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A B S T R A C T

According to the Paris agreement and the European climate law, carbon neutrality should be achieved by 2050.
Therefore, the long-term planning of energy production and the development of green energy have become
indispensable research topics in recent years. Due to the unstable production and high cost of green energy, the
mechanisms of operating reserve and subsidy should be included in the energy management system. In this
paper, we proposed a Call Auction-based Energy Management System (CAEMS) that manages energy using
economic theories and dynamic control mechanisms. We use production theory to determine the amount
of energy produced, which takes into account the market equilibrium price of supply and demand curves.
Then, a dynamic operating reserve rate is designed and embedded in the demand curve to ensure energy
stability. An adaptive and self-financing subsidy is proposed to gradually achieve the target energy distribution.
Simulation results show that the CAEMS has outstanding improvements in convergence day (42% reduction),
mean absolute error (MAE) of supply distribution (1.2% in each type), and extremely low MAE of operating
reserve rate (3.2%) and failure rate (0.03%).
1. Introduction

Energy generation is not only a matter of livelihood but also
has to do with industry and national development. According to the
Paris agreement1 and the European climate law,2 all countries should
achieve carbon neutrality by 2050. Therefore, long-term energy plan-
ning and green energy development are indispensable and thought-
provoking research topics in recent years. Green energy, also known
as renewable green energy, is an environmentally friendly and ideal
solution for energy production and generation [1,2]. Common green
energies include hydropower, wind power, and solar energy [3–5],
which harness the kinetic energy of water and wind as well as the
photovoltaic energy of the sun [6,7].

Due to the unstable production of green energy, it is necessary to
attach great importance to the reliability of the power grid, which is
ensured by the mechanism of operating reserve [8]. Some energy is
reserved to prevent unforeseen shortages, but determining the ratio
is not a trivial task [9]. An insufficient reserve ratio can cause the
power supply to fail and cause circuit breakers to trip on the grid.
Too high a reserve ratio reduces energy efficiency and causes many
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1 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
2 https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en

costs and wastes. Therefore, the operating reserve ratio refers to the
trade-off between grid stability and energy efficiency. In addition, to
achieve carbon neutrality, the government can set a target supply
distribution for its energy market (distribution for each type of energy
generation). The energy management system should also efficiently
promote energy supply for target distribution. Therefore, a sustainable
energy management system with stability and reliability is urgently
needed in each country.

To solve these problems, various economic theories are incorporated
into the smart grid system. Mondal et al. [10] formulated a game-
theoretic approach with household storage, which has a lower energy
price while ensuring the profit of microgrids. Zhang et al. [11] studied
the market equilibrium mechanisms for thousands of electricity con-
sumers and obtained a higher payoff while maintaining secure dispatch.
Khorasany et al. [12] proposed a platform for peer-to-peer energy
trading and compared different auction mechanisms that saved costs
for both sellers and buyers. Existing literature uses economic theories
to lower equilibrium prices and increase agent payoffs. However, lower
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Fig. 1. The flowchart of the designed CAEMS.
energy prices increase energy consumption and negatively impact en-
ergy efficiency and carbon neutrality. In addition, green energy is not
price competitive. Therefore, subsidies and long-term energy distribu-
tion planning should be included in the energy management system to
internalize the external costs of non-renewable energy and the revenues
from green energy. However, the operating reserve rate and subsidies
are often fixed in the current energy market, which could not reflect
the long-term planning of energy distribution or the real-time demand
(supply) of millions of end-users (suppliers).

In response to the above problems, we proposed a Call Auction-
based Energy Management System (CAEMS) with adaptive subsidy
and dynamic operating reserve. The proposed CAEMS manages energy
through economic theories and dynamic control mechanisms to achieve
stability and reliability. We use production theory [13] to determine
the production quantity and cost of energy suppliers, and construct
the aggregated supply curve (from suppliers) and demand curve (from
demanders) to determine the market-clearing price and quantities, as
shown in Fig. 1. In addition, a dynamic operating reserve rate is
developed with the Exponential Moving Average (EMA) mechanism
embedded in the demand curve to dynamically reserve energy and
ensure energy stability. In terms of subsidies, the CAEMS provides
positive subsidies to under-supplied suppliers and negative subsidies
to oversupplied suppliers. As a self-financing and sustainable system,
the CAEMS balances revenues and expenses from negative and positive
subsidies. With the proposed CAEMS, suppliers and demanders can
intuitively and interactively determine their production or consumption
based on the market equilibrium, and the market can gradually achieve
the targeted energy distribution with stability through the efficient
operating reserve. The contributions can be summarized as follows:

1. We adopt economic theories and dynamic control mechanisms
for the proposed CAEMS.

2. A dynamic operating reserve rate is developed for energy effi-
ciency and stability.

3. An adaptive and self-financing subsidy is proposed to achieve
the targeted energy distribution.

4. CAEMS achieves efficient convergence, low MAE of supply dis-
tribution and operating reserve rate, and extremely low failure
rate, and significantly outperforms the benchmarks.

The simulation results show that the proposed CAEMS has signifi-
cant improvements in average convergence days (42% reduction) and
MAE of supply distribution (average MAE of 1.2% for each supply
type), indicating the effectiveness of the CAEMS in promoting energy
supply to the target distribution. In addition, the CAEMS achieves
extremely low MAE operating reserve ratio (3.2%) and failure rate
2

(0.03%), demonstrating the energy stability and efficiency of the pro-
posed CAEMS.

