Hopland-Nechita, F.V., Andersen, J.R. & Beisland, C. IPSS "bother question" score predicts healthrelated quality of life better than total IPSS score. *World J Urol* **40**, 765–772 (2022). https://doi.org/10.1007/s00345-021-03911-2

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's <u>AM terms of use</u>, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <u>https://doi.org/10.1007/s00345-021-03911-2</u>

1 IPSS «bother question» score predicts health-related quality of life

- 2 better than total IPSS score
- 3
- 4

5 Florin V Hopland-Nechita, MD¹; John R Andersen, PhD^{1,2}; Christian Beisland, MD, PhD^{3,4}

- ¹Urology Department, Førde Central Hospital, Førde, Norway
- 7 ² Western Norway University of Applied Sciences, Førde, Norway
- 8 ³Department of Clinical Medicine, University of Bergen, Bergen, Norway
- 9 ⁴Department of Urology, Haukeland University Hospital, Bergen, Norway
- 10

11 Abstract

12

13 Objective

To investigate the role of bothersomeness of urinary symptoms on the general health-related quality of life (HRQoL) of patients with benign prostatic hyperplasia. We hypothesized that a higher International Prostate Symptom Score (IPSS) would be associated with a higher score on the IPSS bother question (IPSS-BQ), and a higher IPSS-BQ score would be the dominant factor associated with poorer general HRQoL.

19 Materials and methods

A case control, cross-sectional study design was used. Patients were selected according to strict 20 21 inclusion and exclusion criteria and stratified by IPSS severity group (controls: IPSS < 8; moderately 22 symptomatic: IPSS = 8-18; and severely symptomatic: IPSS > 18). The IPSS-BQ was used to analyse 23 bothersomeness of urinary symptoms. A standardised, multidimensional measure of HRQoL (RAND-24 36) was used. Data were collected on prostate size, uroflowmetry parameters, prostate specific 25 antigen and comorbidities that were quantified using the Charlson Index and the American Association 26 of Anaesthesiologists (ASA) score. Multiple linear regression models were used to assess the impact of 27 bothersomeness of urinary symptoms on physical and mental HRQoL. Cohen's d was used to 28 determine the effect size.

29 Results

We included 83 patients in the statistical analysis. Linear regression analyses showed that the IPSS was not an independent predictor of HRQoL. Only the highest IPSS-BQ score was associated with both worse physical (P = 0.021) and mental (P = 0.011) HRQoL in the final model. The effect sizes were small to moderate.

- 34 Conclusion
- The IPSS-BQ score is an important predictor of HRQoL. The IPSS-BQ score as a proxy should be regarded
 as a standard outcome measure and reported in all LUTS-related research.
- 37

38 Keywords: IPSS "bother question", RAND-36, Health-related quality of life, Bothersomness of LUTS

39

40 Introduction

41 Benign prostatic hyperplasia (BPH) is a progressive disease and the main cause of lower urinary tract 42 symptoms (LUTS) in aging men[1]. The presence of moderate to severe LUTS is associated with 43 decrements in general health related quality of life (QoL)[2], which refers to "how health impacts on 44 an individual's ability to function and his or her perceived well-beeing in physical, mental and social 45 domains of life"[3] The degree to which these symptoms bother patients (bothersomeness) is a key 46 decision point in the diagnosis and treatment algorithm of the European Association of Urology 2020 47 Guidelines for non-neurogenic male-LUTS[4]. Most of the studies on BPH treatment have used 48 improvement in symptoms, as quantified by the International Prostate Symptom Score (IPSS), as 49 primary or secondary endpoints to evaluate efficacy[5-8]. However, the IPSS alone is not a strong predictor of general health-related quality of life (HRQoL)[9]. Improved HRQoL should be the main 50 51 endpoint of any proposed treatment modality for BPH. Therefore, comprehending the level of 52 impairment in HRQoL due to LUTS for a unique patient should be valuable adjunct information in all 53 treatment-evaluation research[10]. The IPSS bother question (IPSS-BQ) is the most used measure of 54 disease-specific quality of life QoL in the evaluation of men with BPH[11]. Various studies have 55 demonstrated the reliability and validity of the IPSS-BQ and have reported a strong positive correlation 56 with other disease-specific QoL instruments with more items[12, 13]. However, to our best knowledge, 57 no published studies have investigated the role of the IPSS-BQ as a predictor of general HRQoL. The 58 most widely used questionnaire for assessing general HRQoL is the RAND 36. Although evaluations of the general HRQoL of patients with LUTS using the standardised SF-36/RAND-36 questionnaire have 59 60 been published, these studies have only addressed the association between symptoms (IPSS= and 61 general HRQoL and not the association between bothersomness og LUTS (IPSS-BQ) and HRQoL [9, 14]. 62 The aim of this study was to investigate the role of bothersomeness of urinary symptoms on the 63 general HRQoL of patients with LUTS, secondary to BPH. We hypothesised that a higher IPPS would be associated with a higher IPSS-BQ, while a higher IPSS-BQ would be the dominant factor associated with 64 65 a poorer general HRQoL.

