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A B S T R A C T   

This paper discusses the fault-tolerant consensus problem in Unmanned Aerial Vehicle Networks 
(UAVNets). In recent years, the applications of UAVNets have become more and more popular. 
Related applications include aerial photography, geological and topographic surveys, disaster 
monitoring, military applications, and so on. Therefore, it is very important to build a highly 
reliable and fault-tolerant UAVNets. However, the network architecture of UAVNets is very 
different from previous network architectures. Because UAVs fly at a high speed, the topology 
also varies quickly. Hence, how to collect sufficient messages to reach a consensus on the network 
for UAVs is a challenge. In this paper, the characteristics of the distributed UAVNets will be 
explored first. Then, based on the characteristics of the UAVNets, a new fault-tolerant consensus 
protocol called the UAV Consensus Protocol (UCP) is proposed. The proposed UCP consists of two 
phases: the message exchanging phase and the consensus making phase. The proposed UCP can 
solve the consensus problem with ⌞(nO-1)/3⌟+1 rounds of message exchange in the presence of 
⌞(nO-1-aO)/3⌟ Byzantine faulty UAVs and aO away UAVs, where nO is the number of AUVs in the 
UAVNet. Moreover, the correctness of the proposed UCP is also proved in this paper.   

1. Introduction 

In recent years, software and hardware technologies have developed rapidly, enabling the application of unmanned aerial vehicle 
(UAV) systems in the real world [1,2]. Common applications of UAV systems include smart agriculture [3,4], target detection [5,6], 
search and rescue in post-disaster scenarios [7,8], military surveillance [9,10], etc. In addition, UAVs also play an important role in the 
data collection of wireless sensor networks (WSNs) [11,12]. Hence, there can be a wide range of applications of UAV systems. 

A UAV is composed of a frame, a flight controller, an electronic governor, a motor, a blade, a remote control, and a battery. A UAV 
network (UAVNet) is composed of groups of UAVs connected via wireless links. When two UAVs are within the communication range, 
they can directly transmit packets to each other. When the two UAVs are not within the communication range, the packets will be 
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transmitted to the destination UAV in the network through multi-hop transmission [10,13,14]. 
Because messages are transmitted wirelessly in UAVNets, they may be vulnerable to malicious attacks. A malicious fault is also 

known as a Byzantine fault (Definition 1). When Byzantine fault occurs in the UAVNets, UAVs may malfunction, even conspiring with 
other UAVs infected to send false messages and interfere with the normal operation of the system. The system will then become 
paralyzed and produce wrong computing results [9,15]. Therefore, it is very important to build a highly reliable and fault-tolerant 
UAVNet. 

Definition 1. Byzantine fault [16] 

When Byzantine faults occur, these faulty devices may send incorrect messages, send messages at the wrong time, or do not send 
messages. In other words, these types of failures may be crash failure, omission failure, transient failure, software failure, temporal 
failure, etc. Hence, when there are Byzantine faulty devices in the system, it is impossible to predict the activities of these Byzantine 
faulty devices. 

1.1. Related works of the consensus problem 

In the field of fault tolerance, solving consensus problems is an important issue [17]. The definition of this problem is as follows. 
The system contains n devices, and the number of faulty devices is not greater than t, where n≥ 4 and t = ⌞(n-1)/3⌟. For a correct 
device, it does not know which device is faulty. Communication between devices is done through a direct and reliable link, which 
means that messages are not manipulated during the transmission. The sender of the message can be identified. Each device has an 
initial value, the other devices’ initial values are obtained utilizing message exchange. After message exchange, the final consensus 
value for the collected messages can be calculated. 