We organize this paper as follows. Section 2 reviews the literature
on energy management systems, call auction, and production theory.
Section 3 presents the proposed CAEMS, and Section 4 presents the
designed dynamic operating reserve rate and the proposed adaptive
subsidy. Section 5 first sets the simulation conditions and then presents
and discusses the simulation results. Section 6 summarizes the results
of the designed system.

2. Literature review

2.1. Energy management system

Modern energy management systems include the emerging themes
of smart homes and buildings, smart grids, and smart cities. Smart
homes and smart buildings focus on energy consumption schedul-
ing [14,15] with communication between IoT devices [16,17] and
smart metering [18]. Numerous studies have looked not only at the
price of electricity, but also at green power generators in the home
(e.g., solar panels) and energy storage devices [19,20].

On a larger scale, there is much discussion of the smart grid, which
includes distributed energy management systems [21], load forecast-
ing [22], energy transaction and efficiency [23,24], and economic
theory [10,11]. Distributed energy management systems focus on mov-
ing load and energy between microgrids through IoT techniques [25]
and edge cloud computing [21]. However, a critical issue is energy effi-
ciency, including energy transmission [26] and operating reserve [23].
To address this issue, various economic theories are incorporated into
the smart grid system. Mondal et al. [10] formulated a game-theoretic
approach with multiple leaders and multiple followers and household
storage, which has a lower energy price while ensuring the profit of
microgrids. Zhang et al. [11] studied the market-clearing mechanisms
based on game theory for thousands of electricity consumers and
obtained a higher payoff for most agents while maintaining a secure
disposition. Khorasany et al. [12] proposed a platform for peer-to-peer
energy trading and compared different auction mechanisms that saved
costs for both sellers and buyers.

Existing economic literature uses various economic theories to lower
equilibrium prices and increase agent payoffs, which is effective for
resource allocation. However, lower energy prices increase energy
consumption and harm energy efficiency and carbon neutrality. There-
fore, long-term energy allocation planning and subsidies (penalties) for
different types of energy generation are needed to internalize external
costs and improve market efficiency.
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2.2. Call auction and market order books

Call auctions bring together the needs of suppliers and demanders,
considered as sellers and buyers, and are widely used in financial
markets, especially in the large transactions of opening and closing the
market.3 In the call auction, the orders of sellers and buyers are first
ombined within a period. The orders from sellers are called ‘‘ask’’ and
ontain information about the quantity to sell and the minimum price
he seller is willing to sell. Buyers’ orders are called bids, containing
nformation about the quantity to buy and the maximum price the
uyer is willing to buy. At the auction, orders with the same price
s the order book [27] are then collected and bundled. This order
ook records the total quantity bid (buying) and demanded (selling)
or each price, collecting bids and demands separately. Finally, find a
utually acceptable price (𝑝′) that has the most matches. The matched

uantity is the minimum of the bid set with willing prices greater than
′ and asking quantity with willing prices less than 𝑝′. All matched

orders trade at a single price of 𝑝′, called the equilibrium price and
the market-clearing price [28].

The benefits of call auctions include increasing liquidity and trans-
parency. On the other hand, call auctions can also reduce price volatil-
ity and opportunities for price manipulation [29]. In addition, the
market mechanism will eliminate suppliers with outdated technology
and uncompetitive prices. However, the price of matched orders in
a call auction may not be optimal, i.e., suppliers may sell at a price
higher than their minimum price, and demanders may buy at a price
lower than their maximum price. In summary, the call auction is an
efficient mechanism with the largest transaction quantity and would
leave a positive surplus (difference between the equilibrium price and
the willing price [28]) for both suppliers and demanders.

After the order book is created, the supply and demand curves
can also be created. The demand curve represents the relationship
between price and quantity demanded. More specifically, for any price
𝑝, the demand curve represents the summation quantity of bids with
a maximum willing price less than 𝑝 and is a decreasing function.
Similarly, the supply curve represents the relationship between price
and quantity supplied. More specifically, for any price 𝑝, the supply
curve represents the sum of bids with a minimum price greater than 𝑝
and is an increasing function.

2.3. Production theory

The theory of production is one of the fundamental principles of
economics, which involves the determination of the quantity of supply
and the equilibrium price (of factors and commodities) [13]. The prices
of factors of production are relevant to the cost of production, which
can be further divided into fixed and variable costs. Fixed costs refer
to factor costs that do not change with the quantity of production, and
variable costs refer to costs proportional to the quantity of production.
The sum of fixed and variable costs is the total cost of production.

Using production theory [28], suppliers can then determine the
quantity produced according to the market equilibrium price of the
commodity (𝑝 ∗) and their costs of production. The following three
conditions apply to production theory:

1. If a supplier with an average total cost is less than 𝑝 ∗, it makes
profits and survives for a long time.

2. If a supplier with an average total cost greater than 𝑝 ∗ but with
an average variable cost less than 𝑝∗, the supplier suffers losses
but continues to produce in the short run to avoid wasting fixed
costs (also known as sunk cost [30]).

3 A. Hayes, Call auction (Jul 2021). URL https://www.investopedia.com/
erms/c/call-auction.asp
3

Table 1
Notations.