66

67 Material and Methods

68 Study design

69 A cross-sectional design was applied. The study was conducted in the Urologic Outpatient Clinic of

70 Førde Central Hospital. The inclusion period was 20 November 2018 – 17 February 2021.

- 71
- 72 Participants

Patients were referred by their general practitioners (GPs) and selected by the first author if they met
the study criteria (Table 1).

75 We did not impose limits on the inclusion criteria regarding prostate size, prostate specific antigen 76 (PSA) value or maximum flow rate (Q-max) because we wanted our study population to be as 77 representative as possible of the general population. Knowing that different categories of patients 78 have different experiences of LUTS, we needed to have wide variation in our data in order to find weak 79 correlations in our analysis of the link between patients' reports of bothersomeness of LUTS and 80 perceived HRQoL. Reference data for HRQoL were derived for am representative survey of general 81 population of Norwegian adults from 2015. The sample consisted of 947 males who completed the 82 Norwegian version of the RAND-36.

83 Please see Table 1 for patient selection, workup and data collection.

84

85 Measurements

To assess symptom severity, we used the standard 7-item IPSS questionnaire. The eighth question of the IPSS, IPSS-BQ (i.e. 'If you were to spend the rest of your life with your urinary condition just the way it is now, how would you feel about that?') was scored on a 6-point scale: 0 (delighted), 1 (pleased), 2 (mostly satisfied), 3 (mixed about equally satisfied and dissatisfied), 4 (mostly dissatisfied) and 5 (unhappy), with higher scores indicating worse QoL. Patients were initially divided in accordance with the scores of the standard IPSS groups: control group (0-7) moderately symptomatic group (8-19) and severely symptomatic group (20-35)[15].

The RAND-36 is a widely used HRQoL survey and a reliable tool for analysing group comparisons based on its internal consistency and test-retest reliability indexes[3, 16]. The instrument consists of 36 items that assess eight health concepts: physical functioning, physical role functioning, physical pain, general health, vitality, social functioning, emotional role functioning and mental health. The RAND-36 is not specific for any population or disease. Each subscale is converted to a 100-point scale, with 100 representing optimal HRQoL. The eight scales of the RAND-36 are calculated to yield overall physical and mental HRQoL summary scores[17]. 100 The presence of comorbidities was assessed using the American Society of Anaesthesiology (ASA) score

101 and the Charlson Index[18].

102

103 Sample size

Given a power level of 80%, a two-tailed P-value of 0.05 and N = 83, a Pearson correlation of 0.3 is
likely to be statistically significant[19]. An effect-size of 0.3 indicates an thershold for effects that are
clinically relevant and potentially powerfull in bothe the short and the long run.[20]

107

108 Statistical method

109 To examine the associations between the different variables, we used analysis of variance (ANOVA) to 110 examine differences between the parameters of the three IPSS groups. Linear regression was used to 111 analyse the relationship between scores on the IPSS, IPSS-BQ and physical and mental domains of the 112 HRQoL based on the RAND-36. We used both an unadjusted and an adjusted model for age and 113 comorbidities as quantified by the ASA score and the Charlson Index. We then stratified the patients 114 according to the degree to which their symptoms were bothersome, as assessed using the IPSS-BQ. Comparisons were analysed between the IPSS severity groups, the IPSS-BQ and an age-matched 115 116 sample of males from the general population of Norway[16]. To assess differences between the 117 groups, we used Cohen's d effect size calculation model, where a 0.2 difference in the standard 118 deviation is considered a small difference, 0.5 is a medium difference and 0.8 is a large difference[21]. 119 We reported two-tailed P-values and 95% confidence intervals. The IBM SPSS Statistics Version 26 120 software was used for the statistical analyses.

