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Abstract

In model-driven software engineering, models are used in all phases of the development process. These models must hold a
high quality since the implementation of the systems they represent relies on them. Several existing tools reduce the burden
of manually dealing with issues that affect models’ quality, such as syntax errors, model smells, and inadequate structures.
However, these tools are often inflexible for customization and hard to extend. This paper presents a customizable and
extensible model repair framework, PARMOREL, that enables users to deal with different issues in different types of models.
The framework uses reinforcement learning to automatically find the best sequence of actions for repairing a broken model
according to user preferences. As proof of concept, we repair syntactic errors in class diagrams taking into account a model
distance metric and quality characteristics. In addition, we restore inter-model consistency between UML class and sequence
diagrams while improving the coupling qualities of the sequence diagrams. Furthermore, we evaluate the approach on a large
publicly available dataset and a set of real-world inspired models to show that PARMOREL can decide and pick the best

solution to solve the issues present in the models to satisfy user preferences.

Keywords Model repair - Reinforcement learning - Customizable framework

1 Introduction

In model-driven software engineering, the increasing com-
plexity of software systems is handled by utilizing abstract
software models. When producing these models, software
developers may introduce various issues which corrupt the
models or reduce model quality, such as syntactic errors,
smells [1], antipatterns [2], inter-model inconsistencies [3].
In addition, the chances of corrupting a model increase
along with the size of development teams and the number
of software requirements [4], lack of coordination, misun-
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derstanding, and mishandled collaborative projects. These
issues may lead to severe challenges in the later phases of
the development process since the reliability and accuracy of
these models are important to correctly produce the software
systems which they represent.

Ensuring that a model does not contain issues is a time-
consuming task. As a consequence, a variety of approaches
to automatic model repair have been proposed over the last
decades to tackle the repair of corrupted models from dif-
ferent perspectives and applied to different models [5-7].
Despite the existence of automatic approaches, there might
be multiple repair solutions which do not satisfy all model-
ers preferences. Consequently, the modeling community has
developed a series of metrics and characteristics to get an
unbiased measure of a model’s quality, for example: analyz-
ability, adaptability, and understandability [8,9]. Even though
quality characteristics have been extensively studied in the
literature [10—13], the quality of the automatically repaired
models has not been the main focus of existing repairing
tools.

In the same direction, model distance is another factor
which could be considered during repair to objectively main-
tain a model’s quality. The literature has highlighted the
importance of preserving the original model structure while
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repairing, in order to minimize undesired side-effects in the
repaired model [4,14]. A tool to measure the preservation
of the original model structure is the calculation of the dis-
tance between the original and the repaired model [15-17].
Hence, integrating model distance calculation in repairing
tools could produce repaired models of high quality.

Furthermore, software models are diverse since they rep-
resent different aspects of software systems, Accordingly,
repair tools are required to handle different model types (e.g.,
UML class and sequence diagrams, Ecore class diagrams,
etc.). However, most tools are tailored to one type of model
and, if this type changes, new tools need to be developed to
repair the models. Although there exist approaches to repair
different types of models (Ecore, different UML models),
with different types of issues (syntactic and semantic errors,
smells, etc.), and to measure the quality of the produced mod-
els (quality characteristics, model distance, etc.), to the best
of our knowledge, there is no tool that integrates all these
different aspects of model repair. This paper’s main goal is
to fill this gap with an extensible framework.

In previous work [18-22], we presented our approach to
model repair using our PARMOREL framework, which finds
a sequence of repair actions according to preferences intro-
duced by the user. PARMOREL stands for Personalized and
Automatic Repair of software MOdels using and REinforce-
ment Learning (RL) algorithms [23]. PARMOREL provides
structural model repair, it repairs models representing a struc-
ture, but not a behavior whose distance and repair plan
would require to consider execution semantics. To simplify,
throughout the paper we will refer to structural model repair
as model repair. So far, PARMOREL has been evaluated
for repairing syntactic errors in Ecore class diagrams [18],
selective removal of model smells [22], reusing learning to
streamline new repairs [19], and repairing syntactic errors
while improving quality characteristics [20]. In [21], we pre-
sented the extensible potential of PARMOREL preferences
and repaired syntactic errors in Ecore class diagrams while
reducing the model distance.

In this paper, we give, for the first time, a complete
overview of the PARMOREL framework, including a detailed
explanation of PARMOREL’s modular architecture. Here,
we extend [21] by adding new extensions for issues, actions,
and preferences to deal with inter-model inconsistencies in
UML models. The new extensions allow PARMOREL to:
(1) support UML models (class and sequence diagrams), (2)
restore inter-model consistency, and (3) reduce coupling as a
user preference. Unlike our previous works, the focus of this
paper is not to show that PARMOREL can solve a specific
set of issues under some set of preferences, but to detail its
modular architecture and demonstrate the extensibility of its
modules through a series of implementations.

We demonstrate the extensibility potential of PARMOREL
by allowing users to (1) choose, add and modify repair pref-
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erences, (2) work with different types of models, (3) edit
which issues are detected, and (4) with which actions they
are addressed, as well as (5) customize the learning algorithm
of the framework. Furthermore, we evaluate the extensibil-
ity of PARMOREL through two different experiments: (1)
repairing syntactic errors in Ecore class diagrams while pre-
serving the original model structure [21] and (2) restoring
inter-model consistency in UML class and sequence dia-
grams while reducing the coupling in the sequence diagrams.

To the best of our knowledge, there are no other approaches
to model repair which utilize reinforcement learning and
allow for personalization of repair objectives. Instead of hav-
ing a specific tool for each kind of issue and each type of
model, PARMOREL works as a unified extensible frame-
work, which can be extended to support the new issues that
modelers need to solve in their models. With this in mind,
this paper contributes to the model repair field by applying
reinforcement learning in a framework which allows for per-
sonalization and extension.

1.1 Structure of the paper

This paper is organized as follows: Sect. 2 presents a motivat-
ing example and an analysis of corrupted models taken from
GitHub repositories. Section 3 introduces background about
how PARMOREL uses RL to repair models. Section 4 intro-
duces and explains our approach, presenting PARMOREL’s
modules and the implementations we have created for them.
Sections 5 and 6 present experiments where we extend and
apply PARMOREL to address syntactic errors and inter-
model inconsistencies, respectively. Then, we present threats
to validity in Sect. 7, explore the related work in Sect. 8 and
conclude the paper in Sect. 9.

2 Motivation

In this section, we will use a domain model as a motivating
example of why model repair is essential. A domain model
is often represented as a class diagram, showing concepts
of the domain and its relationships. In particular, we have
retrieved Ecore class diagrams from GitHub repositories,
which are collected in a dataset used in [24,25]. The dataset
contains a total of 555 class diagrams. The diagrams con-
tain between 8213 classes, and between 30—186 features,
including attributes, references and operations. This dataset
is available to download in [24].

We have filtered the dataset and extracted the models
which are corrupted with syntactic errors and model smells.
In the first filtering, we discovered that 107 models (almost
20% of the dataset) contained a set of syntactic errors with a
total of 973 error occurrences. We present details about the
errors found in the dataset in Table 1, where we report the
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error code and associated error description. These errors are
retrieved by the EMF [26] platform that checks validation
errors.

In the second filtering of the dataset, we analyzed whether
the models contained smells. Smells usually represent a
symptom of poor decisions during the models’ design phase
[27]. Smells in modeling [1] are indicators that something
may be wrong within the model design, even if the model
is valid. In our analysis, we took into account the following
smells, which are part of an automatic detection mechanism
presented in [1]:

Concrete abstract class

Duplicated features in hierarchy
Duplicated features in classes

Dead class

Redundant container relation

Abstract subclasses of concrete superclass
Abstract concrete class

Classification by hierarchy

P NI =

Some of these smells might seem similar to the errors
presented in Table 1, for example, the smells regarding dupli-
cated features and E7. In this case, the smells refer to features
(references, attributes or operations) that are duplicated in
different classes or in a hierarchy, while E7 indicates a dupli-
cation inside the same class. Furthermore, on the existence
of smells models are valid and compile, while when there are
errors, they are retrieved as the causes of a failed compila-
tion. Only 58 models from the total 555 in the dataset were
smell-free, meaning that 497 models (89.54% of the dataset)
present some type of smell.

As an example, in Fig. 1 we show an occurrence of E7,
where two features with the same name occur in a class. To be

Table 1 Occurrences of syntactic errors in the selected dataset

precise, the class WebApp inherits the features of NameEle-
ment and for this reason, the feature name appears to be
declared twice. Moreover, the class Service seems to have an
unresolved proxy as supertype (E13). An unresolved proxy
is a reference to an external element contained in another
domain model, usually imported or cross-referenced. This
error is highlighted in Fig. 1 with “—> null,” referring to an
unresolved superclass of Service.

It is worth noticing that this model can be “repaired”
in different ways. For instance, error E7 can be repaired
by removing the class NameElement or by removing the
attribute name in the WebApp class, or by removing it
from NameElement. E13 could be repaired, for example,
by removing the faulty reference, correcting it or removing
the referenced class.

