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trees and the results of the efficiency of the model are 
compared with other state-of-the-art deep learning 
approaches.
Results The results of the experiments in the valida-
tion dataset show that the proposed AFD-Net model 
achieves the highest values of 98.7% accuracy for 
Plant Pathology 2020 and 92.6% for Plant Pathology 
2021 compared to other deep learning models in the 
original and extended datasets.
Discussion The results also indicate the efficiency 
of the proposed model in identifying leaf diseases on 
apple trees for major and minor classes, i.e., for mul-
tiple classification.

Keywords Computer Vision · Deep Learning · 
Kaggle · Foliar Disease · Efficient Net

Abstract 
Background Plant diseases significantly affect the 
crop, so their identification is very important. Correct 
identification of these diseases is crucial for estab-
lishing a good disease control strategy to avoid time 
and financial losses. In general, machines can greatly 
reduce the possibility of human error. In particular, 
computer vision techniques developed through deep 
learning have paved a way to detect and diagnose 
these plant diseases on the leaf.
Methods In this work, the model AFD-Net was 
developed to detect and identify various leaf dis-
eases in apple trees. The dataset is from Kaggle 2020 
and 2021 and was financially supported by the Cor-
nell Initiative for Digital Agriculture. An AFD-Net 
was proposed for leaf disease classification in apple 
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Introduction

Leaf diseases of apples refer to the common diseases 
found on apple leaves, namely scab, rust, and powdery 
mildew, among others (Thapa et  al. 2020). Apple 
scab, caused by a fungal pathogen, is one of the most 
economically important fungal diseases of apple in 
the world (Agarwal et  al. 2019; Barbedo 2018). The 
symptoms of apple scab are clearly visible fungal 
structures on the surface of the leaf. Rust disease also 
causes severe losses when environmental conditions 
are favorable for disease growth. For example, in a 
plant affected by Rust (Moinina et  al. 2019), small 
yellow spots appear on the leaf surface.

Farmers spend a lot of money on disease control 
and inadequate technical support, but the results 
always lead to poor disease control (Huber and Jones 
2013; Husson et  al. 2021). Foliar diseases spread 
rapidly and can destroy large portions of the yield in a 
very short time. In some cases, these diseases destroy 
the entire crop if the disease is not controlled quickly 
and accurately. Foliar diseases are a challenge to 
crop production in most countries. They reduce crop 
yields, fruit quality, and nutritional value, resulting in 
lower returns for the farmers (Moinina et al. 2019).

Machine learning models learn, recognize patterns, 
and make decisions with minimal human intervention 
(Bhateja et al. 2018; Raj et al. 2011). Ideally, machines 
increase accuracy and efficiency and eliminate the 
possibility of human error (Zhong and Zhao 2020). 
The use of AI in agriculture helps farmers gain insights 
into their crops and use the data to increase their 
overall production. Various computer vision techniques 
can be applied to gain the desired insights (Militante 
et al. 2019; Raschka 2018; Chaki et al. 2019).

Recent advances in computer vision enabled by 
deep leaning have paved the way for more accurate 
disease diagnosis. Using large public datasets of 
diseased and healthy plants and leaves, a CNN can 
be trained to identify various leaf diseases (Agarwal 
et al. 2019; Moinina et al. 2018; Tharwat et al. 2016). 
With the increasing availability of smartphones, the 
approach of training deep-learning models on a large 
scale has emerged as a clear way to diagnose crops 
on a large scale (Zhong and Zhao 2020). Every year, 
farmers worldwide are affected by foliar diseases. Our 
research could contribute greatly to the automation 
of disease detection worldwide and potentially help 
millions of people (Thapa et al. 2020).

Major crops today are plagued by a variety of 
diseases. Diseases in crops can occur in various parts of 
the plant, such as the roots, leaves, and stem, although 
the leaves are the most typical site for disease detection. 
It is difficult to detect and diagnose diseases because 
leaves have a variety of sizes, shapes, and colors. 
The article deals with various aspects of diseases and 
classifies them based on the characteristics of the 
condition of the leaves. It is important to identify the 
cause at the root, which is beneficial and time-saving 
for both the agricultural sector and farmers. So far, to 
our knowledge, there are some works on leaf disease 
detection in apples, and these datasets have fewer 
classes (Agarwal et  al. 2019; Zhong and Zhao 2020). 
Only one work has looked at the 2020 plant pathology 
dataset, but it has the limitation of lacking augmentation 
techniques. Also, there was no cross-validation to 
determine the out-of-fold predictions and the scores of 
the respective folds (Thapa et al. 2020). This could lead 
to an overfitting problem in some cases because the 
model does not have adequate validation for evaluation.