121

122 Results

123 Among the 169 patients that met the study's criteria, 91 (53%) signed forms indicating their informed 124 consent to participate in the study. Eight patients were excluded (5 with a prostate cancer diagnosis; 125 1 with an acute leukaemia diagnosis; 1 with a bladder cancer diagnosis; and 1 who withdrew informed 126 consent, all of them within one month of the inclusion date). Thus, 83 patients were considered for 127 the statistical analysis. The general characteristics of the patients are summarised in Table 2. The 128 cohort is typical of patients referred to urologists for LUTS examinations. The control group represents 129 an average representation of typical men between 50 and 80 years of age in Norway. Initial analysis of the IPSS-BQ as an independent predictor of HRQoL revealed that a decrease in mental HRQoL with an 130 131 increase in bothersomeness of urinary symptoms was not a linear function, but there was a clear 132 reduction in mental HRQoL from the IPSS-BQ score of 2, to an IPSS-BQ score of 3. This reduction was

present but not obvious for physical HRQoL on the RAND-36. Consequently, we divided the patients in
 two groups: IPSS-BQ = 0-2, n = 35 and IPSS-BQ = 3-5, n = 48 (see Supplementary Tables for details).

The results of the linear regression showed that the IPSS is a strong predictor of the IPSS-BQ in an 135 136 unadjusted model and that the association was preserved when adjusting for age and comorbidity. 137 However, when the regression model was used to assess the impact of the IPSS on mental and physical 138 HRQoL, the IPSS score had no significant effect on either of these two parameters. When the IPSS-BQ 139 was added to the model, significant effects on the mental and physical HRQoL scores were observed. 140 The details are summarised in Table 3. Cohen's effect sizes for the physical (d = 0.5) and mental (d =141 0.7) HRQoL domains were medium and large, respectively. The effect sizes of all the domains of the 142 RAND-36 are presented in the Supplementary Tables.

143 We then compared the study population with Norwegian normed data. The age-adjusted mental 144 HRQoL of the Norwegian population was 81.3 (SD = 15.9), and the physical HRQoL was 76.6 (SD = 20.8). 145 When the study population was stratified by IPSS group there were only small differences, as evaluated 146 using Cohen's d, in mental and physical HRQoL between the three study groups and the normed data. 147 However, there were medium size differences in the vitality domain. The details are illustrated in 148 Figure 1A. When the study population was stratified by IPSS-BQ group, moderate differences were 149 found in mental and physical HRQoL compared to the normed data, and again, a medium size effect 150 was found in the vitality domain (Figure 1B).

151

152 Discussion

153 We explored the role of bothersomeness of urinary symptoms and its relationship with HRQoL and 154 urinary symptom status. The degree to which symptoms become bothersome or worrisome to a 155 patient usually provides the basis for his decision to seek medical treatment. Numerous studies have 156 shown that the "bother question" provides a reproducible valid tool for evaluating changes in the 157 status of LUTS[13, 22, 23]. We have developed a model showing that the objective quantification of 158 symptoms (using the IPSS) may influence the assessment of bothersomeness of urinary symptoms 159 (IPSS-BQ), which in turn, may influence the HRQoL of patients (RAND-36). The IPSS alone showed no 160 significant associations with patients' HRQoL. The IPSS-BQ was the only variable that correlated with 161 patients' mental and physical HRQoL. As the primary goal of LUTS treatment is an improvement in HRQoL, evaluations of new treatment methods based only on an improved IPSS are probably 162 163 insufficient to conclude that these treatments cause consequent improvement in HRQoL.