According to the above definition, it can be learned that traditional consensus protocols are for static and fully connected networks. 
With the emergence of various new types of networks and applications, scholars have been making changes to the definition of the 
consensus problem to make it conform to the current situation and further address the consensus problem in these new environments 
and applications. The following are the studies related to the consensus problem in recent years. For example, Alchieri et al. [18] 
studied the consensus problem with unknown participants through authentic and reliable point-to-point channels. They consider a 
distributed system composed of participants P drawn from a larger universe U, where P⫅U. In a known network, all participants know 
P, while in an unknown network, a processor i only knows the subset Pi, Pi⫅P. In [19], Cheng and Huang indicated the existed 
consensus protocol is inflexible in the handling of initial values. That is, the correct processor cannot change its initial value during the 
exchange of the message. Therefore, correct processors are very likely to finally agree on values that do not benefit them. For this issue, 
they studied the harmonized consensus problem in distributed systems. In [20], Cheng and Tsai pointed out that the traditional 
consensus protocol requires only the computation of the consensus value, regardless of whether that value is good or bad. Furthermore, 
they also pointed out that existing consensus protocols require that each processor propose its initial value. However, it is not practical 
to request an initial value from each processor in the real world. Therefore, they proposed a flexible consensus protocol for the 
consensus problem of alternative plans for distributed systems. The consensus problem is also a core problem in blockchain design. Kuo 
et al. [21] pointed out that when designing consensus algorithms for blockchain applications, there are two challenges. The first 
challenge is that each participant should have the same probability of being awarded a prize for his work. The second is that the 
consensus algorithms must be able to withstand network failures. They formalized the concept of fairness and proposed two consensus 
protocols to solve the consensus problem for blockchains. The two consensus algorithms are the robust Byzantine agreement (RBA) 
with strongly fair validity and the hybrid Byzantine agreement (HBA) with both responsiveness and weakly fair validity. 

1.2. Motivation 

To provide fault-tolerant capability in UAVNets, the consensus problem should be solved in UAVNets. However, the network ar
chitecture of UAVNETs is very different from previous network architectures. Firstly, unlike previous 2D environments, UAVNet is a 
3D environment. Secondly, UAV flight speeds are very fast, reaching 460 km/h, so the topology changes very quickly [22]. As well as 
high-speed movement, UAVs may leave and return to the network frequently. Hence, how to collect sufficient messages to reach a 
consensus on the network for UAVs is a challenge. On the other hand, for UAVs who leave UAVNet, another challenge is to ensure that 
it can be able to compute a consensus value when it returns. To address the above challenges, this paper will discuss how to solve the 
consensus problem in UAVNets. The protocol designed for the UAVNets must meet two requirements: (1) Consensus: All correct UAVs 
compute a common value; (2) Validity: If the initial value of all correct UAVs is v, then all correct UAVs shall agree on v. The main 
contributions of this paper are as follows:  

(1) Each correct UAV can compute a common consensus value: The proposed consensus protocol ensures that all correct UAVs can 
compute a common consensus value without influence from faulty devices in UAVNets.  

(2) The proposed protocol uses to compute a consensus value using a minimum number of exchanges of messages: The detailed 
description is shown in Section 3.1.3.  

(3) The proposed protocol is a distributed protocol: The proposed protocol ensures that each correct UAV can compute a common 
consensus value in a distributed manner.  

(4) The proof of the proposed protocol is provided: The correctness of the proposed protocols is verified. 
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The remainder of the paper is presented as follows. Detailed information on the formulation of the consensus problem in UAVNets is 
provided in Section 2. Section 3 provides the approaches of the solution to the consensus problem in UAVNets. The pseudo-code of the 
approach is presented in Section 4. Section 5 confirms the correctness of the approach. The conclusion and future work are set out in 
the last section. 

2. Formulation of the consensus problem in UAVNets 

Fischer et al. [23] proved that the consensus cannot be reached in a strictly asynchronous system. Because of this, the consensus 
problem is discussed in an asynchronous UAVNet with the partially synchronous assumption [24]. Suppose that there is a set of UAVs O 
in the UAVNet. Each UAV has its initial value, and the domain range D ={0,1}. Each UAV can be identified with a single unique 
identity, and each correct UAV does not know the faulty status of other UAVs. Suppose that the type of failure of faulty UAVs is 
Byzantine fault [16]. This means that the behavior of the faulty UAV is unpredictable. Because all the messages are encrypted during 
transmission, relay devices cannot falsify messages from senders to receivers. But, Byzantine senders can send inconsistent messages to 
different UAVs. 

