Computers and Electrical Engineering 100 (2022) 107903

Contents lists available at ScienceDirect
uters and
al Engineering

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

Check for

Mitigating adversarial evasion attacks of ransomware using wdaies
ensemble learning™

Usman Ahmed?, Jerry Chun-Wei Lin ®*, Gautam Srivastava ™¢

a Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied
Sciences, 5063, Bergen, Norway

b Department of Mathematics & Computer Science, Brandon University, Canada

¢ Research Centre for Interneural Computing, China Medical University, Taichung, Taiwan

ARTICLE INFO ABSTRACT

Keywords: Ransomware continues to pose a significant threat to cybersecurity by extorting money from
Android ransomware users by locking their devices and personal data. The attackers force the payment of a ransom
Adversarial evasion attacks in order to restore access to personal files. Because of the structural similarity, detection

Machine learning-based ensemble analysis
Attack mitigation
Ransomware detection

of ransomware and benign applications becomes vulnerable to evasion attacks. Ensemble
learning can provide countermeasures, while attackers can use the same technique to improve
the effectiveness of their respective attacks. This motivates us to investigate whether the
distinct ensemble method can achieve better performance when combined with the voting-
based method. This research proposes a hybrid approach that examines permissions, text, and
network-based features both statically and dynamically by monitoring memory usage, system
call logs, and CPU usage. Ensemble machine learning analyzers on static and dynamic features
extracted from Android malware applications (ransomware and non-ransomware) are then
trained in the designed model. Our experimental results show that the proposed ensemble
classification and detection technique can classify unknown static and dynamic ransomware
behavior to mitigate adversarial evasion attacks.

1. Introduction

Ransomware (RW) attacks have become one of the biggest security threats facing individuals and businesses worldwide. Typical
malware targets users by deleting or damaging files, changing system configurations, disclosing user information to third parties,
etc. Ransomware, on the other hand, gains access to user data and computer resources undetected, notifies the victim and demands
a ransom to release access to the captured resources (e.g., encrypted files, etc.). Crypto-ransomware finds and encrypts the files
on the device with a solid cipher to deny the user access. Locker ransomware locks the device itself, mainly by locking the user
interface or using pop-up overlays, so that the user cannot enter the device in the first place [1]. Ransomware is not just a Windows
operating system phenomenon. It also attacks other platforms, such as Android devices. At the end of 2018, Android has over 86.8%
of the total cell phone market share.! Android has emerged as the most widely used operating system for mobile devices [2]. In
September 2018, McAfee Lab stated that the total number of ransomware had reached 17 million. Android ransomware will be one
of the most important security threats in the future.?

This paper is for special section VSI-mlsec. Reviews were processed by Guest Editor Dr. Suyel Namasudra and recommended for publication.
Corresponding author.

E-mail addresses: usman.ahmed@hvl.no (U. Ahmed), jerrylin@ieee.org (J.C.-W. Lin), SRIVASTAVAG@brandonu.ca (G. Srivastava).
https://www.statista.com/statistics/236027/global-smartphone- os-market-share- of- Android/.

[

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf.

https://doi.org/10.1016/j.compeleceng.2022.107903

Received 31 May 2021; Received in revised form 5 March 2022; Accepted 9 March 2022

Available online 8 April 2022

0045-7906/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/compeleceng
http://www.elsevier.com/locate/compeleceng
mailto:usman.ahmed@hvl.no
mailto:jerrylin@ieee.org
mailto:SRIVASTAVAG@brandonu.ca
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-Android/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://doi.org/10.1016/j.compeleceng.2022.107903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2022.107903&domain=pdf
https://doi.org/10.1016/j.compeleceng.2022.107903
http://creativecommons.org/licenses/by/4.0/

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Ransomware can spread as a legitimate application or is downloaded (unintentionally) by users who intend to download software
updates, apps, etc. from third-party app stores [3] or by clicking on the spam link sent in SMS messages. However, modern Android
ransomware is usually spread via compromised apps that are freely available to users via third-party app stores. Ransomware
attackers select a popular app to mimic a realistic app that infects a large user base. Depending on the complexity of the attack, the
attackers retain the original functionality of the application and may add malicious code to it, or the application may only display
the icon and name of the original application. This is done in order to install ransomware on the target device unnoticed and make
the user [4]. Once installed, the ransomware collects information about the victim’s device, searches for the target resources such
as files, resources, etc., and communicates with the Command & Control (C&C) server to obtain the encryption key if it was not
already included in the payload. After that, the ransomware hijacks (locks/encrypts) the target resource and displays a message to
the victim asking him to pay the ransom, along with the payment instructions.

Currently, ransomware developed mainly for Android devices is on the rise. Due to the alarming increase of Android ransomware
applications, Android ransomware analysis and detection has become an important research area. Some techniques for Android
ransomware detection and classification have already been proposed. We can divide ransomware detection techniques into two
categories: Static analysis and Dynamic analysis. Static analysis uses the syntax or structural properties of the application to
determine its maliciousness. Static analysis relies on feature extraction (without execution) from resource files, Android manifest
files, Java bytecode, etc. The Android manifest file contains all the required permissions, which are the central design point of the
Android security model [5]. By default, no application has the permission to access sensitive data (such as contacts or SMS) and
certain system functions (such as camera, Internet). Ransomware developers use the permissions mainly for privilege escalation and
access sensitive data stored on the device.

Dynamic analysis aims to detect malicious behavior during program execution. Dynamic analysis can look at features such
as dynamic code loading, the sequence of system calls collected during application execution, network activity, CPU usage, and
memory usage [1]. Similarities in ransomware application behavior can help identify new (zero-day) ransomware. Most state-of-
the-art techniques [2] do not take into account the structural features specific to the appearance of ransomware, such as the text in
the source code. Ransomware may contain specific threats within its code, e.g., to lock, encrypt, porn, etc. Most Android ransomware
requires individual permissions (such as BIND_DEVICE_ADMIN, KILL_ BACKGROUND_PROCESS, and RECEIVE_BOOT_COMPLETED,
etc.), which can be helpful for ransomware detection. Ransomware regularly establishes network connections to retrieve commands
or send data collected from devices [4]. Therefore, network addresses (email address, IP address, URLs) may be present in the code
of different ransomware samples, which can help in ransomware detection. These network-based features have never been statically
analyzed for Android ransomware detection before.

1.1. Motivation

Behavioral analysis based on hardware features such as CPU usage, memory usage, and system call logs could be useful
for Android ransomware classification, as they are more resistant to change compared to static features that ransomware can
evade through code obfuscation and encryption [1,6,7]. To our knowledge, detection and classification (using machine learning)
of Android ransomware has not yet been performed using the combination of the above features. Due to advances in machine
learning techniques, a significant amount of research has been conducted on Android malware detection using machine learning
techniques [8]. Although machine learning techniques have proven their effectiveness in malware detection, machine learning
classifiers are not very resilient to adversarial attacks. This aspect is highlighted in the following text: “in the learning phase,
the dataset used for training remains representative of the problem domain, assuming no intentional malicious modification of the
data” [9]. Therefore, malicious users often employ adversarial attacks to fool the machine learning models. We can divide adversarial
attacks into two types (1) evasion and (2) poisoning attacks [9,10]. In evasion attacks, attackers intentionally fabricate malicious
inputs so that the classification model incorrectly classifies an application as benign or clean. In poisoning attacks, on the other hand,
attackers poison the training data to compromise the entire learning process. The focus of this work is on countering circumvention
attacks by adversaries. We identify a subset of features from several features of different behavior types. Moreover, we construct the
set of multiple distinct features instead of using a single feature vector. The main motivation for using a single feature vector based
on several distinct subsets was generalization. This helps the instances to contribute more to the trained classifiers. In this way, it is
difficult for attackers to bypass the detection model. We use the benchmark Android ransomware to extract multiple discriminative
subsets based on their behavioral analysis. We used an ensemble of multiple classifiers and combined them with the voting method.
Finally, we compared the proposed method with the traditional ML-based model in adversarial environments.