Our approach is to first classify a given image from 
a test dataset to identify the conditions of the plants 
(i.e., diseased or healthy). Moreover, the dataset is 
preprocessed and extensions are made. After that, dif-
ferent diseases can be identified and sorted out using 
the proposed model. The results obtained by applying 
the proposed model can lead to multiple diseases on a 
plant (i.e., more than one). The main contribution of 
this paper is as follows:

1. This paper discusses the current state-of-the-art of 
machine learning and deep learning applications 
in disease identification and classification. A 
novel AFD-Net model is proposed to automate 
the detection and multiple classification of foliar 
diseases in apples using the Hybrid EfficientNet 
model.

2. AFD-Net model connect lambda layers B3 and 
B4 layers of the network followed by a dropout 
layer to prevent overfitting of the model. The use 
of a dense layer with 4 units and a softmax acti-
vation function as the last layer completes the 
model architecture.

3. The proposed AFD-Net model achieves 98.7% 
and 92.6% accuracy for apple foliar disease in the 
plant pathology 2020 and plant pathology 2021 
datasets, respectively. The achieved performance 
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outperforms other state-of-the-art deep learning 
and transfer learning models.

In addition, Literature Review section provides 
a detailed studies on leaf disease detection and clas-
sification in apples using machine learning and deep 
learning methods. In Apple Foliar Disease Neural 
Network section, the proposed methodology “AFD-
Net” and the evaluation parameters are explained in 
detail. Moreover, the description of the dataset and its 
preprocessing steps are discussed in Dataset Descrip-
tion and Pre-processing. In Experimental Evaluation, 
the design of the implementation and the analysis of 
the results are described and discussed. Finally, con-
clusions are drawn and future work is described in 
Discussion and Conclusion.

Literature review

In recent years, ML and DL are widely used to detect 
plant diseases, which helps farmers identify the right 
foliar disease and apply the appropriate treatments 
(Mahlein 2016). Digital images are widely used in 
computer vision to identify the diseases for further 
classification based on their symptoms (Barbedo 
2014; Dai et al. 2019; Wöhner and Emeriewen 2019; 
Sladojevic et al. 2016). However, it is challenging to 
accurately identify disease from leaves due in part to 
the resolution, background light, and shadows of the 
leaves, among other (Jadhav et  al. 2020). Machine 
learning (ML) and deep learning (DL) approaches 
are well suited for processing image data, especially 
in agriculture, and can be used to detect and classify 
plant diseases from the collected images, i.e., photos 
of leaves (Amara et al. 2017).

Agarwal et  al. proposed a model consisting of 
3 maximal pooling layers followed by two densely 
connected layers. After testing with different numbers 
of convolutional layers from 2 to 6, it was found that 
3 layers provide the best accuracy (Agarwal et  al. 
2019). The proposed model achieves a very impressive 
accuracy, i.e., 96%. The database used for the developed 
framework consists of nearly 50,000 images of 171 
diseases, including 21 plant species. The original samples 
were divided into smaller images containing individual 
lesions or localized symptom regions. This was done to 
increase the size of the dataset and to test how the CNN 
would perform with more localized information.

Instead of taking pictures in the natural condi-
tion, Zhong and Zhao took pictures with a solid 
background (Zhong and Zhao 2020). Images of all 
symptoms were resized to 128 × 128. The dataset was 
split 8:2 for the training and test dataset by randomly 
selecting images from the dataset. After duplication, 
the dataset contained 2,462 images, with 85% of 
the images used for training and 15% for validation. 
The accuracy of this method for the test dataset was 
93.71%.

Militante et al. proposed a model, i.e., a combination 
of a convolutional layer, an activation layer, a pooling 
layer, and a fully connected layer (Militante et  al. 
2019). The images used in this study were in color and 
were reduced to 96 by 96 for further processing. An 
accuracy of 96.5% was achieved with 75 epochs while 
the model was well trained. A maximum accuracy 
of 100% was achieved when random images of plant 
varieties and diseases were tested.

Sladojevic et  al. presented a dataset of 79,265 
images (Sladojevic et al. 2016). Traditional augmen-
tation methods and generative adversarial networks 
are used for image augmentation. Moreover, a 2-stage 
NN architecture was proposed for classification and a 
test accuracy of 93.67% was achieved with the trained 
model. The DCNN model (Chao et al. 2020) was pre-
sented for detecting the leaf disease of apple tree by 
combining DenseNet and Xception. The results show 
that the developed model achieved 98% accuracy.

Yu et al. designed two subnetworks; the first is used 
for segmentation to identify features, and the second 
model is used for classification. In the experiments, 
the proposed model provided an accuracy of 89.4% 
(Yu et  al. 2020). The use of AI in agriculture helps 
farmers gain insights about their crops and use this 
data to increase their production wisely. Using the 
proposed methods, Thapa et  al. captured 3,650 of 
high-resolution images of several apple leaf diseases 
and annotated the dataset with the help of an expert in 
the field of pathology to confirm the annotations for 
the images, which were difficult to distinguish based 
on symptoms (Thapa et  al. 2020). The overall test 
accuracy achieved by a ResNet50 network pre-trained 
on ImageNet was 97%.

