
Software and Systems Modeling (2022) 21:1135–1157
https://doi.org/10.1007/s10270-022-00983-5

THEME SECT ION PAPER

AI-powered model repair: an experience report—lessons learned,
challenges, and opportunities

Angela Barriga1 · Adrian Rutle1 · Rogardt Heldal1

Received: 31 March 2021 / Revised: 22 December 2021 / Accepted: 26 January 2022 / Published online: 22 February 2022
© The Author(s) 2022

Abstract
Artificial intelligence has already proven to be a powerful tool to automate and improve howwedealwith software development
processes. The application of artificial intelligence to model-driven engineering projects is becoming more and more popular;
however, within the model repair field, the use of this technique remains mostly an open challenge. In this paper, we explore
some existing approaches in the field of AI-powered model repair. From the existing approaches in this field, we identify a
series of challenges which the community needs to overcome. In addition, we present a number of research opportunities
by taking inspiration from other fields which have successfully used artificial intelligence, such as code repair. Moreover,
we discuss the connection between the existing approaches and the opportunities with the identified challenges. Finally, we
present the outcomes of our experience of applying artificial intelligence to model repair.

Keywords Artificial intelligence · Model repair · Challenges · Opportunities

1 Introduction

In model-driven engineering (MDE), the increasing com-
plexity of software systems is handled by utilizing abstract
software models. When producing these models, software
developers may introduce various issues which corrupt the
models or reduce model quality, such as syntactic errors,
smells [1], antipatterns [2], and inter-model inconsistencies
[3]. In addition, the chances of corrupting a model increase
along with the size of development teams and the number
of software requirements, lack of coordination, misunder-
standing, and mishandled collaborative projects [4]. These
issues may lead to severe challenges in the later phases of
the development process since the reliability and accuracy of
these models are important to correctly produce the software
systems which they represent.

Communicated by L. Burgueño, J. Cabot, M. Wimmer and S. Zschaler.

B Angela Barriga
abar@hvl.no

Adrian Rutle
rohe@hvl.no

Rogardt Heldal
aru@hvl.no

1 Western Norway University of Applied Sciences, Bergen,
Norway

Ensuring that a model does not contain issues is a time-
consuming task. As a consequence, a variety of approaches
to automatic model repair have been proposed over the last
decades to tackle the repair of corrupted models from dif-
ferent perspectives and applied to different models [5–7].
Someof these approaches provide automatic repair; however,
there might be multiple repair solutions that do not satisfy
all modelers’ preferences. Likewise, there are multiple types
of issues that could appear in the same model. Cognifying
[8] model repair could be the solution for giving automatic
approaches enough power to deal with this diversity of prob-
lems.

Over the last years, artificial intelligence (AI) has risen
as a disruptive trend that is bringing a new era for how we
design and maintain technology. AI brings the potential to
automate complex tasks and replicate human behavior in
multiple domains, including software engineering. The abil-
ity of AI to recognize patterns and learn how to deal with
them allows automating repetitive tasks such as bug fixing
and code repair [9], testing [10], quality assurance [11,12],
or verification [13]. Despite the potential of AI to provide
automatic model repair, there is not much research done in
this direction.

Recently, there has been an increasing interest in the mod-
eling community to combineAI andMDE.Conferences such
as MODELS [14] are focusing on AI-related special themes

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00983-5&domain=pdf


1136 A. Barriga et al.

(e.g., 2021 edition: Modeling for Human-AI Collaborative
Society, 2020 edition: Modeling in the era of data) and new
workshops such as the Workshop on Artificial Intelligence
and Model-driven Engineering (MDE Intelligence) [15] are
appearing and becoming more popular. Likewise, several
authors in the field have already identified the application of
AI in MDE as a challenge to overcome in order to increase
the adoption of MDE [8,9,16]. As stated in [16], to automate
and make more powerful maintenance solutions, we could
extend MDE techniques by exploiting AI techniques. AI is
slowly but steadily being adopted in differentMDEprocesses
and AI-powered model repair is not an exception.

In this paper, we explore the existing research on AI-
powered model repair. Then, we identify open research
challenges that the community needs to overcome to improve
the adoption of AI-powered model repair. Furthermore, we
present a number of unexploited research opportunities based
on the successful usage of AI in comparable fields. Finally,
we present lessons learned while developing our tool for AI-
powered model repair.

Structure of the paper This paper is organized as fol-
lows: Sect. 2 presents background related to model repair
and AI. Section 3 introduces an exploration of approaches
of the AI-powered model repair field. Then, Sects. 4 and
5 present, respectively, research challenges, and opportuni-
ties of the AI-powered model repair field. Section 6 presents
lessons we learned while developing our own AI-powered
model repair tool. In Sect. 7, we discuss the outcomes of
the identified approaches, challenges, and opportunities sec-
tions. Section 8 presents the threats to validity of our research.
Then, we conclude the paper in Sect. 9.

2 Background

AI-powered model repair is the intersection of two fields: AI
and model repair. Hence, it is necessary to understand the
basics of these two fields before diving into further detail
about their combination. In this section, we briefly present
what model repair and AI are, in order to provide a better
understanding of the topics later presented in this paper.

2.1 Model repair

In this paper, we refer to anything that might be considered
as wrong or improvable within a model as an issue. Issues
might be of different types depending on their nature and
the context where they appear. For example, an issue could
be a syntactic error triggered when an instance model does
not comply with its corresponding metamodel (e.g., Ecore
class diagrams and the Ecore metamodel) or with constraints
defined by the user (e.g., OCL constraints), but it could also
be an issue among models representing different aspects of

the same software system (e.g., class and sequence diagrams
with mismatching messages and operations [17]).

Other types of issues out of the scope of this paper would
include over- and under-constraining issues (e.g., too many
constraints imposed over a model and too few variables to
solve the issues caused by violating the constraints, and vice
versa, respectively). We also could consider smells as issues
indicating which parts of the models are more prone to get
corrupted (e.g., duplicated features in a hierarchy that might
lead to increasing the model’s complexity).

Various methods could be used to detect issues in mod-
els, e.g., model-checking [18,19] which determine whether a
model satisfies a set of logical formulae. If it does, the model
is considered correct with respect to those formulae. How-
ever, if not, themodel contains issues that need to bemanaged
to restore correctness with respect to those formulae [20,21].
Managing these issues is the goal of model repair. Citing
Macedo et al. [22]: “One of the main challenges in model
repair is that, for any given set of inconsistencies (issues in
our terms), there (possibly) exists an overwhelming number
of updates that resolve them.”Hence, finding the appropriate
repair actions is not a trivial process.

The existing model repair approaches tackle this problem
from different perspectives. For example, some approaches
try to find the repaired version of themodel closer to the orig-
inal one in terms of structure [4], to get the repair actions from
the ones previously applied in the model [23], or by directly
asking the user which repair actions they prefer, either by
interacting with the user during the repair process [6,24] or
by asking for her preferences before the repair starts [25].
The goal of AI-powered model repair is to take advantage of
the potential of AI to find the most optimal repair actions to
manage the issues in a model.

2.2 Artificial intelligence

AI can be defined as the attempt to build automated imitation
of intelligent behavior, embedding intelligence intomachines
[26]. Most AI advances in the last years, especially within
software engineering, are related to an AI branch called
machine learning (ML). ML is a subset of AI that allows
machines to learn from data without being programmed
explicitly, achieving automated detection of meaningful pat-
terns in data. ML focuses on the use of the strengths and
special abilities of computers to complement human intelli-
gence, often performing tasks that fall way beyond human
capabilities (e.g., processing a great amount of information
in a tiny time-span).

ML is a field with multiple algorithms, which can be
classified depending on how they learn from data. There
exist multiple classifications of ML approaches but, to avoid
unnecessary complexity, in this section we follow a simpli-
fied ML classification that aims to introduce concepts which

123



AI-powered model repair: an experience report 1137

are relevant to the existing approaches in the AI-powered
model repair field. Our classification distinguishes between
three groups of algorithms: supervised learning, unsuper-
vised learning, and reinforcement learning (RL) [26]. In the
following, we will briefly explain these three groups. Addi-
tionally, we will introduce some ML architectures1 such as
neural networks (NNs) and deep learning (DL), given their
current importance in the ML field. We will also explore
logic-based approaches, as they will be relevant later in the
paper.

Supervised learning Supervised learning algorithms learn a
function that maps an input to an output based on example
input–output pairs. They infer a function from labeled train-
ing data consisting of a set of training examples [27]. This
sort of algorithms is suitable for tasks like classification and
regression.

In classification, the algorithm takes an input and returns
either a specific label or a number specifying the confidence
score for a particular label [28]. An example of a classifica-
tion task would be distinguishing pictures of cats and dogs.
Even though all cats and dogs are unique, we are still usually
able to tell them apart. For this to be supervised learning, we
need some training data describing color, shape, distinguish-
ing features, etc., and a label specifying the correct prediction
(e.g., whether the picture contains a cat or a dog). A success-
ful algorithm should be able to recognize previously unseen
cats and dogs after training on this data.

In regression (also called prediction), the algorithm takes
an input and returns a number as output [29]. An example of a
regression task would be to predict the price of housing in ten
years. The algorithm could train on data containing attributes
such as the size of the houses, initial value, evolution during
the years, and quality of the materials. Then, the algorithm
would fit a function to this data to predict the output price.

Unsupervised learning Unsupervised learning is a type of
algorithms that learns patterns fromunlabeled data. The algo-
rithms look to find some recurrent patterns in the input data
[26]. Then, as output, these algorithms group the introduced
data, displaying which data points in the input data are more
related to each other. The most common application of these
algorithms is clustering.

Clustering is a task for finding clusters/groups within the
input data [29]. An example application is image compres-
sion,where the objective is to reduce thefile size of the image.
The input is the pixels that make up the image, and each pixel
is represented by an RGB-value. The algorithm will find all
the pixels related to a specific color (e.g., red), calculate the
average color, and set it for all the pixels of that color. This

1 We use the term ML architecture instead of ML models to avoid
confusion with software models.

will slightly reduce the details of the image, although in an
undetectable way for the human eye, and save storage space.

Reinforcement learning RL consists of algorithms able to
learn by themselves how to interact in an environment with-
out existing pre-labeled data, only needing a set of available
actions and rewards for each of these actions [30]. By using
rewards, these algorithms can learnwhich are the best actions
to interact with an environment. The learning process of RL
comes from the interaction between an agent (the intelligence
in the algorithm) and an environment (the problem to solve).
The agent performs actions in the environment that change
its state. For example, if the environment is a maze, the agent
is a robot, the action is walking one step to the right and the
state the current position of the robot in the maze, then, the
new state would be the robot’s new location: one position to
the right. If the action is positive for the agent (moving toward
the maze exit), it receives a reward, contrarily (stepping on a
wall) it will be penalized. The agent will continue perform-
ing actions trying to get the highest reward until it reaches
its ultimate goal, e.g., reaching the exit of the maze. Algo-
rithms able to beat humans in chess or Go are RL algorithms.

Now that we have introduced the three main categories
of learning algorithms in ML, we continue with some well-
knownML architectures and approaches that can solve tasks
related to supervised, unsupervised, and reinforcement learn-
ing.

Neural networks and deep learningUnlike the previous para-
graphs, NNs are not a set of algorithms distinguished by the
way they learn, but by their structure. NNs are an ML archi-
tecture, and there exist multiples different types of NNs able
to solve problems within supervised, unsupervised, and rein-
forcement learning.

NNs are inspired by the brain’s structure and simulate a
net of neurons able to identify patterns and correlations in
data. NNs contain multiple layers of a data structure called
neurons, which are connected with each other. These con-
nections have changing weights that simulate the connection
of neurons in the human brain. Connections with stronger
weights will be favored and will lead to learning the solution
for a given problem. NNs allow to perform multiple tasks
given a dataset with enough examples from which the net-
work can learn.