Notation Description

𝑁𝑇𝑆 Number of types of energy suppliers
𝑁𝑆 and 𝑁𝐷 Number of energy suppliers and demanders
𝐴𝑂𝑖𝑠,𝑑 The ask order from the 𝑖𝑠-th supplier on the 𝑑th day
𝑆𝑃𝑖𝑠,𝑑 The minimum willing price of the 𝑖𝑠-th supplier on the

𝑑th day
𝑆𝑄𝑖𝑠,𝑑 The supply quantity of the 𝑖𝑠-th supplier on the 𝑑th day
𝑀𝑎𝑥𝑆𝑄𝑖𝑠 Maximum supply quantity of the 𝑖𝑠-th supplier
𝐹𝐶𝑖𝑠 and 𝑉 𝐶𝑖𝑠 Fixed and variable costs of the 𝑖𝑠-th supplier
𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 The subsidy for the 𝑖𝑡𝑠-th type suppliers on the 𝑑th day
𝐸𝑞𝑢𝑃𝑑 and 𝐸𝑞𝑢𝑄𝑑 The equilibrium price and quantity of the 𝑑th day

𝑇 𝑎𝑟𝑆𝐷𝑖𝑡𝑠 Target supply distribution of the 𝑖𝑡𝑠-th type suppliers
𝑇 𝑎𝑟𝑂𝑅𝑅 Target operating reserve rate
𝑂𝑅𝑅𝑑 The operating reserve rate on the 𝑑th day
𝐷𝑀𝑂𝑅𝑑 The dynamic multiplier for operating reserve on the 𝑑th

day

𝑖𝑡𝑠 The 𝑖𝑡𝑠-th type of energy suppliers with maximum value
of 𝑁𝑇𝑆

𝑖𝑠 The 𝑖𝑠-th energy supplier with maximum value of 𝑁𝑆
𝑑 The 𝑑th day

3. If a supplier’s average total variable is greater than 𝑝 ∗, the
supplier suffers losses in both the short and long run and should
be shut down immediately. Note that the average variable cost
equals 𝑝 ∗ is called the shutdown point.

Production theory explains well the behavior of suppliers under dif-
ferent equilibrium prices and production costs in the proposed system.

3. Designation of call auction system

Fig. 1 shows the flowchart of the designed CAEMS, which includes
the three modules of the supply curve, the demand curve, and the
market equilibrium, described respectively in Sections 3.2 to 3.4. The
supply curve indicates the planning quantity and production costs of
the energy suppliers, which includes a discussion of subsidies and pro-
duction strategies. The demand curve indicates the energy consumption
at different prices, in which the designed CAEMS also embeds the
operating reserve mechanism. After obtaining the supply and demand
curves, the equilibrium price (market-clearing price) and quantity are
then determined.

3.1. Notations and problem statement

Table 1 lists notations used in this paper and their descriptions.
The 𝑁𝑇𝑆, 𝑁𝑆, and 𝑁𝐷 represent the information of suppliers and
demanders in the simulation. The 𝐴𝑂𝑖𝑠,𝑑 , 𝑆𝑃𝑖𝑠,𝑑 , 𝑆𝑄𝑖𝑠,𝑑 , 𝑀𝑎𝑥𝑆𝑄𝑖𝑠,
𝐹𝐶𝑖𝑠, and 𝑉 𝐶𝑖𝑠 represent the supply in formation of each supplier. The
𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 , 𝐸𝑞𝑢𝑃𝑑 , and 𝐸𝑞𝑢𝑄𝑑 state the information of market equilib-
rium. The 𝑇 𝑎𝑟𝑆𝐷𝑖𝑡𝑠, 𝑇 𝑎𝑟𝑂𝑅𝑅, and 𝑂𝑅𝑅𝑑 are government objectives
for the supply-side of market.

For the problem statement, this paper aims to propose a sustainable
power management system that determines subsidies to control the
market equilibrium, thereby further affecting the operating reserve rate
and supply distribution. Operating reserve rate refers to the trade-
off between grid stability and energy efficiency. To achieve carbon
neutrality, the government will set a target supply distribution for its
energy market (distribution for each type of energy generation). The
energy management system should also efficiently promote the energy
supply to the target distribution through subsidies. In summary, the
problem is defined as determining subsidies to well manage the energy
market equilibrium with key indicators of operating reserve rate and

supply distribution.

https://www.investopedia.com/terms/c/call-auction.asp
https://www.investopedia.com/terms/c/call-auction.asp
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Fig. 2. Ask orders and the supply curve.
3.2. Supply curve

Fig. 2 illustrates the formation of the supply curve in CAEMS. Before
each day, each supplier specifies its demand (ask) order (𝐴𝑂, the
information about energy production), including the quantity offered
(𝑆𝑄) and the minimum price at which it is willing to sell (𝑆𝑃 ).
The ask order of the 𝑖𝑠-th supplier on the 𝑑th day is denoted as
𝐴𝑂𝑖𝑠,𝑑 = (𝑆𝑃𝑖𝑠,𝑑 , 𝑆𝑄𝑖𝑠,𝑑 ). After collecting ask orders from all 𝑁𝑆
suppliers (𝐴𝑂1,… , 𝐴𝑂𝑁𝑆 ), CAEMS sorts the ask orders by price and
aggregates them. Aggregation of the supply quantities then yields the
supply curve shown in the red curve in Fig. 2.