Concerning the smells, the class WebApp is declared as
abstract, whereas the supertype is concrete. This smell is
called Abstract concrete class and should be resolved by
inverting the abstract property of the two indicted classes,
or by making the NameElement class abstract, or making
both classes concrete.

Refactoring this model in different ways could affect the
quality characteristics of the model, for instance, the under-
standability of the model could be affected if we remove
the hierarchy. In addition, if we remove a class to make the
model valid again, the size and structural composition of the
model would change making the resulting repaired model
quite different from the initial version. Moreover, removing
some smells might affect negatively the overall quality of the
model and it might be better to ignore them.

‘We find the number of models containing errors and smells
in this dataset an indicator for the need to support model
repair as an automated activity. The fact that the errors and
smells are not straight forward to solve, meaning they might

Error Occurrences
El The opposite of a transient reference must be transient if it is proxy resolving 2
E2 The opposite must be a feature of the reference’s type 1
E3 The opposite of the opposite of a reference must be the reference itself 5
E4 Not transient attribute so it must have a data type that is serializable 7
ES A primitive type cannot be used in this context 4
E6 Two or more classifiers with the same name 2
E7 Two or more features with the same name 20
E8 Invalid specified literal 166
E9 Not well formed name 216
E10 Operation with the same signature as an accessor method 5
E11 A containment or bidirectional reference must be unique if its upper bound is different from 1 160
El2 The same contained instance cannot be contained in two different instances 94
E13 Unresolved proxy 90
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Fig.1 Motivating example of a
class diagram containing
syntactic errors and a smell
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have different potential solutions, is also an indicator for the
need to support modelers with extensible repair preferences
so that they can customize which kind of repair actions satisfy
their specific needs (quality characteristics, model distance,
specific project-related metrics, etc.).

Likewise, apart from syntactic errors and smells, mod-
els might present other issues like semantic problems,
inter-model inconsistencies, etc. Implementing automated
tools for repairing and improving these models is time and
resources consuming, whereas it involves complex optimiza-
tion problems. Instead of having a specific tool for each kind
of problem and for each type of model, we propose in this
paper a unified extensible framework, PARMOREL, which
could be extended to support the new issues that modelers
need to solve in their models.

3 Background

In this section, we provide background about how PAR-
MOREL uses RL to repair models. In the following, we
present the theory we have developed in order to adapt RL
concepts to solve the model repair problem.

We chose RL to solve the model repair problem due to
the lack of data available in the modeling field, which makes
it difficult to apply most ML algorithms. Current modeling
repositories are still limited in terms of size, labeling and
diversity of models. Hence, the lack of data is a challenge
for ML adoption in modeling problems like model repair
[28-32].

RL algorithms are a solution that allows personalization
of results without needing large amounts or pre-labeled data.

@ Springer
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Fig.2 Agent-environment interaction in RL

Due to RL’s ability to adapt to data and different scenarios, RL
can provide automated solutions while adapting to the needs
of the users. Likewise, these algorithms present flexibility to
solve different problems and to deal with the different types of
models, issues, etc., that constitute the model repair problem.
Also, several mechanisms are supported so that users can
interact and provide their feedback to these algorithms.

RL consists of algorithms able to learn by themselves how
to interact in an environment without existing pre-labeled
data, only needing a set of available actions and rewards for
each of these actions [23]. By using rewards, these algo-
rithms can learn which are the best actions to interact with
an environment. The learning process of RL comes from the
interaction between an agent (the intelligence in the algo-
rithm) and an environment (the problem to solve). Figure 2
displays this interaction.

For example, if the environment is a maze, the agent is a
robot, the action is walking one step to the right and the state
the current position of the robot in the maze, then, the new
state would be the robot’s new location: one position to the
right. If the action is positive for the agent (moving toward
the maze exit), it receives a reward, contrarily (stepping on
a wall) it is penalized. The agent will continue performing
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actions trying to get the highest reward until it reaches its
ultimate goal, e.g., entering the exit of the maze.

RL concepts can be used to solve different problems. Each
problem might require a different definition of these concepts
to be solved (e.g., a state could be a position in a maze, the
score in a videogame, etc.). In the following, we detail some
RL concepts important to understand the rest of the paper
together with our definitions for solving the model repair
problem:

1. State space: Set of states, observable situations, that can
happen in a system. Every system has an initial state (how
it starts) and a final state. It is important to differentiate
between a state and the actual system. A state is what is
observable by the agent and it might not contain all details
about the system, because they might not be necessary
or available to the agent. In the model repair problem,
we define the state space by the set of issues present in
the model. In [21] we introduced the concept of issue. An
issue represents something that is improvable in a model.
An issue could be a syntactic error, a smell, a violation
with respect to an architectural pattern or a specific con-
straint, an inconsistency between two or more models,
etc. The initial state corresponds with the issues present
in the model when the repair starts. Each state is hence
defined by a set of model issues. This set is updated after
each step with the current issues present in the model.
The final state has an empty set of errors, i.e., it stands
for a repaired model. An example of a state would be:
{issuel, issue2, issue3}.

2. Action space: The set of actions that can modify the sys-
tem, leading to new states. In the model repair problem it
is the set of editing actions able to repair a model. Actions
might come from an external tool, be defined by users or
obtained from a modeling framework such as EMF [26],
as we will see in the next section. For each state, actions
are filtered, so that only actions capable of repairing at
least one issue in the state are considered. Some exam-
ples of these actions, when dealing with syntactic issues,
are: delete, setName, setType, setContainment, etc.

3. Step: A step corresponds to the application of one action
in the system. In the model repair problem, a step cor-
responds with the application of one action to solve an
issue in the model.

4. Episode: Each episode corresponds to one iteration in
which the algorithm has successfully reached the final
state using the available actions. Hence, an episode ends
when the final state is reached. The number of episodes is
finite; the algorithm is provided with a maximum num-
ber of episodes to run. A good number of episodes is
when the algorithm has sufficient time to find the opti-
mal sequence of actions to reach the final state. It is not
straight forward to conclude what number is the right one

issue —L

preferences —>|

actions j

Fig.3 Simplified workflow in PARMOREL

best action for
the given issue

Learning
algorithm

in a given context [23] and hence, needs to be defined
empirically through experimentation [33]. In the model
repair problem, an episode corresponds with an iteration
in which the RL algorithm has successfully repaired the
model, leaving no issues unsolved. Hence, an episode
ends when the final state is reached.

5. Reward: A numerical value that tells the agent how good
is the action it applies. When repairing models, in every
non-final step (the last step in an episode) the reward
will be 0. When the final state is reached, at the end of
an episode, the reward will be given by an external tool
used to measure some metrics of the provisional repaired
model generated in that episode. Rewards can be adapted
to align with user preferences to personalize the repair
result. Since rewards indicate how good actions are, the
only requirement for user preferences is that they can be
quantified (e.g., preserve the original model structure by
minimizing the model distance metric or boost quality
characteristics by optimizing quality metrics). Users can
choose their preferences before the repair process starts.

4 PARMOREL framework

In this section, we present our proposed approach to model
repair along with its implementation in the PARMOREL
framework. PARMOREL uses three main concepts: issues
to be found in the models, actions to be applied in response
to issues, and preferences that the user can specify to cus-
tomize how to address issues (see Fig. 3). The framework
also contains a learning algorithm, specifically RL, in charge
of learning and deciding which is the best action—among a
set of available actions—to address an issue, according to the
user’s preferences.

The PARMOREL framework permits the issues, actions,
preferences, and learning algorithm to be modified or
changed based on the type of models to repair and the repair’s
goal. PARMOREL is implemented as an Eclipse plugin, fol-
lowing a modular architecture (see Fig. 4), and permits users
to customize its modules through a series of interfaces. In
this section, we explain our RL implementation and each of
the constituting modules of PARMOREL.

@ Springer
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Fig.4 PARMOREL'’s modular architecture

4.1 Modeling module

The modeling module is in charge of validating and manipu-
lating the models. This module is responsible for interacting
with the models and providing information to the learning
module. It sends information about actions available to mod-
ify the model and issues present in the model so that the
learning module can learn what action should address each
issue.

When adding new types of models in PARMOREL, the
main effort is in extending the modeling module with a mech-
anism to identify issues in the models and to solve them
(in this section, the Eclipse Modeling Framework (EMF),
Edelta and SDMetrics to solve syntactic errors, smells and
inter-model inconsistencies). PARMOREL is detached from
the model type due to the abstract concepts—issues, actions,
preferences—on which it is founded.

The modeling module is divided into two submodules,
namely the issues submodule and actions submodule, as
shown in Fig. 4. Next, we present the implementations we
have developed for each submodule. For these implementa-
tions, we have used the APIs and DSLs of external tools, as
presented in the following.

4.1.1 Issues submodule

The issues submodule is in charge of identifying which
issues are present in the model and send them to the learn-
ing module. For example, we have developed the following
implementations of the issues submodule: syntactic errors,
smells and inter-model inconsistencies. Next, we present
each of these implementations. A detailed list of the issues
implemented so far can be found in [34].