V(oi) = V
(
oj
)
, ∀ correctUAVoi, oj ∈ O and i ∕= j (1)  

subject to: 

I(oi) ∈ {0, 1}, ∀ UAV oi ∈ O (2)  

nO ≥ 3fo + aO + 1 (3) 

Using the notations in Table 1, the objective function of the proposed protocol is defined as expressed in Eq. (1). Eq. (2) limits the 
range of the domain of the initial value of each UAV. In addition, to make sure that all correct UAVs can reach a common consensus 
value, the number of faulty devices should be controlled within a specified amount [25]. In UAVNets, the consensus value is computed 
by UAVs, so the number of allowed Byzantine faulty UAVs should be constrained. If an excessive number of UAVs exit the network, 
other UAVs in the network may b ecome unable to acquire sufficient data. To avoid this problem, the number of UAVs allowed to leave 
the network must also be restricted. Since each UAV periodically sends beacon packets, the number of away UAVs can be known. In 
summary, the constraint will be shown in Eq. (3). In other words, when the number of Byzantine faulty UAVs is no more than 
⌞(nO-1-aO)/3⌟, the proposed consensus protocol ensures that all correct UAVs can compute a common consensus value without in
fluence from faulty devices in UAVNets. The definition of away UAVs is shown in Definition 2. 

Definition 2. away UAV & return UAV 

During the execution of consensus protocol, a UAV that flies away from the UAVNet is called an away UAV, while a UAV that 
returns to the UAVNet before the termination of consensus protocol is called a return UAV. 

3. The concept and approach 

In the message exchange process of UAVNets, UAVs need to rely on multi-hop transmission to communicate with one another. 
Because UAVs fly at a high speed, the topology also varies quickly. If UAVs have to temporarily exit the network for certain reasons 
during the execution of the consensus protocol, these away UAVs will not be able to collect sufficient messages and thus fail to compute 
a consensus value after returning to the network. Hence, it is necessary to design a consensus protocol for UAVNets that allows UAVs 
that have temporarily exited from the network during the execution of the algorithm to compute a consensus value after returning to 
the network. The definition of return UAVs is shown in Definition 2. In this section, the UAV Consensus Protocol (UCP) is proposed to 
solve the consensus problem in the UAVNet. UCP has two phases, namely the message exchanging phase and consensus making phase. 

3.1. Message exchanging phase 

The message exchanging phase is designed to collect the messages from other UAVs. The data structure, handling of lost messages, 
and the number of rounds required of the proposed UCP will be explained in this section. According to message flow, the devices 
involved in the delivery of messages can be classified into sender, relay, and receiver. To prevent the transmission of messages from 
being falsified, messages are encrypted [9,15]. 

Table 1 
The notations of the problem formulation.  

O ={oi | 1 ≤i ≤no, no =|O|} A set of UAVs, where oi is an UAV 
D ={0,1} The domain range of the initial value 
I(oi) The initial value of the UAV oi 

V(oi) The consensus value that UAV oi decides 
fO The number of allowed Byzantine faulty UAVs 
aO The number of away UAVs  
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3.1.1. Data structure 
During the execution of the proposed UCP, each UAV will store the received messages into a matrix data structure. The matrix is 

called UCP-matrix. In Fig. 1, the UCP-matrix from the viewpoint of UAVs o0 is introduced. Assume there are 7 UAVs, respectively 
denoted by o0~o6, in the network. When UAV o0 receives an initial value of another UAV, it will store the initial value in its UCP-matrix 
M1(o0). As shown in the upper left part of Fig. 1, because there are 7 UAVs, there will be 7 elements in M1(o0), where value (i) in M1(o0) 
denotes that the value comes from oi and is stored in M1 of UAV o0 (value (i) can also be expressed as M1(o0)[i]). When UAV o0 receives 
the value M1(oi) of UAV oi, it will store the value M1(oi) in its UCP-matrix M2(o0). As shown in the lower-left part of Fig. 1, because there 
are 7 elements in its M1(oi), there will be 49 elements in M2(o0), where value (j,k) in M2(o0) denotes that the value is passed from oj and 
ok and is stored in M2 of UAV o0 (value (j,k) can also be expressed as M2(o0)[j][k]). When UAV o0 receives the value M2(oi) of UAV oi, it 
will store the value M2(oi) in its UCP-matrix M3(o0). Given 7 UAVs, UAV o0 will create 7 matrices including M3(o0)[0], M3(o0)[1], 
M3(o0)[2], M3(o0)[3], M3(o0)[4], M3(o0)[5], M3(o0)[6]. The matrix M3(o0)[0] is shown in the right of Fig. 1, where value (x,y) in 
M3(o0)[0] implies that the value is passed from o0 to ox and then further passed to oy and is stored in M3 of UAV o0 (the value can also be 
expressed as M3(o0)[0][x][y]). That is, after the 1st round of message exchange, each oi will create a matrix of its own M1(oi). After the 
2nd round of message exchange, each oi will create a matrix of its own M2(oi). This operation continues until the number of rounds of 
message exchange equals the number of rounds required (the number of rounds required is provided in Section 3.1.3). 