Note that the designed CAEMS is based on the assumption of Pareto
optimality [31] and all suppliers honestly ask for the minimum willing
prices equal to their average total cost minus subsidies (determined in
Section 4.2). One supplier may lower the minimum willing price to
increase the quantity sold, but this will negatively affect others and vio-
late Pareto optimality. The vicious competition of price wars will hurt
the market and each supplier in the long run. We, therefore, assume
that the supplier’s minimum willing price is equal to the average total
cost minus the subsidy. The average total cost of the 𝑖𝑠-th supplier (the
𝑖𝑡𝑠-th type of supplier) is called 𝐴𝑇𝐶𝑜𝑠𝑡𝑖𝑠 and is defined as:

𝐴𝑇𝐶𝑜𝑠𝑡𝑖𝑠 =
𝐹𝐶𝑖𝑠 + 𝑉 𝐶𝑖𝑠 × 𝑆𝑄𝑖𝑠

𝑆𝑄𝑖𝑠
, (1)

and the minimum willing price is denoted and defined as:

𝑀𝑊𝑃𝑖𝑠 = 𝐴𝑇𝐶𝑜𝑠𝑡𝑖𝑠 − 𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 (2)

According to production theory, suppliers whose average variable
cost is higher than the equilibrium price should not produce. Thus, in
CAEMS, if the equilibrium price of the previous day (𝐸𝑞𝑢𝑃𝑑−1) is less
than a supplier’s average variable cost (with subsidy), the supplier will
not produce on the 𝑑th day; otherwise, it will produce the maximum
quantity. The supply quantity of the 𝑖𝑠-th supplier on the 𝑑th day is
denoted as 𝑆𝑄𝑖𝑠,𝑑 and is defined as:

𝑆𝑄𝑖𝑠,𝑑 =

{

0 𝐸𝑞𝑢𝑃𝑑−1 < 𝑉 𝐶𝑖𝑠 − 𝑆𝑈𝐵𝑖𝑡𝑠,𝑑

𝑀𝑎𝑥𝑆𝑄𝑖𝑠 else
(3)

3.3. Demand curve

In the CAEMS, the expected demand curve of a consumer is assumed
to be constant and can be determined from historical data. However,
there is still uncertainty (variance) on any given day. The CAEMS can
then capture the expected demand curve of all 𝑁𝐷 consumers.

Then, the CAEMS considers the operating reserve and embeds it into
the demand curve. In other words, for each unit of energy demand
in the demand curve, a specific energy ratio is reserved to prevent
4

accidental shortages. Finally, CAEMS multiplies all demands by one
plus the dynamic operating reserve multiplier (1 + 𝐷𝑀𝑂𝑅𝑑 , defined
in Section 4.1). Then aggregate the adjusted demand curves of all 𝑁𝐷
consumers to obtain the final demand curve, as shown in Fig. 3.

3.4. Market equilibrium

For each 𝑑th day, the CAEMS collects the ask orders from 𝑁𝑆
suppliers (before the day) to create the supply curve of the 𝑑th day.
The aggregated (adjusted) demand curve of 𝑁𝐷 consumers can also
be obtained from historical data. The CAEMS then determines the
equilibrium price (also known as the market-clearing price) and the
equilibrium quantities, i.e., 𝐸𝑞𝑢𝑃𝑑 and 𝐸𝑞𝑢𝑄𝑑 , as the intersection of
the supply and demand curves. The intersection point indicates that the
supply and demand quantities are exactly equal at that price, which is
called the market equilibrium point.

Since the prices in the supply and demand curves are discrete,
the intersection may not lie exactly on an available price. Also, the
supply and demand curves are (not necessarily strictly) increasing and
decreasing functions, so there would be multiple intersections. There-
fore, the CAEMS sets the equilibrium price (𝐸𝑞𝑢𝑃𝑑) to the maximum
price at which demand is greater than or equal to supply, and sets the
equilibrium quantity (𝐸𝑞𝑢𝑄𝑑) to the quantity demanded.

Furthermore, since the demand curve is adjusted by the dynamic
multiplier of the operating reserve, a specific energy ratio is reversed
and should be paid by the demand side. For example, a demander who
consumes 𝐶 units of energy should pay:

𝐶 × (1 +𝐷𝑀𝑂𝑅𝑑 ) × 𝐸𝑞𝑢𝑃𝑑 (4)

In other words, the price charged to consumers for each unit of power
is:
𝐶 × (1 +𝐷𝑀𝑂𝑅𝑑 ) × 𝐸𝑞𝑢𝑃𝑑

𝐶
= 𝐸𝑞𝑢𝑃𝑑 × (1 +𝐷𝑀𝑂𝑅𝑑 ) (5)

Moreover, the 𝑑th day operating reserve rate, 𝑂𝑅𝑅𝑑 , is the actual
energy consumption (below the equilibrium price) divided by the total
energy supply (of all suppliers), which is denoted and defined as
follows:

𝑂𝑅𝑅𝑑 = 1 −

𝐸𝑞𝑢𝑄𝑑
1+𝐷𝑀𝑂𝑅𝑑

∑𝑁𝑆
𝑖𝑠=1 𝑆𝑄𝑖𝑠,𝑑

(6)

4. Dynamic operating reserve rate and adaptive subsidy

4.1. Dynamic operating reserve rate

In CAEMS, the operating reserve is embedded in the demand curve
described in Section 3.3, and the dynamic multiplier of the operating
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Fig. 3. Aggregated demand curve.
reserve on the 𝑑th day (𝐷𝑀𝑂𝑅𝑑) is defined as:

𝐷𝑀𝑂𝑅𝑑 = 𝛼 ×𝐷𝑀𝑂𝑅𝑑−1 + (1 − 𝛼) ×𝑁𝑀𝑑 (7)

