ob- 

ained by the transformation in Eq. (7) ) is contained in the unit 

quare. This requires that y ∗′ (1) > 1 /k , and from Eq. (9) k must be

ess than a critical value k c , which is implicitly defined by 

 c : k c 

∫ 1 

0 

τ 2 (q ) e k c q dq = τ 2 (0) . (11) 

.3. Total boarding time for large k > k c and non-decreasing τ (q ) 

When the curve y ∗ in Eq. (9) is not contained in the unit square,

he heaviest valid curve y ∗(x ) — with respect to airplane boarding 

turns out to be a piecewise curve y ∗ = y ∗
P 

( Bachmat, 2014 ). For

implicity we here also assume that τ (q ) is non-decreasing (as in 

he fast first and random boarding policies in Fig. 2 ). 

The y ∗P curve follows the baseline curve y = −1 / (kx ) (mapped

rom r(q ) ≡ 0 ) for x ∈ [1 , x k ] , and is smoothly continued by a curve

f the form in Eq. (9) for x ∈ ( x k , e 
k ] . The parameters x k , a, b are de-

ermined by the smoothness and end point conditions. Continuity 

n x = x k requires that y ∗
P 
(x k ) = −1 / (kx k ) such that 

 

∗
P (x ) = a 

∫ x 

x k 

τ 2 

(
ln (z) 

k 

)
dz − 1 

kx k 
, x ∈ (x k , e 

k ] . (12)

moothness of y ∗
P 

at the same point, i.e., y ∗
P 
′ (x k ) = 1 / (kx 2 

k 
) gives 

 = 

[
kx 2 k τ

2 

(
ln (x k ) 

k 

)]−1 

. (13) 
f

6

Finally, y ∗P (e k ) = 0 determines the point x k ≡ e kq k by the implicit 

quation 

 k : τ 2 (q k ) e 
kq k = k 

∫ 1 

q k 

τ 2 (q ) e kq dq, (14) 

here q = q k is the point where the corresponding heaviest curve 

 

∗
P 
(q ) in qr-space departs from the baseline 2 [see Fig. 3 (b)]. 

Adding the weights of the first and second part of r ∗P (x ) and 

pplying the relation in Eq. (14) give the maximized weight 

(r ∗P ) = 

√ 

k 

∫ q k 

0 

τ (q ) dq + 

τ (q k ) √ 

k 
. (15) 

See Appendix C for how these calculations are applied to the 

ast-first policy and also for corresponding calculations for the 

low-first policy. A detailed example with specific assumptions on 

he aisle-clearing time function τ (q ) is calculated explicitly for 

andom boarding with seat interference in Appendix B . 

. Effective aisle-clearing time τ(q ) with seat interference 

Passengers who have arrived at their designated row, use a cer- 

ain aisle-clearing time to take a seat. In Erland et al. (2021) this 

ime was defined as the time X = X q it takes to organize the over-

ead bin luggage before taking a seat. For the three main policies 

onsidered in this paper, the distribution of X q is the same for all 

assengers within each group. In the absence of seat interference 

he effective aisle-clearing time τX (q ) is given by the right-hand- 

ide of Eq. (2) . 

In this paper we also include the effect of seat interference in 

he aisle-clearing time. That is, the additional time W a passen- 

er could have to wait for an already seated passenger to rise up 

nd let the fellow passenger get to a seat closer to the window. 

e utilize that the effective aisle-clearing time τY (q ) is well ap- 

roximated by the square root of its second moment ( Erland et al., 

021 ). 

.1. Probability of seat interference 

Assume random boarding, i.e., both the queue positions ˜ q and 

ow positions ˜ r (non-normalized) are uniformly distributed. As the 

assengers starts to fill the airplane, there is an increasing prob- 

bility that other passengers are already seated at the same row 

egment when a passenger arrives at ones designated row. If the 

assenger is designated with a window seat, the already seated 
ast-first policy). 
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assengers will have to rise up and let the newly arrived passen- 

er pass, and this causes a delay that increases the aisle-clearing 

ime of the passenger. We here compute the probability p W 

( ̃  q ) that 

 passenger with queue position ˜ q has to wait to pass other pas- 

engers who are already seated at the same row segment when 

rriving at that row. 

First, the probability that a random row segment has precisely 

 free seats is given by the hypergeometric distribution. Parame- 

ers are N total seats (population size), a total of N − ˜ q + 1 free 

eats, and h seats per row segment (draws) of which there are 

 ∈ 0 , 1 , . . . , h free seats: 

Pr { Random row segment has x free seats } 
= 

(
N− ˜ q +1 

x 

)(
˜ q −1 
h −x 

)(
N 
h 

) ≡ p R,x . (16) 

n total there are N/h row segments, and a proportion p R,x of those 

ow segments has exactly x free seats. The probability that passen- 

er ˜ q has a designated seat at a row segment with precisely S = x

ree seats is given by the total number of free seats at such row 

egments, divided by the total number of free seats, 

Pr { Random free seat at row segment with S = x free seats } 
= 

x N 
h 

p R,x 

N − ˜ q + 1 

≡ Pr { S = x } . (17) 

ombining Eqs. (16) and (17) gives, depending on the number of 

eats per row segment h , 

 = 2 : Pr { S = 1 } = 

˜ q − 1 

N − 1 

, 

 = 3 : Pr { S = 1 } = 

( ̃  q − 1)( ̃  q − 2) 