Although numerous articles have been published on the bother question's association with LUTS, none
 has addressed the relationship between that the degree to which it is bothersome to the patient and
 general HRQoL.

Salinas-Sanches (2001) investigated the HRQoL of patients on the waiting list for BPH surgery using the SF-36, and found they had a poorer HRQoL than the general population of the same age. A major limitation of this study is bias in the selection of patients with indications for surgical treatment. Thus, it could be expected that these patients would be likely to have poorer HRQoL. However, this study is one of the first studies that objectively quantified the HRQoL of the study group using a validated tool (SF-36) and compared the results with normed data from an age-matched national population[14].

Welch (2002) conducted a large survey of United States (US) men participating in the Health Professionals Follow-Up Study. Although they did not use the two composite scores that we used their findings are similar to ours. The patients with severe LUTS had small to moderate differences from the age-matched sample from the general population of the US with regard to vitality/energy and the ability to work and perform daily tasks because of their illness. These findings were consistent when they were adjusted for confounding factors, such as comorbidities However, they did not specifically address the relationship among the scores on the IPSS, IPSS-BQ and SF-36[9].

One possible explanation for our findings is that symptoms, per se, have different meanings for different patients. It is only when the subjective experience of these symptoms becomes bothersome that there is a consequent reduction in HRQoL. This is the main driver for patients to seek medical attention. It is improvement in their HRQoL and resolution of their bothersome urinary symptoms that patients expect from the treatment. Neither improved symptom scores nor urinary flow rate are parameters that are directly acknowledged by the patients.

186 The strengths of this study include its strict inclusion and exclusion criteria that narrowed down 187 patients' signs and symptoms to BPH as the most probable aetiology of LUTS; the inclusion of a control 188 group; the homogeneity of the groups that allowed for good comparisons; the use of only one 189 investigator to perform transrectal prostate measurements, thereby eliminating observer bias; and the 190 completeness of the data and comparisons of HRQoL between the patients and the age-matched 191 sample from the general population of Norway. The limitations of the study include its cross-sectional 192 design and small sample of patients that were previously referred to a urologist by a GP. This study 193 population mainly included urology patients and might not reflect an accurate picture of patients in 194 the general population. Another drawback is the use of the IPSS because it does not assess the 195 incontinence aspects of LUTS, which are known to be extremely bothersome [24].

Last, as this is a cross-sectional study, it provides only a static picture of IPSS-BQ as a parameter forHRQoL.

199	Conclusion
200	The IPSS-BQ is a better predictor of HRQoL than the total IPSS. The IPSS-BQ as a proxy for HRQoL should
201	be regarded as the standard outcome measure and reported in all LUTS-related research. Further
202	longitudinal studies are needed to examine the reliability of this parameter as an instrument for
203	assessing changes over time and responses to treatment.
204	
205	Author contributions
206 207	FHN: Project/Protocol development, Data collection and management, Data analysis, Manuscript writing/editing.
208 209	JRA: Project/Protocol development, Data management, Data analysis, Manuscript writing/editing, Supervision
210	CB: Project/Protocol development, Data analysis, Manuscript writing/editing, Supervision.
211	All authors have approved the submitted version of the manuscript.
212	
213	Funding
214	None, except from the institutions mentioned on the front page
215	
216	Compliance with ethical standards
217	
218	Conflicts of interest: None of the authors report conflicts of interest
219	
220	Ethical approval: The project is approved by the Norwegian South-East Regional Ethics Committee
221	(REC reference number: 2018/114). In accordance with the approval, all participating patients signed
222	an informed consent form prior to inclusion.
223	
224	References
225	
226 227	[1] Roehrborn CG. BPH progression: concept and key learning from MTOPS, ALTESS, COMBAT, and ALF-ONE. BJU Int. 2008 Mar: 101 Suppl 3 :17-21