The 𝛼 is the multiplier of the EMA to smooth the 𝐷𝑀𝑂𝑅𝑑 , and the
𝑁𝑀𝑑 is the new multiplier of the 𝑑th day, defined as:

𝑁𝑀𝑑 = 𝐷𝑀𝑂𝑅𝑑−1 + (𝑇 𝑎𝑟𝑂𝑅𝑅 − 𝑂𝑅𝑅𝑑−1) (8)

The 𝑁𝑀𝑑 is the previous 𝐷𝑀𝑂𝑅 plus the difference between the
target and previous operating reserve rates (𝑇 𝑎𝑟𝑂𝑅𝑅 and 𝑂𝑅𝑅𝑑−1).
The CAEMS assumes that the previous day’s 𝐷𝑀𝑂𝑅𝑑−1 results in the
difference in the reserve rate of 𝑇 𝑎𝑟𝑂𝑅𝑅−𝑂𝑅𝑅𝑑−1; therefore, the new
multiplier should be increased by 𝑇 𝑎𝑟𝑂𝑅𝑅 − 𝑂𝑅𝑅𝑑−1. The designed
𝐷𝑀𝑂𝑅 will gradually move the operating reserve rate towards the
target.

However, in addition to the 𝐷𝑀𝑂𝑅, random shortages in energy
generation and unexpected fluctuations in energy consumption also
affect the operating reserve. Therefore, the proposed 𝐷𝑀𝑂𝑅 takes
these aspects into account as well. The CAEMS captures the fail-
ure quantity of energy generation of all suppliers, denoted as 𝐹𝑎𝑖𝑙𝑆,
and the unexpected energy consumption of all demanders, denoted as
𝐹𝑎𝑖𝑙𝐷, i.e., the actual values minus the expected values. The average
unexpected shortage, 𝐴𝑈𝑆𝑑 , is defined as:

𝐴𝑈𝑆𝑑 = Mean( [𝐹𝑎𝑖𝑙𝑆𝑑−30 + 𝐹𝑎𝑖𝑙𝐷𝑑−30,… , 𝐹 𝑎𝑖𝑙𝑆𝑑−1 + 𝐹𝑎𝑖𝑙𝐷𝑑−1] ), (9)

which is the average summation of 𝐹𝑎𝑖𝑙𝑆 and 𝐹𝑎𝑖𝑙𝐷 over the past 30
days. Then, the 𝐷𝑀𝑂𝑅𝑑 is adjusted to:

𝐷𝑀𝑂𝑅𝑑 = Max(𝐷𝑀𝑂𝑅𝑑 ,
𝐴𝑈𝑆𝑑

𝐸𝑞𝑢𝑄𝑑−1
) (10)

In other words, if the rate of unexpected shortage is larger, the 𝐷𝑀𝑂𝑅𝑑
will be changed to 𝐴𝑈𝑆𝑑

𝐸𝑞𝑢𝑄𝑑−1
.

4.2. Adaptive subsidy

To support the development of green energy and achieve the target
energy distribution, an adaptive subsidy mechanism is proposed. We
first calculate the target quantity and price for each type of energy
5

supply. For the 𝑖𝑡𝑠-th type supplier, the target quantity is denoted and
defined as follows:

𝑇 𝑎𝑟𝑄𝑖𝑡𝑠 = 𝑇 𝑎𝑟𝑆𝐷𝑖𝑡𝑠 × 𝐸𝑞𝑢𝑄𝑑 (11)

The target price, 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠, is defined as the minimum price in which
the supply quantity (of the 𝑖𝑡𝑠-th type of supply) is greater than 𝑇 𝑎𝑟𝑄𝑖𝑡𝑠.

A naive subsidy for 𝑖𝑡𝑠-th type suppliers is 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 − 𝐸𝑞𝑢𝑃𝑑−1,
which would provide sufficient supply to meet the target distribution.
There will be positive subsidies for the under-supply type of suppli-
ers and negative subsidies for the over-supply type of suppliers as a
penalty. However, the subsidies may require large amounts of money.
As a self-financing and sustainable energy management system, the
CAEMS balances the total subsidy revenues and expenditures through
Algorithm 1.

For every 𝑑th day, Algorithm 1 first calculates subsidy income,
expenditures, and balance, expressed as 𝐼𝑛𝑐𝑜𝑚𝑒, 𝐸𝑥𝑝𝑒𝑛𝑑, and 𝐵𝑎𝑙𝑎𝑛𝑐𝑒
(lines 3 to 5). When 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 is greater than zero, the algorithm cal-
culates less of the revenue (it only calculates the demand), and the
shrinking revenue multiplier, 𝑀𝑆𝐼 , is defined as line 7. For each type
of supplier with a negative subsidy, the algorithm defines the subsidy
that collects only the adjusted income, 𝐴𝑑𝑗𝐼𝑛𝑐𝑜𝑚𝑒, from the suppliers
(lines 9 to 11). For each type of supplier with a positive subsidy, the
algorithm sets the subsidy to the naive subsidy (lines 12 to 13). On
the other hand, if 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 is less than zero, the algorithm will spend
less on the expenditure (only spend as they have), and the shrinking
expenditure multiplier, 𝑀𝑆𝐸, is defined as line 15. For each type of
supplier with a positive subsidy, the algorithm determines the subsidy
that just spends the adjusted expenditure, 𝐴𝑑𝑗𝐸𝑥𝑝𝑒𝑛𝑑, on the suppliers
(lines 17 to 19). For each type of supplier with a negative subsidy, the
algorithm sets the subsidy to the naive one (lines 20 to 21).