@ Springer

Syntactic errors We have used the EMF diagnostician, to
implement the identification of syntactic errors [21] that vio-
late certain constraints of the Ecore metamodeling language
[26]in Ecore class diagrams (e.g., the opposite of the opposite
of a reference must be the reference itself, classifiers must
have different names, etc.). With this implementation, the
approach is able to repair issues that belong to the catalogue
of errors provided by the EMF diagnostician.

Smells By using EMF [26] together with Edelta [35], we
have implemented the issues submodule to be able to iden-
tify user-defined smells in Ecore class diagrams. Edelta is a
model refactoring tool, based on a DSL, for easily defining
Ecore model evolutions and refactorings. The core features
of Edelta and its DSL have been detailed in [35]. By using
the Edelta DSL, users can provide the specification of custom
smell finders, which can be properly organized in reusable
libraries. A smell finder is associated with a refactoring for
smell removal.

Inter-model inconsistencies In this extension, we have used
SDMetrics [36] to interact with UML models and implement
a series of rules so that the issues submodule can identify
inter-model inconsistencies. SDMetrics is an object-oriented
design quality measurement tool for UML models. In our
context, we use various UML models used to describe dif-
ferent aspects of a software. For instance, class diagrams to
describe the structure and sequence diagrams to define (parts
of) the behavior of the software. These models should be
kept consistent with each other since inconsistencies between
models may be a source of faults during software develop-
ment activities that rely on these models [37].

4.1.2 Actions submodule
The actions submodule is in charge of:

e Sending to the learning module which actions are avail-
able for modifying the model.

e Applying the actions chosen by the learning module to
solve the issues identified by the issues submodule.

The issues and actions submodules are tightly connected,
as actions are always defined as an answer to the issues
present in the model. Hence, for every implementation of
the issues submodule, there is a corresponding actions sub-
module implementation. For example, when dealing with
syntactic errors (e.g., two classifiers with the same name),
we will need to provide PARMOREL with a set of editing
actions that could solve the errors (e.g., delete or rename).

This submodule is designed so that actions cannot create
a loop. A loop could happen when repairing an issue with a
certain action leads to introducing another issue, which, when
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repairing it may lead back to the first issue, hence getting
stuck in a never-ending cycle. As presented in Sect. 3, an
action applied to solve an issue is considered a step, and
PARMOREL counts with a maximum number of steps that
can be applied per episode. By limiting the number of steps,
if by the end of the episode PARMOREL has not been able
to find a repair solution due to getting stuck in a loop, the
actions responsible for the loop will receive a negative reward
in order to not being chosen in the future.

So far, we have developed the following implementations
of this submodule: repairs for syntactic errors, refactorings
for smells, and repairs for inconsistencies. Next, we present
each of these implementations.

Repairs for syntactic errors In order to repair syntac-
tic errors, we make use of the actions available within
EMF to modify Ecore class diagrams [38]. These actions
implement operations of addition, removal and updating of
classes, references, attributes and operations in the models.
Some examples of the actions which are available in this
implementation are: setName(), setOppositeReference(),
removeSuperType(), etc. In this implementation, we take all
actions available in the EMF and filter them, keeping only
those that can be invoked to modify the model parts contain-
ing issues (e.g., setName or remove in a classifier).

Refactorings for smells In this implementation, we use the
Edelta DSL together with EMF to specify model refactor-
ings [22]. We define a smells resolver to resolve the smells
found in the models. For example, the resolution for a smell
with duplicated features can be managed by introducing a
hierarchy (i.e., adding a super-class) and moving the shared
features up to the newly created super-class. Unlike syntac-
tic errors, smells might be ignored and not removed since,
sometimes, their removal might worsen the model’s overall
quality. Therefore, we also include an “ignore” action.

Repairs for inconsistencies In this implementation, we use
the Java DOM libraries to manipulate the UML models’
structure as XML files. We have implemented operations
that allow us to create new messages in the sequence dia-
gram and move existing ones.

Unlike the previous issues, most inconsistencies have a
single action to restore them, but the actions might be appli-
cable in different parts of the models. For example, if there is
an operation in a class diagram without a corresponding mes-
sage in a sequence diagram, there might be multiple potential
senders and receivers, depending on the references the class
containing the operation has to other classes.

This is relevant because in other repair scenarios an action
could only be applied in a single way to repair an issue (e.g.,
renaming an attribute). When dealing with issues with respect
to messages in a sequence diagram, however, PARMOREL

has to identify the potential senders and receivers of the repair
actions, and finding what is the best combination according to
the preferences selected by the user. Hence, the tool focuses
on finding the best option regarding where to apply an action
rather than finding the action which should be used to perform
the repair.

4.2 Preferences module

Users can customize the results PARMOREL produces with
their own preferences by implementing the preferences mod-
ule (see Fig. 4). A preference indicates which kind of actions
the user wants to be applied in the models. When more than
one action can be applied to solve an issue, the preferences
are used to choose which one is best for the user. A pref-
erence could be the prioritization of quality characteristics,
boosting specific measurements of the model, etc. For exam-
ple, if a user wants to produce models which are better with
respect to a particular quality characteristic,c PARMOREL
would choose actions which have a positive impact on that
characteristic. PARMOREL supports any type of preferences
as long as they can be translated into numeric values (e.g., the
value of a quality characteristic). Users can create their own
preferences by implementing PARMOREL modules through
a series of interfaces [34]. When adding new preferences
users have to indicate the value that corresponds with each
preference, either a static value or a calculation function
(as we will see with the implementations presented in this
section). The preferences are not limited to a certain level
of expressivity (type or instance model level, syntactic or
semantic, etc.). As long as a preference provides a numeric
value that can be used as a reward, it will be supported by
PARMOREL.

PARMOREL will take these values as rewards that will
guide the repair process. These rewards will be used in the
learning module to learn which action is the best to repair
eachissue. PARMOREL will use the rewards to estimate how
good or bad each action is to satisfy the user preferences.
More details about how rewards work will be provided in the
following section.

The preferences module is independent of the modeling
module; thus, a specific preference implementation could
be used both for solving syntactic errors and smells in the
models. For example, the same quality characteristics could
be taken into account regardless of the kind of issue being
solved. The only requirement is that they share the same
supported models—Ecore class diagrams in the previous
example.

So far, we have extended this module implementing the
following preferences: quality characteristics, model dis-
tance, and coupling. Next, we present each implementation.

@ Springer
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Quality characteristics In this implementation [38], we use
quality characteristics extracted from the literature [10—12]
as user preferences. PARMOREL integrates a quality evalu-
ation tool which is inspired by [39].

This quality evaluation tool not only provides an evalua-
tion mechanism but also supports the specification of custom
quality characteristics. So far, we have specified the follow-
ing quality characteristics to be used as user preferences:
maintainability, understandability, complexity, and reusabil-
ity. For more details about these quality characteristics, we
refer the reader to our previous work [38]. By using this
implementation, PARMOREL can learn how to repair Ecore
class diagrams in a way that the selected quality character-
istics are improved. The values of the quality characteristics
will be used as rewards and hence PARMOREL will be able
to choose the repair actions that lead to models with better
quality.

Model distance 1In [21], we exemplify an implementation
of the preferences module by using a model distance met-
ric to guide the repair of Ecore class diagrams. The concept
of model distance has been previously used in the literature
especially related to model comparison [40]. The conceptual
distance between two models can be obtained by comparing
them and processing commonly occurring concepts by also
counting the elements that only exist in one of the models
[41]. PARMOREL obtains the distance metric from a model
distance calculator. By using this metric we can reward the
preservation of the original model structure when repairing,
minimizing undesired side-effects in the repaired model. This
model distance calculation is implemented as an Eclipse plu-
gin, composed of a model matching algorithm specified with
an Epsilon Comparison Language [42] (ECL) script, which
can be customized.

Coupling By using the metrics offered in SDMetrics [36],
we can define preferences to guide the repair of UML mod-
els. As an example, we use the metrics MsgSent (number of
messages sent) and MsgRecv (number of messages received)
[43] to calculate the coupling in UML sequence diagrams. By
taking into account the number of messages each lifeline in
the sequence sends and receives, we can measure the degree
of interdependence between the lifelines in the sequence, so
we add these values to obtain the coupling of each lifeline.
This way, users can decide to repair inconsistencies between
class and sequence diagrams in a way that coupling in the
sequence diagram remains as loose as possible.

4.3 Learning module
The learning module is responsible for learning which

actions are the best to repair the issues in the models accord-
ing to the preferences introduced by the users. It is also
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responsible for storing experience to streamline following
repairs. The learning module is divided into two submod-
ules, namely the algorithm submodule and the experience
submodule.

4.3.1 Algorithm submodule

This submodule contains our implementation of how to apply
RL to repair models. We have used tabular RL algorithms,
such as Q-learning and Q(A) [23]. Tabular algorithms store
the knowledge acquired about how to solve a problem in a
table structure, the Q-table. This table stores pairs of states
and actions together with a Q-value [((State, Action), Q-
value)]. The Q-value is calculated using the rewards, and it
indicates how good a pair is, that is, how good an action is
for a state where the action is applied.