228 [2] Kupelian V, Wei JT, O'Leary MP, et al. Prevalence of lower urinary tract symptoms and effect 229 on quality of life in a racially and ethnically diverse random sample: the Boston Area Community 230 Health (BACH) Survey. Arch Intern Med. 2006 Nov 27: 166:2381-7 231 Hays RD, Morales LS. The RAND-36 measure of health-related quality of life. Ann Med. 2001 [3] Jul: 33:350-7 232 233 [4] S. Gravas (Chair) JNC, M. Gacci, C. Gratzke, T.R.W. Herrmann, C. Mamoulakis, M. Rieken, M.J. 234 Speakman, K.A.O. Tikkinen Guidelines Associate: M. Karavitakis, I. Kyriazis, S. Malde, V.I. Sakalis, R. 235 Umbach: . Management of Non-neurogenic Male LUTS: EAU Guidelines. EAU Guidelines 2020 ed, 236 2020 237 Gormley GJ, Stoner E, Bruskewitz RC, et al. The effect of finasteride in men with benign [5] 238 prostatic hyperplasia. The Finasteride Study Group. N Engl J Med. 1992 Oct 22: 327:1185-91 239 Lepor H, Williford WO, Barry MJ, et al. The efficacy of terazosin, finasteride, or both in benign [6] 240 prostatic hyperplasia. Veterans Affairs Cooperative Studies Benign Prostatic Hyperplasia Study 241 Group. N Engl J Med. 1996 Aug 22: 335:533-9 242 McConnell JD, Roehrborn CG, Bautista OM, et al. The long-term effect of doxazosin, [7] 243 finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N 244 Engl J Med. 2003 Dec 18: 349:2387-98 245 Roehrborn CG, Siami P, Barkin J, et al. The effects of combination therapy with dutasteride [8] 246 and tamsulosin on clinical outcomes in men with symptomatic benign prostatic hyperplasia: 4-year 247 results from the CombAT study. Eur Urol. 2010 Jan: 57:123-31 248 Welch G, Weinger K, Barry MJ. Quality-of-life impact of lower urinary tract symptom severity: [9] 249 results from the Health Professionals Follow-up Study. Urology. 2002 Feb: 59:245-50 250 Cam K, Muezzinoglu T, Aydemir O, Buyukalpelli R, Toktas G, Gemalmaz H. Development of a [10] 251 quality of life scale specific for patients with benign prostatic hyperplasia. Int Urol Nephrol. 2013 Apr: **45**:339-46 252 253 Batista-Miranda JE, Diez MD, Bertrán PA, Villavicencio H. Quality-of-life assessment in [11] 254 patients with benign prostatic hyperplasia: effects of various interventions. Pharmacoeconomics. 255 2001: **19**:1079-90 256 O'Leary M P. Validity of the "bother score" in the evaluation and treatment of symptomatic [12] 257 benign prostatic hyperplasia. Rev Urol. 2005 Winter: 7:1-10 258 O'Leary MP, Wei JT, Roehrborn CG, Miner M. Correlation of the International Prostate [13] 259 Symptom Score bother question with the Benign Prostatic Hyperplasia Impact Index in a clinical 260 practice setting. BJU Int. 2008 Jun: 101:1531-5 261 [14] Salinas-Sánchez AS, Hernández-Millán I, Lorenzo-Romero JG, Segura-Martin M, Fernández-262 Olano C, Virseda-Rodriguez JA. Quality of life of patients on the waiting list for benign prostatic 263 hyperplasia surgery. Qual Life Res. 2001: 10:543-53 264 [15] Barry MJ, Fowler FJ, Jr., O'Leary MP, et al. The American Urological Association symptom 265 index for benign prostatic hyperplasia. The Measurement Committee of the American Urological 266 Association. J Urol. 1992 Nov: 148:1549-57; discussion 64 267 Jacobsen EL, Bye A, Aass N, et al. Correction to: Norwegian reference values for the Short-[16] 268 Form Health Survey 36: development over time. Qual Life Res. 2018 May: 27:1213-5 269 Hagell P, Westergren A, Årestedt K. Beware of the origin of numbers: Standard scoring of the [17] 270 SF-12 and SF-36 summary measures distorts measurement and score interpretations. Res Nurs 271 Health. 2017 Aug: 40:378-86 272 Quan H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index and [18] 273 score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 274 2011 Mar 15: 173:676-82 275 Hulley SB CS, Browner WS, Grady D, Newman TB. Designing clinical research : an [19] 276 epidemiologic approach. 4th ed. 2013 [cited; Available from: https://sample-size.net/correlationsample-size/ 277 278 [20] Funder DC, Ozer DJ. Evaluating Effect Size in Psychological Research: Sense and Nonsense. 279 Advances in Methods and Practices in Psychological Science. 2019: 2:156-68