Note that the 𝐼𝑛𝑐𝑜𝑚𝑒 and 𝐸𝑥𝑝𝑒𝑛𝑑 in Algorithm 1 are the expected
values for determining the subsidy. The actual values, 𝐼𝑛𝑐𝑜𝑚𝑒∗ and
𝐸𝑥𝑝𝑒𝑛𝑑∗, should be calculated by the subsidy and the equilibrium
quantity of the following day. In addition, the difference between
payments received from consumers and payments to suppliers is also
added to the remainings of the subsidy. Furthermore, the exponential
moving average technique is also applied to stabilize the adaptive
subsidy (line 22, the same 𝛼 as Eq. (7)).
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Algorithm 1 Self-financing algorithm for adaptive subsidy
1: 𝑅𝑒𝑚𝑎𝑖𝑛𝑠 = 0;
2: for each 𝑑-th day do
3: 𝐼𝑛𝑐𝑜𝑚𝑒 = Sum( {(𝐸𝑞𝑢𝑃𝑑−1 − 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠) × 𝑇 𝑎𝑟𝑄𝑖𝑡𝑠 | 𝐸𝑞𝑢𝑃𝑑−1 > 𝑇𝑎𝑟𝑃𝑖𝑡𝑠} );
4: 𝐸𝑥𝑝𝑒𝑛𝑑 = Sum( {(𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 − 𝐸𝑞𝑢𝑃𝑑−1) × 𝑇 𝑎𝑟𝑄𝑖𝑡𝑠 | 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 > 𝐸𝑞𝑢𝑃𝑑−1} );
5: 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝐸𝑥𝑝𝑒𝑛𝑑 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑠;
6: if 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 > 0 then
7: 𝑀𝑆𝐼 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑠−𝐸𝑥𝑝𝑒𝑛𝑑

𝐼𝑛𝑐𝑜𝑚𝑒
;

8: for each 𝑖𝑡𝑠-th type suppliers do
9: if 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 < 𝐸𝑞𝑢𝑃𝑑−1 (negative subsidy) then
0: 𝐴𝑑𝑗𝐼𝑛𝑐𝑜𝑚𝑒 = (𝐸𝑞𝑢𝑃𝑑−1 − 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠) × 𝑇 𝑎𝑟𝑄𝑖𝑡𝑠 ×𝑀𝑆𝐼 ;

11: 𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 = subsidy that just charge 𝐴𝑑𝑗𝐼𝑛𝑐𝑜𝑚𝑒 from 𝑖𝑡𝑠-th
type suppliers;

2: if 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 >= 𝐸𝑞𝑢𝑃𝑑−1 (positive subsidy) then
3: 𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 = 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 − 𝐸𝑞𝑢𝑃𝑑−1;
4: else
5: 𝑀𝑆𝐸 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑠+𝐼𝑛𝑐𝑜𝑚𝑒

𝐸𝑥𝑝𝑒𝑛𝑑
;

6: for each 𝑖𝑡𝑠-th type suppliers do
7: if 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 > 𝐸𝑞𝑢𝑃𝑑−1 (positive subsidy) then

18: 𝐴𝑑𝑗𝐸𝑥𝑝𝑒𝑛𝑑 = (𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 − 𝐸𝑞𝑢𝑃𝑑−1) × 𝑇 𝑎𝑟𝑄𝑖𝑡𝑠 ×𝑀𝑆𝐸;
19: 𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 = subsidy that just spend 𝐴𝑑𝑗𝐸𝑥𝑝𝑒𝑛𝑑 on 𝑖𝑡𝑠-th type

suppliers;
20: if 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 <= 𝐸𝑞𝑢𝑃𝑑−1 (negative subsidy) then
21: 𝑆𝑈𝐵𝑖𝑡𝑠,𝑑 = 𝑇 𝑎𝑟𝑃𝑖𝑡𝑠 − 𝐸𝑞𝑢𝑃𝑑−1;
22: 𝑆𝑈𝐵𝑑 = 𝛼 × 𝑆𝑈𝐵𝑑−1 + (1 − 𝛼) × 𝑆𝑈𝐵𝑑 ;
23: 𝑅𝑒𝑚𝑎𝑖𝑛𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑠 + 𝐼𝑛𝑐𝑜𝑚𝑒∗ − 𝐸𝑥𝑝𝑒𝑛𝑑∗.

5. Experimental evaluation

In this section, we evaluate the performance of the proposed CAEMS
and compare it to benchmarks widely used in real-world implementa-
tions of energy management, called traditional and statistical methods.
Both the traditional and statistical methods establish subsidies for fair
competition that result in equal minimum willing prices (𝑀𝑊𝑃 ) for
ll suppliers. Explicitly, 𝑆𝑈𝐵𝑖𝑡𝑠 is set to the average total cost of all
uppliers minus the cost of the 𝑖𝑡𝑠-th supplier. Note that the subsidies
or under-supplied suppliers are non-negative (i.e., the maximum value
f 𝑆𝑈𝐵𝑖𝑡𝑠 and 0). Similarly, subsidies for over-supplied providers are
on-positive (i.e., the minimum value of 𝑆𝑈𝐵𝑖𝑡𝑠 and 0). Moreover,
oth traditional and statistical methods intuitively define the dynamic
perating reserve ratio as 𝑇 𝑎𝑟𝑂𝑅𝑅.