1.2. Contributions

This study focuses on mitigating evasion attacks in Android ransomware detection, such as code obfuscation and its use to evade
malware/ransomware detection. Most of the existing ransomware techniques fail to modify the input feature vector for analysis
(when one aspect is used for obfuscation, it changes the entire feature vector, which causes the trained classifier to misclassify the
ransomware. Therefore, this research proposes an ensemble-based analysis mechanism to detect Android ransomware and mitigate
evasion attacks. The Android characteristics used for analysis here are not easy to modify and use for evasion attempts. Based on this
motivation, we propose a technique that combines the effectiveness of both static (i.e., permissions, text, network-based features,
etc.) and dynamic features (such as system call logs, CPU, and memory usage) to detect Android ransomware using an ensemble
machine learning model. In summary, the main contributions of this research are:

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

1. Extraction and analysis of static network-based features such as IP addresses, email addresses, and URLs.

2. Development of two different machine learning ensemble models that include multiple machine learning algorithms for static
and dynamic feature sets for Android ransomware detection and mitigation of adversarial evasion attacks.

3. Evaluating the effectiveness of the proposed model for mitigating adversarial evasion attacks using a large dataset of fabricated
feature vectors from Android ransomware samples.

We have structured the remainder of the paper as follows. In the next Section 2, we present a literature review of related
techniques. Section 3 describes the proposed methodology, followed by Section 4, where the experimental setup is presented.
Section 5 provides a detailed evaluation and discussion of the obtained results and Section 6 concludes the paper.

2. Related work

There are several approaches to ransomware detection, and some of them relate to the Android platform. Song et al. [2]
proposed a technique that carefully monitors and specifies processes and certain file directories using statistics on processor usage,
memory usage, and /0 rate so that processes with unusual behavior can be detected. This technique has been implemented with
three modules (i.e. configuration, monitoring and processing). The configuration module creates monitoring list tables, while the
monitoring module monitors the processor, memory, and I/O usage of each process. The processing module takes care of processes
that are considered suspicious by the monitoring module and makes an exception or isolates them. The proposed approach can be
implemented in the Android source code. Without obtaining information about the ransomware, it can reduce the damage caused
by unknown ransomware. However, this technique does not perform static analysis, which could have been more efficient.

Yang et al. illustrated the design of an automated hybrid analysis technique [3]. The proposed system uses static analysis based
on matching features such as permissions, sequence of API invocations, resources, and APK structure. Dynamic analysis describes
the nature of the attack in terms of data leaks such as web browser cookies and others without gaining access to the exact protected
data sources in a mobile device.

Alberto et al. proposed a hybrid approach to Android ransomware detection that first examines (using static analysis based on
opcode frequency) the application to be used on a device before installing it [8]. Then, dynamic analysis identifies whether the
system is under attack by monitoring CPU usage, memory usage, network usage, and system call statistics. The dataset used for the
experiments was small, and such analysis cannot examine different Android ransomware families.

Ensemble-based learning helps improve countermeasures in adversarial environments [9]. A generative-based attack generation
without executing the malicious functionality was investigated. New instantiations based on adversarial examples are used as an
instance for training. This improves the ensemble method and can be used as a more robust classification model. Ensemble-based
methods are used for unique classification and fake feedback detection [11].

Gharib et al. [12] proposed a DNA droid technique, a hybrid real-time detection framework that can rapidly evaluate a sample
using static analysis. If the application is only considered suspicious, it is continuously monitored and runtime behavior is profiled.
Once the profile resembles a collection of malicious profiles, DNA-Droid terminates the application. The overall architecture of
their proposed framework includes three main components: a static analysis, a dynamic analysis and a detection module. The static
module includes three subcomponents (Text Classification Module (TCM), Image Classification Module (ICM), and API calls and
permissions Module (APM)) to assess different aspects of an APK file. The dynamic module profiles malware families based on the
sequences of API calls and produces DNA for each family. In the detection phase, the runtime behavior of a suspicious sample is
continuously compared to the families of the DNA.

Alzahrani et al. [13] has introduced Randroid. This automated approach measures the structural similarity between the collected
information of the examined application and the threat-related information collected by known ransomware variants to classify the
application as ransomware or goodware. The Randroid approach extracts the application’s information such as images and text
from XML layout files, resources and class.dex files in the static analysis phase. The dynamic analysis captures extortion activity
and examines the presence of threat letters or lock screens. Image Similarity Measurement (ISM) and String Similarity Measurement
(SSM) are used to determine the similarity between the extracted information and previously collected information about known
ransomware. Based on the similarity scores, the examined application is classified as suspicious, good software or ransomware.

Another proposed solution for crypto-ransomware detection was proposed by Chen et al. [14], namely RansomProber. Ran-
somProber is a real-time detection technique that analyzes User Interface (UI) widgets of related activities, coordinates the user’s
finger movements, and detects whether the ransomware starts the file encryption process. Ransom prober includes three steps:
encryption analysis, foreground analysis and layout analysis. The encryption analysis module is used to detect if some files are
encrypted. The foreground analysis module decides whether the encryption operation belongs to the user’s application, and the
layout analysis module analyzes Ul widgets of the corresponding activities and the user’s coordinates. Ransom prober can detect
repackaged ransomware that targets an application without encryption. This technique is designed to detect crypto-ransomware
only. The proposed approach does not detect repackaged applications that use encryption or compression methods.

Mercaldo et al. described a model checking technique for identifying malicious payloads in Android ransomware [15]. This
technique is divided into three subprocesses (construction of formal model, construction of temporal logical properties, and detection
of ransomware family). In the construction of the formal model, the bytecode of the application is parsed and appropriate formal
models of the system are created. The construction of Temporal Logic Properties defines the characteristic behavior of ransomware
in terms of a set of properties. In ransomware family detection, the formal verification environment including a model checker is
used to detect ransomware families. The special features of this approach are formal methods and detection of ransomware from
Java byte code.