DL is a branchofNNs,whichhas become themost popular
trend inML in the last years. DL follows a similar structure to
traditionalNNs, but they usually havemore layers of neurons,
and neurons are inter-connected in a more complex way. DL
NNs are computationally demanding, which is why their use
has not been feasible until recently.

It is usual to combine NNs and DL with other algorithms.
For example, a NN could be used together with an RL algo-

123



1138 A. Barriga et al.

rithm in problems where the consequences of applying an
action in an environment are not known beforehand, or a DL
NN could solve complex RL tasks where the reward function
is unknown, as in [31], where authors make use of a DL NN
to learn goals defined by high-level user preferences.

Logic-based learning Logic-based learning is a branch of AI
suited for search problems, that bridges ML and knowledge
representation—providing information about the world in a
form that computer systems understand. It involves creat-
ing logic-based programs automatically from examples and
domain knowledge.Given a set of examples ofwhat is known
to be true or false in a system, logic-based approaches cre-
ate a hypothesis space (search space) for computing possible
solutions to the problem faced.

Logic-based approaches can learn from small labeled
structured data using declarative prior knowledge expressed
in some logic formalism. These approaches support transfer
and continuous learning. Additionally, the solutions pro-
duced are interpretable and guaranteed to meet the semantic
properties of the system they work with.

Similar to NNs, logic-based approaches are able to solve
problems within supervised, unsupervised, and reinforce-
ment learning. There exist multiple languages and specific
logic-based approaches. In this paper,wewill focus on induc-
tive logic programming (ILP), as it is applied to model repair
in several works in the literature. ILP makes use of logic pro-
gramming to represent examples, background knowledge,
and hypotheses. Given background knowledge and exam-
ples encoded in logic programming, the ILP system can
explore hypotheses to derive as a solution a logic program
that represents all the positive and none of the negative exam-
ples.

3 Exploration of the AI-poweredmodel
repair field

A lot of work has been done in the area of automatic model
repair [22] but, although AI can be considered an automated
approach, not all automated approaches areAI.Hence, before
detailing each approach, it is important to state the differ-
ence between automated and AI approaches. An approach
falls within the AI scope when it was not tailor-programmed
for a specific task. An AI approach can learn how to solve
different tasks without needing further code change. With
this distinction, for example, some rule-based [6,32], graph-
transformation [33,34], and brute force [35] approaches are
discarded. Some rule-based approaches could be considered
as rule-based ML when they are able to identify, generate,
or modify rules on their own; however, approaches in the
literature [6,36] usually have as a pre-requisite some kind of
definition of the rules.

In the following, we present an exploration of the exist-
ing work and approaches of AI-powered model repair. We
include different directions where researchers have worked
on the intersection between AI and model repair. Therefore,
this section can be used as a guide for future research in this
area. The purpose is to present the current status on the field
and to promote the start of newand innovative research.Addi-
tionally, we include also model refactoring techniques since
model repair can be seen as an activity that aims at resolv-
ing issues in models by refactoring them. Wherever there
are similar approaches, we group them by the kind of learn-
ing algorithms they use. Table 1 summarizes the approaches
identified throughout this section.

To provide a better understanding of each group of
approaches presented, we will explain how they could repair
the model presented in Fig. 1. For each example, we will use
oneof the concreteworks presented in eachgroup, since these
works are different implementations of the same approach.
The sample model in Fig. 1 represents a part of a smart sys-
tem inwhich adevice has several statuses, categories, owners,
and an address. The model contains several issues: classes
with duplicated attributes and references (issues 1 and 2),
an operation with two return parameters instead of a single
one (issue 3), a containment reference with an upper bound
greater than 1 (issue 4), an attribute which is actually an asso-
ciation (issue 5), and an attribute without a type (issue 6).
Each of these issues can be addressed by applying different
actions. To repair themodel in Fig. 1, one has to handle all the
issues in the model. For example, issue1 could be handled by
deleting or updating one of the duplicated classes Status or
Public_Status or by creating a hierarchywithin these classes.
This hierarchy could consist of promoting one of the initial
classes to superclass or making both of them children of a
new superclass. References could remain in the children or
belong to the superclass.

3.1 Tree learning

The most extended approach is to use decision trees to sup-
port the repair. Decision trees are nonparametric supervised
learning methods used for both classification and regression
tasks. This approach goes from observations about an item
to conclusions about the item’s target value.

Using tree learning, Kretschmer et al. introduce in [36] an
approach for discovering and validating values for repairing
issues automatically; they group alike these repair values if
they have the same effect, which impacts positively the scala-
bility of the approach. Prior to the validation, an input model
with a set of consistency rules (such as OCL) is required.
For each issue, a validation tree is constructed. The tree
identifies all model elements involved (leaves) and shows
how their values cause the issues. Then, using different tech-
niques, the values on the leaves are changed, which may or

123



AI-powered model repair: an experience report 1139

Table 1 Summary of the identified approaches in the AI-powered model repair field

Technique Approach Description Technologies

Tree learning Kretschmer et al. [63] Automatic discovery and
validation of repairing values
with Boolean logic.

OCL

Khelladi et al. [62] Repairs models and ranks repairs
depending on the positive or
negative side-effect they produce.

UML, OCL

Model/ Analyzer [92] Given constraints, determines
which specific parts of a model
must be checked and repaired.

Independent of
modeling
languages, OCL

Automated planning Badger [90,91] Chooses the minimum repair
actions to reach a user-defined
goal. Users can prioritize
different repairs.

UML

Markov decision process PARMOREL [17,19-21,57] Extensible framework for model
repair that allows personalized
and automatic repair using
reinforcement learning.

Independent of
modeling
languages

Neural networks Burgueño et al. [29] Provides model transformation
without specifying code for any
specific transformations.

Independent of
modeling
languages, JSON

Sidhu et al. [100] Refactors UML diagrams with
symptoms of design flaws.

UML

Genetic algorithms Ghannem et al. [50] Interactive repair based on the
similarity with the original
model.

UML

Inductive logic programming Alrajeh et al. [11] Framework that combines
model-checking with ILP to
assure correctness in models.

-

Fumagalli et al. [48] Framework that combines
model-finding techniques and
ILP to automatize the repair of
conceptual models.

OntoUML

Fumagalli et al. [49] Assistant to identify domain
constraints missing from models.

OntoUML

may not solve the issues. Finally, by using Boolean logic,
the tree is analyzed to obtain which modifications solved
the issues. The modifications found are concrete and can
be executed automatically to repair the inconsistent model.
Alike repairs are grouped and presented to the user as repair
options.

Also tree-powered, Khelladi et al. [37] present a model
repair approach that ranks repairs depending on the positive
or negative side-effect they produce by using a validation
tree. They also identify alternative repair paths and cycles of
repairs. The approach works with UML models and OCL
constraints. As output, a ranking of repairs is produced.
Rather than an automatic approach, this approach can be
considered as a guide and support system to assist modelers
in solving model issues.

Lastly, Model/Analyzer [38] is a tool that, by using the
syntactic structure of constraints, determines which specific

parts of a model must be checked and repaired. Amodel with
a series of constraints is required as input. The approach
is independent of modeling and constraint languages, but
the authors test Model/Analyzer on UML models with OCL
constraints. This tool deals with a large number of repairs
by focusing on what caused an issue and presenting repair
actions as a linearly growing repair tree. The tree takes
into account the side-effects of solving each issue, avoiding
repairs that lead to new issues. At the end of the execution,
issues are visualized, showing information about what parts
of the model contributed to causing the issues and how to
fix them. Knowing their origin may help users to solve the
issues and prevent them in the future.

When model repair is performed applying tree learning
withModel/Analyzer, issues in the models and repair actions
are represented following Boolean logic (e.g., issue1 could
be represented as c1.attrs==c2.attrs, and a repair action as

123



1140 A. Barriga et al.

Fig. 1 Sample model containing a variety of issues

Fig. 2 Example of a repair tree for the model from Fig. 1

c1.remove).Model/Analyzer generates repair treeswhere the
root node represents the logical expressionwhich encodes the
issue to be solved, • represent alternatives, and + sequences,
respectively, of repair actions. Focusing on the model in
Fig. 1, issues 1 and 2 and a representative sample of their
repair actions would be represented as displayed in Fig. 2. In
this simplified repair tree, we can see several repair options,
the first alternative being to remove one of the classes (c1
and c2) or to update them. If the update is chosen, then a
sequence of actions will be necessary to repair both issues:
to update the attribute (attrs) of one of the classes, and to
do the same with one of the references (refs). Based on the
tree, the users would be able to select the repair solution they
prefer.

3.2 Automated planning

Automated planning is an AI technique that focuses on
the optimization of sequences of actions. Unlike classical
classification and control problems, planning solutions are
complex and have to be discovered and optimized in a multi-
dimensional space. Planning can be classified as a branch of
RL [39]. By using automated planning, it is possible to gen-
erate plans that lead from an initial state to a defined goal.

Puissant et al. present Badger in [40,41], a tool based on
automatedplanning.Each inputmodel is defined as a series of
elementary operations which are needed to create the model
(e.g., create, addProperty, addReference, etc., see Fig. 3). By
default, Badger chooses the minimum repair actions to reach
the defined goal; however, users can modify this to prioritize
specific types of actions or parts of the model to repair. Their
approach is applied to different types of structural issues in
UML models. Badger can be adapted to work in different
domains. To show this, the authors create a metamodel to
represent and repair Java code smells. The planner does not
require the user to specify resolution rules manually or to
specify information about the causes of the issues, hence the
tool is fully automated.

When repairing models using Badger, the planner decom-
poses the model subject to repair into logical conditions.
The planner needs as input: (i) the initial state consisting
of the model’s logical conditions (see Fig. 3 for an exam-
ple of how class Status from Fig. 1 is represented), (ii) a
desired goal consisting of the set of consistency rules that

123



AI-powered model repair: an experience report 1141

Fig. 3 Initial state in logical conditions for class Status from Fig. 1

need to be satisfied in the model (in Fig. 1, for exam-
ple issue1 would be represented as forall(class.has(attrs),
other_class.has(other_attrs)), and issue6 would be repre-
sented as attribute. has(type)), and (iii) a set of primitive
actions that can be performed (e.g., setType (attribute, type)).
Actions contain a precondition and an effect. The effect of
an action is executed only if the precondition is satisfied in
the model, for example, the action setType (attribute, type) is
only applied when the precondition attribute does not have
a type is met. The model is repaired with a plan consisting
of a sequence of actions that removes all issues from the
model (e.g., focusing on issues 1, 2, and 6: to remove one
of the faulty classes, attributes, or references, to rename the
faulty attributes, and to set a type in the attribute with a miss-
ing type). The plan is generated using a recursive best-first
search (RBFS) algorithm. The algorithm explores the search
space (consisting of the issues existing in the model and the
combinations of repair actions to solve them) to find a repair
sequence that do not produce any new issues in the model.
The sequence of actions chosen is the most optimal in terms
of exploration of the search space or with respect to the pref-
erences chosen by the user.

3.3 Markov decision process

Over the last years, the authors of this paper have developed
PARMOREL [25,42–45], a customizable and extensible
model repair framework that enables users to deal with dif-
ferent issues in different types of models.

In PARMOREL, the model repair problem is formulated
as aMarkovDecision Process (MDP) [30].MDPs are defined
in terms of a finite set of states and a finite set of actions.
During our research, we could not find any work within the
model repair field usingMDPs, hence, in this sectionwe only
present PARMOREL. In PARMOREL, the states are sets of
issues in the model, and the set of actions is defined by the
editing actions available. MDPs are mathematical models
used to solve sequential decision-making problems. At spec-
ified points in time, a decision agent observes the state of
a system and chooses an action. The action choice and the
statemake the system transition to a new state at a subsequent
discrete point in time. The agent receives a reward signal at
each transition. The goal of the MDP is to find a policy (i.e.,

a mapping from states to actions) that maximizes the rewards
accumulated over time.