(N − 1)(N − 2) 
, 

Pr { S = 2 } = 

2( ̃  q − 1)(N − ˜ q ) 

(N − 1)(N − 2) 
. 

hen h = 2 , and the designated seat of passenger ˜ q is at a row

egment with S = 2 free seats, passenger ˜ q will not have to wait 

ince no other passengers are sitting at that row segment. How- 

ver, when S = 1 , the already seated passenger will have to let the

ther pass if sitting at the aisle seat, which occurs with probabil- 

ty 1 / 2 . The total probability p W 

that passenger ˜ q will have to wait

or already seated passengers to rise up when arriving at the des- 

gnated row is given by 

 = 2 : p W 

= 

1 

2 

Pr { S = 1 } + 0 · Pr { S = 2 } = 

1 

2 

˜ q − 1 

N − 1 

N→∞ = 

q 

2 

, 

 = 3 : p W 

= 

2 

3 

Pr { S = 1 } + 

1 

2 

Pr { S = 2 } + 0 · Pr { S = 3 } 

= 

( ̃  q − 1) 

(N − 1)(N − 2) 

[ 
2 

3 

( ̃  q − 2) + 

1 

2 

2(N − ˜ q ) 
] 

N→∞ = 

2 

3 

q 2 + 

1 

2 

2 q (1 − q ) = q − q 2 

3 

. (18) 

hen N → ∞ , p W 

(q ) is linear in q for h = 2 and follows a second

rder polynomial for h = 3 . If we for h = 3 distinguish between the

aiting time for passengers that have to wait for either one ( W 1 

hen S = 2 , or S = 1 and the middle seat is free) or two ( W 2 when

 = 1 and the window seat is free) already seated passengers, then 

he respective probabilities of waiting are given by the first two 

erms in Eq. (18) , such that p W 1 
(q ) = q − 2 q 2 / 3 and p W 2 

(q ) = q 2 / 3 .

.2. Effective aisle-clearing time — second moment approximation 

We assume that the resulting aisle-clearing time Y = Y q is the 

um of the time used to stow bin luggage X q , and the time needed
7 
o wait for other passengers to rise W , such that 

 q = 

{
X q with probability 1 − p W 

(q ) , 
X q + W with probability p W 

(q ) . 
(19) 

The effective aisle-clearing time parameter τY that scales the 

orentzian metric in Eq. (1) can be approximated well by τ 2 
Y ≈ 〈 Y 2 〉 

 Erland et al., 2021 ). The second moment of the aisle-clearing time 

 q when the waiting time W is equal for both one and two already

eated passengers to rise, is given by 

 Y 2 q 〉 = 〈 X 

2 
q 〉 

(
1 + p W 

(q ) 
2 〈 X q 〉〈 W 〉 + 〈 W 

2 〉 
〈 X 

2 
q 〉 

)
. (20) 

ere we have assumed that X q is independent of W . 

If we for h = 3 distinguish between the waiting time of pas- 

engers that have to wait for either one ( W 1 ) or two ( W 2 ) already

eated passengers, we get 

 = 2 : τ 2 
Y (q ) ≈〈 X 

2 
q 〉 ( 1 + Bq ) , 

 = 3 : τ 2 
Y (q ) ≈〈 X 

2 
q 〉 

(
1 + B 1 q + Cq 2 

)
. (21) 

he constants are determined by the distributions of W 1 , W 2 and 

 q , 

 i = 

2 〈 X q 〉〈 W i 〉 + 〈 W 

2 
i 
〉 

〈 X 

2 
q 〉 , i = 1 , 2 

B = B 1 / 2 (22) 

C = (B 2 − 2 B 1 ) / 3 . 

Note that analytical expressions are readily available for the in- 

egrals that are used to calculate the asymptotic total boarding 

ime in Section 3 when τ (q ) is of the form given in Eq. (21) . 

.3. Parameters derived from empirical data 

Empirical data for airplane boarding has previously been pre- 

ented in Steiner & Philipp (2009) . The data were based on video 

ecordings of the boarding of six different flights at Zurich airport. 

he effective aisle-clearing time τ was estimated accurately based 

n the resulting empirical distributions, for several different group- 

ngs of passengers in Erland et al. (2021) . However, even though 

he occurrence of seat interference for each passenger was also 

ecorded in the data, this aspect of the data was not taken into 

ccount in the latter. 

Here, we have re-analyzed the data set in order to estimate 

ow much of the aisle-clearing time Y that is due to luggage- 

andling ( X) and waiting times ( W 1 , W 2 ), respectively. Luggage- 

andling includes the time needed to clear the aisle except from 

he waiting time for other passengers to rise, and hence passen- 

ers without luggage are also assigned a “luggage-handling” time. 

The moments of the resulting empirical distributions are pre- 

ented in Table 1 . Note that the expected waiting time for one pas-

enger to give way 〈 W 1 〉 is quite similar to the “luggage-handling”

ime 〈 X F 〉 of a passenger without luggage. However, it takes more 

han three times as long to wait for both the aisle and middle 

assenger to rise when one is heading for a window seat, i.e., 

 W 2 〉 ≈ 3 . 1 〈 W 1 〉 . 
The moments are used to estimate the parameters in the effec- 

ive aisle-clearing time functions in Eqs. (21) and (22) . This enables 

omparisons of the asymptotic boarding times for random board- 

ng, fast first and slow first. The underlying empirical distributions 

re used in simulations with finite number of passengers. 