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Table 1
Summary of the related work.
Approaches Static features Dynamic features NLP Image processing Heuristic Machine learning Deep learning Behavior analysis
Gharib et al. (2017) [12] v v X v v X v Sequence analysis
Song et al. (2016) [2] v X X v X X
Yang et al. (2016) [3] v v X 4 v X X v
Alzahrani et al. (2019) [13] Vv v X v v X X X
Chen et al. (2017) [14] v v X X v X X X
Mercaldo et al. (2016) [15] v X X X v X X v
Alberto et al. (2018) [8] v 4 X X X v X v

Ensemble-based methods have been adopted by several approaches [16]. The method combines ensemble learning and transfer
learning on time series data to implement incremental updates. As a result, the hybrid method independently makes predictions and
improves accuracy. In another work, NATICUSdroid [17] was proposed, which selects the specific permissions as features and then
classifies them as benign or malware. The selection is based on the trend of the permissions. The proposed model is evaluated using
eight different machine learning algorithms. The random forest classification model achieved an accuracy of 97%, a false positive
rate of 3.32%, and an F-measure of 0.96.

Another method PerbDroid [18] was proposed using six different approaches for feature ranking (i.e., gain ratio, OneR feature
evaluation, chi-square test, information gain feature evaluation, principal component analysis (PCA), and logistic regression analysis)
to create the classification algorithm based on API, permission, and intents. The model was tested with a real-world application [18].
The model used the hyper-tuning selection process and classification algorithm to select and classify malware detection. However,
malware detection and countermeasures based on adversarial models still need to be explored.

We summarize the strengths and weaknesses of current approaches in Table 1. The literature review shows that most of the
techniques proposed so far, whether they perform only static or dynamic detection [2]. Although static analysis is fast, secure,
and accurate in identifying known ransomware samples [1], static-only detection could be vulnerable to ransomware attacks that
obfuscate code to alter structure [15] and are unable to deal with samples that encrypt or compress their payloads. Dynamic analysis
is resistant to evasion [8]. It can detect unknown ransomware based on the general behavioral signatures [2]. In addition, dynamic
analysis has some vulnerabilities, such as some actions only trigger certain conditions that may not be available in a test environment,
such as an emulator [1]. Therefore, for ransomware detection, it may be worth combining behavior-based detection capabilities that
are resistant to evasion [2] with the effective capabilities of static analysis [12]. Few other techniques that use a hybrid approach
are type-specific, addressing only one type such as crypto-ransomware [14] or addressing only a specific ransomware family [3].
Family-specific detection cannot generalize the solution and apply it to every type of ransomware. Previously proposed approaches
for Android ransomware detection [8] using machine learning techniques are vulnerable to adversarial evasion attacks. Attackers
can compromise the entire detection model by simply obfuscating code or using other evasion techniques, since changing one aspect
changes the entire feature vector; thus, the ransomware remains undetected by the machine learning classifier.

Overall, this work has inspired us to propose a hybrid analysis-based Android ransomware classification technique that employs
both effective static and dynamic features and ensemble learning-based machine learning to mitigate the adversarial evasion attack.

3. Hybrid distinct ensemble analyze

We have discussed the proposed framework for ransomware classification in Fig. 1. The proposed methodology consists of two
parts, i.e. offline training and online prediction, as shown in Fig. 1(a) and (b). In the offline training part, feature extraction, selection,
training, and testing are performed. In the online prediction method, the trained classifier is used to predict ransomware and non-
ransomware applications. Feature extraction based on static and dynamic analysis is discussed in 3.1 and 3.2. In offline training,
static analysis is performed to extract permission, network, and text as shown in Figure (a). Then separate classifiers are trained
for each type of feature. In this way, a static meta-classifier is trained based on permission, network features, and text. In dynamic
analysis, the applications are run in a controlled environment, then the features are extracted and analyzed. We logged the system
calls, usage of CPU, and memory consumption of the application and used them as features. Separate classification models are
then trained depending on the nature of the features. In this way, a dynamic feature-based meta-classifier is trained. The proposed
hybrid ensemble analysis involves two separate ensemble machine learning models trained on static and dynamic feature vectors.
Each ensemble model consists of an odd number of machine learning classification algorithms, e.g., three or five. The stacking
ensemble method is used to train and test the classification algorithms, where each algorithm is trained on the entire feature vector.
In the offline prediction method, the static and dynamic meta-classifiers are then used in the voting method to predict the output, as
mentioned in Fig. 1(b). Due to the separate ensemble learning models used in the methodology, we call it a hybrid distinct ensemble
analyzer.

We started with a dataset of malware APK files that contained both Android ransomware and non-ransomware as input. Each
Android application is packaged in an .apk file, a compressed file that contains several other files and folders, such as classes-dex
files, assets, resources, META-INF and AndroidManifest.xml files, etc. In the first phase, the features to be used for static and dynamic
analysis are extracted from an APK file. The extracted features and their compilation into feature vectors are then used to perform the
static and dynamic analysis simultaneously. To extract static features, the APK file is decomposed into Java and XML files. For this

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Static Analysis Permission w- ... 1 !
enoosvucesomy, ——> Py P, .. | By —>Classifiery ;3. m)
KLL_BACKGROUND_PROCESS) g
Dissembling R : =
into Java and Network Features — ifi Static
XML files Extraction (URL 1P and Email address) LR Y.)] Classifiert.zs,..m Meta classifier
Text : v
APK tool (crypro, cipher, content, wake, —_’{ T1 Tz Tn 7 Classif ler(1,2,3,..,m)
lock locker) A S e S
g
g Cf v m
£ E —
29
22| APK
&
S e
g2 7 ;
£ Dynamic Analysis ey
a SystemCalllogs — §; S, .. S, ——>Classifierys,. m) —
i
; i
Execution in ! :
Virtual ” f:gﬂg::singe’ —— BCIRRC RGN — Classifier 3, .m) — o —
environment) ; : Meta classifier
Offline ‘ 5
Memory Usage > — ps i
Training (Naive memory, shared memory) M1 MZ Mn { C[aSSlfler(l'Z’s""'m) :
O |
(a) Offline features extraction, training and ensemble method.
P
Feature N, Static
Extraction T Meta classifier Ransomware
[i =
—
— S
APK =
]
Execution in Sn)
Virtual G Dynamic N
environment CcndkedliE Ransomware
M,
Online Prediction Trained model prediction

(b) Online prediction of the trrain method.

Fig. 1. The overall methodology of distinct ensemble analysis approach.

purpose, we used the Apk tool®. The Apk tool is a free open-source utility that unpacks an APK file into its individual resources [19].
The obtained Java and XML files are further scanned to extract features. Android has a special permission strategy. Permissions are
granted by the user when the application is installed [12]. These permissions are extracted from the AndroidManifest.xml files.
While text and network based features like email addresses, IP addresses and URLs are extracted from the Java files. These network
features describe who the application communicates with after installation. Since Android ransomware activities are mostly network-
based [4], these network features help in detecting Android ransomware. These features are converted into a combined feature vector
and fed to the proposed static ensemble machine learning model in the second phase. The static ensemble machine learning model
is trained using these feature vectors. Once this static ensemble is trained, it can classify the application and assign a label RW/NRW
based on the identical static features.

Similarly, each APK file is run in an emulation environment to record the dynamic features for dynamic analysis. The extracted
dynamic features of an APK file are converted into a feature vector. These feature vectors are further used to train the dynamic
ensemble model. Then, the dynamic ensemble classifies the application and assigns the label RW/NRW. The final decision (on the
classification of the application) takes into account feedback from both the static and dynamic ensemble models. Suppose one of the
machine learning models (part of the ensemble framework) classifies the application as ransomware (by assigning it a RW label).
In this case, the application is classified as ransomware. The application is classified as non-ransomware only if both the static and
dynamic ensemble models assign it a similar label (i.e., non-ransomware NRW).