3.1.2. The lost messages from away UAV 
In UAVNets, each UAV can fly freely. Hence, messages from away UAVs cannot be successfully received. The lost messages from 

away UAVs will be marked by ζ0. In the following rounds of message exchange, it is necessary to inform other UAVs of UAVs with no 
value. Our method is as follows: if a UAV receives ζj, ζj+1 instead of ζj will be stored and used to represent the missing value in the 
previous round. The purpose of the +1 design is to show how many rounds of message exchange have passed. Since the maximum 
number of rounds required of the proposed UCP is ⌞(nO-1)/3⌟+1, it also implies that 0 ≤j ≤⌞(nO-1-aO)/3⌟. Details about the maximum 
number of rounds required of the proposed UCP are mentioned in the next section. By doing so, it can tell if a value is an unsent value of 
earlier UAVs or an unsent value of the current UAV. 

3.1.3. The number of rounds required of UCP 
The term round is used to compute the amount of message exchange. A round of message exchange comprises three steps as follows: 

(1) send messages to any receiver; (2) receive messages from others, and (3) conduct local processing [25]. Moreover, Fischer and 
Lynch [25] point out that given a network consisting of some Byzantine faulty processors, if all the correct processors are unable to 
know which processor is faulty, and the number of Byzantine faulty processors is smaller than or equal to t (t =⌞(n-1)/3⌟, where n is the 
number of processors in the network), these correct processors can compute a consensus value after t + 1 rounds of message exchange. 
Our assumption for the failure type of fallible processors (i.e. UAVs) and the definition of a round is the same as those used in Fischer 
and Lynch [25]. Therefore, the maximum number of rounds required of the proposed UCP is ⌞(nO-1)/3⌟+1, where nO is the number of 
UAVs in the UAVNet. 

3.2. Consensus making phase 

In this section, (1)how to calculate the consensus value for correct UAVs which have never exited the UAVNet (i.e. non-away UAVs) 
and (2)how to return UAVs can obtain a consistent consensus value from other UAVs after returning the UAVNet are explained. 

Fig. 1. Examples of UCP-matrix.  
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Fig. 2. An example of executing votecp function.  
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3.2.1. Calculating the consensus value for non-away UAVs 
After ⌞(nO-1)/3⌟+1 rounds of message exchange, each correct UAV oi that did not fly away from the UAVNet during the message 

exchanging phase will create a matrix of its own UCP-matrix M ⌊(nO − 1)/3⌋+1(oi). In the message exchange process, certain messages are 
repeatedly transmitted by the same UAV. To avoid repeated interference, the values transmitted to the same UAVs are deleted. For 
example, M3(Oi)[3][2][2] (i.e. element [3][2][2] in M3(Oi)) denotes a value that is passed from o3 to o2 and then further passed to o2 