. Superiority of slow first with seat interference 

It has previously been shown that without seat interference 

low first is superior to both fast first and random boarding, while 
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Table 1 

Moments of the empirical distributions of luggage-handling time X based on the empiri- 

cal data in Steiner & Philipp (2009) . The moments of the waiting time distributions are 

〈 W 1 〉 = 5 . 8 , 〈 W 

2 
1 〉 = 39 , 〈 W 2 〉 = 18 . 2 and 〈 W 

2 
2 〉 = 385 . Units of first moments are in seconds. 

Corresponding parameters for the aisle-clearing time functions in Eqs. (21) and (22) are also 

presented. 

Group definition Proportion X 〈 X〉 〈 X 2 〉 B 1 B 2 B C

All passengers 100% X A 15.2 507 0.43 1.86 0.21 0.81 

0 items 45% X F 5.7 56 1.90 10.66 0.95 5.21 

� 1 items 55% X S 22.9 870 0.35 1.40 0.18 0.58 

1 item 40% X S1 17.8 493 0.50 2.10 0.25 0.90 

2 items 11% X S2 31.0 1222 0.33 1.24 0.16 0.50 

� 3 items 4% X S3 52.8 3861 0.17 0.60 0.08 0.23 

Fig. 4. Discrete event simulations with realistic number of passengers N confirm the asymptotic results that slow first (SF) is superior to fast first (FF) for moderate values 

of congestion k . The reverse result that fast-first can outperform slow-first for large values of k occurs for k > 8 . 9 . We have used empirical distributions for both the luggage- 

handling times X F , X S and the waiting times W 1 , W 2 . The proportion of slow passengers is p = 0 . 55 , and there are h = 3 seats per row segment. Each point in the graph is an 

average of 100 000 discrete-event runs. Details of the simulation model are given in Appendix E . In the asymptotic estimates ( N = ∞ , solid lines) the effective aisle-clearing 

time is τ 2 (q ) = 1 + B q q + C q q 
2 , where both B q , C q have constant values within the slow and the fast region. 
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he ranking of fast first and random boarding depends on the pa- 

ameter settings ( Erland et al., 2019; 2021 ). In this section we 

uantify how seat interference affects the total boarding time and 

he corresponding ranking of the three policies. Only high-level re- 

ults are presented in this section — detailed calculations of heav- 

est curves and corresponding heaviest curve weights are found in 

ppendices B and C . 

Analytical comparisons can be made more explicit when the 

eaviest curves are not piecewise as described in Section 3.2 . Let 

 

∗
c be the minimum value of k c in Eq. (11) taken over all of the

hree policies, and assume k � k ∗c . We first use the formulation of

he weight of the geodesic in Eq. (10) to show that the superior- 

ty of slow first is maintained when seat interference is taken into 

ccount. Using realistic parameters in Fig. 4 , we demonstrate an- 

lytically for N = ∞ , and by simulations with finite N = 180 , that

his is also the case for k > k ∗c , except when the congestion is very

arge. 

For the analytical comparisons we maintain the assumption 

hat the effective aisle-clearing time τ 2 
Y 

can be substituted by 〈 Y 2 〉 . 
e implicitly make the natural assumption that if the passen- 

ers are separated into two groups based on perceived luggage- 

andling time X , then the bin luggage-handling time of the fast 

assengers is shorter than that of the slow passengers, both in 

erms of 〈 X F 〉 < 〈 X S 〉 and 〈 X 2 F 〉 < 〈 X 2 S 〉 . Likewise, we assume that the

wo first moments of W 2 are larger than those of W 1 , i.e., it takes a

onger time to wait for two already seated passengers to give way 

han for only one. This is also the case for the empirical data in

able 1 . 

t

8 
.1. Slow first is superior for low congestion k � k ∗c 

The formulation of maximal curve weight W(r ∗) in Eq. (10) in- 

icates that slow first is superior to fast first and random boarding 

also when seat interference is taken into account: With slow 

rst, the average bin luggage-handling time 〈 X q 〉 is decreasing, and 

his counterbalances the effect of increasing waiting probability 

p W 

(q ) . Hence, the variance of the aisle-clearing time Y q on the q

omain is reduced. Formally, comparisons of policies can be done 

n the following way. 

As in Eq. (19) , assume that the aisle-clearing time is a sum of 

he time needed to organize overhead bin luggage X = X q and the 

aiting time W for already seated passengers to let the passen- 

er pass. Also assume that the squared effective aisle-clearing time 
2 
Y 
(q ) can be substituted by 〈 Y 2 q 〉 . 

heorem 1. Let the number of passengers N be large, congestion k � 

 

∗
c , and assume τ 2 (q ) = 〈 Y 2 q 〉 . Then the asymptotic total boarding time

f the slow-first policy is smaller than for the random boarding and 

ast-first policies, also when seat interference is taken into account. 

A simple proof based on the compact expression for maximal 

urve weight W(r ∗) in Eq. (10) is found in Appendix D . 