280 [21] Cohen J. Statistical Power Analysis for the Behavioral Science: Routledge, 1988 [22] Roehrborn CG, Van Kerrebroeck P, Nordling J. Safety and efficacy of alfuzosin 10 mg once-281 daily in the treatment of lower urinary tract symptoms and clinical benign prostatic hyperplasia: a 282 283 pooled analysis of three double-blind, placebo-controlled studies. BJU Int. 2003 Aug: 92:257-61 284 Kirby RS, Andersen M, Gratzke P, Dahlstrand C, Høye K. A combined analysis of double-blind [23] 285 trials of the efficacy and tolerability of doxazosin-gastrointestinal therapeutic system, doxazosin 286 standard and placebo in patients with benign prostatic hyperplasia. BJU Int. 2001 Feb: 87:192-200 Agarwal A, Eryuzlu LN, Cartwright R, et al. What is the most bothersome lower urinary tract 287 [24] 288 symptom? Individual- and population-level perspectives for both men and women. Eur Urol. 2014 289 Jun: 65:1211-7

Table 1. Patient Selection, Workup and Collected Data

iy or radiation									
iy or radiation									
iy or radiation									
iy or radiation									
γ or radiation									
y or radiation									
y or radiation									
by or radiation									
or surgery, urinary tract infection									
 Any known cancer diagnosis except non-malignant melanoma of the skin within the last 5 years 									
 Severe cardiac comorbidities – ASA score >3 									
 Presence of neurodegenerative disorders (i.e. Parkinson's disease. Alzheimer's disease. etc.) 									
Unwilling to report sexual function									
 Penile conditions that prevent sexual act (i.e. penis cancer) 									
ract									
/t									

Note: ASA = American Society of Anaesthesiologists; ECOG = Eastern Cooperative Oncology Group; LUTS = lower urinary tract symptoms; TUR-P = Transurethral resection of the prostate; BPH = benign prostatic hyperplasia; IPSS = International Prostate Symptom Score; IIEF-5 = International Index of Erectile Function 5-item version; RAND-36 = RAND 36-Item Health Survey

Table 2. Patients' Characteristics

Variables	Control Group (IPSS <8)	Moderately Symptomatic (IPSS 8-18)	Severely Symptomatic (IPSS>18)	P-value		
	n = 20	n = 35	n = 28			
	Mean (SD)*	Mean (SD) *	Mean (SD) *			
Age (years)	63.4 (7.1)	65.2 (5.9)	63.4 (6.8)	0.458		
IPSS-BQ	1.1 (0.9)	2.7 (1.1)	3.6 (0.9)	<0.001		
ASA Classification	1: 14 (70%)	1: 11 (31.4%)	1: 10 (35.7%)	0.031		
	2: 5 (25%)	2: 21 (60%)	2: 18 (64.3%)			
	3: 1 (5%)	3: 3 (8.6%)				
Charlson Index	0: 13 (65%)	0: 23 (65.7%)	0: 20 (71.4%)	0.742		
	1: 6 (30%)	1: 7 (20%)	1: 6 (21.4%)			
	2: 1 (5%)	2: 5 (14.3%)	2: 2 (7.1%)			
Prostate Volume (cm ³)	56.7 (28.4)	53.9 (23.4)	50.0 (21.9)	0.629		
Residual Urine (ml)	81.6 (36.2)	95.5 (122.3)	121.8 (144.7)	0.614		
Q-max (ml/sec)	21.3 (11.4)	16.8 (10.3)	14.0 (7.3)	0.134		
PSA (μg/L)	3.5 (3.4)	3.1 (3)	3.2 (3.2)	0.877		
Body Mass Index (kg/m ²)	26.9 (3.2)	27.5 (4.4)	26.9 (3.6)	0.768		
Rand 36 domains						
Physical Function	92.0 (13.2)	91.6 (8.1)	88.0 (18.4)	0.503		
Role Physical	83.8 (32.7)	79.3 (32.4)	74.1 (38.8)	0.632		
Bodily Pain	73.6 (21.8)	66.6 (20.3)	70.8 (27.4)	0.534		
General Health	75.8 (17.9)	67.1 (16.1)	67.3 (20.7)	0.195		
Vitality	74.0 (19.2)	69.6 (14.5)	58.8 (20.1)	0.009		
Social Function	88.8 (15.7)	87.1 (16.7)	84.4 (21.7)	0.699		
Role Emotional	91.7 (26.2)	86.7 (28.2)	85.7 (32)	0.763		
Mental Health	86.2 (13.8)	84.2 (10)	82.7 (12)	0.597		
Physical HRQoL	81.3 (18.6)	76.1 (15.3)	75.1 (23.4)	0.511		
Mental HRQoL	85.2 (16.7)	81.9 (14.5)	77.9 (16.5)	0.282		