The difference between the traditional and statistical methods is the
echanism to prevent an unexpected shortage of energy production

additional operating reserve). In the traditional method, the demand
urve is shifted upward when an unanticipated production shortage
ccurs on the last day for all suppliers, increasing the operating reserve
y the previous shortage. In the statistical method, the demand curve
s shifted upward by summing the production variance, adding the
perating reserve by the historical statistics of production shortages.

.1. Environment setting

This paper refers to the Taiwan energy market to simulate the
roposed CAEMS, and the reference data (parameters) are from TPC.4
t is assumed that the energy grid is initialized to supply and consume
0,000 megawatt-hours (MWh) of electricity per day and that the
arget operating reserve rate (𝑇 𝑎𝑟𝑂𝑅𝑅) is set at 10% by the Taiwan
overnment.

Simulation settings of demand-side parameters are listed in Table 2.
ccording to TPC data,5 energy consumers are divided into three
ategories, including household, commercial and industrial consumers.

4 Taiwan Power Company, https://www.taipower.com.tw/en/index.aspx
5 https://www.taipower.com.tw/tc/page.aspx?mid=96
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Table 2
Demand-side simulation settings.

Type of consumers Household Commercial Industrial

Consumption distribution 20% 15% 65%
Mean of MDC (MWh) 20 100 2000
Var of MDC (MWh) 4 20 400
Var of daily consumption 10% 10% 20%
Number of demanders 500 75 16

Table 3
Supply-side simulation settings.

Type of suppliers Coal Fuel Gas Nuclear Hydro Wind Solar

Supply distribution 29% 3% 36% 8% 9% 2% 13%
Target distribution 20% 5% 25% 15% 10% 10% 15%
Mean of MDP (MWh) 600 200 500 1000 100 100 10
Var. of MDP (MWh) 120 40 100 200 20 20 2
Var. of daily production 5% 5% 5% 5% 30% 30% 30%
Mean of 𝐹𝐶 (NTD) 600 200 500 1000 250 140 30
Mean of 𝑉 𝐶 (NTD) 0.5 4 0.8 0.3 0 0 0
Number of suppliers 24 8 36 4 45 10 650

The assumed parameters of energy consumption distribution, mean of
maximum daily consumption (MDC), variance (Var) of MDC, and Var of
the daily consumption are listed in Table 2. Based on the consumption
distribution and the mean of MDC, there are 50,000×20%

20 = 500 household
consumers in the grid, and the number of demanders of each type
is shown in the last row of Table 2. Assume that the consumers’
demand curves are Z-shaped continuous functions with left and right
breakpoints that are linear inside the breakpoints and constant outside
the breakpoints. The 𝑥-value of the left and right breakpoints of a
consumer are randomly sampled from a normal distribution with the
mean of 0 and 5 new Taiwan dollars (NTD) and variance of 0.5 and 0.5
NTD, respectively. The 𝑦-value of the left and right breakpoints is set
to the maximum daily energy consumption multiplied by 1 and 25%,
respectively.

The simulation settings of the supply-side parameters are listed in
Table 3. According to the TPC data, energy consumers are divided
into seven categories, including coal, fuel, gas, nuclear, hydro, wind,
and solar suppliers. The assumed parameters of supply distribution,
target distribution, mean of maximum daily production (MDP), Var of
MDP, VAR of the daily production, fixed cost (𝐹𝐶), and variable cost
(𝑉 𝐶) are listed in Table 2. Based on the production distribution and
the mean value of MDP, there are 50,000×29%

600 = 24 coal suppliers in
the grid, and the number of suppliers of each type is shown in the
last row of Table 3. In addition, each supplier has capital 100 times
its MDP. Suppliers whose accumulated loss is greater than the capital
immediately go bankrupt and stop producing.

To simulate the entry of new suppliers into the energy market,
we design two ways to establish new suppliers, including government
establishment and splitting from old suppliers. For each supplier, if its
capital is greater than 1,200 times the mean MDP of the supply type, a
new supplier is split out with the 1,000 MDP for the establishment, 100
MDP as the new supplier, and the remaining 100 MDP as the capital
of the old supplier. Note that if a type of supply distribution is greater
than the target, that type of supplier will not split the new ones. The
government only establishes one supplier whose type is the most lower
than the target supply distribution, 𝑇 𝑎𝑟𝑆𝐷. In addition, the government
only establishes a new supplier if the remaining subsidy (as mentioned
in Section 4.2) is greater than 1,100 times the mean MDP of the supply
type using the 1,000 MDP for the establishment, and 100 MDP is as the
capital of the new supplier. Note that newly established suppliers are
with randomly sampled parameters.

5.2. Simulation results

We simulated the systems in 3000 iterations over 5 years (1825
days). Simulation results are evaluated using four measurements: the

https://www.taipower.com.tw/en/index.aspx
https://www.taipower.com.tw/tc/page.aspx?mid=96


Sustainable Computing: Informatics and Systems 36 (2022) 100786J.-H. Syu et al.
Fig. 4. Box plot comparison of the proposed CAEMS and benchmarks.
Table 4
Performance evaluation of the systems.