Fig. 4 shows that the asymptotic boarding time (solid lines) for 

low first, random boarding and fast first are ranked in that order 

or small k . The simulation results (bullets connected by dashed 

ines) confirm that the ranking is valid for realistic number of pas- 

engers N = 180 as well, even though the relative difference be- 

ween policies is less compared to N = ∞ . 
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Fig. 5. Discrete event simulations with realistic number of passengers N = 180 confirm the asymptotic results for low congestion that the total boarding time is reduced 

when the passengers are divided into more groups with the slowest groups entering first. The groups are ranked according to their effective luggage-handling time. We 

have used empirical luggage-handling and waiting time distributions and h = 3 seats per row segment. The passengers have been divided into groups based on the number 

of hand luggage each passenger is carrying. The lower bound “slow ranked first” where the queue is organized based on descending luggage-handling time, can only be 

attained by clairvoyantly knowing the luggage-handling time of each passenger before boarding. Each point in the graph is an average of 10 0 0 0 0 discrete-event runs. Details 

of the simulation model are given in Appendix E . 
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.2. Slow first is superior for realistic congestion k 

In Theorem 1 we utilize the simple formulation of the asymp- 

otic boarding time when k � k c . With the empirical parameters 

sed in Fig. 4 , k c takes the values 0.076, 0.551, and 0.947 for fast

rst, random boarding and slow first, respectively. This means that 

he result in Theorem 1 is strictly speaking only valid for k � k ∗c =
 . 076 . 

For k > k ∗c , the calculations of the asymptotic boarding time are 

ased on less explicit calculations, which makes analytical compar- 

sons of policies much harder. Still, the boarding times can be cal- 

ulated, and in Fig. 4 the superiority of slow first is valid for values

f k that cover a range that is much larger than realistic values of 

 ≈ 4 . For k = 4 and N = 180 , the slow-first policy yields 6.4% less

oarding time than random boarding while the improvement with 

ast first is 4.5%. With less than full occupancy, the congestion k 

s typically smaller, and the relative improvement with slow first 

ompared to random boarding would be even higher. 

Also note that the relative ranking between policies in 

ig. 4 with respect to asymptotic boarding time ( N = ∞ ) is very

imilar to the simulation-based results with a realistic number of 

assengers ( N = 180 ) for all values of k . Note in particular that fast

rst overtakes random boarding when k ≈ 0 . 9 and subsequently 

low first when k ≈ 10 for both choices of N. 

.3. Ambiguous ranking of slow first and fast first for high congestion 

Fig. 4 shows that for very large values of k fast first is supe-

ior to both slow first and random boarding. Such high congestion 

alues are unrealistic under normal circumstances. However, if so- 

ial distancing rules during the COVID-19 pandemic were enforced 

ombined with full occupancy, the congestion could be as high as 

 = 8 ( Bachmat et al., 2021 ). Still, with a realistic number of pas-

engers N = 180 , the gain is marginal, and there is no relative dif-

erence for very large values of k since then each passenger would 

ll up the whole aisle. However, when N = ∞ , the relative differ-

nce between fast first and slow first approaches a non-negligible 

imiting value with fast first taking 2.1% less time than slow first. 

rom a theoretical perspective this is remarkable since the differ- 

nce vanished when seat interference was not taken into account 
9 
 Erland et al., 2021 ). A tangible physical explanation for why seat 

nterference has this effect is yet to be concluded upon. 

. Towards optimal ordering of the passenger queue 

In this section we use the formulation of the maximal curve 

eight in Eq. (10) to show that for policies that do not take 

he designated row position of passengers into account, the total 

oarding time is minimized if the queue positions of passengers 

re according to descending luggage-handling time. Corresponding 

olicies that require detailed ordering of the queue based on both 

ow numbering and individual aisle-clearing times, are identified 

nd shown to be asymptotically optimal when the number of pas- 

engers tends to infinity ( Willamowski & Tillmann, 2022 ). How- 

ver, the application of policies like this would require the clair- 

oyant knowledge of the luggage-handling time of every passenger, 

n addition to individual compliance with the designated ordering. 

he former is impossible, the latter is impractical. However, we use 

he optimal solution as a guiding principle to devise a new board- 

ng policy that contains neither of the deficiencies of the optimal 

olicy. 

.1. Slow ranked first is superior with low congestion k 

As noted in Theorem 1 , slow first is superior to both fast first 

nd random boarding for small k . As shown in Fig. 4 , the superi-

rity of slow first increases rapidly with k , but only up to a cer-

ain threshold. Above that threshold, the heaviest curves could be 

iecewise and the comparisons between policies are more chal- 

enging to analyze. Nevertheless, we show that the slow-first pol- 

cy can be improved for small k (a proof for Corollary 1 is found in

ppendix D ). 

orollary 1. Assume τ 2 
Y 
(q ) = 〈 Y 2 q 〉 and k < k c for all possible or-

erings of the queue. Then the asymptotic total boarding time is 

inimized if the queue is ordered according to decreasing luggage- 

andling time, i.e., “slow ranked first”. 

The simulation results in Fig. 5 with empirical luggage-handling 

nd waiting-time distributions, confirm that slow ranked first is 

uperior to the other policies when the number of passengers 



S. Erland, E. Bachmat and A. Steiner European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 19, 2023;2:21 ] 

i

l

d  

p

i

s

(

c

—

f

f

c

a

fi

6

t

l

c

t

p

f

g

t

g

b

d

g

t

m

c

g  

i

p

7

t

f

s

c

e

t

t

m

l

w

s

t

g

t

s

i

s

t

e

b

i

g

a

f

t  

o

o

e

f

p

b

t

c

o

p

l

b

a

a

a

k

m

n

t

(

v

o

t

t

t

s

t

f

fi

i

f

i

b

D

c

i

A

τ

d

T

E  

t

 

b

x

S  

s

s N = 180 . When the queue is ordered according to decreasing 

uggage-handling time, the ranking also imposes a variability re- 

uction in aisle-clearing time Y q for fixed q , and this seems to am-

lify the superiority of such policies. Substituting τ 2 (q ) by 〈 Y 2 q 〉 
s strictly speaking only valid when Y q is constant, while τ 2 (q ) is 

omewhat larger than 〈 Y 2 q 〉 for all known cases with stochastic Y q 
 Erland et al., 2021 ). Hence, policies with higher variability in aisle- 

learing time within groups — like random boarding and fast first 

tend to have higher total boarding time. 