3 https://ibotpeaches.github.io/Apktool /documentation/

https://ibotpeaches.github.io/Apktool/documentation/

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903
3.1. Static feature extractor

Our experimental dataset includes .apk files (i.e., 50% ransomware and 50% non-ransomware). The Android Package Kit (APK) is
a file format that Android uses to distribute and install applications. It contains all the elements such as classes (.dex files), resources,
and manifest files that an application needs to be installed correctly on a device. The manifest file contains permissions and other
configuration details of the application. Our feature extraction process starts with capturing APK files using a feature extraction
script. We wrote a Python script to extract permissions from the manifest.xml file, text and network-based features (i.e., IP addresses,
email addresses and URLs) from .dex files. The script decompiles the APK files, extracts these features, and then saves them to text
files. We use these .txt files from both ransomware and non-ransomware applications to create feature vectors. The feature vector
script reads the .txt files from both ransomware and non-ransomware applications. It outputs the feature vectors of each application
after capturing a dataset of all features to identify characteristic features of each application and save the dataset in the output file.

We create a binary sequence for each application at its position in the dataset (representing the feature vector). All detected
individual permissions are then ordered as a sequence of Os and 1s. A particular authorization is denoted by a one and the absence
of an authorization is denoted by a 0 in the list. The last bit of the vector represents the category of the application (i.e., ransomware
or non-ransomware). All redundant permissions are removed from the dataset, as redundancy could have a negative impact on
classification. After removing redundant permissions, we get 166 unique permissions.

Both text- and network-based features contain strings; therefore, we create their feature vectors using the TF-IDF vectorizer [20].
The TF-IDF vectorizer converts textual features into feature vectors that can be used as input to the classification algorithm. TF-
IDF is an extravagant and increasingly effective representation for classification mechanisms of textual data [21]. Next, we use all
the created static feature vectors to train static ensemble analyzers based on machine learning. Algorithm 1 describes the feature
extraction process for both static and dynamic analysis of APK files, the conversion of extracted features into feature vectors, and
the classification mechanism used to detect Android ransomware.

Algorithm 1 Feature extraction and classification detection

INPUT: APKf;,.

OUTPUT: Malware or Ransomware.

: for all f € F do > F is APK folder
: APKp;, < Open(file);

1
2,
3 mani festg;,, javag;, < APK Tool(APKf;,);

4 if mani festp;, == androidmani f est.xml then

5: permission«— Get_Permission(androidmani f est.xml);
6 for all permissioni) € permission do

7 if Permission ;s [i]l == permission; then

8 Vector(pe,mimon)[1< 1;

9: end if
10: Vector(Perm,-mDn)[1< 0;

11: end for

12: end if

13: network ,cior < T F_I DF(manifestr;,, javar;,, network g;;,);

14: Textyoeror < TF_I DF(manifestp;,, javag,, Textr,);

15: Dynamic ., < Virtual_Environment(APKg;,);

16: Output| < Classi f y(network oo + Text peror + V eCtor poppmission)s

17: Outputy < Classi fy(Dynamic,,.,.);
18: Output < X OR(Output |, Output,);

19: end for
20: Return Output.

3.2. Dynamic feature extraction

Dynamic analysis involves running an Android application in the virtual environment to examine its runtime behavior. Dynamic
analysis can be used to detect the malicious behavior of applications that remain undetected in static analysis. In previous research
related to dynamic analysis, much attention has been paid to the investigation of data leakage and the sequence of API calls
sequence [3,12]. A promising approach to efficient dynamic detection of Android ransomware is to identify a helpful set of features
that allow distinguishing between ransomware and non-ransomware behaviors. Our proposed framework explores such types of
dynamic features (i.e., CPU usage, system call statistics, memory usage, etc.) that are less costly and more informative for Android
ransomware detection [8]. Therefore, the execution traces containing this data must be collected by running the application in a

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

controlled environment. These traces were recorded manually by running applications one at a time for 10 minutes in an Android
emulator. However, some traces are shorter because the emulator has minor weaknesses. However, a longer execution period gives
us more meaningful results. The Android emulator Genymotion version 3.0.2 was chosen for dynamic analysis of Android malware
applications. The Genymotion tool is used because it is open source software and supports Android Studio. The reason for using the
Android emulator software instead of the original device is that the emulation environment provides more capacity to run a large
number of malware programs within a reasonable time.

Dynamic analysis on the device is immune to emulator bypass techniques. However, in the case of Android ransomware, the
physical device cannot be reset to a clean state. In contrast, the emulator can be reinitialized after analyzing each application.
However, the anti-emulation might have some impact on the dynamic feature extraction performed on Genymotion. Therefore, in
our proposed model, when using dynamic features (memory usage and CPU), we assume that even if applications are repackaged,
obfuscated, or equipped with techniques to avoid detection errors, they will still exhibit similar behavior traces during their
execution. An ensemble analyzer trained on these characteristics could adequately distinguish Android ransomware applications
from other malware applications.

The virtual device is reinitialized each time before a new malicious application is executed to avoid interference from the
previously executed applications, such as changed settings, execution of background processes, changes related to the operating
system configuration, etc. Android Debug Bridge (ADB) is used to monitor the memory and CPU usage of the applications. The
ADB is a command line tool that allows PC to communicate with an emulator instance or an Android device. Strace (a system call
tracking tool) is used to collect system calls from applications. For dynamic feature extraction, the following steps are performed
for each application as mentioned in Algorithm 2.

Algorithm 2 Controlled environment feature extraction process.

INPUT: APKp,.

OUTPUT: Dynamic features.

1: Startpgice < AV M (genymotion);

2: for all f € F do > F is APK folder
3: Package — APK(Y);

4: Events — Execution «— Apply(wipes, presses,touchscreens);

5: Memory «— ADB(meminfo);
6
7
8
9

CPU <« ADB(cpuinfo);

Processes < PID();

System — call <« Command(strace — —p pid);
: Terminate (f, 10minutes);

10: Exit(f);

11: end for
12: Feature_set < Package, Memory, C PU, Processes, System — call;
13: Return Feature_set.

We have considered all the features related to system calls, memory, and CPU usage that can be accessed in Android. In total,
there are 73 features for each running application. Five features relate to CPU: three to the use of CPU and two to virtual memory
exceptions (major and minor errors). 63 features relate to the various aspects of memory usage, and 5 represent statistics of system
calls. These features are further converted into feature vectors (i.e., numerical values) for classification. These feature vectors and
application category (i.e., ransomware/non-ransomware) are used to train dynamic ensemble analyzers based on machine learning.