again. The value of M3(Oi)[3][2][2] is deleted. Later, it converts M ⌊(nO − 1)/3⌋+1 into M ⌊(nO − 1)/3⌋ using a majority function and then 
converts M ⌊(nO − 1)/3⌋ into M ⌊(nO − 1)/3⌋− 1. This conversion process continues until M0, which is the consensus value. It should be noted 
that the impact of lost messages should be considered in the design of the majority function. The proposed majority function is called 
votematrix. The votematrix function only counts the non-value ζ◦ for all elements in UCP-matrix. There are three conditions in the votematrix 
function. Condition (1): if the majority value is ζj then output the value ζj-1, where 1 ≤j ≤⌞(nO-1)/3⌟. Condition (2): if the majority 
value is non-ζj value then output the majority value m, where m∈{0,1}. Condition (3): if the majority does not exist then output the 
default value ϕ. Take Figure 2 as an example. Using the votematrix function, it can convert M2(o0) into M1(o0), where M1(o0)[0] comes 
from the votematrix function value of row 0 in M2(o0), M1(o0)[1] comes from the votematrix function value of row 1 in M2(o0), and so on. 
Later, it uses the votematrix function to convert M1(o0) into M0(o0), where M0(o0)[0] comes from the votematrix function value of row 0 in 
M1(o0). The value of M0(oi) is its consensus value. 

3.2.2. Calculating the consensus value for return UAVs 
When a return UAV returns to the UAVNet, if it is a correct UAV, it has to ensure that the consensus value it gets matches the value 

obtained by other correct UAVs that have never gone away. Our method is that the return UAV will request the consensus values from 
UAVs that have never been away. When ⌞(nO-aO-1)/3⌟+1 uniform values are collected, it will set this uniform value, denoted by V, as 
its consensus value. Why is a value repeated ⌞(nO-aO-1)/3⌟+1 times can be the consensus value for this return UAV? This is because an 
UAVNet has a maximum number of ⌞(nO-aO-1)/3⌟ Byzantine faulty UAVs (see Eq. (3)), and if the return UAV can collect the same value 
⌞(nO-aO-1)/3⌟+1 times, this value must come from correct UAVs. 

4. The proposed protocol 

In this section, pseudo-code is used to explain how UCP works. According to the functions of Table 2, the pseudo-code of the 
proposed UCP is presented in Algorithm 1. In the initial stage, each UAV oi will store its initial value I(oi) in its UCP-matrix M0(oi) (Line 
1 in the UCP) and then empty the UCP-matrix (Line 2,3 in the UCP). 

Later, the UAVs enter the message exchange phase (Line 4–11 in the UCP). The number of rounds needed at the phase of message 
exchange is ⌞(nO-1)/3⌟+1 (Line 4 in the UCP). In each round of message exchange, each UAV oi will send the UCP-matrix it has 
received in the previous round to all UAVs (Line 5,6 in the UCP). For example, UAV oi will send M0(oi) in round 1, M1(oi) in round 2, …, 
and M ⌊(nO − 1)/3⌋(oi) in the last round, which is round ⌞(nO-1)/3⌟+1. In each round, each UAV oi will take some time to collect the UCP- 
matrix from other UAVs. The duration of this period can be determined by the user depending on the status of the network (Line 7–10 
in the UCP). In an UAVNet, UAVs may exit the network temporarily or perpetually during the execution of VAP. Hence, a portion of 
messages from these UAVs will not be collected. These missing messages are marked (Line 11 in the UCP). 

The operation of the consensus making phase is divided into two cases: Case 1: UAV oi has been away during execution of UCP (Line 
12–16 in the UCP) and Case 2: UAV oi has never been away during execution of UCP (Line 17–25 in the UCP). In Case 1, UAV oi can use 
the UCP-matrix M ⌊(nO − 1)/3⌋+1(oi) to compute the consensus value (Line 12–16). To avoid repetitive interference in the message ex
change process, values that are passed to the same UAVs are deleted (Line 13,14 in the UCP). Later, it can use the votecp function to 
progressively convert UCP-matrix M ⌊(nO − 1)/3⌋+1(oi) into M0(oi). This removes the influence of Byzantine faulty UAVs and away UAVs 
(Line 15,16 in the UCP). In Case 2, UAV oi has to empty its UCP-matrix M1(oi) and wait for other UAVs that have never been away to 
complete computing of the consensus value (Line 18,19 in the UCP). Subsequently, UAV oi will request the consensus value from these 

Table 2 
The functions used in the proposed UCP.  