Raschka et  al. proposed a CNN model and 
achieved 97.62% accuracy in identifying four dif-
ferent types of apple leaf blight, detecting infected 
parts on the leaf, and classifying between healthy and 
infected fruits, e.g., apples (Raschka 2018). However, 
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there are very few studies dealing with apple foliar 
disease and most of them are limited to a specific type 
of disease, either biotic or abiotic.

Apple foliar disease neural network

In this section, a framework called Apple Foliar 
Disease Neural Network (AFD-Net) is presented 
in this paper. Basically, our work is based on the 
transfer learning approach, where the first and most 
important step is to collect the dataset (Thapa et al. 
2020). The second step is to project and clean the 
database using image processing steps (Guo et  al. 
2008) to find outliers and class imbalances. This 
was followed by an exploratory data analysis of 
the dataset with all graphs and class distribution 
of the foliar diseases. Extensions such as rotation, 
transformation, and flips were applied to increase the 
diversity/learning capability of the model (Yun et al. 
2019; Zhang et  al. 2017). After preprocessing all 
the data, the data were fed into the training pipeline 
with fivefold cross-validation, properly validating 
the training data. These iterations are repeated 
continuously until we find a stable cross-validation 
value for our training data that matches the test data.

As shown in Fig.  1, the model takes the image 
dataset as input. In the next step, the image data is 
preprocessed and further augmentation and trans-
formations generate the final image data to be pro-
cessed by the model. The model is then fed with 
this processed image data along with the metadata 
about the input image dataset. Finally, this col-
lected input is processed by the AFD-Net model, 
which consists of neural layers with lambda lay-
ers B3 and B4 combined, followed by a dropout 
layer to prevent overfitting of the model. The use 
of a dense layer with 4 units and a softmax activa-
tion function as the last layer completes the model 
architecture.

To improve the performance of the model, several 
strategies can be considered, e.g., hyper-parameter 
tuning approaches, changing the loss function such 
as bi-tempered loss for noisy labels, changing the 
learning rate, and freezing/unfreezing the model 
layers. Different ensemble approaches (weighted 
average, normal average, rank aggregate) were also 

considered to increase the prediction accuracy. In 
the designed model, the weighted average strategy 
was chosen as the model for the designed approach. 
The flowchart for the above methodology is shown 
in Fig. 1.

Efficient net distribution

The performance of the models used in the 
ImageNet dataset has increased since 2012 (Tan 
and Le 2019) as they have become more complex, 
but many of them are not effective in terms of 
computational load. The EfficientNet model (Tan 
and Le 2019), which is one of the best models 
since it achieves 84.4% accuracy on the ImageNet 
classification problem with 66  M parameters, 
can be considered as a group of CNN models. It 
consists of 8 models between B0 and B7, and as 
the number of models increases, the number of 
computed parameters does not increase significantly 
while the accuracy increases noticeably (Tan and 
Le 2019). We used only B3 and B4 to find a middle 
ground, as they performed the best under various 
experiments and hardware constraints. Unlike other 
CNN models, EfficientNet uses a new activation 
function called Swish instead of the Rectifier Linear 
Unit (ReLU) activation function (Tan and Le 2019). 
From the experiments, simply substituting ReLU 
units with Swish units improves the classification 
accuracy in ImageNet by 0.6% for Inception-
ResNet-V2; it outperforms ReLU in many deep 
neural networks, as shown in Fig. 2.

Architecture of the proposed AFD-Net

In the proposed AFD-Net model, EfficientNet B3 and 
B4 are attached along with the lambda layer, which is 
capable of running on few parameters to obtain great 
results with ensemble of the probabilities from both the 
architectures. At the end Dropout layers were added 
to the above functional layers of the model, and ended 
with softmax output function. In total, there were 
28.2  M trainable parameters in the experiments. The 
AFD-Net achieve both high accuracy and efficiency 
over pre-existing CNN based models, this reducing 
parameter size and achieving the accuracy. The archi-
tecture of developed AFD-Net can be seen in Fig. 3.
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In this proposed model of lambda layers, we 
connected two functional layers of efficient nets 
B3 and B4, followed by Dropout layer to pre-
vent overfitting of the model, and at the end we 

added a Dense layer of 4 units together with a 
softmax activation function for the prediction 
part. The developed AFD-Net is then described in 
Algorithm 1.

