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A B S T R A C T

Cloud Computing services can be accessed anytime, anywhere via the Internet. The overwhelming growth of
cloud data centers over the past decade has increased their costs as energy demands have risen. As a result,
higher carbon dioxide emissions and other greenhouse gasses are putting a strain on our ecosystem. The main
objective of this study is to reduce the power consumption in cloud computing with no or negligible trade-offs
in quality of service. This paper presents a new algorithm called the energy efficiency heuristic using virtual
machine consolidation to minimize the high energy consumption in the cloud. By setting two thresholds, hosts
are classified into three main classes. The designed model reallocates virtual machines from one physical host
to another to minimize energy consumption. The results of the proposed algorithm have been obtained in
terms of virtual machine migrations, performance degradation caused by migration, service level agreement
violations, and execution time, showing a significant improvement over state-of-the-art techniques.
1. Introduction

Many individuals and businesses worldwide use Cloud Computing
(CC) [1–3] to obtain storage and computing services accessible via the
Internet. The general use of cloud computing has increased manifold
due to its easy accessibility, excellent scalability, cost efficiency, and
reliability [4–6]. Cloud services can be used anytime and anywhere
via the Internet [7]. Cloud models are divided into three services:
Software, Platform, and Infrastructure as a Service [8]. Software-as-
a-Service (SaaS) allows users to utilize online software applications
over the Internet; an example is Google-Drive, Dropbox, Facebook, etc.
Platform-as-a-Service (PaaS) provides a framework for programmers to
develop their customized cloud applications in Microsoft Azure and
Google Application Engine. Infrastructure-as-a-Service (IaaS) provides
virtualized computing resources such as Central Processing Unit (CPU),
bandwidth, storage, and memory in the form of Virtual Machines
(VMs) [9–11]. The benefits associated with each model are unique and
different from one another, and the cloud promises to meet the needs
of different types of businesses [12]. The cloud user and provider often
agree on specific terms and conditions for the use of cloud services,
called a Service Level Agreement (SLA). A SLA often describes the
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requirements and the Quality of Service (QoS) between the Cloud users
and the service provider [13].

Given the large cloud data centers of today, colossal energy con-
sumption is one of the main problems [14,15]. A lot of energy is needed
in a data center to run the cooling systems. In addition, computing,
storage, and networking equipment consume a lot of power. The en-
ergy consumed ultimately reflects high CO2 emissions that impact the
biosphere [4]. According to a report by the Natural Resource Defense
Council [5], data centers in the United States of America consume about
91 billion kWh of electricity, and this number is estimated to increase
to 200 billion kWh by 2030.

The increase in electricity consumption also increases the cost of the
business model and consequently lowers productivity [16]. According
to a study [4], Cloud Computing (CC) consumes more energy than
most countries worldwide. To illustrate, if we consider Cloud as
a country, it would be the fifth-largest country in terms of energy
consumption [4]. In the cloud, the main components that contribute
to this enormous energy consumption are CPU, memory, networking,
storage, cooling and power consumption, etc., as shown in Fig. 1.

As highlighted in Fig. 1, there is an urgent need to reduce energy
consumption without compromising QoS. Recent advances in hardware
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Nomenclature

Abbreviations

EEHVMC Energy Efficiency Heuristic with Virtual
Machine Consolidation

QoS Quality of Service
VM Virtual Machine
VMM Virtual Machine Migration
PDM Performance Degradation caused by VM

migration
SLATAH Service Level Agreement Violations Time

per Active Host
IQR inter-quartile range
HOL Host Over-Loaded
HML Host Medium-Loaded
HUL Host Under-Loaded
MIPS Millions of Instructions Per Second
MSU Minimum Size Utilization
CATR Cumulative Available-to-Total Ratio
EVMC Energy-Aware VM Consolidation
SABFD Space Aware Best Fit Decreasing
EEOM Energy Efficiency Optimization of Virtual

Machine Migrations
RALBA Resource Aware Load Balancing Algorithm
EFT Earliest Finish Time
ETSA Energy-Efficient Task Scheduling Algorithm
MU Maximum Utilization
MMT Minimum Migration Time MMT
RS Random Selection
MC Maximum Correlation
DVMC Dynamic Virtual Machine Consolidation
SLAV Service Level Agreement Violations
DVFS Dynamic Voltage and Frequency Scaling
QoS Quality of Service
SLA Service Level Agreement
CPU Central Processing Unit
IaaS Infrastructure-as-a-Service
PaaS Platform-as-a-Service
SaaS Software-as-a-Service
SOTA State-of-the-art
DNN Deep Neural Networks
CC Cloud Computing

echnology have reduced the energy consumption of a CC system [18–
0].