Tradition Statistic Proposed

Average convergence day 1725 1686 989
Average failure rate 13.09% 10.12% 0.03%
MAE of operating reserve rate 6.3% 6.0% 3.2%
MAE of supply distribution 22.9% 21.7% 8.5%

convergence days, the failure rate, the MAE of the operating reserve
rate, and the MAE of the supply distribution. The MAE of the operating
reserve rate is the average absolute value of the difference between the
daily operating reserve rate and the target value of 𝑇 𝑎𝑟𝑂𝑅𝑅. Similarly,
the MAE of the supply distribution is the average absolute value of
the difference between the supply distribution and the target value
of 𝑇 𝑎𝑟𝑆𝐷. The day of convergence is the first day when the MAE
of the supply distribution is less than 10% (and still less than 10%
after that day). Note that the non-convergent simulation is recorded
as 1825 days (the last day). The failure rate is the probability that
energy consumption is greater than production and corresponds to the
probability that the operating reserve is less than zero, which may cause
the circuit breaker to trip on the entire grid.

Table 4 and Fig. 4 present the performance evaluation of the pro-
posed CAEMS (with 𝛼 of 0.75) and benchmarks. The simulation results
show that the proposed CAEMS has a significant improvement com-
pared to the benchmarks. The traditional and statistical methods obtain
convergence days of 1725 and 1686, which are 4.73 and 4.62 years,
respectively. With the proposed adaptive subsidy, the proposed CAEMS
shortens the average convergence day to 989 days, a reduction of about
42%, which means the CAEMS achieves the target supply distribution
within 3 years on average. Note that the actual convergence day should
be larger, especially for benchmarks, since numerous simulations of
traditional and statistical methods did not converge on the last day. As
shown in Fig. 4(a), all quartiles of the traditional method (the median
of the statistical method) are 1825, which means that only a few (less
than half) simulations converge.
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Table 5
Performance evaluation of the CAEMS with different EMA parameters.
𝛼 0.75 0.50 0.25 0

Average convergence day 1064 964 887 804
Average failure rate 0.02% 0.03% 0.04% 0.07%
MAE of operating reserve rate 3.1% 3.2% 3.3% 3.4%
MAE of supply distribution 9.9% 8.4% 7.7% 7.4%

For the supply distribution, the traditional and statistical methods
obtain a large tracking error of 22.9% and 21.7%. The CAEMS has a
tiny tracking error with an MAE of 8.5% in 7-type of supply distribution
(the average MAE of each type is only 1.2%), even if 45% (hydro, wind,
and solar) of energy production has a daily variance (uncertainty) of
30%. In conclusion, CAEMS rapidly moves supply towards the target
distribution with tiny errors.

For operating reserves, CAEMS achieves an extremely low MAE of
3.2% through the designed dynamic operating reserve rate, almost half
that of the benchmark methods. In addition, all MAEs of CAEMS are
lower than 5%, as shown in Fig. 4(c). The excellent results mentioned
above are also reflected in the extremely low failure rate of 0.03%,
which is significantly lower than that of the benchmarks (13.09% and
10.12%). As can be seen in Fig. 4(b), all quartiles of the CAEMS are
close to
zero.

5.3. Influence of EMA parameter

In this section, we examine the influence of the EMA parameter (𝛼,
in dynamic operating reserve and adaptive subsidy), which is respec-
tively set to 0.75, 0.50, 0.25, and 0. The larger 𝛼 is the greater impact
of the previous value. When 𝛼 is 0, it means that the EMA is deprecated,
and the value is not influenced by the previous one.

Table 5 and Fig. 5 present the performance of the CAEMS with
different 𝛼. The simulation results show that as 𝛼 decreases, the average
convergence day and the MAE of the supply distribution gradually
decrease. The smaller 𝛼 leads to faster subsidy adjustments, faster
convergence, and the MAE for the supply allocation. However, the
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Fig. 5. Box plot comparison of the EMA parameters.
decreasing 𝛼 also leads to a progressive increase in the average failure
ratio and the MAE of operating reserve ratio due to the large fluctua-
tions in the energy market (equilibrium price and quantity). The same
phenomenon is also found in the broader distribution of failure ratio
and MAE of operating reserve ratio under the smaller 𝛼 in Fig. 5. In
conclusion, we recommend the use of CAEMS with a 𝛼 of 0.5, which
maintains an excellent balance of 𝛼 with an extremely low failure rate
and a tiny MAE of supply distribution.

6. Conclusion

Due to the unstable production and high cost of green energy, the
operating reserve and subsidy mechanisms should be included in the
energy management system. The operating reserve rate and subsidy
are often fixed in the current energy market and do not reflect energy
distribution planning or real-time supply and demand. In response
to the issues, we proposed a Call Auction-based Energy Management
System (CAEMS) with adaptive subsidy and dynamic operating reserve
that manages energy using economic theories and dynamic control
mechanisms. We use the production theory to determine the energy
suppliers’ production and generate the supply and demand curves to
determine the market-clearing price. In addition, a dynamic operating
reserve rate is designed and embedded in the demand curve to reserve
energy dynamically, and an adaptive subsidy is proposed for self-
financing. With the proposed CAEMS, the market gradually achieves
the target energy distribution through the efficient operating reserve.
Simulation results show that the proposed CAEMS has outstanding
improvements in average convergence day (42% reduction), MAE of
supply distribution (1.2% average MAE in each supply type), and
has extremely low MAE of operating reserve rate (3.2%) and failure
rate (0.03%). Furthermore, CAEMS can achieve the targeted energy
distribution in 3 years on average. In studying the effect of EMA, we
found that as 𝛼 decreases, the average convergence day and MAE of
supply distribution gradually decrease, and the average failure rate and
MAE of operating reserve progressively increase.

In the future, we will attempt to forecast the demand curve for
precisely managing the energy market and further optimizing supply.
We will also explore the mechanism of carbon credits and carbon tax
that will be introduced globally soon.
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