Fig. 1  Flowchart of proposed methodology

Fig. 2  Activation Function 
comparison: Swish versus 
Rectifier Linear Unit

Plant Soil (2022) 477:595–611 599
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Fig. 3  Architecture of proposed Apple Foliar Disease Neural Network

The algorithm takes as input the set of images 
as t-f records with labels. These images are passed 
through the augmentation module to extract a 
variety of augmented images that are fed into the 
training module of the AFD-Net. The augmenta-
tions are of different types and range from flipping 
to cropping. The resulting augmented images and 
their associated labels are then converted into one-
hot encoding vectors with labels to incorporate the 
categorical crossentropy loss (lines 1 to 2). After 
these preprocessing steps, the data are split into a 
training set and a validation/test set using K-fold 
cross-validation with 5 folds stratified by labels 

(line 4). In lines 5 to 10, each tuple of the train-
ing dataset is fed into the AFD-Net model, setting 
the learning rate and other hyperparameters of the 
model (line 6). In the AFD-Net model, Efficient-
Net B3 and B4 are attached along with the lambda 
layer, which can work with few parameters to pro-
duce great results with an ensemble of probabilities 
from both architectures (line 7). In the end, Drop-
out layers were added to the above functional layers 
of the model and finished with the softmax output 
function to generate probabilities for each label/
class. Finally, the validation/test tuples are used to 
make the predictions about the model and store the 
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results in a data frame (lines 8 to 9). Finally, the 
trained model is saved to disk after all epochs are 
completed (line 11).

Evaluation metrics

The efficiency of the proposed model is evaluated 
with fivefold cross-validation using stratified splits 
(Ayaz et al. 2021). The dataset was split into two parts, 
i.e., a training set and a validation set. The validation 
part is used to test the model. The performance 
metrics selected in this study are commonly used to 
measure model efficiency and performance, including 
accuracy, confusion matrix, specificity, sensitivity, 
precision, F1-score, and Matthews correlation 
coefficient (MCC). The determined parameters of 
these metrics are based on the rates of true positive 
(x), true negative (y), false positive (z), and false 
negative (w), as shown in Table 1.

Transfer learning algorithm for comparison

Inception‑v3 Inception-v3 (Szegedy et  al. 2016) 
is a design of a convolutional neural network from 
the Inception family that includes label smoothing, 
factorized 7 × 7 convolutions, and the inclusion of 
an auxiliary classifier to propagate label information 

further down the network. Inception-v3 proposed 
a method for regularizing the classification layer by 
computing the marginalized impact of label dropout 
during training. The smoothing of the label prevents 
overfitting of the model. The equation is then shown 
in Eq. (1)

where � is a hyper parameter and set as 0.1 and N is 
the number of classes and set it as 4.

ResNet50 and ResNet101 When training deep 
networks, there comes a moment when accu-
racy reaches a saturation point and then rapidly 
degrades. This shows that not all neural network 
designs can be optimized equally well. To solve 
this problem, ResNet (He et  al. 2016) employs a 
method known as “residual mapping”. The residual 
network allows these layers to explicitly match a 
residual mapping, rather than trusting that all pairs 
of stacked layers would match a desired underlying 
mapping. The building block of a residual network 
is shown below in Fig. 4.

In addition, the feedforward neural networks with 
shortcut connections can be then formalized as:

VGG‑16 Convolutional layers one and two 
have a kernel of 64 features with 3 × 3 filter size. 
Convolutional layers three and four have a kernel 
of 124 features with 3 × 3 filter size. Two layers are 
followed by a 2 max-pool layer, so 56 × 56 × 128 
will be the reduced output of the results. For the fifth, 
sixth and seventh layers, 256 feature maps with a size 
of 3 × 3 are used. Followed by 2 max-pool layers, 
512 filters will be used for the eighth through thirteen 
convolutional layers with kernel size 3 × 3. Followed 
by one max-pool layer. There are fully connected 
hidden layers with 4096 units, followed by a softmax 
output layer with 1, 000 units (He et al. 2016).

(1)newTargets = (1 − �) × one-hot-targets + �∕N,

(2)F(y) + y

Table 1  Performance evaluation metrics based on parameters 
true positive (x), true negative (y), false positive (z), and false 
negative (w)

Metric Formula Metric Formula

Sensitivity x/(x + w)
Specificity y/(y + z)
Precision x/(x + z)
F1-Score 2x/(2x + z + w)
Accuracy (x + y)/(x + w + z + y)
Matthews Correlation Coefficient (x × y − z × w) / ((x + z)

(x + w)(y + z)
(y + w))^0.5

Fig. 4  Building block of 
residual neural network
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Dataset description and pre‑processing