Conversely, this variability reduction could explain why the 

ast-ranked-first policy is superior to both random boarding and 

ast first in Fig. 5 . However, the variability reduction in fast first 

ompared to random boarding do not counterbalance that the 

isle-clearing time increase faster in q for fast first, and hence fast 

rst is inferior to random boarding for small values of k . 

.2. A practical improvement — Slow groups first with more groups 

The optimal slow-ranked-first policy in Corollary 1 is not prac- 

ically implementable as it requires clairvoyance to know the 

uggage-handling time of each passenger before boarding. Still, we 

an devise a policy that is better than the slow-first policy. 

The empirical data in Table 1 suggest that more luggage items 

end to increase the luggage-handling time. Hence, a practical im- 

lementation of slow ranked first is to divide the passengers into 

our groups based on the number of luggage items they carry. The 

roup with the most luggage items enter the queue first, and then 

he rest enters the queue according to decreasing number of lug- 

age items. 

The simulation results in Fig. 5 seem to confirm that the best 

oarding strategy is to let the passengers enter the queue based on 

escending number of luggage items. The improvement with four 

roups compared to with two groups is most pronounced when 

he congestion is k ≈ 1 . However, there is also significant improve- 

ent with more realistic congestion-values, and the boarding time 

ompared to random boarding for slow first with 2 groups and 4 

roups is 93 . 6% and 92 . 2% , respectively (when k = 4 ). Still, there

s a sizable gap down to the non-implementable slow-ranked-first 

olicy, which yields 84 . 2% . 

. Discussion and outlook 

In this paper we have generalized a method that applies space- 

ime geometry as a tool for estimating the boarding time of a large 

amily of group-based airplane boarding policies. First, we repre- 

ent the solution of the connected optimization problem in a more 

ompact way than in previous literature. Then, the representation 

nables us to analyze and compare several policies when seat in- 

erference is taken into account. Finally, we can quite easily deduce 

hat when the congestion is small, the total boarding time is mini- 

ized if the passengers enter the airplane according to descending 

uggage-handling time. The latter has previously only been shown 

hen the passengers have been divided into two groups without 

eat interference, but the current result enables us to find bet- 

er solutions for the more complex situation with more than two 

roups. 

The analytical results are based on asymptotic leading order es- 

imates with large number of passengers ( N → ∞ ). Even though 

uch estimates tend to overestimate the boarding time, the rank- 

ng of different policies with a realistic number of passengers is 

trikingly well predicted by the method. Simulations confirm that 

his is the case when seat interferences are included as well (see, 

.g., Fig. 4 ). 

Other policies that have not been treated in this paper can also 

e compared by the same framework. This includes the outside- 

n policy ( Marelli et al., 1998 ), where the window seat passen- 
10 
ers board first, followed by the middle seat passengers, and finally 

isle seat passengers. This means that no-one will have to wait for 

ellow passengers to rise up to let them pass to a seat closer to 

he window, and the probability of waiting p W 

(q ) ≡ 0 . Hence, the

utside-in policy is asymptotically equal to random boarding with- 

ut seat interference. Under random boarding with seat interfer- 

nce and 6 seats per row, 39% of the passengers will have to wait 

or already seated aisle or middle passengers to rise up to let them 

ass. With N = 180 passengers, random boarding yields 17% longer 

oarding time than the outside-in policy when empirical distribu- 

ions are applied. I.e., the seat interference gives a non-negligible 

ontribution to the boarding time. This is comparable to the 12% 

bserved increase in a single small-scale experiment with N = 72 

assengers by Steffen & Hotchkiss (2012) . 

Customer satisfaction and the fact that passengers tend to dis- 

ike too detailed instructions, are probably the reason why group- 

ased policies are so widely applied by airlines, and such policies 

re also the target of this article. Nevertheless, there have been tri- 

ls with policies that instruct passengers on a more detailed level, 

nd the Steffen method ( Steffen, 2008 ) is probably the most well- 

nown of such policies. It should be noted that further improve- 

ents have been developed by mixed-integer programming tech- 

iques that among other parameters take individual aisle-clearing 

ime into account in order to minimize the total boarding time 

 Willamowski & Tillmann, 2022 ). It is, e.g., proved that all indi- 

idual aisle-clearing times must be known in order to devise an 

ptimal by-seat policy. 