Now, we will go through how the model repair process
works step by step with the help of Fig. 5. As we can see,
the repair process receives as input the input model to repair
and user preferences. Then, the repair process starts with
the action Extract issues with which it extracts issues from
the input model. Following the arrow filter, the action Obtain
actions obtains available editing actions. For each of these
actions, following the arrow actions, Check Q-table checks
whether a pair with the current state and action exists already
in the Q-table. If it does not exist, following the arrow if pair
(state-action) does not exist, Add to Q-table is triggered,
adding the pair to the Q-table. This way, the Q-table will
contain a pair for every available editing action and the cur-
rent state of the model.

Next, following the arrow Q-table or if the pair already
existed in the Q-table, following the arrow if pair (state-
action) exists, Select action is triggered and one of the actions
stored in the pairs of the Q-table is selected to be applied in
the model. Since we follow an e-greedy strategy, actions will
be selected either by having the highest Q-value or randomly
in 30% of the cases (value of € of 0.3, this value provided
the best results according to our experiments in [33]). This
combination of exploitation and exploration allows to pick
repair actions that otherwise might have never been selected.

Then, following the arrows action, the actions Apply
action in model and Store action in the ith episode
sequence are triggered, applying the selected action in the
model and storing it in a sequence of actions belonging to
the current episode i. After applying the action, if there still
are issues in the model, following the arrow if issues left,
reward = 0, the action Update Q-table is triggered, updating
the Q-table with a reward of O for the pair of current state and
selected action. Then, following the arrow if issues left, use as
input, the algorithm starts again, receiving as input the model
with the actions applied so far. This process of applying an
action to address a set of issues constitutes a Step.
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However, if there are no issues left in the model, follow-
ing the arrow if no issues left, the action Obtain reward is
triggered, here, following the arrow reward, the pair will be
updated in the Q-table receiving a reward according to the
preferences chosen by the user. Also following the arrow if
no issues left, the action Create ith episode model creates
a repaired version of the model with all the actions applied
during the episode. Following the arrows ith episode model
and ith episode sequence, the action Store as results is trig-
gered, storing the repaired model and the sequence of selected
actions obtained during the current episode (the steps per-
formed so far until no more issues are left in the model). With
this, an episode finishes and a new one starts.

With the start of a new episode, the input model with its
original issues is recovered and the repair process starts again,
repeating the process inside the box Repair process, aiming
to find new sequences of repair actions and get further test-
ing on the ones already found. The more an action is applied,
the more trustiness will have its Q-value, as it will receive
more rewards and hence the Q-value will be more accurate
of how good that action was for the state it was applied.
To avoid reaching the maximum number of episodes need-
lessly (as security, we use between 1000 and 5000 episodes
as maximum), we run the process with an early-stopping cri-
teria. The process will stop once the maximum Q-value of
the pairs including the initial state remains unchanged for 25
episodes (this value provided the best results according to
our experiments in [33]).

When all episodes finish, or the early-stopping criteria has
been activated, following the arrow input, the action Select
best result is triggered and the repair sequence with highest
Q-values will be selected. Lastly, following the arrow output,
the corresponding provisional repaired model is saved as the
final repaired model.

Additionally, for those situations where automatic repair
or selecting preferences prior to the repair might not be
enough for the users, they can manually select which
sequence of actions they prefer among the repair sequences
found in the episodes, following the arrow optional feed-
back. By doing this, the extra rewards will be provided to
the selected actions. This way, users can correct and influ-
ence how the RL algorithm behind the model repair process
learns.

In previous work [33], we have implemented this submod-
ule with the following algorithms: Q-Learning, Q(\), Monte
Carlo, SARSA and, SARSA(\). We compared the perfor-
mance of these different RL algorithms in PARMOREL and
Q(») was the one that provided us the best performance.
Hence, it is the one we use in our current implementation
and the one we describe in this section. Since the main topic
of this paper is not about RL algorithms, for further expla-
nations about the other algorithms we implemented we refer
the reader to our previous work [33].
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O (\) In this algorithm, the acquired knowledge is stored in
a table structure called Q-table [23]. This table stores pairs
of states (states equal issues in our application) and actions
together with a Q-value. The Q-value is calculated using the
rewards and it indicates how good each pair is. The Q-value
is obtained with repeated calculations based on the Bellman
equation [44] as follows:

Q(s, a) = a(r +y max O(se1,a) — Q(s, ) ey

telling that the maximum future reward is the reward r the
agent received for entering the current state s with some
action a plus the maximum future reward for the next state
s¢+1 and action a’ reduced by a discount factor y . This allows
inferring the value of the current (s, a) pair based on the esti-
mation of the next one s;41, which can be used to calculate
an optimal policy to select actions. The factor « provides the
learning rate, which determines how much new experience
affects the Q-values. One of the variables used to calculate
the Q-value is the maximum weight stored in the Q-table for
the next error to refactor (max, Q(s;+1, a’)). This allows us
to measure the consequences of applying a certain action in
the model (e.g., if applying an action creates a new smell
this action would be punished, getting a lower weight). At
the end of the execution, pairs with the highest Q-value will
conform to the policy to solve the problem. Our algorithm
is epsilon-greedy (e-greedy): it avoids local optima using an
exploration-exploitation trade-off by exploring (i.e., choos-
ing a random action) with probability €, and exploiting (i.e.,
choosing the action with highest Q-value) the remainder of
the time.

Q()) uses a technique called eligibility traces (see lines 9-
18 in Algorithm 1) to back-propagate the values and received
rewards, but it does so not only to the immediately preced-
ing state e(s,a) (or pair of state-action) but to all preceding
states of the current episode, stored in the sae list (see lines
16-18). The idea is that this propagation decays in intensity
the further a state is in the past. This decayed propagation
can lead to a speed up in the algorithm’s convergence, espe-
cially in sparse reward models [23], which provides rewards
only at the end of each episode (e.g., PARMOREL receives
the quality characteristics rewards from the provisional refac-
tored model at the end of an episode). The propagation decay
is controlled with a parameter \ (see line 18). In practice, the
speed of convergence as a function of the value of )\ (between
0 and 1) generally has a U-shape. Therefore, the optimal con-
vergence is usually achieved with an intermediate value of
., which needs to be determined experimentally. According
to our experiments [33], we get the best results by giving
) a value of 0.7. Lower or higher values lead to results of
lower quality. The new Q-value is temporarily stored in the
variable § (see line 15). It is later stored in the Q-table (see
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line 17) by adding the already stored Q-value for that pair of
state-action (s, a) to the product of «, § (the new Q-value)
and the eligibility of (s, a).

The pseudocode depicted in Algorithm 1 is adapted from
the one presented in chapter 12 in [23]. Regarding the above-
mentioned early-stopping criteria, the learning will stop once
max, Q(sg, a) (the maximum Q-value of the initial state)
remains unchanged for 25 episodes.

Algorithm 1 Q())

1: Initialize Q-Table

2: for each episode do

3:  Initialize eligibility table e (default value 0)

4:  Initialize sae as an empty list //list of pairs of state-action visited

5: s < initial state so //being s a state

6:  while issues in model != ¢ do //while issues left in the model

7: Get state s

8: Select best action a with €-greedy policy for s

9: if a is selected randomly then

10: reset eligibility to 0 //reset table

11: reset sae as an empty list //reset the list of pairs of state-
action visited

12: Si+1 < a applied in s //next state comes from applying a in s

13: Add (s,a) to sae list //add to state-actions visited

14: e(s,a) < e(s,a)+ 1 /increment eligibility trace of the pair

15: 8§ =r + ymaxy Q(s;+1,a’) — Q(s, a) /Q(s,a) is the value
of a pair in the Q-Table //a’ is the best action for the next state

16: for each s,a in sae do //for every pair visited

17: Q(s,a) = Q(s,a) + ade(s, a)

18: e(s,a) < yire(s,a)

19: t <t + 1//next step

20: § <= S;41 //s becomes next state

4.3.2 Experience submodule

One of the advantages of using RL is that these algorithms
can improve their performance the more they are applied. In
our approach, the more models are modified the better the
performance might become since PARMOREL acquires and
builds experience that is reused in later repairs.

To this extent, we define the experience submodule. This
submodule makes use of the ML technique of transfer learn-
ing (TL) [19]. TL is a research line in ML that focuses on
storing knowledge gained while solving one problem and
applying it to a different but related problem to solve it faster.
TL allows reusing experience when the rewards change from
one scenario to another [45]. For example, in the robot-in-the-
maze problem, there might be a maze with water positions
that should be avoided and other mazes where the robot
should swim through the water.

TL differs from traditional ML in the fact that, instead of
learning how to solve a problem from zero, it reuses expe-
rience gained in solving a source task (a known problem)
to accelerate the solution of a new target task (an unknown
problem). The benefits of TL are that it can speed up the time

it takes to develop and train an ML system by reusing already
developed solutions.

There exist many techniques within TL. The most com-
mon ones are starting-point and imitation methods [46].
Starting-point methods use the solution found in the source
task to set the initial experience in a target task. Imitation
methods use parts of the source task experience to influence
the solution of the target task. Applied to Q()), following
starting-point methods the whole Q-table from a previous
problem would be reused in a new one while following imi-
tation methods only some parts of the source Q-table would
be copied to the new problem.