The dataset (Thapa et al. 2020) used in this paper was 
taken from the Plant Pathology 2020-FGVC7 Kaggle 
competition, which was financially supported by the 
Cornell Initiative for Digital Agriculture (CIDA). 
The dataset consists of 1, 821 portrait and landscape 
images. The image size is either 2,048 × 1,368 pixels 
or 1,368 × 2,048. The second dataset is that of the 
Plant Pathology 2021-FGVC8 competition with a 
pilot dataset of 3, 651 RGB images of leaf diseases 
in apples. For Plant Pathology 2021-GVC81, the 
number of leaf disease images was significantly 
increased and additional disease categories were 

added. The dataset contains 18,633 of high-quality 
RGB images of leaf diseases in apples, including 
a large, expert-annotated disease dataset. This 
dataset reflects real field scenarios by representing 
in homogeneous backgrounds of leaf images taken 
at different stages of ripening and at different times 
of day with different camera settings. We generated 
images of dimensions 512 × 512 with two string and 
int byte structures for images, names, and targets. 
The generated images were set to 100% quality. 
Along with the images, the partitioning was layered 
into 15 folds to maintain the proper class balance 
throughout the dataset.

Fig. 5  Distribution of 
number of images in target 
class for Plant Pathology 
dataset 2020

Fig. 6  Distribution of 
number of images in target 
class for Plant Pathology 
dataset 2021
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Target distribution

We have 4 categories of foliage in the Plant Pathology 
2020 data set, including “healthy”, “rust”, “scab”, and 
“multiple Diseases”. “rust” is the prominent disease, 
followed by “scab”, “healthy”, and the lowest number 
of “multiple Diseases i.e., C1 to C4. It was noted that 
the data were unbalanced with respect to the Multiple 
Diseases class (see Fig. 5). In addition, the 2021 plant 
pathology dataset is categorized into 8 target classes. 
All target classes and their number distributions are 
shown in Fig. 6.

Channel distribution findings

Green is the most prominent color in the leaf record, 
which makes sense since the leaves are colored 
green. There was a lot of variance in the dataset for 
the red and blue channels in both cases. The variance 
occurred in the infected leaves that were affected by 
scab, rust, or multiple diseases. The channel values 
appear to have an approximately normal distribution 
centered around 105. The green portions of the image 

have very low blue values, but in contrast, the brown 
portions have high blue values. This indicates that 
the green (healthy) parts of the image have low blue 
values, while the unhealthy parts tend to have high 
blue values. An unhealthy leaf with its RGB values is 
shown in Fig. 7.

Data splitting

In this study, the original datasets of apple leaf dis-
eases “Plant Pathology 2020” and “Plant Pathology 
2021” are used. The datasets are randomly divided 
into training and validation sets, i.e., 80% and 20%, 
respectively. The training and validation sets were 
used only for fitting the model and calculating the 
validation metrics, which can be seen in Table 2. The 
original apple foliar disease dataset “Plant Pathology 
2020” and “Plant Pathology 2021” are used in this 
study. The datasets are randomly divided into training 
and validation sets i.e., 80% and 20%, respectively. 
Training and validation sets were only used for fit-
ting of the model and calculating validation metrics 
respectively see Table 2.

For cross-validation, we used 5 folds split across 
15 training datasets, each consisting of 120 targets 
(approx.)—healthy, rust, scab, and multiple diseases, 
respectively, for the original dataset. The training and 
validation datasets were only used to fit the model 
and calculate out-of-fold predictions, respectively.

Cutmix, mixup and basic augmentations

To help the model learn all the outliers and reveal 
the state of the leaves, it must be trained with differ-
ent augmentation images to increase its robustness. 
This will make the model more flexible to the newly 
injected and eccentric data. Different types of aug-
mentations can be used for different problems. For 
the designed model, we used the basic augmentations 
provided by the Keras module—random (crop, hue, 
saturation, brightness and contrast) and shear trans-
form, as shown in Fig. 8.Fig. 7  RGB channel values for unhealthy part of a leaf

Table 2  Training and 
validation set ratio of 
dataset Plant Pathology 
2020 and 2021

DataSet Total Images Training (80%) Validation (20%)

Plant Pathology 2020 1,821 1,457 364
Plant Pathology 2021 18,633 14,905 3,727
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The cutMix (Yun et  al. 2019) and mixup (Zhang 
et  al. 2017) are the two augmentation techniques 
we implemented in the dataset. In the cutmix algo-
rithm, part of the image is appended/attached to the 
other image to improve the localization of the model. 
Instead of simply cutting out pixels, as is the case 
with cutout or dropout, we replace the cutout regions 
with a patch from another image. The ground truth 
labels are blended in proportion to the pixel count of 
the composite image. By asking the model to identify 
the object from a partial view, the additional patches 
can improve localization. In mixup expansion, two 
samples are mixed together by linear interpolation of 
their images and labels. Mixup samples suffer from 
unrealistic output and label ambiguity, and thus can-
not perform well in tasks such as image localization 
and object recognition. Mixup alleviates this prob-
lem by mixing different features together, preventing 
a network from having too much confidence in the 
association between features and labels. Dropout/Cut-
out augmentation is a type of regional dropout strat-
egy in which a random patch from an image is zeroed 
out (replaced with black pixels). Cutout samples suf-
fer from reduction in information and regularization 
ability.