The framework uses RL algorithms to implement the
MDP (such as Q-learning or Q(λ)). By using these algo-
rithms, PARMOREL is able to automatically find the best
sequence of actions for repairing a broken model according
to high-level user preferences. Actions aligned with these
preferences will be rewarded.

PARMOREL asks users for their preferences before the
repair process starts and then, the repair is performed auto-
matically, giving as output a repaired version of the input
model. If users desire further interaction, PARMOREL inte-
grates a mechanism to allow them to manually select a
solution from the multiple repair sequences found by the
algorithm.

For example, to repair the model in Fig. 1, first, PAR-
MOREL analyzes if there exist any issues in the model.
Then, for every issue found, PARMOREL applies different
repair actions, obtaining a reward according to howmuch the
selected actions match the user preferences. Finally, PAR-
MOREL selects the sequence of repair actions that leads to
the repaired model most aligned with the user preferences. In
Fig. 4,wedisplay the repair results producedbyPARMOREL
when repairing the model from Fig. 1 when a user prefers to
preserve the original structure of the model (User1), or to
modify it as much as possible (User2).

PARMOREL has been applied to repair syntactic errors
and smells in Ecore class diagrams and to resolve inter-
model inconsistencies between UML class and sequence
diagrams. To repair these issues, users can select to boost
different quality characteristics (maintainability, understand-
ability, complexity, and reusability), to select the repair
solution that reduces themodel distance between the repaired
model and the original one, or to reduce coupling in the
repaired model.

The framework consists of a series of modules that can
be implemented by users. Modules allow personalizing the
type of models to repair, the issues to be addressed, the repair
actions, the RL algorithm to use, and the repair preferences
[25]. Instead of having a specific tool for each kind of issue
and each type of model, PARMOREL works as a unified
extensible framework, which can be extended to support the
new issues that modelers need to solve in their models.

3.4 Neural networks

Some approaches make use of neural network (NN) architec-
tures. NNs are an ML architecture, and there exist different
types of NNs able to solve problemswithin supervised, unsu-
pervised, and reinforcement learning.NNs are inspired by the
brain’s structure and simulate a net of neurons able to iden-
tify patterns and correlations in data. NNs contain multiple
layers of a data structure called neurons, which are connected

123



1142 A. Barriga et al.

Fig. 4 Different repair solutions for the model from Fig. 1 using PARMOREL

with each other. These connections have changing weights
that simulate the connection of neurons in the human brain.
Connections with stronger weights will be favored and will
lead to learning the solution for a given problem. These algo-
rithms allow to perform multiple tasks given a dataset with
enough examples from which the network can learn.

One of these tasks can be to repair models. When using
a NN for model repair, it is necessary to provide the NN
with a dataset representing the issues subject to repair in the
model and their corresponding solutions (in the example of
Fig. 1, the dataset would contain models including issues
1-6 and different repaired versions of those models). The
goal is that the NN will learn from the dataset how to repair
new models not contained in the dataset. Hence, the dataset
should contain enough and diverse examples so that the NN

can extrapolate how to repair the issues in different models.
For example, if in the majority of the training dataset remov-
ing the duplicated attributes from issue1 has led to solving
it, then, next time issue1 appears, the algorithm will decide
to repair the model by removing the attributes. The dataset
might not include anything related to class Status, Category,
etc. It would work on the level of class, attribute, reference,
etc. Hence, the dataset will need to include models with a
recurring structure. So that the NN can learn, it is necessary
to extract and represent the delta between the wrong and the
right versions of the models in the dataset. This delta is usu-
ally a minimal sequence of operations to get from the broken
version of the model to the repaired one. Once the NN has
trained enough on the dataset, when a model with issues is
given as an input to the NN, the NN will produce as output

123



AI-powered model repair: an experience report 1143

either a set of actions to repair themodel or a repaired version
of the model.

In [46], the authors present a NN for model transforma-
tionwithout specifying code for any specific transformations.
Although not specifically model repair, we consider this
approach close enough to be included in this section. They
makeuseof a dataset ofUMLmodels generatedbya Javapro-
gram, but the approach is open for other modeling languages.
Models are stored in a tree structure using JSON formatting,
the root contains the keyword MODEL, and its children are
the model elements. Then, the network transforms the input
models into their corresponding output models extracting the
model transformation needed.

Tackling model refactoring, in [47] the authors make use
of a deep NN architecture to refactor UML diagrams with
symptoms of design flaws. In this approach, the deep NN
learns to recognize the presence of functional decomposi-
tion in UML models of object-oriented software, producing
as output a refactoredmodelwithout flaws. They use a dataset
comprising feature vectors of distinct UML class diagrams.
They obtained the dataset from the UML-Ninja repository
[48] and extracted metrics from them by using SDMetrics
[49]. In both approaches, the authors claim their results are
promising but there are still a series of open challenges
needed to be addressed, such as the size of the training
dataset, diversity of data, and generality.

3.5 Genetic algorithms

Genetic algorithms are used to generate solutions to opti-
mization and search problems by using biologically inspired
operators such as mutation, crossover, and selection. These
algorithms fall under an AI branch called evolutionary algo-
rithms; however, since they aim to solve similar problems
as RL algorithms (searching for solutions that maximize or
minimize a reward or cost function) and behave in a similar
way (finding a solution by interacting with an environment
with no training data), genetic algorithms can be considered
a branch of RL [50].

When solving themodel repair problemwith genetic algo-
rithms, the goal of the reward or cost function will be to
remove the issues existing in a model (such as issues 1-6 in
Fig. 1). In this sense, genetic algorithms are similar to MDPs
in terms of goals; however, they select the actions to remove
issues differently. To remove the issues, the genetic algo-
rithm will get as input a set of repair actions (e.g., for issue1
the available actions would be to remove one of the classes,
update or remove the duplicated attributes, create a hierarchy
with one of the classes, etc.). A subset of the actions available
to repair, called “population” will be selected in each itera-
tion of the algorithm. Some actions will be forwarded to the
next iteration or removed from the population, depending on
howmuch theymaximize or minimize the reward function of

the algorithm. They will be chosen also by a random factor,
which will mix actions that otherwise could have never been
selected. For example, the first population could be to remove
issues 1, 2, and6 by removingone of the classeswith repeated
features and removing the untyped attribute. Then, this last
action could be forwarded to the second population, which
would also include to remove issues 1 and 2 by updating the
duplicated attributes and reference. When the algorithm fin-
ishes mixing populations, the remaining population will be a
set of actions able to remove the issues existing in the model.

In [51], the authors present an approach based on an inter-
active genetic algorithm.Unlike classical genetic algorithms,
in this work, the authors include interaction with the user to
take their feedback into account. These algorithms use a fit-
ness function to determine the goal to solve. In this paper, the
authors make use of a fitness function that combines the sim-
ilarity between the analyzed UML design model and models
from a base of examples, and the modelers’ feedback. Mod-
elers introduce their feedback after some iterations of the
algorithm, indicating which solutions from the ones found
they prefer.

Users can specify different parameters, such as the per-
centage of solutions shown in each interaction. The tool takes
as input a base of examples of refactored models and an ini-
tial model to refactor, then, it generates as output a sequence
of refactorings to be applied on the input model. This tool
is developed as an Eclipse plugin. As dataset, they use Ref-
Finder [52] to extract refactorings performed in different Java
projects.

3.6 Inductive logic programming

As stated in Sect. 2.2, ILP uses logic programming as a
computational mechanism for representing and learning a
hypothesis from incomplete or incorrect background knowl-
edge and a set of examples [53]. Logic programs are based on
a set of rules. The task for the learning algorithm is to com-
pute a hypothesis that extends the background knowledge to
comply with the set of positive examples without covering
the negative ones.

When repairing models with ILP, the set of positive exam-
ples will includemodels without issues and the negative ones
will include models with issues (e.g., different variations of
the issues, for example in different parts of the models). As
happened with NNs, diversity in the set of positive and nega-
tive examples will increase the ability of the algorithm to find
solutions to newmodels. The background knowledge will be
the model subject to repair and its issues (e.g., the model rep-
resented in Fig. 1), and the hypothesis the set of actions to
remove the issues (e.g., all actions available to repair issues
1–6).

In [53], Alrajeh et al. propose a framework that combines
model-checking with ILP to assure correctness in models.

123



1144 A. Barriga et al.

Model-checking is a method for verifying whether a finite-
state model of a system meets a given property, usually by
generating counterexamples to test the property [54]. As a
first step, model-checking is used to check if a model satis-
fies all its desired properties, and if it does not, the system
looks for counterexamples that satisfy the desired properties
in the model. Next, the logic-based component of the frame-
work takes these counterexamples and traces of the violation
of the property andfinds solutions from the hypotheses space.
Finally, the selection of a solution is domain-dependent and
requires input from a human domain expert. There might
exist multiple violations to multiple properties in a model
that require several iterations of this process. The authors
have evaluated the approach by addressing a variety of
requirements-engineering problems and validating it against
several benchmark studies.

Fumagalli et al. [55] propose another framework to autom-
atize the repair of conceptualmodels. They use a combination
ofmodel-finding techniques and ILP. Inmodel-finding, given
a first-order logic formula and a domain of interpretation,
a finder assesses whether the formula is satisfiable in that
model [56]. Besides the difference between model-finding
and checking, this approach follows a similar process as the
framework from Alrajeh et al. First, by using model-finding,
they generate positive (intended) and negative (unintended)
model configurations. Then, to address the unintended con-
figurations, this set of positive and negative examples is
used for feeding the ILP learning process. A set of possi-
ble solutions is generated and finally, one is chosen by the
“knowledge engineer.” Thework presents a proof-of-concept
of the framework through the solution of a sample model.
Their objective is to work with OntoUML models and learn
from the configurations structures that are recurrent in them,
such as patterns.

Also Fumagalli et al. [57] use ILP to assist modelers in
identifying domain constraints that are missing from their
models. Identifying the necessary constraints in a model will
allow to keep that model free of issues in the future and to
create more precise models regardless of the expertise of
the modeler in the models’ domain. The ILP process here
is three-folded and can be grouped into three main phases:
generation, assertion, and induction. In the generation phase,
a model-finding process is executed, creating different ver-
sions of the original model. These versions are combined
with the original model in the assertion phase, creating new
instances of it which can be used by the modeler to elicit neg-
ative and positive examples. Lastly, the induction phase gets
as input the negative and positive examples and the original
model. The output is a set of logical constraints that can be
used by themodeler to complete the input domainmodel, i.e.,
to make the model satisfy the positive and avoid the negative
examples.

4 Challenges

The adoption of AI within MDE has already been identified
as a challenge for the community by authors in [8,58,59]. This
adoption is challenging due to specific aspects of MDE and
the model repair field, but there also exist some challenges
that are transversal to the application of AI in any field. In
order to address these challenges, the community needs to be
aware of them and start working on their resolution, other-
wise, the AI-powered model repair field will eventually fall
into stagnation.

Hence, in this section, we present challenges themodeling
community has to overcome so that the research of AI-
powered model repair can grow and become a more mature
field. Figure 5 summarizes the challenges identified through-
out this section.

4.1 Data

The main challenge for AI adoption in MDE in general, not
only in model repair, is about data. Many well-known ML
algorithms (like those focused on classification and regres-
sion) depend on large amounts of data to learn how to repair
a problem [27]. This challenge has already been identified by
other researchersworking onAI approaches inMDE [46,51].

As stated in [8,9,16], the available modeling reposito-
ries (such as REMODD [60], ATL Zoo [61], MDEForge
[62], GenMyModel [63], Img2UML [64] (now called UML-
Ninja) or the ones presented in [65] and [66]) contain an
amount and diversity of modeling data which is still limited.
Future repositories should contain a curated catalog contain-
ing a diverse range of modeling data [8], including good
and bad examples, model instances, metamodels, transfor-
mations, etc.