Mh(oi) Mh(oi) is where oi stores the data its obtains during message exchange. Mh denotes a h-dimension array. When h = 0, it is a variable. M0(oi) stores 
the initial value of oi; M1(oi) stores the values that oi has collected in the 1st round of message exchange; Mh(oi) stores the values that oi has 
collected in the h round of message exchange. 

snd(〈mg〉, rcv) send a message 〈mg〉 using the encryption technology [9] to receiver rcv. 
snd(〈Exh, Mr-1(oi), oj, r〉, oj): send an Exh message which destination is oj with the matrix Mr-1(oi) and round r to receiver oj. 

snd(〈Fnl, V(oi)〉, oj): send a Fnl message with the value V(oi) to receiver oj. 
snd(〈Req〉, oj): send a Req message to receiver oj. 

absent 
(Mh(oi)) 

absent(Mh(oi)) is used to check if there is any value related to ζj in Mh(oi). If positive, change the value to ζj+1. 

del(Mh(oi)) del(Mh(oi)) is used to remove values with the same index value in any two dimensions. For example, if the first-dimension index value of M5(oi)[1] 
[2][3][4][1] is the same as the fifth-dimension index value of M5(oi)[1][2][3][4][1], the value in M5(oi)[1][2][3][4][1] will be deleted. 

votecp(Mh(oi)) According to the matrix structure, votecp(Mh(oi)) is used to convert h-dimension matrix into h-1-dimension (Mh(Oi) into Mh-1(Oi)) (Section 3.2.1). 
Finally, the majority values are restored in the corresponding locations in Mh-1(oi). 

suff(M1(oi)) if |M1(oi)|v =⌞(nO-aO-1)/3⌟+1, suff(M1(oi))=true; otherwise suff(M1(oi))=false, where v=maj(M1(Oi)). 
maj(M1(oi)) maj(M1(oi)) is used to exclude ζ value and extract the majority value in matrix M1(oi). 
return(oi) if oi is a return UAV, return(oi)=true; otherwise, return(oi)=false.  
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UAVs until the number of the majority value in M1(oi) reaches ⌞(nO-aO-1)/3⌟+1 (Line 21–24 in the UCP). Finally, it can also use the 
votecp function to progressively convert UCP-matrix M1(oi) into M0(oi). The value of M0(oi) is its consensus value (Line 26 in the UCP). 

Algorithm 1. The proposed UCP  
Algorithm: UAV Consensus Protocol (UCP) //for each UAV oi 
Input: I(oi) // I(oi) is the initial value of UAV oi 
Output: V // V is the consensus value 
/* Initialization 17. else 
1. M0(oi)←I(oi); 18. M1(oi)←ζ− 1; 
2. for (j =1; j ≤⌞(nO-1)/3⌟+1; j++) do 19. wait until (c >E) do 
3. Mj(oi)←ζ− 1; 20. for oj∈O do 
/* Message Exchanging Phase 21. while (suff(M1(oi)=false) do 
4. for (r=1; r ≤⌞(nO-1)/3⌟+1; r++) do 22. if return(oj)=false then 
5. for (j =0; j ≤nO-1; j++) do 23. snd(〈Req〉, oj); 
6. snd(〈Exh, M r-1(oi), oj, r〉, oj); 24. rcv&proc(); 
7. T←c + η; 25. M0(oi)←votecp(M1(oi)); 
8. while (c < T) do 26. return M0(oi); 
9. rcv&proc(); /* Function rcv&proc() 
10. T←− ∞; 27. function rcv&proc() 
11. absent(Mr(oi)); 28. for each (oj, 〈Exh, Mr-1(oj), oi, r〉) do 
/* Consensus Making Phase 29. Mr(oi)[c1]…[cr-1][j]←Mr-1(oj); 
12. If return(oi)=false then 30. for each (oj, 〈Fnl, V(oj)〉) do 
13. for (j =⌞(nO-1)/3⌟+1; j≥1; j–) 31. M1(oi)[j]←V(oj); 
14. del(Mj(oi));  
15. for (j =⌞(nO-1)/3⌟; j≥1; j–)  
16. Mj-1(oi)←votecp(Mj(oi));   
ü Mh(oi): Mh(oi) is where oi stores the data its obtains during message exchange. Mh is a h-dimension array. When h=0, it is a variable. M0(oi) stores the initial value 

of oi; M1(oi) stores the values that oi has collected in the 1st round of message exchange; Mh(oi) stores the values that oi has collected in the h round of message 
exchange.  