Experimental evaluation

In this section, we discuss the detailed implemen-
tation of the proposed AFD-Net model. It was 

implemented using Google Colab and trained with 
TPUs. The model was tested with several k-folds, of 
which the 5-folds are the most efficient in terms of 
metrics. The custom learning scheduler was also opti-
mized based on ramp-up epochs and decay value. Ini-
tially, we started with the categorical cross-entropy as 
the loss function with a label smoothing of 0.05 and 
then witched to the bi-tempered logistic loss to com-
pare the model performance.

Network training

Before training the network on the leaf dataset, we 
used pre-trained weights from ImageNet (Tan and 
Le 2019) and noisy-student. The dataset with image 
size 512 × 512 was obtained from the training pipe-
line created for the purpose of pre-fetching tf-records 
with features such as caching and image decoding. 
The network was trained with a custom learning rate 
scheduler applied to the optimizer “adam”. We used 
two loss functions such as “categorical cross-entropy 
loss” and “bi-tempered logistic loss” as benchmarks. 
During hyper-tuning of the parameters, some of the 
tests were performed with different ratios and k-fold 
split validation. Finally, the model for the cv scheme 
was trained on 80–20 splits of the training data for 40 
epochs and then trained on fivefold cv with 15-strati-
fied splits over classes for 100 epochs per fold. Dur-
ing training, the label smoothing parameter in the 
loss functions helped the model stabilize and reduce 
predictions.

Fig. 8  Sample images of intermediate result showing cutmix, mixup and basic augmentations
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Performance comparison

Table  3 shows the various models tried with the 
image data. Comparing the different models from 
Table 3, it can be seen that using cutmixup can lead 
to a significant drop in accuracy compared to drop-
out augmentation, i.e., 88.4% from 96.7%. In addi-
tion, using efficient nets B3 and B4 layers separately 
leads to lower accuracy compared to combining these 
two i.e., 91.8% and 93.2%, respectively. It can also be 
inferred that the weights of noisy-student were bet-
ter at extracting features of the dataset and provided 
a good accuracy of 98.7%, as can be seen in Table 3.

Parameters were tuned for the training phase of 
the proposed models and their variations. The stack 
size and seed were kept the same for all experiments 
to achieve consistent results. The difference is in the 
hyperparameters, noisy student and ImageNet are 
the weights provided by Efficient net. The accuracy 
results listed below for the tuned models are consid-
ered the average over all 5-folds.

Although existing deep learning networks such 
as VGG, Inception, and ResNet can be used for leaf 

disease classification, these models have limitations 
in improving discriminatory power because they do 
not account for the mechanism of spatial attention 
to extract discriminating features between diseased 
and non-diseased areas. The accuracy of the AFD-
Net model (98.7%) outperforms the existing TL 
models: ResNet 50(95.2%), ResNet (101 96.3%), 
VGG16 (96.7%), and Inception (95.6%). Therefore, 
the proposed “AFD-Net-Noisy Student” outperforms 
other state-of-the-art transfer learning approaches, 
which can be seen in Table 4.

In addition, the “Plant Pathology 2021” dataset 
is used to analyze the performance of the AFD-Net 
model. From Table  5, the accuracy of the proposed 
model is 92.6%, outperforming the other TL models 
and the three winners of the competition, i.e., for 

Table 3  Performance 
comparison by varying the 
model’s network parameters

Bold entries signify the 
proposed model results

Model Validation accu-
racy

k-fold Validation (20%)

AFD-Net-ImageNet 98.3% - 464
AFD-Net-Noisy Student 98.7% - 3,727
AFD-Net CutMixUp-ImageNet 88.4% -
AFD-Net Dropout-ImageNet 96.7% -
EfficientNet B3-ImageNet 91.8% 5
EfficientNet B4-ImageNet 93.2% 5
AFD-Net-ImageNet 95.8% 5
AFD-Net-Noisy Student 96.3% 5

Table 4  Comparative analysis of proposed model with other 
transfer learning models using dataset Plant Pathology 2020

Bold entries signify the proposed model results

Model for Classification Validation 
accuracy

ResNet 50 95.2%
ResNet 101 96.3%
VGG 16 96.7%
Inceptionv3 95.6%
Proposed AFD-Net 98.7%

Table 5  Comparative analysis of proposed model with other 
transfer learning models and Kaggle using dataset Plant 
Pathology 2021

Bold entries signify the proposed model results

Model for Classification Valida-
tion 
accuracy

Proposed AFD-Net 92.6%
ResNet 50 85.2%
ResNet 152 78.9%
VGG 16 83%
EfficientNet B3—ImageNet 92.1%
EfficientNet B4—ImageNet 91.4%
Inceptionv3 80.3%
Kaggle (1st place) 88.3%
Kaggle (2nd place) 87.98%
Kaggle (3rd place) 87.56%
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1st place 88.3%, 2nd place 87.98%, and 3rd place 
87.56%.