Working with the same Q-table in different repair scenar-
ios is useful as long as user preferences remain unchanged.
However, it is not convenient to directly reuse the Q-table
when choosing new preferences, since the repair process
would use the Q-values calculated with the old preferences
and this could lead to repair decisions unaligned with the new
ones. The following imitation methods would not be conve-
nient either since we would still copy some of the Q-values
from an old Q-table calculated with old preferences.

To overcome the limitations of both methods, we apply
our own version of the starting-point method by copying all
Q-table pairs of state-action without their Q-values, so that
the algorithm would not start with a completely empty Q-
table. In addition, we apply a variant of the imitation method
in which instead of copying the Q-values from the Q-table,
we keep track of which preferences were used to produce the
Q-values, accumulate their values, and reuse those which are
aligned with the new user preferences. More details about this
process can be found in [19].

In traditional RL, the value of each entry in the Q-table
(pairs of issues and actions) depends on a single reward, e.g.,
for a robot learning how to escape a maze, it receives a neg-
ative reward when stepping into a wall and a positive one
when entering a free space. However, in model repair, one
entry’s weight may depend on multiple rewards since it might
involve several user preferences, e.g., a user might want to
boost the maintainability and reusability of a model. Intro-
ducing user preferences complicates reusing the experience
acquired by the RL algorithm since what is a good repair
for one user might not be acceptable for another one. With
TL, what is learnt from the repair of one model could be
reused for other models. With this, consequent executions of
PARMOREL, even by different users, could achieve better
performance the more experience is reused.

We use the model in Fig. 6 to illustrate how PARMOREL
supports TL. The learning information gained after each
repair is represented by the concept of Experience which
is composed of one to many entries and preferences. The
concept Entry has references to all the elements that are part
of the Q-table: an Issue and an Action. In addition, an Entry
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Fig.6 Model of experience in
PARMOREL
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has zero to many references to Reward. The Reward contains
a numerical value based on the users’ preferences.

The rewards stored in the Experience are used to initialize
the Q-table in the following repairs. This way, if the current
user shares any preference with previous ones, the rewards
these previous preferences provided in previous repairs can
be used to initialize the new user’s Q-table, so that repair does
not start from zero. This way, the learning will converge faster
and fewer episodes will be required. When sharing experi-
ence in PARMOREL, we reduce the value of € from 0.3
to 0.15 to enhance the influence of the previous Experience.
We initialize the Q-table with the accumulated rewards of
the shared preferences multiplied by a discount factor of 0.2.
This way we assure previous repairing processes influence
the new repairs by jump-starting the repairing process but do
not interfere with learning new repair sequences. Based on
our experimental results, we found that a value of 0.2 gave
the best results for our cases. This parameter’s value can be
modified so that the previous experience affects less or more
new repairs. However, the value should remain constant dur-
ing the execution otherwise some parts of the experience will
be more favored than others.

An example of this process is displayed in Fig. 7. In the left
part of the image, we show the Q-table of Userl once she
finishes using PARMOREL. User!I chooses as preferences
prefl and pref2 to repair a model with two issues, namely
issuel and issue2. Both issues can be repaired with each of
the actions actionl and action2. Then, in the right part of
Fig. 7 we show how the Q-table will look for User2 once she
starts using PARMOREL. This user chooses to repair with
preferences prefl and pref3. The model to repair is different
from the one repaired by Userl, but since what is relevant
for PARMOREL are issues and actions, the Experience can
be reused regardless of the specific model to repair. Without
TL, the Q-table will not exist and a new one will be cre-
ated, adding more time to the processing part of the learning
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algorithm. With TL, every entry existent in the Experience is
copied in the Q-table, and since pref1 is shared with Userl,
the Q-table is initialized with the rewards provided from this
preference multiplied by the discount factor. This way, when
PARMOREL starts the repair process for User2, the time
spent in populating the Q-table is reduced and the learning
algorithm will already have an intuition of which actions are
better for each issue.

At the moment, the experience submodule is only sup-
ported when dealing with Ecore class diagrams. This is
because the problems we have tackled so far in UML models
(inconsistencies between class and sequence diagrams) are
more dependent on each model instance structure (creating
or moving messages in different parts of the sequence) and
their solutions are harder to generalize.

For more details about how PARMOREL uses transfer
learning and the experience submodule works, we refer the
reader to our previous work [19,21].

5 Repairing syntactic errors

This section shows how PARMOREL can identify and
repair syntactic errors in Ecore class diagrams. The issues
and actions submodule are implemented using the syntactic
errors implementation shown in Sect. 4.1.

The preferences module in this implementation combines
two different techniques: a model distance metric to reward
the preservation of the original model structure when repair-
ing, minimizing undesired side-effects in the repaired model,
and quality characteristics to reward quality improvement in
the repaired model (see Sect. 4.2). In the following, we detail
these two techniques before evaluating if PARMOREL can
repair syntactic errors and produce results of better quality
with this implementation.
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5.1 Model distance

We have implemented the preferences module with a model
distance calculator (see Model distance in Sect. 4.2) in order
to understand how much a repaired model is close to the
initial broken model. The model distance calculator is imple-
mented as an Eclipse plugin, composed of a model matching
algorithm specified with an ECL script [21]. The calculator
obtains the distance between the initial broken model and the
provisional repaired one produced in each episode and gives
adistance reward to the learning module. Distance value goes
from O to 1.0 with 1.0 meaning that the compared models are
structurally the same, i.e., the closest distance possible.

This ECL script can be customized to add other con-
straints or relax the similarity function, e.g., remove the lower
bound and upper bound matching for the structural features.
This customization will affect the distance calculation and in
turn, affects the repairing sequences chosen by PARMOREL.
Indeed, by further restricting the comparison mechanism, the
comparison algorithm will match elements differently.

To show how more refined distance calculation affects
PARMOREL results, we have implemented two different
distance metric calculations: Basic and Custom. The Basic
matching algorithm was implemented for general purposes,
and it uses the Levenshtein edit distance [47] when calculat-
ing the name similarity of different elements such as classes
and structural features of the model. The Custom metric value
is calculated using Eq. 2. The distance is computed as the
sum of the class similarity (c/asssim) on the total number of
classes (nrclasses) and features similarity ( featuresim)on
the number of features (nr f eats). For more details about the
model distance calculator, we refer the reader to our previous
work [48].

distance = ((((classsim)/nrclasses)

+ ((featuresim) /nrfeats)) /2); @)

where classsim is a value calculated by an algorithm employ-
ing the Levenshtein edit distance [47] when calculating the
name similarity of the classes, and similarly of the attributes
and references (featuresim).

x 0.2

5.2 Quality characteristics

In this implementation, we specify the following quality char-
acteristics to be used as user preferences: maintainability,
understandability, complexity, and reusability (see Quality
characteristics in Sect. 4.2). These characteristics are defined
using a quality evaluation tool based on a definition of an EOL
[49] script aggregating the available metrics in a predefined
library [8].

The maintainability quality characteristic considered has
been defined according to the definition given in [50] and
the formula presented in [39], which is based on some of the
metrics shown in Table 2 as follows:

Maintainability
B (NC + NA + NR + DIT\iax + FanoutMax> (€)

5

The definitions of the understandability and complexity
quality characteristics are adopted from [51]. In particular,
understandability can be defined as follows:

“

o NC PRED + 1
Understandability = e

where PRED regards the predecessors of each class, since,
in order to understand a class, we have to understand all of
the ancestor classes that affect the class as well as the class
itself.

Complexity can be defined in terms of the number of static
relationships between the classes (i.e., number of references).
The complexity of the association and aggregation relation-
ships is counted as the number of direct connections, whereas
the generalization relationship is counted as the number of
all the ancestor and descendant classes. Thus, the complexity
quality characteristic can be defined as follows:

Complexity = (NR — NUR + NOPR + UND

©)
+ (NR — NCR))

where NUR is the number of unidirectional references mea-
sured as the difference between bidirectional and number of
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references and UND is the understandability value measured
as defined in Def. 4.

The reusability of a given model can be measured in dif-
ferent ways. One of these is to use the attribute inheritance
factor AIF as proposed in [52]. As presented in [53], AIF can
be defined as follows:

. INHF
Reusability = AIF = | —— (6)
NTF

where INHF is the sum of the inherited features in all classes,
and NTF is the total number of available features.

According to these definitions, maintainability, under-
standability, and complexity are decreasing characteristics.
This means that lower values in these characteristics are
an indicator of better quality. By contrast, reusability is an
increasing characteristic, meaning that the higher its value
is, the better reusability the model has. Hence, we could
directly use increasing characteristics values, but decreas-
ing ones need to be converted so that their values can be used
as a reward.

For example, a user wants to improve the maintainability
and reusability characteristics of a model which initial values
(vo) are 10 and 0.15, respectively. For this model, PAR-
MOREL finds two possible repairing sequences of actions,
R1 and R2, each leading to the following quality values (v;):
R1: maintainability of 9.6 and reusability of 0.02 and R2:
maintainability of 9.2 and reusability of 0.17. Maintainabil-
ity improves in both refactorings, while reusability gets better
in R2 and worse in R1. If we directly add these values we
would obtain areward of 9.62 for the first refactoring and 9.37
for the second one. With this, PARMOREL would choose
R1 although it worsens reusability rather than choosing R2
which improves both characteristics and gives a better result
in maintainability.