Not only more repositories and with greater variety are
needed, but the data offered should be sufficiently labeled
and following a proper structure [9]. Without labeling, many
ML algorithms would not be able to make use of the data.
Hence, an interesting research challenge for the community
would be to make a collective effort in labeling new and
existent datasets. Additionally, the community should create
guidelines about the minimum quality and curation a mod-
eling dataset would require. For example, as stated in [67]
a common problem among code datasets is the number of
duplicate files (up to 40%) they present, a problem expected
to happen in modeling repositories as well when they grow
in size and number.

As presented in Sect. 2.2, there exist ML approaches that
can work without much data, such as RL and logic-based
approaches. So the model repair problem can still be solved
byML despite this data challenge. However, being limited in
terms of data reduces considerably the scope of researching
how ML can improve model repair, and makes it impossible

123



AI-powered model repair: an experience report 1145

Fig. 5 Research challenges identified for AI-powered model repair

to adapt and apply some of the state-of-the-art algorithms
that are providing promising results in other fields (such as
new DL approaches).

Furthermore, it would be interesting to start a discus-
sion about the structure future repositories should have, in
order to reach a consensus on new datasets produced. By
following a similar standardized structure, less effort would
be needed to apply AI techniques in datasets produced by
other researchers. The modeling community can learn from
the dataset problems that have already appeared when apply-
ing AI in SE problems. In this direction, as pointed out in [9]
imbalanced size of datasets was identified as a major obsta-
cle in evaluating the AI techniques empirically. At the same
time, a lack of generality and overfitting problems appeared
in cross-project datasets.

4.2 Infrastructure

To extend AI adoption, we stress the need for not only more
modeling data to support research, but also facilities to make
it easier for modelers to store and acquire such data [16].
Hence, it would be important to create not only static repos-
itories just containing data but interactive platforms where
other modelers could store their datasets. In this direction,
works like [68] could offer a common scalable infrastructure
to reproduce and replicate experiments.

Scalability itself is a challenge identified in [8,16,69]. It is
expected that the demand for working with very large mod-
eling artifacts will continue growing. Hence, the community
will need to focus on improving the performance of model-
ing infrastructure, fragmenting and splitting techniques for

dealing with models, and performance optimization. Addi-
tionally, in [8,16] it is stressed how, when powered by AI,
tools should be able to support collaboration between users.
Hence, it could be interesting to discuss and create protocols
for future collaborative modeling tools.

Additionally, it would be interesting to create benchmarks
for researchers to compare their own datasets and tools. In
this direction, Gogolla et al. [70] propose a benchmark to
assess the validation and verification of techniques on UML
and OCL models. Creating a common benchmark for model
repair would benefit the field by providing a better under-
standing of how different tools, approaches, and datasets
relate to each other.

4.3 Standardization

Standardization will be required with respect to the exper-
imentation process and results of repairing with AI. As
stressed in [9], due to the stochastic nature of AI, there might
be big differences in results when executing the same exper-
iment multiple times, even over the same input data. This
reduces the validity of experiments as well as the trust level
of practitioners toward AI techniques.

Additionally, it would be desirable that the community
reached a consensus on how to measure and fight against
uncertainty in AI-powered model repair. Works like the one
presented by Bertoa et al. in [71] could serve as inspiration
for dealing with uncertainty.

123



1146 A. Barriga et al.

4.4 Generality

Mussbacher et al. [72] discuss that most AI applications in
MDE are tailor-made for solving specific problems. How-
ever, regarding model repair, the diversity of type of models,
issues to solve, and how to solve themmake time-consuming
to build individual solutions to address each of these nuances
[25]. This diversity is a challenge for scalability and produc-
ing tailor-made solutions slows the development of the AI
model repair field. Hence, in a desirable future, the com-
munity would avoid from-scratch solutions and adopt more
general solutions based on standardized protocols, like mod-
ular frameworks or plug-and-play settings [16].

This challenge is far from trivial. Some algorithms such
as NNs have difficulties in predicting output solutions for
input models differing from the training distribution they
have learned [46].More research will be needed in this direc-
tion, focusingonhow to treat datasets to achievemore general
results.

4.5 Data bias

Bias has been pointed out in the literature as one of the biggest
challenges forAI adoption in general [73]. AnAI algorithm’s
performance and results will be as good as the data it is fed
with. If the data used as input is biased, this is, inclined toward
certain results or omitting some representative samples, the
results will also be biased and hence, faulty. Bias regarding
model repair could happen, for example, if we only collected
models designed by students. This could lead to algorithms
choosing the same repair options that would have been cho-
sen by students, to assume that all issues in models are those
that appear at a student level or that every model looks like
and has the size of those designed in a classroom.

Future model repositories should be populated with data
coming from diverse modelers. Data should not only be
diverse in terms of the kind of models it contains, but also
in terms of the modelers creating this data. These models
should be produced by people with different experiences in
modeling, age, gender, occupation, domain expertise, etc.
Otherwise, the results obtained will be partial, hard to trust,
and difficult to generalize.

4.6 Level of automation

Citing Macedo et al. [22]: “Since the selection of the most
suitable repair update is ultimately a choice of the devel-
oper, approaches to model repair must balance the level of
automation of the process with the need for user guidance
in the generation of the alternative solutions.” Fully auto-
mated methods lead to overgeneralized solutions that are not
always adequate, and strong interaction comes with a high
computational effort, therefore, in a desirable future, model

repair tools should seek an equilibrium between automation
and interaction [24].

Although automation frees the user from repetitive and
manual tasks, thus saving time for more critical tasks, it is
important to adapt its level to the preference of the user. In
some domains it might be enough with using data collected
specifically by the user, to use their preferences as input or
to keep some degree of interaction during or after the repair
process.

In this direction, some authors in the literature [74] are
advocating for keeping the user in-the-loop, offering them
interaction during the learning process, and sometimes incor-
porating their knowledge and feedback into the algorithms’
training.

4.7 Variety of algorithms

In the current state of the AI-powered model repair, as pre-
sented in Sect. 3, most approaches fall within the RL scope ,
mainly due to the lack of data available to apply supervised
or unsupervised algorithms. The approaches that fall under
the supervised learning scope do not use a lot of data or are
at an initial research stage. However, as more data becomes
available, it might happen that supervised learning almost
monopolizes new research.

This is happening nowadays when applying ML to soft-
ware engineering [9]. In the papers analyzed by Shafiq et
al., more than 70% of the approaches applied some kind of
supervised algorithms. As the AI-powered model repair is
still an emerging field, it would be desirable that a variety
of AI branches are researched, hence obtaining more diverse
results. Only by doing so, we will be able in some years to
know which AI techniques are more appropriate for model
repair, or some domain-specific scenarios.

5 Opportunities

More and more approaches within the software develop-
ment field are rapidly adopting AI to create intelligent,
self-learning systems [9] and to cognify [8] previously
human-performed tasks. In [9], the authors analyze the num-
ber of articles published about applying ML in software
engineering, taking into account those published between
1991 and 2019. They found out that almost two-thirds of the
articles were published between 2016 and 2019. This explo-
sion of research represents an opportunity for developing the
AI-powered model repair field. This momentum is expected
to continue in the coming years and AI-related research is
likely to be encouraged and rewarded. The model repair field
can take an advantage of this momentum by getting inspira-
tion from what is being done in other fields and performing

123



AI-powered model repair: an experience report 1147

experimental research that otherwise would remain unno-
ticed.

In this section, we explore how AI is being applied in
model-related fields (such as software engineering and code
repair) and in other modeling problems beyondmodel repair.
Then, we analyze how that research could be applied into the
model repair field. From the explored works, we identify
research opportunities to apply AI in model repair. Figure 6
summarizes the opportunities identified throughout this sec-
tion.

5.1 Prediction

In [9], the authors present a state-of-the-art study about the
adoption of ML in software engineering. The categories they
identify can serve as an indicator of how ML could provide
further applications within model repair. Indeed, they found
that most of the works focus on “Quality assurance and ana-
lytics,” mostly in bug prediction and verification, which are
important aspects to model repair too. By further develop-
ing the early identification of issues in models, the repair
could go from being reactive to proactive, repairing models
as soon as issues appear, requiringminimal intervention from
the modeler.

In this direction, as an example, in [75], the authors per-
form a comparative study with different ML techniques for
identifying a set of four smells. They achieve high accu-
racy without needingmuch data for each smell. Furthermore,
by achieving issues prediction, modelers could be aware of
which models are more prone to get corrupted, and with

enough advance, the repair process could be even prevented.
Regarding code refactoring, different ML techniques [76,77]
have been applied to predict and identify which parts of the
code are prone to be refactored. By doing so, the time spent
on refactoring is reduced.

5.2 Inspiration from code repair

The fields of code andmodel repair are similar enough so that
the approaches built in code repair can serve as an inspiration
to solve problems within the model repair field. Hence, there
is an opportunity to study and adapt what is being done in
code repair to create new model repair approaches.

Focusing on automatic code repair, several approaches
have been proposed, mostly using the newest types of NNs
and DL. In [78] authors feed a deep NN with code errors
and their following changes to learn how to provide repair
automatically.AlsousingDL,White et al. [79] produce repair
patches taking into account code similarities to produce faster
solutions. With the appropriate amount of modeling data,
these techniques could be applied to model repair, taking
approaches that use model history [4,23] one step forward.

Other approaches which do not require labeled data to
work could be especially interesting for the model repair
field. For example, authors in [80] make use of a set of gen-
erative adversarial NNs to repair software vulnerabilities.
Another example can be found in a search-based approach
presented by Moghadam et al. in [81]. In this work, the
authors present Code-Imp, a tool for refactoring Java pro-

Fig. 6 Research opportunities identified for AI-powered model repair

123



1148 A. Barriga et al.

grams based on quality metrics that achieves promising
results at code-level by using hill-climbing algorithms [82].

5.3 Model completion

Another popular application of ML within programming is
code completion. In these approaches, an ML system is fed
with code examples and uses them to predict how new code
will be completed. For example, authors in [83] make use
of DL to complete Python code, in [84] of mixed NN to
complete Python and JavaScript code, and in [85] ofBayesian
NNs to complete Java code.

The modeling community has already identified model
completion as an opportunity to improve the autonomy of
MDE tools [16]. With the appropriate modeling data, model
completion based on what has been done on similar models
would be possible. Within repair, this could be applied to
see how similar models have been constructed, using them
as suggestions for how to repair. Model completion could
provide faster repair, especially in common issues that are
repeated in different models. Additionally, it could provide
new tools for teachingMDE, ease the repair process to novice
modelers or modelers without enough expertise in the repair
field.

In this direction, in [86] Burgueño et al. present a natural
language processing (NLP) approach that provides autocom-
plete suggestions of partial domain models. This approach is
also related to the NLP opportunity presented a couple of
paragraphs below. They use the textual information avail-
able for the modeling project and its related domain, as well
as the user’s feedback to create the completion suggestions.

5.4 Explainable model repair

AI systems are often designed as black boxes. They output a
result without providing any information or reasoning about
how that result was obtained, making sometimes solutions
non-intuitive and difficult to understand [87]. Authors in [46]
identify as a challenge the social acceptance of AI algorithms
within MDE. They claim that users may be reluctant to trust
a piece of software that they are not able to understand due
to the black-box nature of these algorithms.

Explainable artificial intelligence (XAI) aims to break this
black-box nature by providingAI results togetherwith expla-
nations about their origin. This could increase AI trustiness.
We can take as an example the work of Monperrus et al.
[88]. Here, the authors envision how XAI could be applied
in automatic bug fixing.

The community has already identified the potential of
XAI for reasoning on when model changes are done [16].
XAI would improve AI-powered model repair by providing
explanations ofwhy a repairwas preferred over others orwhy
certain changes were made in a model. This could take rec-

ommender and semi-automatic approaches a step beyond,
since users would have more information available before
deciding what changes to perform in the model.