3.3. Ensemble learning

Two separate machine learning ensemble models are used to classify applications based on their static and dynamic features.
Each ensemble is trained to deliver feature vectors along the category (i.e., ransomware with a value of 1 and non-ransomware
with a value of 0) to the ensemble models. Each classifier (e.g., Naive Bayes, Decision Tree, Random forest, etc.) in the ensemble
model is trained with all the feature vectors. Once all these ensemble models are trained, they can classify the applications and
assign class labels such as RW/NRW. All the membership classifiers are provided to a meta-classifier, which combines these results
using a combination rule (i.e., majority voting) to assign the final label. Since we are dealing with two-class problems, we use the
majority decision scheme to determine the final label. Based on the results of both ensemble models, the final label is assigned to
the applications. To assign the final label, a “OR” operation is applied to the outputs of both ensembles. Thus, if either ensemble
assigns the RW label to the application, it is classified as ransomware. The application is classified as non-ransomware only if both
models of the static and dynamic ensembles assign it a similar label (i.e., NRW). Since supervised learning is used, the training set
consists of Android application samples that are assigned to one of the two classes: Ransomware or Non-Ransomware. For ensemble
models, we use Naive Bayes, Decision Tree (j48/ c4.5), Random Tree, Random Forest, Support Vector Classifier, Logistic Regression,
Adaptive Boosting (Ada boosting), Gradient Boosting, Support Vector Machine with Sequential Minimal Optimization, JRip, etc.

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Naive Bayes (NB) is a probabilistic classifier. It applies probability theory and Bayes theorem to make the assumption that
features are independent [22]. Decision tree generates rules for predicting the target variables [22]. A tree classification algorithm
makes it easy to understand the desired distribution of the data. J48 (i.e., an open-source Java implementation of C4.5 in WEKA data
mining tool) performs missing value calculation, decision tree pruning, continuous attribute value ranges, rule derivation, etc, [23].
Random tree is a tree created randomly from a set of potential trees that have a number of k random features at each node. In this
case, “random” means that each individual tree has an equivalent stroke in the set of trees from which a sample is drawn. Then
each tree can be said to have a “uniform” spread. Random trees can be made well, and integrating huge collections of random trees
requires exact models [22]. A random forest (RF) consists of several random decision trees. There are two types of randomness
built into the trees. First, each tree is built on a random sample from the original data. Second, at each node, a subset of features
is randomly selected to generate the best split [22]. The goal of Support vector machine (SVM) is to fit the provided data and
determine the best fitting hyperplane that categorizes the provided data. Once the hyperplane is determined, the features can be
input to the classifier to determine the predicted class. In the case of multiple classes, SVM uses a “one versus one” strategy.

Logistic regression (LR) is a linear classifier that calculates the restrictive probabilities of the outcomes and selects the one with
the highest probability. Boosting is a common ensemble method that generates a strong classifier from the various weak classifiers.
This is done by constructing a model from the training data and then creating a model to correct the errors of the main model.
Models are added until the training set is perfectly predicted with no errors or extreme values. AdaBoost (AD) works by weighting
the observations. In this process, problematic samples or samples that are difficult to classify are weighted more heavily and those
that are treated effectively are weighted more weakly. We used AdaBoost M1 with SVM basis for ensemble evaluation because
it performs better than AdaBoost with a different type of weak learner [22]. Gradient Boosting identifies the weakness by using
gradients in the loss function.

The output of different weak learners is combined so that their loss function can be optimized [22]. The loss function is a measure
of how well the predictive model classifies the underlying data. Gradient boosting (GB) allows the loss function to be optimized by
adding weak learners in the gradient descent process. Support Vector Machine (SVM) examines, identifies and matches patterns of
data for classification. It uses a hyperplane to partition the data into regions of n-dimensional space. The hyperplane keeps the values
of a margin between regions at the maximum. SVM uses a kernel function that results in a nonlinear classification surface instead
of a linear hyperplane. Sequential Minimal Optimization (SMO) is an iterative algorithm for solving optimization problems that
arise in the training phase of the Support Vector Machine (SVM). SMO performs a fragmentation of the problem into a sequence of
smallest possible subproblems, which are then solved analytically [24]. JRip is a rule-based classification algorithm. It develops a
proportional rule learner called ‘“Repeated Incremental Pruning to Produce Error Reduction (RIPPER)” to extract the rule directly
from the data and use successive coverage algorithms to produce requested rule lists. The algorithm goes through four stages. (1)
growing a rule (2) pruning (3) optimization and (4) selection [24].

4. Experimental results

This study conducted an empirical evaluation to assess the effectiveness of our proposed Hybrid Distinct Ensemble Analysis
approach. The evaluation method uses a 10-fold cross-validation technique to evaluate the proposed model. In k-fold cross-
validation, the original dataset is randomly divided into k subsets of equal size. A single subset of the k subsets is used for validation
to test the algorithm. The remaining k — 1 subsets are used as the training set. The cross-validation process is repeated precisely
k times (the number of folds). Therefore, each of the k subsets are used exactly once as a validation set [22]. The advantage of
this strategy is that all observations are used for both training and testing, and each observation is used exactly once for validation.
After the k experiments, the weighted average of the classification accuracy is calculated. This research used the performance metrics
given in Table 2, where True Positive (TP) is an accurate positive result that detects ransomware when ransomware is present.True
Negative (TN) is an actual negative result that does not detect ransomware when ransomware is not present.False Positive (FP)
is a false positive result, meaning ransomware is detected when ransomware is not present.False Negative (FN) is a false negative
result, meaning ransomware is not detected when ransomware is present. The computing power used in the experiments is listed
in Table 3.

4.1. Dataset

The entire dataset used in this study includes two subsets: Android malware (Drebin*) and Android ransomware (RansomProber®)
applications as .apk files. The Drebin malware dataset is used for the malware dataset, a benchmark repository with more than
five thousand malware applications (from 179 different malware families). The ransomware dataset used for analysis comes
from the ransomware repository used for experiments in a research effort called RansomProber. The RansomProber dataset
includes more than two thousand samples taken from related security alerts, threat reports from antivirus companies, and security
blogs cite6chen2017uncovering. The RansomProber dataset shows good coverage of existing Android ransomware families. The
dataset contains 5500 ransomware and 2280 non-ransomware. The experimentation used 275 samples of each class for evasion
attacks. The classifiers used were trained using the behavioural characteristics of ransomware and non-ransomware applications

4 https://www.sec.cs.tu-bs.de/~danarp/drebin/.
5 hittp://csp.whu.edu.cn/RansomProber/download.html/.

https://www.sec.cs.tu-bs.de/~danarp/drebin/
http://csp.whu.edu.cn/RansomProber/download.html/

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Table 2
Summary of the performance metrics used for evaluation.

Metrics Calculation Method

T'ruePositive
TruePositive + FalsePositive
T'ruePositive

Precision (P)

Recall (R) — -
T'ruePositive + FalseN egative
F-Measure 2 % (Prect-st.nn * Recall)
(Precision + Recall)

Table 3
Experimental setup.

CPU Intel® Core™ i5-5200 CPU @ 2.20 GHz
Memory 8 GB

0os Window 8

APK Decompilation Tool Apk Tool

Machine learning library sklearn

Android emulator configuration

Platform Genymotion 2.12.2
Device Custom Tablet
Android version 6.0.0
API Level 21
CPU 1.5 GHz
Memory size 2048 MB
Data disk capacity 16384
Table 4

Summary of the ensemble and classification model configuration.