To avoid this situation, for every decreasing characteris-
tic, we subtract v, from vg and add vg back to the result
(see Eq. 7 below). With this, we convert the characteristics
values so that the higher they are, the better quality they
imply. There could be situations where different quality char-
acteristics have very different ranges. To avoid that one of
the characteristics has more influence on the reward than
the others, we transform the values v so that they reflect
the improvement each characteristic has undergone within
a closer range (see the value x in Eq. 8). For example, by
applying Eq. 7 for R2, where v, values are 9.2 (decreasing)
and 0.17 (increasing), and the vy values are 10 and 0.15,
respectively, we obtain the v values 10.8 and 0.17. Applying
Eq. 8 to these values, we obtain the x values 108 and 113.3.
Finally, by applying Eq. 9, (where n is the number of qual-
ity characteristics selected by the user), we add all x values
and we obtain the reward. At the moment, we consider all
quality characteristics selected by the user will have the same
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Table2 Excerpt of the metrics used in the quality characteristics equa-
tions

Characteristic Acronym
Number of classes NC
Number of references NR
Number of opposite references NOPR
Number of containment references NCR
Number of attributes NA
Number of unidirectional references NUR
Max. generalization hierarchical level DITmax
Max. reference sibling FANOUTmax
Number of features NTF
Sum of inherited structural features INHF
Attribute inheritance factor AIF
Number of predecessors in hierarchy PRED

priority, as prioritizing characteristics is not the focus of our
study. A characteristic could be prioritized by multiplying
each of its xs by a positive weight/integer instead of adding
them directly in Eq. 9. Considering different priorities for the
characteristics might be important depending on the domain
where the repair is applied.

By doing this, the example repairing sequences of actions
would get a reward of 117.3 for R1 and 221.3 for R2. Hence,
PARMOREL would choose R2.

(vo — vr) + v,  if decreasing characteristic

V= o : .
vy, if increasing characteristic
vx100 |
X = , ifv==0thenx =0 ®)
vo

n

reward = Zx,- 9
i=1

5.3 Evaluation

Finally, we present an evaluation of the proposed imple-
mentation. In particular, we aim at answering the following
research question:

RQ: How well can PARMOREL improve the precision in
selecting better repaired models when the preference module
is further extended?

5.3.1 Setup

Machine PARMOREL is run in Eclipse 2020-06 (the Mod-
eling package) on a laptop with the following specifications:
Windows 10 Home, Intel Core 15-6300U @2.4GHz, 64 bits,
16GB RAM.
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distance calculator
abapobj.ecore 8.54 8.54 =
com.ibm.commerce.foundation.datatypes.ecore 1.06 1.06 =
com.ibm.commerce.member.datatypes.ecore 1.22 1.22 =
com.ibm.commerce.payment.datatypes.ecore 1.44 1.44 =
componentCore.ecore 6 5 v
ddic.ecore 36.4 34.4 v
FacesConfig.ecore 12.12 12.12 =
ICM.ecore 15.76 15.76 =
org.eclipse.component.api.ecore 3 1 v
org.eclipse.component.ecore 3 1 v
org.eclipse.wst.ws.internal.model.v10.registry.ecore 3 1 v
org.eclipse.wst.ws.internal. model.v10.rtindex.ecore 3 1 v
org.eclipse.wst.ws.internal. model.v10.taxonomy.ecore 3 1 v
org.eclipse.wst.ws.internal. model.v10.uddiregistry.ecore 33 1.33 v
pom.ecore 19.03 15.03 v
RandL.ecore 99.13 97.13 v
rom.ecore 25.2 242 v
XBNF.ecore 24.13 22.13 v
XBNFwithCardinality.ecore 2.83 2.83 =

Dataset For evaluating this implementation, we rely on
the dataset from [24], mentioned in Sect. 2. We filtered
the dataset in order to get only corrupted models, obtaining
107 models, where errors were distributed as in Table 1. We
identified 12 error types, E1-E12, which were supported by
PARMOREL. Table 1 details the total 973 error occurrences
found in the dataset. The complete list and explanation of the
errors and the corrupted models can be found at our GitHub
repository’.

5.3.2 Results and interpretation

To determine if a model is better than the rest we use quality
characteristics. To better explain our results, first, we intro-
duce how the considered quality characteristics are linked to
model elements [50]. For instance, the maintainability of a
model is influenced by the size of the model and then the num-
ber of classes; understandability is influenced by the number
of hierarchies, etc. For this reason, if we consider an error
impacting specific model elements, PARMOREL should pro-
duce a repaired model optimizing the quality characteristics
that are influenced by the repaired elements. For example, if
we consider we have two classes with the same name in the
model (E6 in Table 1), if one of the classes is also involved
in a hierarchy, fixing this error could impact all the quality
characteristics considering the number of hierarchies in the

! https://github.com/models2020modelsrepair/ModelsRepair.git.

model. As aconsequence, if we compare the basic implemen-
tation of the model distance with the customized one, even
if the customization of the matching strategy is minimal, the
selected repaired model should have improved quality char-
acteristics since the distance calculation is more refined.

Hence, we proceed to run PARMOREL first with the basic
implementation of the distance calculation and then the cus-
tomized one; if our hypothesis is correct, we should have
better precision in selecting the repaired model and conse-
quently optimize quality characteristics.

As an example, we use as user preference, besides the dis-
tance calculation, to improve the complexity characteristic of
the models. For this, we will repair models from the dataset
containing error E11, a containment or bidirectional refer-
ence must be unique if its upper bound is different from 1 (see
Table 1). This error is related to containment references and
the upper bound and uniqueness of the reference—all these
affect complexity. Table 3 shows the models in our dataset
impacted by error E11. Complexity is defined in terms of
the number of static relationships between the classes (i.e.,
number of references).

Table 3 reports the complexity value after repairing with
the basic distance and the customized one. For all the cases,
the complexity improved (v") (decreased, so it is optimized)
or at least remained unchanged (=). The results are that 12 of
the selected repaired models improved the complexity and 7
remained unchanged, confirming our hypothesis.
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Table 4 Percentage of models which, after repairing with closest dis-
tance preference, are improved with respect to quality characteristics

Quality characteristic Improved (%)
Maintainability 80.2
Reusability 84
Complexity 84
Understandability 100

Considering the custom distance algorithm extension as
user preference, we proceed to measure if quality improved
in the repaired models. The quality characteristics that are
improved in relation to the whole dataset are reported”
in Table 4. Maintainability has remained unchanged or
improved in the 80.2% of the total models in the dataset?,
reusability in 84%, complexity in 84%, and understandabil-
ity in 100%. The unimproved cases depend on the occurring
errors in the models and on the model elements that affect
the quality characteristics. For this reason, we also report
that the most widespread error in the unimproved models is
E8, invalid specified literal (see Table 1), in order to discuss
why the quality has not been improved by selecting the best
repaired model in terms of distance by using the basic and
the custom distance algorithms.

Recall that the distance function has only been customized
for the references’ matching. As a consequence, only qual-
ity characteristics which are calculated using references are
the ones that are impacted. In fact, we can verify that for
error E8 and the maintainability quality characteristics—
where all the components of Eq. 3 are the number of classes,
structural features, hierarchies, and reference siblings—the
custom distance calculation did not optimize or affect this
maintainability.

Error E8 is the most widespread error in cases where qual-
ity characteristics are unchanged, and it represents an invalid
specified literal in the model, which means that fixing the
error does not affect the maintainability, since enumerations
are not considered in its equation (see Eq. 3).

Regarding reusability, it has improved in 84% of the cases.
E8 is again the most present error in unimproved cases, and
it does not affect the reusability equation (see Eq. 6), except
when the faulty attribute is the one with the invalid specifica-
tion. The same reasoning applies to complexity in the sense
that in the unimproved cases, it is because the error is found
on features which are not reflected in the quality calculation.

Finally, understandability is improved in all the models
(100%). For most models this quality attribute remains stable,

2 The complete results are available as a Google spreadsheet in https:/
cutt.ly/zlnkPou.

3 Some of the cases are excluded since the quality evaluation exited
with errors or warnings.
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this is caused because fixing errors in this dataset does not
affect hierarchies and hence PRED remains unchanged. We
can confirm that a quality characteristic improves only in
cases where the model repair impacts elements which are
used in the quality characteristics calculation.

With the results of this evaluation, we can answer our
research question. By extending PARMOREL preferences
module, the precision of the framework improves and it is
able to produce repaired models with higher quality.

6 Restoring inter-model consistency

This section shows how PARMOREL can identify and
restore inter-model consistency between UML class and
sequence diagrams. The issues and actions submodule
are implemented using the inconsistencies implementation
shown in Sect. 4.1. The preferences module in this implemen-
tation uses a coupling calculation technique (see Sect. 4.2)
in order to reward lower coupling in the sequence diagrams
when restoring consistency.