Airplane boarding policies tend to be compared in terms of the 

otal boarding time, from the first person entering the airplane till 

he last person sits down. However, from a managerial perspec- 

ive, other objectives must also be kept in mind in order to en- 

ure customer satisfaction. One such goal is the minimization of 

he time each person has to wait in the queue to get seated. Seen 

rom this perspective, Bachmat et al. (2021) have shown that fast 

rst is superior to both random boarding and slow first when seat 

nterference is not taken into account. One could hypothesize that 

ast first would be even more superior in this respect when seat 

nterference is taken into account, but this remains to be verified 

y further analysis. 
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The authors declare that they have no known competing finan- 
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ppendix A. Transformations that prove a flat metric 

The infinitesimal curve weight in Eq. (1) when τ (q, r(q )) = 

(q ) , is given by the metric 

W 

2 = τ 2 (q ) 
[
d qd r − k (r − 1) dq 2 

]
= τ 2 

(
ln (x ) 

k 

)
d xd y 

= d ̃  x dy. (23) 

he second line in Eq. (23) appears when the transformations in 

q. (7) are applied. When τ (q ) is a constant, the metric is flat and

he geodesics are straight in xy -space ( Bachmat, 2014 ). 

When τ (q ) depends on q , the third line in Eq. (23) is obtained

y the following transformation (from xy -space to ˜ x y -space), 

˜ 
 = 

∫ 
τ 2 

(
ln (x ) 

k 

)
dx. 

o, we still have a flat metric that gives straight geodesics in ˜ x y -

pace for all continuous τ (q ) . 
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If we, e.g., assume the special case that τ 2 (q ) = 1 + Bq [i.e., h =
 in Eq. (21) ], the explicit transformation reads 

˜ 
 = 

∫ 
1 + B 

ln (x ) 

k 
dx = x + 

Bx 

k 
[ ln (x ) − 1 ] . 

ppendix B. Random boarding with seat interference —

xplicit results 

In this section we derive the asymptotic total boarding times for 

 specific version of the random boarding policy by explicit com- 

utation of the heaviest curve and corresponding weight. The com- 

utations depend on the value of k . 

1. Random boarding with k = 0 

The effective aisle-clearing time τY (q ) can be approximated by 

q. (21) . We simplify by setting 〈 X 2 q 〉 = 1 (such that, e.g., τY (q ) =
 

1 + Bq for h = 2 ). Then Eq. (5) gives 

 = 2 : r ∗(q ) = 

q + 

B 
2 

q 2 

1 + 

B 
2 

 = 3 : r ∗(q ) = 

q + 

B 1 
2 

q 2 + 

C 
3 

q 3 

1 + 

B 1 
2 

+ 

C 
3 

. 

he corresponding maximal curve weights in Eq. (6) are 

 = 2 : W(r ∗) = 

√ 

1 + 

B 

2 

 = 3 : W(r ∗) = 

√ 

1 + 

B 1 

2 

+ 

C 

3 

. (24) 

Note that without seat interference, B = 0 = B 1 = C, and we ob-

ain the estimates obtained in, e.g., Erland et al. (2019) . 

2. Random boarding with h = 2 and 0 < k < k c 

When we for h = 2 assume τ (q ) = 

√ 

1 + Bq , the heaviest curve

nd its corresponding weight in Eqs. (9) and (10) , respectively, 

ives 

y ∗(x ) = 

1 

k 

(x − 1) + 

B 
k [ x ( ln (x ) − 1) + 1 ] 

(e k − 1) + 

B 
k 

[
e k (k − 1) + 1 

] − 1 

k 

(y ∗) = 

√ 

e k − 1 

k 
+ 

B 

[
e k (k − 1) + 1 

]
k 2 

. (25) 

he corresponding r ∗(q ) in the normalized queue-row diagram on 

he unit square can be obtained by the transformations in Eq. (7) . 

ince r ∗ must be inside the unit square, we must require that k 

oes not exceed a certain value k c , defined implicitly by Eq. (11) , 

 c : e k c = 2 − B 

(
e k c − e k c − 1 

k c 

)
. (26) 

.g., with random boarding B = 0 . 21 in Table 1 , and then k c = 0 . 64 .

3. Random boarding with h = 2 and k > k c 

If k > k c as defined by Eq. (26) , the heaviest curve y ∗(x ) = y ∗P (x )

s a piecewise curve as defined by Eqs. (12) to (14) . The curve de-

arts from the baseline in x = x k , and when h = 2 , from Eq. (14) ,

 k is implicitly given by 

 k = 

e k [ k + B (k − 1) ] 

2 

[
k + B 

(
ln ( x k ) − 1 

2 

)] . (27) 
s

11 
The curve is smoothly continued by the curve defined by Eqs. 

12) and (13) . Hence, the heaviest curve and its corresponding 

eight in Eq. (15) are given by 

y ∗P (x ) = 

{ 

− 1 
kx 

1 � x < x k 

− (e k −x )(1 − B 
k 
)+ B 

k [ e 
k k −x ln (x ) ] 

x k 
2 [ k + B ln ( x k ) ] x k � x < e k . 

(y ∗P ) = 

2 

√ 

k 

3 B 

[ 
( 1 + Bq k ) 

3 
2 − 1 

] 
+ 

√ 

1 + Bq k 
k 

, (28) 

here q k ≡ ln (x k ) /k . 

If we assume a realistic congestion k = 4 and h = 2 seats per

ow segment, the outside-in policy with B = 0 gives x k = 27 . 30

n Eq. (27) (corresponding to q k = 0 . 827 ), while random boarding

ith B = 0 . 21 (see Table 1 ) gives q k = 0 . 829 . 

ppendix C. Analysis of fast-first and slow-first policies 

1. Heaviest curve weight for fast first 

We assume that τ 2 (q ) has the second order polynomial form 

n Eq. (21) . For fast-first, there is a discontinuity in τ (q ) when q =
 − p where the parameters of τ 2 (q ) change values as indicated by 

able 1 . We therefore denote τ (q ) = τF (q ) when q < (1 − p) in the

rst part of the queue where there are only fast passengers, and 

s the slow passengers enter the queue, we denote τ (q ) = τS (q )

hen q > (1 − p) . 