5.5 Natural language processing for model repair

A lot of work has been done in the last years in applying
NLP to solve modeling problems. NLP improves human-
computer interaction as it allows computers to understand
natural language, so users can communicate with them in a
natural and simple way. In this direction, several works have
been proposed to automatically generate models from user
requirements [89,90], transformation actions [91], and user
stories [92]. Other authors [93] make use of NLP to verify
the correctness of UML models and to recommend relevant
domain concepts to rename metamodel elements [94].

Not within MDE but also using NLP, authors in [95] pro-
pose a recommender system for programming tasks. The
system is fed with knowledge obtained from programming
forums such as StackOverflow. Making use of NLP, given
a query, it provides programmers with the most appropri-
ate solution and comprehensive code examples, thus saving
search time. By crawling available MDE forums, this same
approach could be applied for model repair.

There exist open-source approaches, as Huggingface [96],
which provide a collection of pretrained ML systems and
offer an open API extensible to fine-tune it to the specific
needs of each project. Using pretrained and extensible APIs
such as Huggingface could ease the development of NLP
systems for model repair, especially within domain-specific
modeling scenarios.

An interesting branch of NLP is the use of chatbots. Users
interact with an AI-powered bot by exchanging chat mes-
sages. Regarding modeling, chatbots have been applied in
collaborative modeling environments [97] and to ease mod-
eling tasks such asmaking amodel instance conforming to its
metamodel [98] or abstracting model querying from specific
languages [99].

By applyingNLPand chatbots tomodel repair, users could
define in an intuitive and natural way their repair prefer-
ences, criteria to consider a model as broken, consistency
rules, repair actions, etc. The application of this technology
could make the field more accessible, especially to students
or new modelers, a challenge already identified by authors
in [59]. For example, it would not be necessary anymore to
know OCL in order to define consistency rules. Adapting
the modeling language to the modelers’ expertise and at the
right skill level would also lead to an improvement of the
quality of the modeling process and the resulting modeling
artifact [72]. Furthermore, a chatbot could act as an assistant
that notified users when models require repair and allowed
interactive repair. Likewise, chatbots could be used in online
or collaborative model repair environments.

123



AI-powered model repair: an experience report 1149

5.6 Model classification

Other approaches focus on using classification techniques in
differentmodeling tasks. In [100] authors use a nearest neigh-
bor search mechanism to identify whether student modeling
assignmentswere plagiarized. Nguyen et al. [67,101] use dif-
ferent types of NNs to group models contained in datasets by
similarity.

These techniques could be applied in model repair to
detect similarities in a set of broken models, both in the
models themselves and the issues they might contain. Then,
similar models could be repaired together, either automati-
cally, reusing a similar kind of repair, or by allowing some
degree of interaction from the user. By presenting users with
batches of models broken in a similar way, fewer steps might
be necessary to repair them all. Classification has the poten-
tial to reduce the repair time and to ease the repair process,
especially when dealing with large sets of models. By order-
ing and presenting similar models together the repair process
would become more intuitive. Additionally, classification
could be appliedwhen creating orworkingwithmodel repos-
itories as a way to organize or even labeling them.

5.7 Transfer model repair

Transfer learning (TL) is a research line in ML that focuses
on storing knowledge gained while solving one problem and
applying it to a different but related problem to solve it faster
[102]. TL permits sharing and reusing the experience gained
in different users’ repairs. Hence, repair time can be reduced
by avoiding repeated calculations for errors to which a solu-
tion is already learned.

InPARMOREL[44],wehave appliedTL to reuse learning
when repairing the same type of models and issues for users
selecting different preferences. In the future, as more AI-
poweredmodel repair approaches appear and a bigger variety
of algorithms are applied, it will be interesting to study
how knowledge gained can be transferred not only within
an approach but between different approaches. Likewise,
in other fields it is quite common to work with pretrained
NNs and to re-train just their last layers, hence learning new
knowledge but reducing the training time by taken advantage
of the already known from solving other problems.

5.8 AutomatedML for model repair

AutomatedML (AutoML) [103] is a field ofML that focuses
on usingMLmethods themselves to find out which is the best
ML algorithm to solve a given problem and which hyperpa-
rameters values work better for the chosen algorithm (tuning
of configuration valueswhichmodifies how anMLalgorithm
behaves).

In order to design ML architectures, it is needed some
expertise in the field, which most modelers may lack. This
expertise comes from holding knowledge about coding,
statistics, mathematics, and ML itself, so it is not an easy-
to-acquire skill. The application of AutoML could ease how
modelers design their ML systems, serving as an entry-point
to modelers with valuable MDE knowledge but illiterate in
ML. Following this approach, modelers that nowadays are
discouraged by the difficulty of the field might feel moti-
vated to pursue their own AI-powered model repair research.
Hence, the amount of research performed in the field could
potentially grow.

5.9 Synthetic modeling data

As stated in the data challenge in Sect. 4.1, the lack of data is
the biggest challenge to overcome in order to produce more
diverse AI-powered model repair research. Until more data
become available, there are some techniques that could help
with experimenting with few data.

One of them is data augmentation, a technique that con-
sists of increasing the amount of data by adding slightly
modified copies of already existing data. It is also able of
creating newly synthetic data from existing data. Some of
the approaches presented in this paper use different data
augmentations techniques. For example, authors in [40] use
the approach proposed in [104] to generate big-sized UML
models, in [44] we used the tool presented in [105] to mutate
already existing EMF class diagrams, and authors in [46] use
a Java program to generate a model transformation dataset.
Data augmentation could be the way not only to improve
experimentation in AI-powered model repair but also to cre-
ate new datasets and repositories.

In other fields, different types of NNs are being applied to
performmore andmore complex data augmentation, with the
goal of making synthetic data as close as possible to the real
one. In this direction, authors in [106] make use of a genera-
tive adversarial NN to create a dataset in such a sensitive
field as Parkinson’s research. Experimenting with differ-
ent AI techniques to augment data, especially with newer
NNs, could improve the quality of newly created modeling
datasets.

Another technique is automatic label generation, where
different algorithms, such asDL [107] can be applied to auto-
matically label a dataset, only needing a sample of similar
data labeled. As stated in Sect. 4.1, not only the lack of data
is a problem, but also the fact that it is mostly unlabeled.
Labeling can be a time-consuming task if performed manu-
ally, hence, automatic label generation could accelerate the
creation of labeled datasets.

123



1150 A. Barriga et al.

6 Lessons learned while developing
PARMOREL

As stated in Sect. 3, the authors of this paper have developed
over the last years PARMOREL, a framework for automatic
and personalizable model repair based on RL [25]. We con-
sider that presenting our experience might be useful for other
researchers, hence, in this section, we discuss the lessons we
learned while developing PARMOREL, connecting them to
the challenges presented in Sect. 4 and the consequences
these challenges had in the development. The key points
from this section are summarized as lessons composed by
challenges, consequences, and solutions in Fig. 7.

Whenwedecided to tackle themodel repair problemusing
AI, we started by analyzing AI techniques and what was
being done in the code repair field. As stated in Sect. 5, most
code repair approaches use ML algorithms that depend on
data that is still not available in the modeling field, which
is also connected to the data challenge in Sect. 4.1. Due to
this situation, we opted to use RL, since these algorithms can
solve problems without needing large or labeled data. The
limited availability of data reduced the scope of our research.

We have experimented with different kinds of models:
Ecore and UML models, which contained different kinds
of issues to repair: syntactic errors, smells, and inter-model
inconsistencies. Hence, although we did not need data to
train our algorithm, we needed a diversity of subject mod-
els for our experiments, (diversity is identified as a challenge
within data in Sect. 4.1). Despite just needing raw data, with-
out labeling or previous curation, obtaining thesemodels was
a difficult task. Due to the lack of data, sometimes we had

to mutate and introduce issues in the models ourselves, to
create models inspired by what was available in some repos-
itories, and even to reduce the scope of our experiments. For
example, when working with inter-model consistency, we
focused on restoring the consistency betweenUML class and
sequence diagrams. We needed to find pairs of these models
with inconsistencies, and we were able to find isolated class
and sequence diagrams, but not representing the same sys-
tem, let alone with inconsistencies. We can say that the lack
of data, as stated in the data challenge in Sect. 4.1, has been
the biggest challenge for our research.

PARMOREL follows a modular structure that users can
extend to implement different functionalities. For example,
by extending the preferences module, users can include new
repair preferences in PARMOREL.Thisway, users can select
preferences that customize the repair results, for example,
improving different quality characteristics. For implement-
ing these modules, we rely on external tools. For instance,
when working with inter-model consistency we used as pref-
erence the reduction of coupling in the sequence diagrams.
To measure the coupling in the diagrams we used SDMetrics
[49]. During our experimentation, we found that SDMetrics
was able to measure the coupling when working with mod-
els created with UMLDesigner 9.0, but not when the models
were retrieved fromGenMyModel [63]. Even when working
with the same kind of models, a slight change in their format
or structure made them unsupported by the tools or, the tool
provided different results. This is aligned with the generality
challenge presented in Sect. 4.4; not only tools are tailor-
made for a single problem, but they are too rigid regarding
the data they use. This increases the difficulty of replicating

Fig. 7 Summary of challenges faced during PARMOREL’s development together with their consequences and solutions

123



AI-powered model repair: an experience report 1151

experiments as well as combining andworkingwith different
tools. Since, sometimes, we could not reuse some of these
tools, we overcame this challenge by implementing our own
solutions.

Some tools also present problems regarding their avail-
ability and maintenance (e.g., broken links, lack of docu-
mentation, outdated requisites). Installations often require
old IDE distributions, hard-to-find libraries versions, and
the installation requisites are sometimes not properly docu-
mented. Dealing with this is a task that takes time from actual
research and experimentation. Eventually, we designed a dis-
card protocol and by following it, tools that did notmeet some
requisites were discarded.

Regarding the infrastructure (specifically benchmarking)
and again the generality and data challenges from Sects. 4.1,
4.2, and 4.4 at the moment, it is quite hard to compare the
existing AI-powered model repair tools. The same challenge
exists for general model repair tools; it is not straightforward
to compare various tools due to the lack of benchmarks.Most
tools focus on repairing a specific type of issues on a spe-
cific type of models, which differs from what other tools
do. Hence, the results from each tool are obtained under
different settings. This threatens the validity of the experi-
mentation, making it harder to objectively compare different

tools. Hence, in most cases, only a theoretical comparison is
feasible by analyzing the techniques each tool use.

7 Discussion

In this section,webrieflydiscuss the outcomesof our analysis
of existing AI-poweredmodel repair approaches, challenges,
and opportunities forAI-poweredmodel repair. Furthermore,
we analyze how the identified challenges are reflected in
the identified approaches and the opportunities (see Fig. 8),
providing a more general picture of the state of the field.
Additionally, we present how challenges (resp. opportuni-
ties) may affect each other (see Fig. 8). This discussion is
based on our experience within the AI-powered model repair
community and the lessons we learned while developing our
own approach (see Sect. 6).

Exploration of approaches Section 3 presented an explo-
ration of approaches within the AI-powered model repair
field, showing the research done when combining AI and
model repair. We have presented existing approaches in
six subsections: tree learning, automated planning, Markov
decision process, neural networks, genetic algorithms, and

Fig. 8 Relationship between the challenges and opportunities

123



1152 A. Barriga et al.

inductive learning programming. Most work has been done
in the tree learning category. Except forworks related toNNs,
all the other approaches have in common the use ofML tech-
niques that do not require large amounts of data or labeled
datasets to work.

This is aligned with the main challenge presented in Sect.
4.1: the limited amount and current state of the data existing
in the modeling community. It is promising that researchers
have been able to produce interesting research despite this
challenge. However, it is necessary to address it and work
to produce more datasets and repositories. Otherwise, only a
very limited range of theAI fieldwill be researched, reducing
the potential benefits it could provide to model repair.