Ensemble Classification models

C45 Decision tree, Random tree, Random forest

Logistic regression, C45, SVM with SMO

Random tree, Random forest, SVM with SMO

SVM with SMO, Logistic regression, Random forest

SVM with SMO, Logistic regression, AdaBoost with SVM base

Logistic regression, Jrip, Random forest, C45, SVM with SMO

SVM with SMO, logistic regression, Simple regression, AdaBoost with SVM base

NO s W~

and an explicit label (i.e., ransomware/non-ransomware). The development method uses disjoint datasets for training and testing
purposes. This study used many applications to ensure that our dataset is unbiased. The dataset used in this study is not limited to
applications with specific attributes that can help in generating results. However, if the new features come from any functionality
for the extended application, the model can incorporate the updated features. Table 2 describes the methods used to calculate all
values. These measurements were made by evaluating each classification algorithm and various combinations of ensemble learning.

4.2. Static and dynamic feature selection using InfoGain

During the development of the proposed model, this study performed feature selection to select important attributes of the dataset
that are most appropriate and useful for identifying application classes (i.e., RW/NRW). To this end, the study performs feature
selection based on the information gain criterion to find the most appropriate features by assigning weights to the information to
highlight the effectiveness of the features [22]. The method selected 72 static features from 2911 features after applying the feature
selection process to the static features. The method selected 45 dynamic features from 130 dynamic features. In this work, the study
combines the classification model and evaluates different combinations as given in Table 4.

Fig. 2 describes the top ten features obtained from the entire dataset of static and dynamic features using the InfoGain method. To
check the performance of the proposed model, this study used the performance measures Precision, Recall, and F-measure. Table 2
describes the methods used to calculate all values. These measurements were performed by evaluating each classification algorithm
and different combinations of ensemble learning. Figs. 3 and 4 show the effects of dataset shuffling on the F-measure during model
development and the classification results with a single classifier and classification with different ensembles (for the selected static
and dynamic features by the InfoGain method). The values for precision and recall are in the same range due to the dataset used.

Fig. 3 shows the performance metrics of our proposed model for ranked static and dynamic data using single machine learning
algorithms. In contrast, Fig. 4 shows the performance metrics for ranked static and dynamic data using ensemble algorithms. From
Figs. 3 and 4, it can be seen that the ensemble algorithms perform well compared to the single algorithms on the ranked hybrid
data. Among the individual algorithms, Ada Boost (AB) [22] are the best with values of 0.853, 0.886 and 0.849 for precision, recall
and F-measure, respectively. However, performing the ensemble of Random Tree + Random Forest + SVM with SMO as member
classifiers is significantly below all others with 0.863 precision, 0.892 recall and 0.86 F-measure.

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Receive Boot completed 0.16
£ Vibrate ‘ 0.09 ‘
© 4
(O]
= Wake Lock 0.09
N=] b
= Diable Keyguard ‘ 0.08 ‘
S o
L call ‘ 0.08 ‘
£ 4
B Receive SMS 0.07
=
5 4
§ Send SMS 0.07
el 4
© Write Command ‘ 0.06 ‘
ﬁ -
n Network Acces ‘ 0.05 ‘

Read SMS 0.02

Entropy based Feature Gain

(a) Ranked static features.

Sendto 0.31
| =
T Close 0.10
0]]
5 10CTL 0.07
g E
IS EPOLL pwait 0.06
S 1
c Madvise 0.05
3 .
5 Clocktime 0.05
6 -
i getuid32 0.05
Q 1
= writeev 0.05
o 1
5‘ sigprocmask 0.04

Entropy based Feature Gain

(b) Ranked dynamic features.

Fig. 2. Comparison of static and dynamic information gain features.

1.00 -
0.90 4
0.80 A
© 0.70 -
© 060 1
5 0.50 4
g 0.40 A
o 0.30 -
0.20 1
0.10 1
0.00 T T T r T T J
Jag RF NB SVM LR GB AB
Classifier

@Precision ORecall OF-measure

0.84
0.86

| 0.83
0.85
0.88

| 0.84

0.81
| 0.84
0.83
0.85

| 0.83
0.84
0.86

| 0.83
0.85
0.88

| 0.84

0.73
0.71

0.48

0.23

Fig. 3. Evaluation results of ranked data using a single machine learning.

4.3. Feature selection experiments using PCA

It is desirable to select a subset of unique features in certain applications rather than finding an assignment that uses all features.
Using a subset of features can reduce computational costs and eliminate noisy features while preserving information using clean
features. The other feature selection algorithms are either very computationally intensive or select a subset of redundant features.

10

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

1007 $%g T8 3 328 8w 058 853]
0.90 c ® s o © o c 2 © © °© o c © o c © o o° o
0.80 |] [] []]]
g0.70 E
T 0.60
5 050 4
& 0.40 1
o 0.30 A
0.20 1
0.10 1
0.00 - r T T T T
Ensemble-1 Ensemble-2 Ensemble-3 Ensemble-4 Ensemble-5 Ensemble-6 Ensemble-7
Ensemble
BPrecision ORecall OF-measure
Fig. 4. Evaluation results of ranked data using ensemble learning.
w X o 0 1 Q9 © o 888 LB Te B] m X
1009 332 R g o o °° ° S s o 333
0.90 1] S
g0.80 1
b 0.70 4
T 0.60 1 g
8 050 1 °
2 0.40 A Q o
0.30 1 o
0.20 1
0.10 4
0.00 v v v v v v
J4s RF NB SVM LR GB AB
Classifier

@Precision ORecall BOF-measure

Fig. 5. Evaluation results of ranked data (PCA) Using a single machine learning algorithm.

The study performed feature selection using Principal Component Analysis (PCA). PCA is a dimensionality reduction algorithm
that allows us to identify correlations and patterns in the dataset [25]. Thus, the dataset can be converted to a low-dimensional
dataset by removing these correlations without losing important information. PCA is a mathematical procedure that converts multiple
correlated variables into a few uncorrelated variables known as principal components. This small subset of uncorrelated variables
is much easier to work with to identify and use in analysis than the large set of correlated features.

Figs. 5 and 6 describe the performance results of single classifiers and ensembles on selected static and dynamic data of PCA.
Fig. 5 illustrates that the performance of LR is highest with 0.993 precision, recall, and F-measure.

SVM performance remained lowest at 0.481 precision, 0.231 recall, and 0.312 F-measure, which is not as expected. All other
individual classifiers except SVM performed significantly well on the selected hybrid data. Fig. 6 shows that the ensemble with base
classifiers “SVM with SMO + logistic regression + simple logistic regression + AdaBoostM1 with SVM base + Adaboosting” outperformed
all other ensembles on selected hybrid data by PCA, achieving 0.989 precision, recall, and F-measures. The performance of the
other ensembles is also significant. From Figs. 5 and 6, we can see that both the individual classifiers and the ensemble classifiers
performed much better on the selected data by PCA than on the selected data by information retrieval. Removing redundant features
increased classification accuracy and reduced computational costs.

4.4. Evaluation without feature selection experiments

Fig. 7 shows the performance of all individual classifiers on hybrid data that include both static and dynamic analysis features
(using a single classifier instead of an ensemble). The results show that the performance of Ada Boost (AB) is significantly high among
all other single classifiers. All single algorithms performed well for the hybrid data provided, except for SVM, whose performance
is consistently the lowest across all experiments.