Typical shapes of the heaviest curves for the fast-first policy 

re shown in Fig. 6 (a–d). The corresponding heaviest weights W 

∗ ≡
(r ∗) can be summarized as follows: 

k < k c : W 

∗ = 

√ ∫ 1 −p 

0 

τ 2 
F ( q ) e 

kq dq + 

∫ 1 

1 −p 

τ 2 
S ( q ) e 

kq dq 

k c < k < k F1 : W 

∗ = 

√ 

k 

∫ q k 

0 

τF (q ) dq + 

τF (q k ) √ 

k 

k F1 < k < k F2 : W 

∗ = 

√ 

k 

∫ 1 −p 

0 

τF (q ) dq 

+ 

√ ∫ 1 

1 −p 

τ 2 
S ( q ) e 

k [ q −(1 −p)] dq 

k F2 < k : W 

∗ = 

√ 

k 

∫ 1 −p 

0 

τF (q ) dq + 

√ 

k 

∫ q k 

1 −p 

τS (q ) dq 

+ 

τS (q k ) √ 

k 
(29) 

ere q k is given by Eq. (14) , and k c by Eq. (11) . k F1 and k F2 are the

pper and lower limiting values for k when the piecewise curve 

epartures smoothly from the baseline in the fast and the slow re- 

ion, respectively. These are found by setting q k = 1 − p and solv- 

ng Eq. (14) , i.e., 

k F1 : lim 

q → (1 −p) −
τ 2 

F (q ) = k F1 

∫ 1 

1 −p 

τ 2 
S (q ) e k F1 [ q −(1 −p)] dq 

k F2 : lim 

q → (1 −p) + 
τ 2 

S (q ) = k F2 

∫ 1 

1 −p 

τ 2 
S (q ) e k F2 [ q −(1 −p)] dq. 

2. Heaviest curve weight for slow first 

The heaviest curve and the corresponding weight can also be 

omputed when τ (q ) is non-decreasing. However, these are usu- 

lly more specialized cases, and here we only show the solutions 

f specific cases of the slow-first policies. For slow first, there is a 

iscontinuity in τ (q ) when q = p, and the notation of τF , τS corre-

ponds to the one used in Appendix C.1 above. 
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Fig. 6. Illustration of the shape of the heaviest curves for increasing congestion k . (a–d) The fast-first policy. (e–g) The slow-first policy. 
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Typical shapes of the heaviest curves for the slow-first policy 

hen the proportion p of small passenger is not too small 3 are 

hown in Fig. 6 (e–g). The corresponding heaviest weights can be 

ummarized as follows: 

k < k c : W 

∗ = 

√ ∫ p 

0 

τ 2 
S ( q ) e 

kq dq + 

∫ 1 

p 

τ 2 
F ( q ) e 

kq dq 

k c < k < k S1 : W 

∗ = 

√ 

k 

∫ q k 

0 

τS (q ) dq + 

τS (q k ) √ 

k 

k S1 < k : W 

∗ = 

√ 

k 

∫ q 1 

0 

τS (q ) dq + 

τS (q 1 )[1 − (1 − r p ) e k (q 1 −p) ] √ 

k 

−τF (q 2 )[1 − (1 − r p ) e k (q 2 −p) ] √ 

k 
+ 

√ 

k 

∫ q k 

q 2 

τF (q ) dq 

+ 

τF (q k ) √ 

k 
. (30) 

ere q k is given by Eq. (14) , and k c by Eq. (11) . 

When k S1 < k in Eq. (30) , the value r = r p defines the point

here the curve crosses from the slow to the fast region in q = p,

s indicated in Fig. 6 (g). We determine r p by the value that maxi-

izes W 

∗. For a given r p , the curve is smoothly departing the base-

ine in q = q 1 . The curve refracts downwards at q = p until touch-

ng the baseline smoothly at q = q 2 . Hence, q 1 < p < q 2 are given

y the solutions of 

 1 : τ 2 
S (q 1 )[1 − (1 − r p ) e 

k (q 1 −p) ] = k 

∫ p 

q 1 

τ 2 
S (q ) e k (q −q 1 ) dq 

 2 : τ 2 
F (q 2 )[1 − (1 − r p ) e 

k (q 2 −p) ] = − k 

∫ q 2 

p 

τ 2 
F (q ) e k (q −q 2 ) dq, 

espectively. This means that r p , q 1 , q 2 are determined by optimiza- 

ion of W 

∗ in Eq. (30) . Finally k S1 is defined implicitly as the value

f k that gives q 2 = q k . 
3 Small p requires another special case that is not treated here ( Erland et al., 

019 ). 