Note: P-values are for the ANOVA results; *The ASA Classification, Charlson Index, reports the number of patients in each category not mean and standard deviation; IPSS-BQ = Bothersomeness of urinary symptoms as reported in question 8 of the IPSS; IIEF = International Index of Erectile Function; Q-Max = peak urinary flow; HRQoL = health related quality of life.

Table 3. Linear Regression Models

	Unadjusted			Adjusted		
Variables	B (95% CI)	Beta	P-value	B (95% CI)	Beta	P-value
Model 1: IPSS-BQ (IV)						
IPSS	0.13 (0.10 - 0.15)	0.72	<0.001	0.13 (0.10 - 0.15)	0.73	<0.001
Age	-0.03 (-0.08 – 0.02)	-0.14	0.196	-0.03 (-0-07 – 0.00)	-0.16	0.060
Charlson Index	0.06 (-0.39 – 0.52)	0.03	0.778	0.13 (-0.24 – 0.50)	0.06	0.496
ASA	0.16 (-0.36 – 0.68)	0.07	0.550	0.00 (-0.46 – 0.46)	0.00	0.991
Model 2: Physical HRQoL (IV)						
IPSS	-0.24 (-078 – 0.29)	-0.10	0.369	0.40 (-0.33 – 1.13)	0.17	0.275
IPSS-BQ	-10.22 (-18.40 – -2.03)	-0.27	0.015	-13.61 (-25.07 – -2.15)	-0.35	0.021
Age	0.24 (-0.40 – 0.89)	0.08	0.458	0.28 (-0.41 – 0.98)	0.10	0.418
Charlson Index	-4.02 (-10.30 – 2.26)	-0.14	0.206	-0.52 (-7.84 – 6.80)	-0.02	0.888
ASA	-5.88 (-13.05 – 1.30)	-0.18	0.107	-6.88 (-15.88 – 2.12)	-0.21	0.132
Model 3: Mental HRQoL (IV)						
IPSS	-0.40 (-0.83 – 0.04)	-0.20	0.075	0.19 (-0.41 – 0.78)	0.09	0.537
IPSS-BQ	-10.64 (-17.264.03)	-0.34	0.002	-12.27 (-21.66 – -2.88)	-0.39	0.011
Age	0.06 (-0.48 - 0.60)	0.03	0.821	0.08(-0.49 - 0.64)	0.03	0.792
Charlson Index	-1.71 (-6.94 – 3.53)	-0.07	0.518	1.01 (-4.98 - 7.01)	0.04	0.737
ASA	-4.59 (-10.54 – 1.36)	-0.17	0.129	-5.37 (-12.74 – (2.00)	-0.20	0.151

Note: IPSS-BQ = Bothersome urinary symptoms, as assessed using question 8 of the IPSS; IV = independent variable. Age and IPSS were treated as continuous independent variables and IPSS-BQ was treated as a binary variable (score $\leq 2 = 0$ and > 2 = 1).

The variance explained by the adjusted models are as follows: Model 1 = 52.7%, Model 2 = 6.9% and Model 3 = 8.7%.

Figure 1. Cohen's d effect sizes for the three IPSS groups vs the Norwegian normed data