Fig. 7 shows the performance of our proposed approach, a hybrid ensemble analysis explained in Section 3. It includes two
different ensemble machine learning models for static and dynamic feature datasets. The results of all different ensembles are shown
in Fig. 7. They show that the ensemble with SVM with SMO + Logistic regression + Simple Logistic regression + AdaBoostM1 with SVM
base and Ada Boosting outperforms all other ensemble and individual machine learning algorithms by achieving 0.99 precision, recall,
and F values. The precision of the ensemble using SVM with SMO + Logistic regression + AdaBoostM1 with SVM base member’s
algorithms and the ensemble using SVM with SMO + Logistic regression + Random forest-based algorithms is the second-highest
among all other ensembles with 0.997 precision, recall and F-measure.

It is clear from Fig. 7 that the highest performance is obtained when classification is performed using an ensemble with base
classifiers:

11

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

1.00 -

W © ©
N~ 222
0] 2223 8
o & ° 8
c o °© o o °© o @ ° o o ° o
= - - —— -
a 0.92
0.90 -
0.88 - T T T T
Ensemble-1 Ensemble-2 Ensemble-3 Ensemble-4 Ensemble-5 Ensemble-6 Ensemble-7
Ensemble
BPrecision ORecall OF-measure
Fig. 6. Evaluation results of ranked data (PCA) using Ensemble learning.
~ N~ ~ @ @ @ «© 0 ~ D D (o2}
100, © o s s s £E8 222 33 e Qo
0.90 A
o 0.80 1
o]
©0.70 1
C
g 0.60 A 3
@ 0.50 A
o -
0.40 A L)
g o
0.30 A S
0.20 1
0.10 A
0.00 A T T T T T
J48 RF NB SVM LR GB AB
Classifier

BPrecision ORecall BOF-measure

Fig. 7. Evaluation results of without feature selection using a single machine learning algorithm.

1. SVM with SMO, Logistic regression, Simple Logistic regression, AdaBoost with SVM base and Adaboosting;
2. SVM with SMO, Logistic regression, AdaBoost with SVM base;
3. SVM with SMO, Logistic regression, and Random forest.

The first ensemble achieved the highest performance in classification over a given hybrid dataset, improved by only 0.3% over
the other two ensembles: SVM with SMO + Logistic regression + AdaBoostM1 with SVM base and SVM with SMO + Logistic regression
+ Random forest. This shows that these ensembles provide similar results in Android ransomware classification and detection.

4.5. Adversarial evasion attacks experimentation

To validate the resilience of the proposed hybrid distinct ensemble model against adversarial evasion attacks, we tried the
ensemble model employing the fabricated inputs. These fabricated inputs (to mimic an adversarial evasion attack) are generated by
minor changes in known Android ransomware feature vectors. We evaluated the performance of the proposed model in mitigating
circumvention attacks by making 1-bit, 10-bit, and 20-bit changes to the input feature vectors of the known ransomware. Most of
the existing machine learning-based Android ransomware detection techniques are vulnerable to adversarial evasion attacks. The bit
change in the input feature vector causes the underlying classification model to be bypassed. To test the proposed model against such
a change in the input feature vector, we randomly selected 100 feature vectors of known ransomware. We changed the permissions
of each vector by one bit. This is because permissions are the most vulnerable feature to encryption or renaming. We tested our
proposed hybrid ensemble analyzer with non-ransomware and the fabricated feature vectors using different ensemble models. The
test results of the different ensemble models ML in terms of Precision, Recall and F-Measure are shown in Table 5. It can be seen that
each ensemble generated 0.98% Precision, Recall, and F-Measure values for one-bit data and tended to misclassify as the number of
input models increased. To further test the model’s resilience, we fabricated the data for randomly selected 100 feature vectors of
Android ransomware. In each feature vector, 10 bits related to permissions are changed. Again, the hybrid unique ensemble model
is tested on these modified feature vectors.

5. Discussion

From Table 6, it can be seen that the ensemble with the member classifier achieved 0.97, 0.98, and 0.99 precision, recall, and
F-measure values for 1, 10, and 20 bit fabricated data, respectively, and these values are the lowest among all. All other models in

12

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

Table 5

Evaluation of ensemble learning algorithm without feature selection.
Classifiers Precision Recall F-measure
Ensemble-1 0.97 0.97 0.97
Ensemble-2 0.98 0.99 0.98
Ensemble-3 0.97 0.97 0.97
Ensemble-4 0.98 0.99 0.98
Ensemble-5 0.98 0.99 0.98
Ensemble-6 0.99 0.98 0.98
Ensemble-7 0.99 0.98 0.99

Table 6

Accuracy of model against multiple fabricated inputs.
Input fabrication Precision Recall Fmeasure
1-bit fabricated 0.98 0.99 0.98
10-bit fabricated 0.96 0.96 0.96
20-bit fabricated 0.94 0.93 0.94
30-bit fabricated 0.92 0.90 0.92
40-bit fabricated 0.90 0.88 0.90

the ML ensemble achieved 0.99% precision, recall, and F-measures. The accuracy of the different ensembles for 10-bit fabricated
data can be seen in Table 6, which shows the same trend regarding the performance of the different ensembles.

After evaluating the model for 1-bit and 10-bit fabricated inputs and achieving high accuracy for all ensembles except one, we
test the model with 20-bit fabricated input data. The fabricated input feature vectors are determined using the ransomware feature
vector that has changed twenty random bits (related to the permissions). The bit-alteration in the feature has changed almost the
entire permissions aspect. Based on the extracted permission data, it was found that hardly any ransomware application can require
more than twenty individual permissions. We evaluated our proposed hybrid unique ensemble analysis model using these fabricated
feature vectors. Table 6 shows the obtained test results for different ensembles. From the results of the 20-bit fabrication test, it is
clear that this considerable fabrication of permissions does not affect the performance of the hybrid distinct ensemble model, except
for the one ensemble whose precision and F-Measure are 0.9 and 0.9, respectively, for 40-bit fabrication (the lowest of all).

The results of these three experiments (i.e., 1-bit, 10-bit, 30-bit, and 40-bit altered data) demonstrate that the proposed hybrid
ensemble analysis approach can mitigate adversarial evasion attacks. The proposed approach can detect Android ransomware and
spoofed patterns with high accuracy. To the best of our knowledge, our proposed model is the first research work that focuses
on mitigating adversarial evasion attacks through ensemble learning. It analyzes the behaviour of Android ransomware samples to
detect their malicious nature, which is different from other Android malware. No recent study shares permissions, text, network-
based features, system call logs, CPU usage, and memory usage and uses ensemble learning to distinguish Android ransomware
from other Android malware. Moreover, our results validate our conclusion by excellently training the ensemble analyzer to classify
Android ransomware and mitigate adversarial evasion attacks.

6. Conclusion and future work

In this paper, a machine learning based ensemble approach has been presented that considers various application features to
detect ransomware. The static and dynamic ensemble learners consist of an odd number of classifiers such as C4.5, Random Forest,
JRip, Logistic Regression, SVM, and AdaBoost. The ensemble model is trained offline and tested online to analyze the dynamic
behavior. The meta-classifier based on majority voting made the final prediction. The study has shown that permissions and system
call logs are the two most important features for detecting and classifying Android ransomware and non-ransomware.