T

p

o  

t

12 
3. Heaviest curve weight for k → ∞ 

For k → ∞ , we show the heaviest curve weight for non- 

ecreasing τ (q ) . However, the result in Eq. (31) can also be 

xtended to cover the slow-first policy. The right-hand-side of 

q. (14) is bounded by 

 

∫ 1 

q k 

τ 2 (q ) e kq dq � k (1 − q k ) τ
2 (q k ) e 

kq k . 

hen k → ∞ , a solution of Eq. (14) requires that q k → 1 . Then the

aximized weight in Eq. (15) is given by 

W(r ∗P ) √ 

k 

k →∞ −→ 

∫ 1 

0 

τ (q ) dq, (31) 

hen τ (1) is finite. 

ppendix D. Proofs 

1. Proof of Theorem 1 

From Eq. (20) , 

 Y 2 q 〉 = 〈 X 

2 
q 〉 + 2 〈 X q 〉〈 W 〉 p W 

(q ) + 〈 W 

2 〉 p W 

(q ) . 

irst assume h = 2 . When k < k ∗c , the total boarding time ( Eq. (3) )

or all three policies is determined by W(r ∗) in Eq. (10) , which

ith τ 2 
Y (q ) = 〈 Y 2 q 〉 becomes 

 

2 (r ∗) = 

∫ 1 

0 

〈 X 

2 
q 〉 e kq dq + 2 〈 W 〉 

∫ 1 

0 

〈 X q 〉 p W 

(q ) e kq dq 

+ 〈 W 

2 〉 
∫ 1 

0 

p W 

(q ) e kq dq. (32) 

he three boarding policies only differ through X q , i.e., how the 

assengers are arranged in the queue, and 〈 X 2 q 〉 and 〈 X q 〉 depend 

n q in the same way as τ (q ) in Eq. (2) . The waiting time W in

he last term is equal for all policies. 
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If k = 0 and p W 

(q ) ≡ 1 , Eq. (32) reduces to 

 

2 (r ∗) = 

∫ 1 

0 

〈 X 

2 
q 〉 d q + 2 〈 W 〉 

∫ 1 

0 

〈 X q 〉 d q + 〈 W 

2 〉 , (33)

nd under these assumptions all three terms in Eq. (33) are equal 

or all three policies. The two integrals are simply the second and 

rst moment, respectively, of the luggage-handling time X of all 

assengers seen as one group, irrespective of how they are ordered 

n the queue. This is the case for any policy where the queue or- 

ering is according to luggage-handling time. E.g., with two groups 

he first integral is given by 〈 X 2 
S 
〉 p + 〈 X 2 

F 
〉 (1 − p) , with a corr e- 

ponding expression for the second integral. 

In Eq. (32) , the two first integrands in Eq. (33) are weighted 

y increasing functions e kq and p W 

(q ) e kq , respectively. This means 

hat moments of X q that increase in q are weighted more than 

hose decreasing. Consequently, the slow-first policy is superior to 

oth the fast-first and the random boarding policies. The result 

asily extends to the case where there are h = 3 passengers per 

ow segment and there is a distinction between the waiting times 

 1 and W 2 as in Eq. (21) . 

2. Proof of Corollary 1 

For a given luggage-handling time distribution, 
∫ 〈 X 2 q 〉 dq and 

 〈 X q 〉 dq take the same values no matter how the queue is ordered. 

n order to have the lowest possible penalty by the factors e kq 

nd p W 

(q ) e kq in the corresponding integrals in Eq. (32) , the queue

hould be ordered according to decreasing luggage-handling time. 

his slow-ranked-first policy is clearly the ordering that minimizes 

he curve weight in Eq. (32) , when k is sufficiently small. 

ppendix E. Simulation model 

The simulation is by discrete event modeling with fixed time 

teps. For each case certain parameters are fixed: the number of 

assengers N, the congestion k , the policy, the proportion of pas- 

engers in each group, the luggage-handling time distribution for 

ach group and the waiting time distributions. Empirical distribu- 

ions were applied, and these were inferred from data from 296 

ndividual passengers based on video observations from 6 different 

ights ( Steiner & Philipp, 2009 ). The distributions are discretized 

s a multiple of the time-step. We have used congestion k = 4 with

nderlying parameters ρ = 1 , d = 1 , w = 2 / 3 , n a = 1 , and s = 6 as

efined in Section 2.1 . 

For each case, several of the passenger characteristics are 

tochastic and several scenarios are generated to reflect this. For 

ach scenario, each of the N passengers is designated to a group, 

nd depending on the policy they are given a queue, row and 

eat number. In addition, each passenger is attributed a luggage- 

andling time from the appropriate empirical aisle-clearing time 

istribution, depending on their group. Any additional waiting time 

s drawn from the appropriate empirical waiting time distribution, 

ased on the queue number of the other passengers heading for 

he same row segment. The individual aisle-clearing time is the 

um of the luggage-handling time and the waiting time. 

For each time step, the queue propagates along the aisle, tak- 

ng each passenger in turn, starting with the passenger standing 

urthest into the aisle. Let passenger A be the one under consid- 

ration: If passenger A is not at the designated row, the passen- 

er moves towards that row, but must stop short if blocked by the 

assengers in front. The distance of the aisle that is occupied de- 

ends on the distance w between consecutive passengers in the 

isle, and the number of standing passengers in between passen- 

er A and the nearest passenger in front that stands waiting at a 

esignated row. When all passengers have moved, a time-step is 
13 
educted from the remaining aisle-clearing time of those passen- 

ers already standing by their designated rows. If the aisle-clearing 

ime has passed, the passenger sits down. Two passengers cannot 

lear the aisle at the same row at the same time. 

This cycle is repeated until all passengers are seated. The board- 

ng time is given as the number of time steps used. 
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