Challenges Then, in Sect. 4, we presented research chal-
lenges for the community within the AI-powered model
repair field. Here, we identified seven categories of chal-
lenges: data, infrastructure, standardization, generality, data
bias, level of automation, and variety of algorithms.

As stated in the previous paragraphs, those challenges
within data are the most important and urgent to solve. The
lackof proper data is themain reasonwhyAI is not so adopted
in theMDE field in general [46,51], not only in model repair.
The community is already doing efforts in increasing the
interest in combining AI and MDE. Focusing on data, there
are workshops like the Workshop on Analytics and Mining
of Model Repositories (AMMoRe) [108]; however, there is
a need for more emphasis on the problem of data within the
field. With the increase in the amount of data, we envision
as a consequence an increase in research in the AI-powered
model repair.

In this direction, it would be interesting to create contests,
challenges, and benchmarks like the ones already existing
in the MDE community (e.g., Transformation Tool Contest
[109], TheMULTI Process Challenge [110] and benchmarks
for OCL [70] and bidirectional transformations [111]) focus-
ing on, for example, the creation of new repositories and
benchmarks, labeling new or already existing data, or testing
different repair tools with the same benchmark.

Regarding the rest of the challenges, there is a need for cre-
ating common protocols, standards, and guidelines for how
futuremodel repair tools and the results they produce will be.
Hence, open discussions and debates should be encouraged.
In this direction, initiatives like the Winter Modelling Meet-
ing [112] present a great setting for researchers to reflect and
debate about how to build the future of this field.

The identified challenges are not isolated from each other,
and dealingwith some of themmay have an important impact
on others. For example, the generality and variety of algo-
rithms challenges, presented in Sects. 4.4 and 4.7 depend
heavily on how the data challenge in Sect. 4.1 is addressed
(see 1© in Fig. 8). More general solutions will be provided
once more data is available, and likewise, more algorithms

will be feasible to apply. As already stated in this paper, it
is not possible to apply most supervised and unsupervised
learning algorithms without enough data. Another example
is how data bias, as presented in Sect. 4.5 will affect the qual-
ity of future data repositories (see 2© in Fig. 8). Biaswill need
to be minimized so that future repositories in the field keep
a desirable quality.

In order to count with more datasets and repositories,
addressing the data challenge from Sect. 4.1, it is important
that researchers in the community keep a sharing attitude and
publish their experimentation data. By doing so, the more
research is produced, the more repositories can be expected
to become available. In this direction, creating infrastruc-
tures, as stated in Sect. 4.2, that support modelers in sharing
and acquiring data might help in augmenting the number of
datasets available (see 3© in Fig. 8).

Additionally, it will also be important to shareAI-powered
model repair tools, so that researchers can compare them. It is
crucial to assure the availability of these tools over time, not
only by keeping them online but by documenting their use
and installation process and periodically checking that it is
still up-to-date. Sharingwould also affect futuremodel repair
infrastructures. For example, experimenting infrastructures
or benchmarking will not be possible without the community
sharing their research results.

Opportunities Finally, in Sect. 5 we enumerated research
opportunities for AI-powered model repair based on the
successful usage of AI in comparable fields, such as code
repair. Herewe identified nine categories: prediction, inspira-
tion from code repair, model completion, explainable model
repair, natural language processing for model repair, model
classification, transfermodel repair, automatedMLformodel
repair, and synthetic modeling data. We identified these cat-
egories by grouping existing approaches in the literature.

The similarities of the approaches presented in Sect. 5with
what can be done within model repair are promising, and an
indicator of the potential development of the field in the near
future. However, for some of these opportunities to become
feasible, it is needed again to first overcome the challenge
about data presented in Sect. 4.1. From the categories iden-
tified, five of them (prediction, inspiration from code repair,
model completion, model classification, and synthetic mod-
eling data) requiremore data available and of greater curation
and quality before more research can be conducted (see 4©
in Fig. 8), because, as mentioned above, most supervised and
unsupervised algorithms require more data in order to work.

Explainable model repair, natural language processing for
model repair, transfer model repair, and automated ML for
model repair are more independent from this challenge since
the opportunities in these categories are more about applying
existing ML techniques to model repair-related problems.
However, without enough data, the opportunities grouped

123



AI-powered model repair: an experience report 1153

under explainable model repair, transfer model repair, and
automatedML for model repair would be reduced, since they
would not be feasible for supervised and unsupervised learn-
ing algorithms, hence reducing their research scope (see 5©
in Fig. 8).

In this direction, the synthetic modeling data opportunity
presented in Sect. 5.9 could help to overcome several aspects
of the data challenge (see 6© in Fig. 8). For example, by
using data augmentation, big datasets could be created from
a few initial samples, making it easier to obtain larger and
more diverse data. Likewise, using automatic label genera-
tion could reduce the burden and time of manually labeling
data. By combining these techniques: data augmentation and
label generation, the community could use already existing
datasets and increase their sizes and diversity, and, by label-
ing a portion of them, the newly augmented data could be
labeled automatically, reducing the burden of creating new
data.

The identified opportunities can be combined, leading to
new ones, similar to the presented approach applying NLP
for model completion [86]. Due to the possibilities NLP
offers, it could be combined with other opportunities, such
as inspiration from code repair, completion, classification, or
automated ML for model repair, since, by using natural lan-
guage, modelers could easily specify the repair they want to
perform in the models, consistency rules, preferences, requi-
sites, etc. (see 7© in Fig. 8). Additionally, language analysis
could improve the quality of the repair actions by, for exam-
ple, providing comprehensive names to automatically created
or renamed elements.

Regarding the automatedML formodel repair opportunity
presented inSect. 5.8, itwill be important to keep inmindhow
it is related to the level of automation challenge presented in
Sect. 4.6. Automation can be a great tool to democratize the
use of AI; however, it is important that modelers remain in
control of how their tools work and are configured (see 8© in
Fig. 8).

As stated in the standardization challenge in Sect. 4.3,
some experiments might provide different results in different
executions, which can threaten the validity of the research.
By using XAI, the technology introduced in the explainable
model repair opportunity in Sect. 5.4, experiments could
include the reasons for the produced results, and if they
change in different executions a more insightful analysis
could be provided, addressing their causes and potentially
solving this situation (see 9© in Fig. 8).

For the transfer model repair opportunity presented in
Sect. 5.7 to become feasible, the communitywill need to have
an open attitude toward sharing their research results not only
by publishing papers about them, but by making an effort in
offering the hyperparameter configuration of their ML archi-
tectures, trained architectures, and training weights publicly
so that other researchers canmake use of them. Finally, using

TLmight ease the generality challenge introduced inSect. 4.4
by providing algorithms with the ability to forward previous
knowledge to adapt to new solutions (see 10© in Fig. 8).

8 Threats to validity

In this section, we discuss potential threats that are associ-
ated with the validity of our research. The main threat of our
research is the criteria followed to selecting the papers cited
in Sects. 3, 4, and 5. The scope of the search was restricted
to sources which mainly came from our experience in the
field when developing our own AI-powered model repair
approach. It might be the possibility that we have missed
some work done in the area of model repair and AI, and we
do not claim to have included all. However, we have been
active in the AI-powered model repair community from the
start, which has given us a deep insight into the field and
its needs. This paper is based on our research and experi-
ence from participating in the most significant conferences
and workshops in the field, such as the European Conference
on Modelling Foundations and Applications (ECMFA), the
MODELS Conference, the Workshop on Artificial Intelli-
gence and Model-driven Engineering (MDE Intelligence),
the Workshop on Analytics and Mining of Model Reposito-
ries (AMMoRe).

Likewise, other challenges and opportunities could have
been identified from the selected papers. However, we con-
sider our scopewide enough to have covered themain aspects
of the AI-powered model repair field, and we find that our
expertise in the area mitigates the threat of missing important
challenges and opportunities.

Furthermore, we could have used other classifications of
AI approaches, which could change the perspective of the
paper and the included research. As stated in Sect. 2.2, we
follow a simplified classification to avoid adding unnecessary
complexity to the text. We consider this high-level classifi-
cation provides a good enough understanding of the AI field
for the reader, and allows us to introduce a wide range of AI
techniques.

9 Conclusions and future work

In this paper, we have presented an experience report of
the AI-powered model repair field. We have explored exist-
ing approaches in the AI-powered model repair field and
analyzed and discussed the research challenges and oppor-
tunities for the development of the field that we have
identified in the literature. Also, we have discussed how cur-
rent approaches, opportunities, and challenges affect each
other, providing a general picture of the AI-powered model
repair field. Additionally, we have discussed the lessons

123



1154 A. Barriga et al.

we have learned while developing PARMOREL, our AI-
powered approach for model repair.

AI is a disruptive technology that can improve how we
face the model repair process. There is a lot of potential yet
to explore, but for doing so, there are a series of challenges
the modeling community needs to address. In concrete, chal-
lenges regarding data should be prioritized, since without
data we will not be able to take full advantage of the AI
potential. The AI-powered model repair field is still at an
initial stage and hence, it is in our hands, as researchers, to
shape how its future will be.

The purpose of this paper is to serve as a starting point for
researcherswhen studying theAI-poweredmodel repair field
or developing new AI-powered model repair approaches. In
addition, the identified opportunities and challenges should
serve as an inspiration for future research projects.

In futurework, wewill focus on the data and infrastructure
challenges presented in Sect. 4. We will collect and curate
diverse modeling data, and additionally, we will research
and apply techniques like data augmentation and automatic
label generation. When having enough data, we plan to cre-
ate a benchmark to help researchers to compare their own
datasets and tools. Then, by using this benchmark, we plan
to perform a comparative study between existingAI-powered
model repair tools. Additionally, we would like to compare
AI-powered and non-AI-powered tools. We are aware that,
due to their tailor-made nature, some tools are currently dif-
ficult to compare with others, hence, we will also focus on
finding objective evaluation metrics to compare these tools,
overcoming their lack of generality.

Funding Open access funding provided byWestern NorwayUniversity
Of Applied Sciences

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A.:
Quality-driven detection and resolution of metamodel smells.
IEEE Access 7, 16364–16376 (2019). https://doi.org/10.1109/
ACCESS.2019.2891357

2. Strittmatter, M., Hinkel, G., Langhammer, M., Jung, R., Heinrich,
R.: Challenges in the evolution of metamodels: Smells and anti-

patterns of a historically-grown metamodel. In: Conference: 10th
International Workshop on Models and Evolution (ME) (2016)

3. Feldmann, S., Kernschmidt, K., Wimmer, M., Vogel-Heuser, B.:
Managing inter-model inconsistencies in model-based systems
engineering: application in automated production systems engi-
neering. J. Syst. Softw. 153, 105–134 (2019). https://doi.org/10.
1016/j.jss.2019.03.060

4. Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-
preserving model repair. In: International Conference on Fun-
damental Approaches to Software Engineering, pp. 283–299.
Springer (2017). https://doi.org/10.1007/978-3-662-54494-5-16

5. Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: Revision: a tool
for history-basedmodel repair recommendations. In: Proceedings
of the 40th International Conference on Software Engineering:
Companion Proceedings, pp. 105–108. ACM (2018)

6. Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF
models: An automated interactive approach. In: International
Conference on Theory and Practice of Model Transformations,
pp. 171–181. Springer (2017)

7. Macedo, N., Guimaraes, T., Cunha, A.: Model repair and trans-
formation with echo. In: Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering,
pp. 694–697. IEEE Press (2013)

8. Cabot, J., Clarisó, R., Brambilla, M., Gérard, S.: Cognifying
model-driven software engineering. In: Federation of Interna-
tional Conferences on Software Technologies: Applications and
Foundations, pp. 154–160. Springer (2017)

9. Shafiq, S., Mashkoor, A., Mayr-Dorn, C., Egyed, A.: Machine
learning for software engineering: A systematic mapping. arXiv
preprint arXiv:2005.13299 (2020)