We also investigate the ability of the proposed model to mitigate adversarial evasion attacks by testing it with fake inputs
in the experiments. The results support our decisions regarding training ensemble analyzers for both ransomware detection and
mitigation of evasion attacks, as we obtain good results. The proposed distinct ensemble analyzer mechanism shows promising
results by achieving high precision, recall, and F-measure in Android ransomware detection. The proposed model proves to be a
resilient model against adversarial evasion attacks by achieving good accuracy on the provided 1-bit, 10-bit, 20-bit, 30-bit and 40-bit
fabricated inputs.

The future research problem should address the characteristics of malicious ransomware instances, effective attacks, cost-effective
and robust feature extraction, malicious feature estimation, metrics to validate the performance of malicious defense, and designed
countermeasures for ransomware defense. We also plan to analyze sequential events and their impact on attacker samples in the
future.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

13

U. Ahmed et al. Computers and Electrical Engineering 100 (2022) 107903

References

[1]

[2]
[3]

[4]
[5]

[6]
[7]
[8]
[91
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

Al-rimy BAS, Maarof MA, Shaid SZM. Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions. Comput Secur
2018;74:144-66.

Song S, Kim B, Lee S. The effective ransomware prevention technique using process monitoring on android platform. Mob Inf Syst 2016;2016.

Yang T, Yang Y, Qian K, Lo DCT, Qian Y, Tao L. Automated detection and analysis for android ransomware. In: IEEE International Conference on High
Performance Computing and Communications. 2015, p. 1338-43.

Ameer M, Murtaza S, Aleem M. A study of android-based ransomware: Discovery, methods, and impacts. J Inform Assurance Secur 2018;13(3).
Zavarsky P, Lindskog D, et al. Experimental analysis of ransomware on windows and android platforms: evolution and characterization. Procedia Comput
Sci 2016;94:465-72.

Nieuwenhuizen D. A behavioural-based approach to ransomware detection. Whitepaper. MWR Labs Whitepaper, 2017.

Banin S, Dyrkolbotn GO. Multinomial malware classification via low-level features. Digital Invest 2018;26:S107-17.

Ferrante A, Malek M, Martinelli F, Mercaldo F, Milosevic J. Extinguishing ransomware-a hybrid approach to android ransomware detection. In: International
Symposium on Foundations and Practice of Security. Springer; 2017, p. 242-58.

Li D, Li Q. Adversarial deep ensemble: Evasion attacks and defenses for malware detection. IEEE Trans Inf Forensics Secur 2020;15:3886-900.

Biggio B, Roli F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit 2018;84:317-31.

Taneja H, Kaur S. An ensemble classification model for fake feedback detection using proposed labeled CloudArmor dataset. Comput Electr Eng
2021;93:107217.

Gharib A, Ghorbani A. Dna-droid: A real-time android ransomware detection framework. In: International Conference on Network and System Security.
Springer; 2017, p. 184-98.

Alzahrani A, Alshehri A, Alshahrani H, Alharthi R, Fu H, Liu A, Zhu Y. RanDroid: Structural similarity approach for detecting ransomware applications in
android platform. In: IEEE International Conference on Electro/Information Technology. IEEE; 2019, p. 0892-7.

Chen J, Wang C, Zhao Z, Chen K, Du R, Ahn GJ. Uncovering the face of android ransomware: Characterization and real-time detection. IEEE Trans Inf
Forensics Secur 2017;13(5):1286-300.

Mercaldo F, Nardone V, Santone A, Visaggio CA. Ransomware steals your phone. formal methods rescue it. In: International Conference on Formal
Techniques for Distributed Objects, Components, and Systems. Springer; 2016, p. 212-21.

Wang H, Li M, Yue X. IncLSTM: Incremental ensemble LSTM model towards time series data. Comput Electr Eng 2021;92:107156.

Mathur A, Podila LM, Kulkarni K, Niyaz Q, Javaid AY. NATICUSdroid: A malware detection framework for android using native and custom permissions.
J Inform Secur Appl 2021;58:102696.

Mahindru A, Sangal A. PerbDroid: Effective malware detection model developed using machine. Journey Towards Bio-Inspired Techn Softw Eng
2020;185:103.

Aminordin A, Ma F, Yusof R. Android malware classification base on application category using static code analysis. J Theor Appl Inform Technol
2018;96(20).

Pektas A, Acarman T. Ensemble machine learning approach for android malware classification using hybrid features. In: International Conference on
Computer Recognition Systems. Springer; 2017, p. 191-200.

Wang W, Li Y, Wang X, Liu J, Zhang X. Detecting android malicious apps and categorizing benign apps with ensemble of classifiers. Future Gener Comput
Syst 2018;78:987-94.

Ahmed U, Lin JCW, Srivastava G, Aleem M. A load balance multi-scheduling model for OpenCL kernel tasks in an integrated cluster. Soft Comput
2021;25(1):407-20.

Narudin FA, Feizollah A, Anuar NB, Gani A. Evaluation of machine learning classifiers for mobile malware detection. Soft Comput 2016;20(1):343-57.
Veeralakshmi V, Ramyachitra D. Ripple down rule learner (ridor) classifier for iris dataset. Issues 2015;1(1):79-85.

Aurangzeb S. A machine learning based hybrid approach to classify and detect windows ransomware. 2018.

Usman Ahmed is currently a Ph.D. Research Fellow in Western Norway University of Applied Sciences, Bergen, Norway. His research interests include ML/DL,
optimization and data mining.

Jerry Chun-Wei Lin is currently a Full Professor in Western Norway University of Applied Sciences, Bergen, Norway. His research interests include data analytics,
ML/DL, NLP, security and privacy, optimization and soft computing.

Gautam Srivastava is currently an Associate Professor in Brandon University, Brandon, Canada. His research interests include cryptography, security and privacy,
blockchain technology, data mining, and Internet of Things.

14

http://refhub.elsevier.com/S0045-7906(22)00188-4/sb1
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb1
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb1
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb2
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb3
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb3
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb3
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb4
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb5
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb5
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb5
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb6
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb7
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb8
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb8
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb8
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb9
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb10
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb11
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb11
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb11
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb12
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb12
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb12
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb13
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb13
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb13
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb14
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb14
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb14
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb15
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb15
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb15
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb16
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb17
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb17
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb17
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb18
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb18
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb18
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb19
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb19
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb19
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb20
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb20
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb20
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb21
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb21
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb21
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb22
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb22
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb22
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb23
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb24
http://refhub.elsevier.com/S0045-7906(22)00188-4/sb25

	Mitigating adversarial evasion attacks of ransomware using ensemble learning
	Introduction
	Motivation
	Contributions

	Related work
	Hybrid distinct ensemble analyze
	Static feature extractor
	Dynamic feature extraction
	Ensemble learning

	Experimental results
	Dataset
	Static and dynamic feature selection using InfoGain
	Feature selection experiments using PCA
	Evaluation without feature selection experiments
	Adversarial evasion attacks experimentation

	Discussion
	Conclusion and future work
	Declaration of competing interest
	References