In the following, we detail how PARMOREL detects and
restores inconsistencies and calculates coupling before eval-
uating if it is able to restore inter-model consistency while
lowering the coupling in the sequence diagrams.

6.1 Inconsistency rules and refactorings

To evaluate that PARMOREL is able to restore inter-
model consistency, we have implemented the following rules
(inspired by rules 110 and 114 from [37]) to identify incon-
sistencies between UML sequence and class diagrams:

e Rule I: If a message in a sequence diagram refers to an
operation, through the signature of the message, then that
operation must belong, as per the class diagram, to the
class that types the target lifeline of the message.

e Rule 2: Each public operation in a class diagram triggers
a message in at least one sequence diagram.

As a running example, we show in Fig. 8 a modification
of the video on demand system (VoD) example presented
in [54-56]. In this example, we have a class diagram with
three classes: Video, Server, and User, and a sequence dia-
gram with the lifelines corresponding to these classes. We
assume the class diagram has evolved and its correspond-
ing sequence diagram is no longer consistent with the new
changes. As can be seen, the operation disconnect should be
invoked in Server by Video, however, in the sequence dia-
gram it is invoked in Video by User, which triggers Rule 1.
Additionally, the operation loop does not appear in any of the
classes’ lifelines in the sequence diagram, hence triggering
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Fig.8 Running example for inconsistencies between UML class and sequence diagrams

Rule 2. This operation should be invoked in Video either by
User or Server.

To solve these inconsistencies, we have implemented two
refactorings to be applied in the sequence diagrams:

e Move message: moves a message between lifelines to
its corresponding place according to the class diagram,
modifying the message’s sender and/or receiver. It solves
inconsistencies caused by violating Rule 1.

e Add message: adds a message in a lifeline (receiver)
according to its corresponding operation and the class it
belongs to in the class diagram. It solves inconsistencies
caused by violating Rule 2.

Although each refactoring addresses inconsistencies caused
by violating one of the rules, PARMOREL has to decide
where to add or move the messages, since depending on
where the messages are located, the overall coupling of the
sequence diagram will be different. The objective here is to
keep the coupling as low (or loose) as possible.

6.2 Coupling calculation

As explained in Sect. 4.2, by using the metrics offered in
SDMetrics [36], we can define preferences to guide the repair
of UML models. SDMetrics offers a suite of predefined and
extensible metrics.

As an example, we use the predefined metrics MsgSent
(number of messages sent) and MsgRecv (number of mes-
sages received) inspired by [43] to calculate the coupling in
UML sequence diagrams. By taking into account the num-
ber of messages each class lifeline in the sequence sends
and receives, we can measure the degree of interdependence
between the classes in the sequence diagram. By adding the
number of messages sent and received we can obtain the
coupling of each class. This way, PARMOREL can decide
which lifelines will be the best to act as senders and receivers
to keep the coupling as low as possible.

To do so, we sum up the values of MsgSent and MsgRecv
of each lifeline (being n the total number of lifelines, see
Eq. 10). Then, we divide the sum value by the addition of
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the MsgSent and MsgRecv of each lifeline. Finally, we add
the obtained value for each lifeline into reward (see Eq. 11).
This value will be higher the lower the total coupling of the
diagram. We use this value as a reward for the learning algo-
rithm. Since PARMOREL works with an e-greedy algorithm,
it will always look to maximize the rewards.

n
sum = Z MsgSent; + MsgRecv; (10)
i=1
- sum
d = 11
rewar ; MsgSent; + MsgRecv; (i

For example, returning to the example in Fig. 8, the oper-
ation disconnect should be invoked in Server by Video, but
there are two possible Server lifelines: mirror and main, each
leading to a different coupling value. Likewise, the operation
loop should be invoked in Video either by User or one of
the Server lifelines. For this example, the optimal solution
found by PARMOREL has a reward of 26.5; the solution
is displayed in Fig. 9. It moves the operation disconnect
to have the Server:mirror lifeline as receiver and Video as
sender and it adds the operation loop to have the Video life-
line as receiver and Server:mirror as sender. Other solutions
receive a lower reward, since their coupling is worse, for
example, moving the operation disconnect and adding loop
to have, in both cases, the Server:main lifeline as receiver
and Video as sender would get a reward of 20.66. In this
case, both Video and Server:main lifelines would have worse
coupling.

This coupling preference is implemented as an exam-
ple to test the extensibility of PARMOREL preferences and
personalization of repair when solving inter-model inconsis-
tencies in UML models. We consider the repair is correct
when none of the rules we defined are violated. However,
this same scenario could be solved with other preferences,
such as cohesion or other quality characteristics.

6.3 Evaluation

Finally, we present an evaluation of the proposed implemen-
tation to restore inter-model consistency. First, we present
our experiment’s setup, followed by the results obtained and
their interpretation. In particular, we aim at answering the
following research question:

RQ: How well can PARMOREL provide personalized
restoration of inter-model consistency between UML class
and sequence diagrams?

6.3.1 Setup

Machine  PARMOREL is run in UML Designer 9.0 (Obeo)
on the same laptop presented in Sect. 5.3.

@ Springer

Dataset To test this implementation, we have manually cre-
ated 12 models, 6 pairs of class and sequence diagrams using
the Eclipse IDE of UMLDesigner 9.0 4. The sequence dia-
grams are based on sequence diagrams that can be found in
[57]. Regarding the class diagrams, we created them based
on these sequence diagrams, since in [57] they were not
available. Furthermore, we arbitrarily changed the sequence
diagrams so that inter-model inconsistencies would appear
between them and the class diagrams, as the diagrams avail-
able did not contain this kind of issues. This dataset is
available to download at [34].

The subject sequence diagrams have between 4 and 11
lifelines and include between 2 and 10 violations of rules 1
and 2.

6.3.2 Results and interpretation

In this experiment, we evaluate if PARMOREL is able to
deal with unidirectional inter-model inconsistencies between
UML class and sequence diagrams. We want to evaluate that
the framework can be extended to deal with different types
of models and issues.

For each pair of class and sequence diagrams, first,
we analyze if there exist any violations of rules 1 and 2.
Then, for every violation detected, PARMOREL obtains
which lifelines could be potential senders and receivers for
the repair actions. Then, in every episode, PARMOREL
applies the repair actions with different senders and receivers,
obtaining the coupling of the repaired sequence diagrams.
Finally, the sequence of repair actions (with the best com-
bination of senders and receivers) that leads to the lowest
coupling is selected. For each pair of diagrams, it takes PAR-
MOREL between 0.7 and 8.2s to learn how to restore the
consistency.

As an answer to our research question, PARMOREL is
able to resolve all inconsistencies in the dataset models,
always choosing the most optimal solution with respect to
coupling (for the given formulae which are used to calculate
the coupling, i.e., the repaired sequence diagrams might not
be the most optimal representation of their domain). This
solution is the sequence of actions that create the model with
lowest coupling, hence providing personalized restoration.
With these results, we can conclude that PARMOREL can
support different types of models (UML class and sequence
diagrams) and more complex issues, like inter-model incon-
sistencies.

Additionally, while performing this experiment, we have
discovered that PARMOREL is able to design a sequence dia-
gram from scratch. When this happens, for every operation
existing in the class diagram, a violation of Rule 2 is trig-
gered, since there are no messages existing in the sequence

4 http://www.umldesigner.org/.
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diagram. Hence, PARMOREL is able to find which is the
most optimal distribution of messages between the lifelines
in the sequence diagram to reduce the coupling and create a
diagram with such distribution.

We find this discovery could have great potential to auto-
matically generate models. Apart from keeping consistency
between corresponding models, PARMOREL could help
modelers to design new models in inter-modeling envi-
ronments. This design could be guided by different user
preferences, like reducing coupling, enhancing cohesion,
improving quality characteristics, etc. We plan to continue
researching the potential of this discovery in the future.

7 Threats to validity

In this section, we discuss potential threats that are associated
with the validity of the experiments discussed in Sects. 5
and 6. We distinguish between internal and external threats
to validity.

7.1 Internal validity

Internal threats are factors influencing the outcomes of the
performed experiments, hence, we present the internal valid-
ity threats for each of our experiments.

PARMOREL works with the assumption that, for each
issue in the model, between the actions available, there is
at least one able to repair the issue. If this is not the case,
PARMOREL will not be able to repair it, ignoring the issue

and continuing with the repair process. Hence, the repair is
dependent on the actions provided in the actions submodule.
We plan to address this as part of our future work.

No real users participated in the experiments. However,
the preferences that guide the repair in both experiments sim-
ulate the decisions that could have been taken by a real user.

Among the internal threats, we have the quality evalua-
tion process since the quality model is user-defined. Quality
characteristics are often based on the modeler’s experience
and mistakes in these quality models’ definitions may impact
the results. To mitigate these issues we reused, when possi-
ble, existing definitions from literature and represented them
faithfully with the corresponding models or DSL syntax.

Quality of the repaired models is measured through met-
rics and not evaluated by users. Although a metric cannot
include the fine-grained details that a real user could evaluate
in the model, we consider these metrics as a good indicator
of the objective quality of the repaired model.