10. Chang, R., Sankaranarayanan, S., Jiang, G., Ivancic, F.: Software
testing using machine learning (2014). US Patent 8,924,938

11. Chandra,K.,Kapoor,G.,Kohli,R.,Gupta,A.: Improving software
quality using machine learning. In: Innovation and Challenges in
Cyber Security (ICICCS-INBUSH), 2016 International Confer-
ence on, pp. 115–118. IEEE (2016)

12. Malhotra, R.: A systematic review ofmachine learning techniques
for software fault prediction. Appl. Soft Comput. 27, 504–518
(2015)

13. Friedrichs, O., Huger, A., O’donnell, A.J.: Method and apparatus
for detecting malicious software through contextual convictions,
generic signatures and machine learning techniques (2015). US
Patent 9,088,601

14. Models 2021 Conference Homepage. http://www.
modelsconference.org/. Last accessed on 24/03/2021

15. MDE IntelligenceWorkshop. https://mde-intelligence.github.io/.
Last accessed on 24/03/2021

16. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand
challenges in model-driven engineering: an analysis of the state
of the research. Softw. Syst. Model. 19(1), 5–13 (2020)

17. Torre, D., Labiche, Y., Genero, M., Elaasar, M.: A systematic
identification of consistency rules for uml diagrams. J. Syst Softw.
144, 121–142 (2018)

18. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Hand-
book of Model Checking, vol. 10. Springer, Berlin (2018)

19. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C., Smolka,
S.A.: Model repair for probabilistic systems. In: International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 326–340. Springer (2011)

20. Finkelstein, A.: A foolish consistency: Technical challenges
in consistency management. In: International Conference on
Database and Expert Systems Applications, pp. 1–5. Springer
(2000)

21. Torres, W., Van den Brand, M.G., Serebrenik, A.: A systematic
literature review of cross-domain model consistency checking by

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2019.2891357
https://doi.org/10.1109/ACCESS.2019.2891357
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1007/978-3-662-54494-5-16
http://arxiv.org/abs/2005.13299
http://www.modelsconference.org/
http://www.modelsconference.org/
https://mde-intelligence.github.io/


AI-powered model repair: an experience report 1155

model management tools. Softw. Syst. Model. 20(3), 897–916
(2021)

22. Macedo, N., Jorge, T., Cunha, A.: A feature-based classification
of model repair approaches. IEEE Trans. Softw. Eng. 43(7), 615–
640 (2016). https://doi.org/10.1109/TSE.2016.2620145

23. Ohrndorf, M., Pietsch, C., Kelter, U., Grunske, L., Kehrer,
T.: History-based model repair recommendations. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 30(2), 1–46 (2021)

24. Cervantes, A.A., van Beest, N.R., La Rosa, M., Dumas, M.,
García-Bañuelos, L.: Interactive and incremental business pro-
cess model repair. In: OTM Confederated International Confer-
ences“On the Move to Meaningful Internet Systems”, pp. 53–74.
Springer (2017)

25. Barriga, A., Heldal, R., Iovino, L., Marthinsen, M., Rutle, A.: An
extensible framework for customizable model repair. In: Proceed-
ings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pp. 24–34 (2020)

26. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine
Learning: From Theory to Algorithms. Cambridge University
Press, Cambridge (2014)

27. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of
Machine Learning. MIT Press, Amsterdam (2018)

28. Cady, F.: Machine learning classification. In: The Data Science
Handbook, pp. 97–120. Wiley, New York (2017)

29. Alpaydin, E.: Introduction to Machine Learning. Adaptive Com-
putation and Machine Learning, 3rd edn. MIT Press, Cambridge
(2014)

30. Thrun, S., Littman, M.L.: Reinforcement learning: an introduc-
tion. AI Magazine 21(1), 103–103 (2000)

31. Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S.,
Amodei, D.: Deep reinforcement learning from human prefer-
ences. arXiv preprint arXiv:1706.03741 (2017)

32. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and
resolvingmodel inconsistencies using transformation dependency
analysis. In: International Conference onModel Driven Engineer-
ing Languages and Systems, pp. 200–214. Springer (2006)

33. Amelunxen, C., Legros, E., Schürr, A., Stürmer, I.: Checking and
enforcement of modeling guidelines with graph transformations.
In: International Symposium on Applications of Graph Transfor-
mations with Industrial Relevance, pp. 313–328. Springer (2007)

34. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-
models and their instance models: a formal approach based on
graph transformation. Sci. Computer Program. 104, 2–43 (2015)

35. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating
choices for fixing inconsistencies in uml design models. In: 2008
23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 99–108. IEEE (2008)

36. Kretschmer, R., Khelladi, D.E., Egyed, A.: An automated and
instant discovery of concrete repairs for model inconsistencies.
In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceedings, pp. 298–299.ACM(2018)

37. Khelladi, D.E., Kretschmer, R., Egyed, A.: Detecting and explor-
ing side effects when repairing model inconsistencies. In: Pro-
ceedings of the 12th ACM SIGPLAN International Conference
on Software Language Engineering, pp. 113–126 (2019)

38. Reder, A., Egyed, A.: Computing repair trees for resolving
inconsistencies in design models. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software
Engineering, pp. 220–229 (2012)

39. Leonetti, M., Iocchi, L., Stone, P.: A synthesis of automated
planning and reinforcement learning for efficient, robust decision-
making. Artif. Intell. 241, 103–130 (2016)

40. Puissant, J.P., Van Der Straeten, R., Mens, T.: Resolving model
inconsistencies using automated regression planning. Softw. Syst.
Model. 14(1), 461–481 (2015)

41. Puissant, J.P.: Resolving inconsistencies in model-driven engi-
neering using automated planning. In: Seminar on Advanced
Tools&Techniques for Software Evolution (SATToSE),Koblenz,
Germany (2012)

42. Barriga, A., Bettini, L., Iovino, L., Rutle, A., Heldal, R.: Address-
ing the trade off between smells and qualitywhen refactoring class
diagrams. J. Object Technol. 20(3), 1:1–15 (2021). https://doi.
org/10.5381/jot.2021.20.3.a1.The 17th European Conference on
Modelling Foundations and Applications (ECMFA 2021). URL
http://www.jot.fm/contents/issue_2021_03/article1.html

43. Barriga, A., Rutle, A., Heldal, R.: Personalized and auto-
matic model repairing using reinforcement learning. In: 22nd
ACM/IEEE International Conference onModel Driven Engineer-
ing Languages and Systems Companion, MODELS Companion
2019, Munich, Germany, September 15-20, 2019, pp. 175–181
(2019). https://doi.org/10.1109/MODELS-C.2019.00030.

44. Barriga, A., Rutle, A., Rogardt, H.: Improving model repair
through experience sharing. J. Object Technol. 19(1), 897–916
(2020)

45. Iovino, L., Barriga, A., Rutle, A., Rogardt, H.: Model repair with
quality-based reinforcement learning. J. Object Technol. 19(2),
17:1-17:21 (2020). https://doi.org/10.5381/jot.2020.19.2.a17

46. Burgueño, L., Cabot, J., Gérard, S.: An lstm-based neural net-
work architecture formodel transformations. In: 2019ACM/IEEE
22nd InternationalConferenceonModelDrivenEngineeringLan-
guages and Systems (MODELS), pp. 294–299. IEEE (2019)

47. Sidhu, B.K., Singh, K., Sharma, N.: Amachine learning approach
to software model refactoring. Int. J. Computers Appl. pp. 1–12
(2020)

48. Uml-ninja. http://models-db.com/. Last accessed on 24/03/2021
49. Wust, J.: Sdmetrics: The software design metrics tool for uml

(2005)
50. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary

algorithms for reinforcement learning. J. Artif. Intell. Res. 11,
241–276 (1999)

51. Ghannem,A., El Boussaidi, G., Kessentini,M.:Model refactoring
using interactive genetic algorithm. In: International Symposium
on Search Based Software Engineering, pp. 96–110. Springer
(2013)

52. Seal-Ucla: Seal-ucla/ref-finder. https://github.com/SEAL-
UCLA/Ref-Finder. Last accessed on 24/03/2021

53. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support
for diagnosis and repair. Commun. ACM 58(2), 65–72 (2015)

54. Jackson, D.: Software Abstractions: Logic, Language and Anal-
ysis. MIT Press, Amsterdam (2012)

55. Fumagalli,M., Sales, T.P., Guizzardi, G.: Towards automated sup-
port for conceptual model diagnosis and repair. In: International
Conference on Conceptual Modeling, pp. 15–25. Springer (2020)

56. Narain, S., et al.: Network configuration management via model
finding. In: LISA, vol. 5, pp. 15–15 (2005)

57. Fumagalli,M., Sales, T.P., Guizzardi, G.:Mind the gap!: Learning
missing constraints fromannotated conceptualmodel simulations.
In: IFIP Working Conference on The Practice of Enterprise Mod-
eling, pp. 64–79. Springer (2021)

58. Bucchiarone,A.,Ciccozzi, F., Lambers, L., Pierantonio,A., Tichy,
M., Tisi, M., Wortmann, A., Zaytsev, V.: What is the future of
modeling? IEEE Softw. 38(2), 119–127 (2021)

59. Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B.H.,
Collet, P., Combemale, B., France, R.B., Heldal, R., Hill, J., et al.:
The relevance of model-driven engineering thirty years from now.
In: International Conference on Model Driven Engineering Lan-
guages and Systems, pp. 183–200. Springer (2014)

60. France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H.,
Jensen, A.: Repository for model driven development (remodd).
In: 2012 34th International Conference on Software Engineering
(ICSE), pp. 1471–1472. IEEE (2012)

123

https://doi.org/10.1109/TSE.2016.2620145
http://arxiv.org/abs/1706.03741
https://doi.org/10.5381/jot.2021.20.3.a1.
https://doi.org/10.5381/jot.2021.20.3.a1.
http://www.jot.fm/contents/issue_2021_03/article1.html
https://doi.org/10.1109/MODELS-C.2019.00030.
https://doi.org/10.5381/jot.2020.19.2.a17
http://models-db.com/
https://github.com/SEAL-UCLA/Ref-Finder
https://github.com/SEAL-UCLA/Ref-Finder


1156 A. Barriga et al.

61. Allilaire, F.: Atl transformations. https://www.eclipse.org/atl/
atlTransformations/. Last accessed on 24/03/2021

62. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino,
L., Pierantonio, A.: Mdeforge: an extensible web-based modeling
platform. In: CloudMDE@ MoDELS, pp. 66–75 (2014)

63. Dirix, M., Muller, A., Aranega, V.: Genmymodel: an online uml
case tool (2013)

64. Karasneh, B., Chaudron, M.R.: Online img2uml repository: An
online repository for UML. In: EESSMOD@ MoDELS, pp. 61–
66 (2013)

65. Barriga, A., Di Ruscio, D., Iovino, L., Nguyen, P.T., Pierantonio,
A.:Anextensible tool-chain for analyzingdatasets ofmetamodels.
In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Compan-
ion Proceedings, pp. 1–8 (2020)

66. Gogolla, M., Cabot, J.: Continuing a benchmark for uml and ocl
design and analysis tools. In: Federation of International Confer-
ences on Software Technologies: Applications and Foundations,
pp. 289–302. Springer (2016)

67. Nguyen, P.T., Di Ruscio, D., Pierantonio, A., Di Rocco, J., Iovino,
L.: Convolutional neural networks for enhanced classification
mechanisms of metamodels. J. Syst. Softw. 172, 110,860 (2021)

68. Burdusel, A., Zschaler, S.: Towards scalable search-based model
engineering with mdeoptimiser scale. In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C), pp. 189–195.
IEEE (2019)

69. France, R., Rumpe, B.: Model-driven development of complex
software:A research roadmap. In: Future of Software Engineering
(FOSE’07), pp. 37–54. IEEE (2007)