ü c: current time  
ü η: the waiting time allowed for one round  
ü T: a point in time  
ü E: the finish time when the non-away UAV obtains the consensus value   

4.1. An example 

The proposed UCP can be applied to many applications of UAVNets. For example, the leader-election issue is an important topic of 
the UAVNets. The proposed UCP can be used to elect a group leader in the presence of the Byzantine faulty UAVs. In the following, an 
example is used to explain the operation of the proposed UCP. The setting of this example is as follows: An UAVNet consists of seven 
UAVs, and each UAV has an initial value. Suppose one of the UAVs will fly away from the UAVNet during the execution of the proposed 
UCP. According to the constraint of Eq. (3), the number of allowed Byzantine faulty UAVs in this example is one (⌞(nO-1-aO)/3⌟ 
=⌞(7–1-1)/3⌟ =1). Assume that UAV o2 is the Byzantine faulty UAV of these UAVs. The initial values of all correct UAVs are shown in 
Table 3. An example of UAVNet is shown in Fig. 3. During the execution of the proposed UCP, UAV o6 will fly away from the UAVNet. 
The operation of the UCP from the perspective of UAV o0 is explained. 

The number of message exchange rounds required of this example is 3 (⌞(nO-1)/3⌟+1=⌞(7–1)/3⌟+1=3). In the 1st round of 
message exchange, o0 will send its initial value to all other UAVs and receive the initial values from other UAVs in the network by 
encryption technology [9]. Subsequently, UAV o0 will store the initial values received from other UAVs in its UCP-matrix M1(o0). The 
UCP-matrix M1 constructed by each correct UAV is shown in Fig. 4. Because UAV o2 is a Byzantine faulty UAV, o2 will send inconsistent 
initial values to other UAVs in the network to disturb correct UAVs. In other words, the values in M1(o0)[2], M1(o1)[2], M1(o3)[2], 
M1(o4)[2], M1(o5)[2], and M1(o6)[2] will not be consistent. To better understand the operation of UCP, the message through o2 is 
marked in red. In the 2nd round of the message exchanging phase, o6 flies away from the UAVNet. Therefore, UAVs in the network 
cannot receive the message from o6. The value ζ0 is used to report an omitted message. The UCP-matrix M2(o0) constructed by o0 in the 
2nd round of the message exchanging phase is shown in Fig. 5. In the last round of message exchange (i.e. the 3rd round of message 
exchange), o0 will send its M2(o0) to all other UAVs and receive the M2 from other UAVs. The UCP-matrix M3 constructed by o0 is 
shown in Fig. 6. 

After three rounds of message exchange, UAV oi will enter the consensus-making phase. As shown in the left part of Fig. 7, oi will 
delete values delivered to the same UAVs to exclude repetitive influence and then use the votecp function to convert UCP-matrix M3(o0) 
into M2(o0), M2(o0) into M1(o0), and finally M1(o0) into M0(o0). By doing so, it can exclude the influence from Byzantine faulty UAVs 

Table 3 
The initial values of all correct UAVs.   

o0 o1 o3 o4 o5 o6 

Initial value 0 0 0 1 0 1  
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Fig. 3. An example of UAVNet.  
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and obtain a consensus value (as shown in the right of Fig. 7). The consensus value is 0 in this example. 

5. The correctness 

The correctness of the proposed UCP can be proved if all the correct UAVs have the same UCP-matrix M0. An element [σ] is called 
the same if the value stored at element [σ] of all correct UAVs’ UCP-matrix are the same. The following two terms are defined to prove 
that a consensus value can be computed by UCP: (1) Correct element: element [α][i] of a UCP-matrix is eligible as a correct element if 
UAV oi (the last UAV id in element [α][i], where α is a sequence of UAV id and i is a single UAV id) is correct. That is, a correct element 
is a place to store the value received from a correct UAV. (2) True value: For a correct element [α][i] in the UCP-matrix of a correct UAV 
oj, val([α][i]) is the true value of element [α][i]. That is, the stored value of the correct element [α][i] is called the true value if the UAV 
oj is correct. 