Comparison of proposed AFD-Net with existing 
approaches

In the literature review, we saw that some authors 
have worked on apple foliar disease detection. Most 
authors have worked with different data sets and some 
with small data sets. To our knowledge, only one arti-
cle has worked with a plant pathology dataset and 
achieved an accuracy of 97%. Also, we compared our 
proposed model with existing models (Thapa et  al. 
2020; Agarwal et al. 2019; Zhong and Zhao 2020; Yu 
et al. 2020) for apple foliar disease detection and it is 
observed that presented AFD-Net achieved an accu-
racy of 98.7%, which can be seen in Table 6.

Inferential statistical analysis

Inferential statistics were performed on “AFD-Net: 
noisy-student (cross-validation)”. To evaluate the per-
formance of the designed model, we decided to take the 
out-of-fold predictions from each fold and compute the 
previously mentioned metrics. Training of the model 
was started with a custom learning rate scheduler to 
maximize validation accuracy and minimize loss as the 
model converged. The model was consistent after the 
warm-up epochs and did not deviate significantly from 
detecting underfitting or overfitting. Although there was 
a minority in the fourth class, i.e., “multiple diseases”, 
the model yielded an accuracy of 0.78. From the con-
fusion matrix, it is clear that the model had difficulty 
with the “multiple diseases” class due to the imbalance 
between the classes, which is why the recall value for 
this class was 0.55, as shown in Fig. 9. The curve for 
accuracy versus recall is also shown in Fig.  10. The 
precision-recall curve justifies the model’s ability to 
correctly classify the data into the correct classes. Also, 

Table 6  Performance 
comparison of proposed 
model with the models 
cited in literature for plant 
disease classification

Bold entries signify the 
proposed model results

Model Dataset Accuracy

Proposed AFD-Net Plant Pathology 2020 98.7%
Off-the-shelf CNN Plant Pathology 2020 97%
FCNN-LDA Plant Village 96%
DenseNet-121 with focus loss function AIChallenger-Plant-Disease-Recognition 93.71%
Region of Interest-Aware DNN Apple Research Institute located in Repub-

lic of Korea
89.4%

Fig. 9  Confusion matrix for dataset Plant Pathology 2020

Fig. 10  Precision versus recall curve for dataset Plant pathol-
ogy 2020
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a balanced ROC curve (precision-recall curve) justifies 
the balance of classes.

Figures 11 and 12 show the training results of the 
model using fivefold splits. Of the 5 folds, the best fold 
was considered. For further analysis, we plotted the 
ROC curve for our proposed AFD-Net for different 
classes and it was found that the accuracy is around 
99% for all classes except for multiple classes as shown 
in Fig. 13.

In addition, we have calculated a quantitative 
analysis of the parameters of the proposed model. 
From the Table 7, we can infer the evaluation metrics. 
Sensitivity is another name for Recall. It is a measure 
of the proportion of actual positive cases that were 
predicted to be positive. In our case, the sensitivity is 
1, which means that the proportion of true positives is 

Fig. 11  Training accuracy curve of proposed model using fivefold splits on Plant pathology 2020

Fig. 12  Training loss curve of proposed model using fivefold splits for plant pathology 2020

Fig. 13  Receiver Operating Characteristic curve of proposed 
model on Plant Pathology 2020

Plant Soil (2022) 477:595–611 607



1 3
Vol:. (1234567890)

higher than the proportion of false negatives. Similarly, 
for specificity, a higher value leads to a higher 
proportion of true negative cases and a lower rate of 
false positives. For the measure of accuracy, the values 
for each class with the lowest score are unique for the 
“multiple diseases” classification. For the proposed 
AFD-Net model with LR 5e-06 obtains the precision 

and recall value close to 1, except for multiple diseases 
and also the F1 score compared to other loss functions.