70. Gogolla, M., Büttner, F., Cabot, J.: Initiating a benchmark for uml
and ocl analysis tools. In: International Conference on Tests and
Proofs, pp. 115–132. Springer (2013)

71. Bertoa, M.F., Burgueño, L., Moreno, N., Vallecillo, A.: Incorpo-
rating measurement uncertainty into ocl/uml primitive datatypes.
Softw. Syst. Model. 19(5), 1163–1189 (2020)

72. Mussbacher, G., Combemale, B., Kienzle, J., Abrahão, S., Ali,
H., Bencomo, N., Búr, M., Burgueño, L., Engels, G., Jeanjean,
P., et al.: Opportunities in intelligent modeling assistance. Softw.
Syst. Model. 19(5), 1045–1053 (2020)

73. Kaplan, A., Haenlein, M.: Rulers of the world, unite! the chal-
lenges and opportunities of artificial intelligence. Business Hori-
zons 63(1), 37–50 (2020)

74. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the
people: the role of humans in interactive machine learning. Ai
Magazine 35(4), 105–120 (2014)

75. Fontana, F.A.,Mäntylä,M.V., Zanoni,M.,Marino,A.:Comparing
and experimenting machine learning techniques for code smell
detection. Empirical Softw. Eng. 21(3), 1143–1191 (2016)

76. Alenezi, M., Akour, M., Al Qasem, O.: Harnessing deep learn-
ing algorithms to predict software refactoring. Telkomnika 18(6),
154–160 (2020)

77. Sheneamer, A.M.: An automatic advisor for refactoring soft-
ware clones based on machine learning. IEEE Access 8, 978–988
(2020)

78. Mesbah, A., Rice, A., Johnston, E., Glorioso, N., Aftandilian,
E.: Deepdelta: learning to repair compilation errors. In: Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 925–936 (2019)

79. White, M., Tufano, M., Martinez, M., Monperrus, M., Poshy-
vanyk, D.: Sorting and transforming program repair ingredients
via deep learning code similarities. In: 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 479–490. IEEE (2019)

80. Harer, J., Ozdemir, O., Lazovich, T., Reale, C.P., Russell,
R.L., Kim, L.Y., Chin, P.: Learning to repair software vulner-
abilities with generative adversarial networks. arXiv preprint
arXiv:1805.07475 (2018)

81. Moghadam, I.H., Ó Cinnéide,M.: Code-imp: a tool for automated
search-based refactoring. In: Proceedings of the 4thWorkshop on
Refactoring Tools, pp. 41–44 (2011)

82. Selman, B., Gomes, C.P.: Hill-climbing search. Encyclopedia of
cognitive science (2006)

83. Svyatkovskiy, A., Zhao, Y., Fu, S., Sundaresan, N.: Pythia: Ai-
assisted code completion system. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pp. 2727–2735 (2019)

84. Li, J., Wang, Y., Lyu,M.R., King, I.: Code completion with neural
attention and pointer networks. arXiv preprint arXiv:1711.09573
(2017)

85. Proksch, S., Lerch, J., Mezini, M.: Intelligent code completion
with Bayesian networks. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 25(1), 1–31 (2015)

86. Burgueño, L., Clarisó, R., Li, S., Gérard, S., Cabot, J.: A nlp-based
architecture for the autocompletion of partial domain models
(2020)

87. Gunning, D.: Explainable artificial intelligence (XAI). Defense
Advanced Research Projects Agency (DARPA), nd Web (2017)

88. Monperrus, M.: Explainable software bot contributions: Case
study of automated bug fixes. In: 2019 IEEE/ACM 1st Interna-
tional Workshop on Bots in Software Engineering (BotSE), pp.
12–15. IEEE (2019)

89. Joshi, S., Deshpande, D.: Textual requirement analysis for uml
diagram extraction by using nlp. Int. J. Computer Appl. 50(8),
42–46 (2012)

90. Deeptimahanti, D.K., Babar, M.A.: An automated tool for gener-
ating uml models from natural language requirements. In: 2009
IEEE/ACM International Conference on Automated Software
Engineering, pp. 680–682. IEEE (2009)

91. Lano, K., Fang, S., Umar, M., Yassipour-Tehrani, S.: Enhancing
model transformation synthesis using natural language pro-
cessing. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings, pp. 1–10 (2020)

92. Elallaoui, M., Nafil, K., Touahni, R.: Automatic transformation
of user stories into uml use case diagrams using nlp techniques.
Proc. Computer Sci. 130, 42–49 (2018)

93. Sajjad, R., Sarwar, N.: Nlp based verification of a uml classmodel.
In: 2016 Sixth International Conference on Innovative Computing
Technology (INTECH), pp. 30–35. IEEE (2016)

94. Weyssow, M., Sahraoui, H., Syriani, E.: Recommending meta-
model concepts during modeling activities with pre-trained lan-
guage models. arXiv preprint arXiv:2104.01642 (2021)

95. Silva, R.F., Roy, C.K., Rahman, M.M., Schneider, K.A., Paixao,
K., de Almeida Maia, M.: Recommending comprehensive solu-
tions for programming tasks by mining crowd knowledge. In:
2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), pp. 358–368. IEEE (2019)

96. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi,
A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al.: Hugging-
face’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019)

97. Ren, R., Castro, J.W., Santos, A., Pérez-Soler, S., Acuña, S.T.,
de Lara, J.: Collaborative modelling: chatbots or on-line tools? an
experimental study. In: Proceedings of the Evaluation andAssess-
ment in Software Engineering, pp. 260–269 (2020)

98. Pérez-Soler, S., Guerra, E., de Lara, J.: Flexible modelling using
conversational agents. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C), pp. 478–482. IEEE (2019)

123

https://www.eclipse.org/atl/atlTransformations/
https://www.eclipse.org/atl/atlTransformations/
http://arxiv.org/abs/1805.07475
http://arxiv.org/abs/1711.09573
http://arxiv.org/abs/2104.01642
http://arxiv.org/abs/1910.03771


AI-powered model repair: an experience report 1157

99. Pérez-Soler, S., Daniel, G., Cabot, J., Guerra, E., de Lara, J.:
Towards automating the synthesis of chatbots for conversational
model query. In: Enterprise, Business-Process and Information
Systems Modeling, pp. 257–265. Springer (2020)

100. Martínez, S., Wimmer, M., Cabot, J.: Efficient plagiarism detec-
tion for software modeling assignments. Computer Sci. Edu.
30(2), 187–215 (2020)

101. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Pierantonio, A.,
Iovino, L.: Automated classification of metamodel repositories:
Amachine learning approach. In: 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and
Systems (MODELS), pp. 272–282. IEEE (2019)

102. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of
Research on Machine Learning Applications and Trends: Algo-
rithms,Methods, andTechniques, pp. 242–264. IGIGlobal (2010)

103. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine
Learning:Methods, Systems. Challenges. Springer, Berlin (2019)

104. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform
random generation of huge metamodel instances. In: Euro-
pean Conference on Model Driven Architecture-Foundations and
Applications, pp. 130–145. Springer (2009)

105. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W.,
Seidl, M., Schwinger, W., Wimmer, M.: Amor–towards adapt-
able model versioning. In: 1st International Workshop on Model
Co-Evolution and Consistency Management, in conjunction with
MODELS, vol. 8, pp. 4–50 (2008)

106. Anicet Zanini, R., Luna Colombini, E.: Parkinson’s disease emg
data augmentation and simulation with dcgans and style transfer.
Sensors 20(9), 2605 (2020)

107. Hoermann, S., Henzler, P., Bach,M., Dietmayer, K.: Object detec-
tion on dynamic occupancy grid maps using deep learning and
automatic label generation. In: 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 826–833. IEEE (2018)

108. Ammore@models’18 (2019). https://modelanalytics.wordpress.
com/ammore18/. Last accessed on 24/03/2021

109. Transformation Tool Contest (TTC) 2021. https://www.
transformation-tool-contest.eu/. Last accessed on 24/03/2021

110. 7th International Workshop on Multi-level Modelling. https://
www.wi-inf.uni-duisburg-essen.de/MULTI2020/challenge. Last
accessed on 24/03/2021

111. Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.S.,
Eramo, R., Hinkel, G., Samimi-Dehkordi, L., Zündorf, A.: Bench-
marking bidirectional transformations: theory, implementation,
application, and assessment. Softw. Syst. Model. 19, 1–45 (2019)

112. Winter Modelling Meeting (2020). http://eventmall.info/
WMM2020/. Last accessed on 24/03/2021

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Angela Barriga holds Ph.D. in
Computer Science from the West-
ern Norway University of Applied
Sciences. She has experience work-
ing with machine learning, com-
puter vision, gerontechnology, and
pervasive systems. Barriga’s the-
sis was focused on model repair,
specially on repairing using rein-
forcement learning. She has been
part of the local organization of
iFM 2019 and was involved in
STAF 2020-2021. She has also
been part of the program commit-
tee of the third international work-

shop on gerontechnology. You can learn more about her at https://
angelabr.github.io/ or contact her at abar@hvl.no.

Adrian Rutle is a professor at
Western Norway University of
Applied Sciences. Adrian holds
Ph.D. in Computer Science from
the University of Bergen, Norway.
Rutle is a professor at the Depart-
ment of Computer Science, Elec-
trical Engineering and Mathemat-
ical Sciences at the Western Nor-
way University of Applied Sci-
ences, Bergen. Rutle’s main inter-
est is applying theoretical results
from the field of model-driven soft-
ware engineering to practical
domains and has expertise in the

development of modeling frameworks and domain-specific modeling
languages. He also conducts research in the fields of modeling and
simulation for robotics, eHealth, digital fabrication, smart systems,
and machine learning. Contact him at adrian.rutle@hvl.no.

Rogardt Heldal is a professor of
Software Engineering at the West-
ern Norway University of Applied
Sciences. Heldal holds an hon-
ors degree in Computer Science
from Glasgow University, Scot-
land, and a Ph.D. in Computer
Science from Chalmers Univer-
sity of Technology, Sweden. His
research interests include require-
ments engineering, software pro-
cesses, software modeling, soft-
ware architecture, cyber-physical
systems, machine learning, and
empirical research. Many of his

research projects are performed in collaboration with industry. Con-
tact him at rogardt.heldal@hvl.no.

123

https://modelanalytics.wordpress.com/ammore18/
https://modelanalytics.wordpress.com/ammore18/
https://www.transformation-tool-contest.eu/
https://www.transformation-tool-contest.eu/
https://www.wi-inf.uni-duisburg-essen.de/MULTI2020/challenge
https://www.wi-inf.uni-duisburg-essen.de/MULTI2020/challenge
http://eventmall.info/WMM2020/
http://eventmall.info/WMM2020/
https://angelabr.github.io/
https://angelabr.github.io/

	AI-powered model repair: an experience report—lessons learned, challenges, and opportunities
	Abstract
	1 Introduction
	2 Background
	2.1 Model repair
	2.2 Artificial intelligence

	3 Exploration of the AI-powered model repair field
	3.1 Tree learning
	3.2 Automated planning
	3.3 Markov decision process
	3.4 Neural networks
	3.5 Genetic algorithms
	3.6 Inductive logic programming

	4 Challenges
	4.1 Data
	4.2 Infrastructure
	4.3 Standardization
	4.4 Generality
	4.5 Data bias
	4.6 Level of automation
	4.7 Variety of algorithms

	5 Opportunities
	5.1 Prediction
	5.2 Inspiration from code repair
	5.3 Model completion
	5.4 Explainable model repair
	5.5 Natural language processing for model repair
	5.6 Model classification
	5.7 Transfer model repair
	5.8 Automated ML for model repair
	5.9 Synthetic modeling data

	6 Lessons learned while developing PARMOREL
	7 Discussion
	8 Threats to validity
	9 Conclusions and future work
	References