Lemma 1. All correct elements of a UCP-matrix are the same. 
Proof: In M ⌊(nO − 1)/3⌋+1 or above UCP-matrices, the correct element has at least 2fo+1 children, out of which at least fo are correct. 

The true values of these fo+1 correct elements are the same, and the majority value of elements is the same. The correct element is the 
same in the UCP-matrix if the level is lower than fo+1. As a result, all correct elements of the UCP-matrix are the same. 

Lemma 2. The same frontier exists in the UCP-matrices. 
Proof: There are fo+1 elements along each M 0-to-M ⌊(nO − 1)/3⌋+1 path of UCP-matrices. Since at most fo Byzantine faulty UAVs can 

be failed, there is at least one correct element along each M 0-to-M ⌊(nO − 1)/3⌋+1 path of UCP-matrices. By Lemma 1, the correct element 
is the same, and the same frontier exists in each correct UAV’s UCP-matrices. 

Lemma 3. Let [α] be an element; [α] is the same if there is the same frontier in the sub-UCP-matrices rooted at [α]. 
Proof: The height of [α] in Mi is i. If the height of [α] is 0 and the same frontier ([α] itself) exists, then [α] is the same. If the height of 

[α] is r, the children of [α] are all the same under the induction hypothesis with the height of the children being r-1. 

Corollary 1. The UCP-matrix M0 is the same if the same frontier exists in the UCP-matrices. 

Theorem 1. The UCP-matrix M0 of a correct UAV’s UCP-matrices is the same. 
Proof: By Lemmas 1–3, and Corollary 1, the theorem is proved. 

Fig. 4. The UCP-matrix M1 of all correct UAVs after the 1st round of message exchanging phase.  

Fig. 5. The UCP-matrix M2 of UAV o0 after the 2nd round of message exchanging phase.  
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Theorem 2. UCP can solve the consensus problem in an UAVNet. 
Proof: UCP must meet the constraints (Consensus’) and (Validity’) to prove the theorem.  

(Consensus’): The value of M0 is the same. 

(continued on next page) 

Fig. 6. The UCP-matrix M3 of UAV o0 after the 3rd round of message exchanging phase.  

Fig. 7. An example of computing the consensus value.  
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(continued )  

By Theorem 1, (Consensus’) is satisfied. 
(Validity’): votecp(M0) = v for all correct UAVs, if the initial value of each correct UAV is vi say v = vi 

The value of the correct elements for the UCP-matrices of all the correct UAVs is v. As a result, each correct element of the UCP-matrices is the same 
(Lemma 2), and its true value is v. By Theorem 1, the M0 is the same. The computed value votecp(M0)= v is stored in the M0 for all the correct UAVs. 
Therefore, (Validity’) is satisfied.   

6. Conclusion 

The development of UAV systems can provide us with a more efficient and convenient life. Hence, fault tolerance of UAVNets is of 
high importance, and it is necessary to investigate the consensus problem in UAVNets. However, UAVs have the characteristic of high- 
speed movement, which creates the situation that topology changes quickly and UAVs frequently enter and leave the network. In this 
case, UAVs away from networks are unable to collect enough messages to reach a consensus. In addition, UAVs that have not left the 
network before will not receive messages from those away UAVs. This is why the previous consensus protocols do not apply to the 
current UAVNets. To deal with the characteristics of UAVNets mentioned above, a new consensus protocol UCP is proposed. For 
missing messages of away UAVs, the proposed UCP marked these messages in the UCP-matrix. When the away UAVs return to the 
network, they request the consensus value from other UAVs that have never been away. Through the votecp function of UCP, all the 
correct UAVs can compute a consensus value in UAVNets without influence from Byzantine faulty UAVs if the number of Byzantine 
faulty UAVs is smaller than ⌞(nO-1-aO)/3⌟, where aO is the number of away UAVs, nO is the number of AUVs. This paper addresses the 
problem of fault tolerance in UAVNets, but to provide more reliable UAVNets, it is also necessary to detect and locate faulty UAVs. 
Therefore, it is also necessary to design a detection mechanism to find faulty UAVs. Afterward, these faulty UAVs can be isolated. This 
is the direction of future research. 
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