Besides, the performance of all the models is 
compared with that of the proposed model AFD-
Net and from the results of the Table 8, the proposed 
model performs better than the other approaches. For 
our proposed model, the values of sensitivity (Se), 

Table 7  Quantitative 
analysis of parameters of 
the proposed model with 
different loss function i.e., 
LR 5e-06, Bi-tempered loss 
and LR 5e-03

Loss function Classes Precision Recall F1-score Support

Proposed Model with LR 5e-06 Healthy 0.97 0.99 0.98 516
Rust 0.97 0.99 0.98 622
Scab 0.96 0.97 0.97 592
Multiple diseases 0.78 0.55 0.65 91

Proposed Model with Bi-tempered loss Healthy 0.97 0.99 0.98 516
Rust 0.97 0.99 0.98 622
Scab 0.96 0.98 0.97 592
Multiple diseases 0.80 0.56 0.66 91

Proposed Model with LR 5e-03 Healthy 0.97 0.99 0.98 516
Rust 0.96 0.98 0.97 622
Scab 0.95 0.97 0.96 592
Multiple diseases 0.79 0.53 0.63 91

Table 8  Comparison 
of proposed model on 
parameters sensitivity 
(Se), specificity (Sp), 
precision (P), F1 score (F1), 
accuracy (A) and Matthews 
Correlation Coefficient 
(MCC) with other transfer 
learning models for two loss 
functions i.e., LR 5e-06 and 
LR 5e-03

Se Sp P F1 A MCC

Models [LR 5e-06]
  AFD-Net-Noisy Student 1 0.99 0.97 0.89 0.98 0.94
  AFD-Net-ImageNet (M1) 0.99 0.99 0.96 0.88 0.97 0.93
  AFD-Net CutMix ImageNet (M2) 0.98 0.98 0.96 0.87 0.97 0.92
  AFD-Net Dropout-ImageNet (M3) 0.99 0.99 0.96 0.88 0.97 0.93
  EfficientNet B3 (M4) 0.98 0.98 0.95 0.85 0.96 0.90
  EfficientNet B4 (M5) 0.98 0.98 0.96 0.86 0.97 0.91
  InceptionV3 (M6) 0.99 0.99 0.95 0.87 0.97 0.92
  ResNet50 (M7) 0.99 0.99 0.94 0.86 0.96 0.91
  ResNet101 (M8) 0.98 0.99 0.95 0.86 0.96 0.91
  VGG16 (M9) 0.98 0.99 0.93 0.85 0.96 0.90

Models [LR 5e-03]
  AFD-Net-Noisy Student 0.99 0.99 0.96 0.88 0.97 0.93
  AFD-Net-ImageNet (M1) 0.98 0.98 0.95 0.87 0.96 0.92
  AFD-Net CutMix ImageNet (M2) 0.98 0.97 0.94 0.86 0.96 0.91
  AFD-Net Dropout-ImageNet (M3) 0.99 0.99 0.96 0.88 0.97 0.92
  EfficientNet B3 (M4) 0.98 0.98 0.95 0.85 0.96 0.90
  EfficientNet B4 (M5) 0.98 0.98 0.96 0.86 0.96 0.90
  InceptionV3 (M6) 0.99 0.98 0.94 0.85 0.96 0.90
  ResNet50 (M7) 0.97 0.98 0.93 0.84 0.95 0.88
  ResNet101 (M8) 0.98 0.98 0.94 0.85 0.96 0.90
  VGG16 (M9) 0.98 0.98 0.92 0.84 0.96 0.89
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specificity (Sp), precision (P), F1 score (F1), accuracy 
(A) and MCC are 0.99, 0.97, 0.89, 98.7 and 0.94, 
respectively. These values proved to be better than 
those of other models. For better illustration, we have 
also plotted a graph for all the models. It can be clearly 
seen that the performance of our proposed model is 
better than the other models for both loss functions, 
i.e., LR 5e-06 and LR 5e-03, that can be observed 
from Figs. 14 and 15.

Discussion and conclusion

The world around us relies heavily on the agricultural 
sector to provide food. Early detection of plant 

diseases is critical to the industry. In this article, 
AFDNet model is proposed to identify leaf disease 
in apple trees. The proposed model is applied to 
two data sets: Plant Pathology 2020 and Plant 
Pathology 2021. The model clubs the lambda layers 
of the neural net model with B3 andB4 layers which 
significantly enhance the performance of the model. 
In general, model’s performance can be expressed 
as: (1) The proposed AFD-Net model achieves an 
accuracy of 98.7%, which is higher than that of other 
transfer learning models (B3, B4, Inception V3, 
VGG16, ResNet50, and 101). (2) The performance of 
the proposed model also outperforms the other deep 
learning-based models for both datasets (see Table 3). 
(3) The obtained results show he efficiency of the 

Fig. 14  Proposed model 
performance comparison 
with other transfer learning 
models for loss function: 
LR 5e-06

Fig. 15  Proposed model 
performance comparison 
with other transfer learning 
models for loss function: 
LR 5e-03
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proposed model in identifying leaf diseases on apple 
trees for major and minor classes, i.e., for multiple 
classification.
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