Our distance metric calculation is parametric with respect
to a match threshold, specified in the FuzzyMatch function,
that in our case is set to 0.5. Varying this parameter, the
distance calculator may return different results, so we set
this parameter to a value that in our experiments seems to be
balanced enough in returning accurate results.

In this direction, the coupling metric is also user defined.
To mitigate this threat, we followed definitions implemented
in SDMetrics, based on formulas extracted from the litera-
ture.
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As stated in Sect. 6.2, the coupling preference is used
as an example to prove PARMOREL’s extensibility. How-
ever, when solving inter-model inconsistencies, taking into
account the models’ representation quality—i.e., to which
extend the models represent the domain sufficiently—could
lead to results more aligned with the user intentions.

7.2 External validity

In this context, we discuss how the conducted experiments
would still be valid outside the used setting. To mitigate this
aspect, in Experiment 1 (see Sect. 5) we considered various
models since the dataset is heterogeneous and used in other
experiments in literature [58].

For Experiment 2 (see Sect. 6), the number of models is not
large for a standard evaluation but finding real corrupted mod-
els with inter-model inconsistencies on existing repositories
is not easy. Usually repositories consist of isolated models.
However, this threat is justified by the scope of the experi-
ment and the fact that the subject models were inspired by
real ones (genMyModel repository). Another solution would
have been to create a synthetic dataset extracted, for example,
from real project via reverse engineering. We plan to create
such a dataset as part of our future work.

Also in Experiment 2, we chose inter-model inconsis-
tency between class and sequence diagrams as an example to
show PARMOREL’s potential to address this type of issue.
However, inter-model inconsistencies can happen in many
different types of models. We consider this example repre-
sentative enough as a first step of PARMOREL dealing with
this type of issue.

Throughout the paper, we have picked four quality char-
acteristics as a proof of concept to measure the quality
of the refactored model (maintainability, understandability,
reusability, and complexity), and with a coupling and model
distance measure.

Many other characteristics could be measured in the
models and, other issues could be identified together with dif-
ferent refactorings and repair actions. We consider the set of
issues, actions, and preferences representative enough since
they are related to different elements in the models, covering
a wide range of structural changes in them. Also, including
experts in the quality definition process could mitigate this
aspect.

Finally, the examples in the paper are based on EMF,
Ecore, and UML models (class and sequence diagrams), but
as we explained, it is possible to switch to other model types
by extending PARMOREL. Within EMF, the work presented
in this paper is specific for Ecore class diagrams. However,
it could be applied in general to models instances if the
repairing actions retrieved from the framework were domain
specific.
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8 Related work

The main features that distinguish our approach from other
model repair approaches is the extensibility of the frame-
work and the capability to learn from each repaired model
in order to streamline the performance. We could not find in
the literature any research applying RL to model repair nor
providing our degree of customization.

The advantage that RL presents with respect to other
approaches that solve similar problems, such as search-based
approaches or multi-objective heuristics is the ability to learn.
RL’s objective is not only to solve a problem but to learn how
to solve it. When facing new problems, the algorithm will not
start from scratch and repair time can be streamlined.

The most similar work to ours we could find is [59], where
Puissant et al. present Badger, a tool based on an artificial
intelligence technique called automated planning. Badger
generates plans that lead from an initial state to a defined
goal, each plan being a possible way to repair one error. We
prefer to generate sequences to repair the whole model since
some repair actions can modify the model drastically, and we
consider it counter-intuitive to decide which action to apply
without knowing its overall consequences; additionally, RL
performs better after each execution.

Nassar et al. [6] propose a rule-based prototype where
EMF models are automatically completed, with user inter-
vention in the process. Our approach allows for more
autonomy since preferences are only introduced at the begin-
ning of the repair process and user feedback at the end of all
episodes, requiring less effort from the user.

In this direction, authors in [60] present an interactive
repairing tool powered by visual comparison of models per-
forming conformance checking. They conclude that fully
automated methods lead to overgeneralized solutions that
are not always adequate, and strong interaction comes with a
high computational effort; therefore, as future work they seek
an equilibrium between automation and interaction. This is
our vision: balance between the algorithm independence and
user intervention to provide personalized solutions.

Taentzer et al. [4] present a prototype based on graph
transformation theory for change-preserving model repair.
The authors check operations performed on a model to
identify which ones caused inconsistencies and apply the cor-
respondent consistency-preserving operations, maintaining
already performed changes on the model. Their preservation
approach is interesting; however, it only works assuming that
the latest change of the model is the most significant.

Kretschmer et al. introduce in [61] an approach for dis-
covering and validating values for repairing inconsistencies
automatically. Values are found by using a validation tree to
reduce the state space size. Trees tend to lead to the same solu-
tions once and again due to their exploitation nature (probing
a limited region of the search space). Differently, RL algo-
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rithms include both exploitation and exploration (randomly
exploring a much larger portion of the search space with the
hope of finding other promising solutions that would not be
selected normally), allowing to find new and, sometimes bet-
ter optimized fixes for a given problem.

Some approaches make use of neural network (NN) archi-
tectures to solve different MDE problems. In [31], authors
present a NN architecture for model transformation without
specifying code for any specific transformations. Tackling
model refactoring, in [62] authors make use of a deep NN
architecture to refactor UML diagrams with symptoms of
design flaws. NNs need a great amount of data in order to
work. The solutions are tightly related to the training dataset,
so if the requirements of the problem change, so needs to do
the data. By using RL we do not need training data, as these
algorithms learn by directly interacting with the models and,
by using the abstract concepts of PARMOREL architecture,
our tool can easily be adapted to solve different problems
without the burden of designing new datasets.

Itis worth mentioning search-based and genetic algorithm-
based approaches since, although they have not been applied
yet to model repair, they are possible competitors to RL.

These techniques have showed promising results deal-
ing with model transformations and evolution scenarios, for
example in [63] authors use a search-based algorithm for
model change detection. These algorithms deal efficiently
with large state spaces, however, they cannot learn from pre-
vious tasks nor improve their performance. While RL is,
at the beginning, less efficient in large state spaces, it can
compensate with its learning capability. In the beginning,
performance might be poor, but with time repairing becomes
straightforward.

Lastly, another search-based approach is presented by
Moghadam et al. in [64]. In this work, the authors present
Code-Imp, a tool for refactoring Java programs based on
quality metrics that achieves promising results at code-level
by using hill-climbing algorithms [65]. These algorithms are
interesting to find a local optimum solution but they do not
assure to find the best possible solution in the search space
(the global optimum). By using RL we assure to find the
global optimum aligned with the user preferences, in our
example the sequence of repairing actions that minimizes
the distance with respect to the original model.

9 Conclusions and future work

In this paper, we presented PARMOREL, an extensible
framework for model repair based on three main modules:
modeling, preferences and learning modules. Users can cus-
tomize the modeling framework to work with different types
of models, the preferences to obtain different customized
repairs, and the learning module to use different learning

algorithms. Supported algorithms must support the concepts
of states (issues in our problem), actions and rewards [23].

Throughout the experiments presented in Sects. 5, and 6
we have demonstrated how we have extended PARMOREL’s
modules with the implementations presented in Sect. 4. We
have evaluated PARMOREL’s ability to repair different types
of models (e.g., Ecore class diagrams, UML class diagrams,
and UML sequence diagrams), different types of issues (e.g.,
syntactic errors, and inter-model inconsistencies), and with
different user preferences (e.g., model distance, and cou-
pling).

Our experiments show that PARMOREL can repair model
issues by choosing the optimal action from a set of available
ones (Sect. 5), Additionally, we have discovered that PAR-
MOREL could be used to assist modelers—with some degree
of auto-completion—when designing inter-related models
(Sect. 6).

Our evaluation shows satisfactory and promising results.
We find that PARMOREL is an indicator of how ML could be
useful within the model repair field and, that it could be used
as a suit where different model repair experiments could be
performed in a single environment, without the need of using
various tools and the nuisances caused by integrating them.

In the future, we plan to extend PARMOREL so that mod-
els without issues could be improved in terms of, for example,
quality characteristics. Next, we plan to create a benchmark
using different model datasets, including the ones used in
this paper, with which we will compare PARMOREL results
and its performance to other existing model refactoring and
repair approaches in the literature. We would like to improve
our inter-model inconsistencies with synthetic models. Also,
we plan to extend PARMOREL to solve other problems rel-
evant in the modeling field, like model instances refactoring
after their corresponding metamodel evolves, making archi-
tectural models compliant to best practice patterns, repair of
behavioral models and taking into account execution seman-
tics.

Additionally, we plan to extend the learning module with
other algorithms beyond reinforcement learning, especially
focusing on other Al approaches, and studying their perfor-
mance with respect to RL algorithms. Also, we will compare
the tool performance with other automatic repairing tools
presented in Sect. 8, paying special attention to search-based,
rule-based, and automated planning approaches.

Moreover, we plan to extend the experience submodule so
that transfer learning can be applied to more complex repair
problems such as restoring inter-model consistency. Lastly,
we plan to extend PARMOREL'’s actions submodule so that
repair actions can be directly inferred from the issues detected
in the models.

Funding Open access funding provided by Western Norway University
Of Applied Sciences.
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