One of the fundamental mechanisms for energy conservation is
ynamic Voltage and Frequency Scaling (DVFS). This approach auto-
atically changes the voltage and frequency to reduce processor heat
issipation and lowers the power consumption. In addition, the reduced
eat generation allows cooling systems to be turned off, saving more
nergy [21,22]. Another related approach to energy conservation in
loud computing is Dynamic Virtual Machine Consolidation (DVMC).
he DVMC approach reallocates VMs from one host to another to
educe the number of active hosts in the data center by putting inactive
osts into power-saving mode to conserve the power [23–25].

This study presents an energy-conserving framework based on the
oncept of VM Consolidation. The proposed framework is a heuristic
odel. A heuristic approach speeds up the process to locate a suitable

olution. A heuristic is an approach for problem-solving and is effective
2

Fig. 1. Breakdown of power consumption in data centers [17].

where the classic techniques are slow, or an exact solution is not desir-
able (considering the employed overhead). The purpose of a heuristic is
to find a solution in a reasonable time that is good enough to solve the
problem at hand [26]. The heuristic solution is not optimal, however,
the solution provides approximately the exact answer. Therefore, the
proposed scheme is designed as a heuristic approach to quickly finds
the placement strategy to conserve energy in the Cloud. Almost 79%
of the consumed power in the cloud comprises CPU and memory;
hence these two most important aspects are the building blocks of the
proposed scheme.

The proposed Energy Efficiency Heuristic using VM Consolidation
(EEHVMC) reduces power consumption and SLA violations (SLAV). The
main idea is to classify host machines based on CPU and memory usage.
By setting two thresholds (related to CPU and memory utilization),
the host machines are categorized into three main classes: Host Over-
Loaded (HOL), Host Medium-Loaded (HML), and Host Under-Loaded
(HUL) machines. As of HOL, we migrate VMs to the HML to minimize
power consumption in the cloud data centers. In the HML, all VMs are
kept unchanged. From the HUL hosts, the proposed approach reassigns
the VMs to the HML, and the inactive hosts are put into power-saving
mode [27].

The results show that the EEHVMC approach significantly mini-
mizes power consumption and reduces SLAV. In summary, the contri-
butions of this work are summarized below:

• Detail analysis of the literature examines the strengths and weak-
nesses of existing VM consolidation heuristics.

• A novel scheduling mechanism, EEHVMC consolidates VMs on
host machines to reduce power consumption, VM migrations, per-
formance degradation, and Service Level Agreement Violations in
the cloud.

• Experimentation and evaluation of the intended approach com-
pared to state-of-the-art VM consolidation heuristics.

The remainder of the paper is organized as follows: Section 2
discusses related work. Section 3 states the performance model used
in this study, SLAV, and PDM. Then, Section 4 presents the system ar-
chitecture, EEHVMC algorithm, and complexity analysis. Experimental
results and discussions are presented in Section 5. Finally, Section 6
concludes the paper and explains future work.

2. Related work

Beloglazov et al. [4] conducted a competitive study to mitigate the
problems associated with VMM and DVMC. The results state that de-
veloping a randomized or adaptive approach is essential to improving
the performance of optimal deterministic algorithms. In addition, novel
adaptive heuristics were proposed based on a retrospective study of
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the resource method for VM performance- and energy-efficient consol-
idation. The technique significantly reduces energy consumption while
ensuring high compliance with SLA. CPU, memory, network interfaces,
and disk storage are essential for determining to compute node en-
ergy consumption. This approach mitigates energy consumption only
for CPU usage, while memory, network interfaces, and disk storage
are the components responsible for host power consumption in cloud
computing.

Dynamic Virtual Machine Consolidation (DVMC) approach [6] re-
duces SLAV and power consumption in the cloud. This approach is
classified into four main areas: Underload, Overload Detection, VM
Selection, and Placement. The first part of this approach is to detect
whether the host is overloaded or not. If the host is overloaded,
depending on the upper threshold, a VM migrates to the other physical
host. The VM selection policies are Minimum Migration Time (MMT),
Random Selection (RS), Maximum Correlation (MC), and Maximum
Utilization (MU). All VMs must migrate to another physical host if the
host is underloaded. The proposed approach does not consider CPU,
memory- and I/O-intensive tasks running on a VM.

Energy-Efficient Task Scheduling Algorithm (ETSA) [7] consists of
three parts: Estimation, Normalization, and, Selection and Execution.
The ETSA approach reduces energy consumption in several ways. The
normalization part determines the smallest normalized total value re-
sulting from the combination of end time and utilization. The execution
task is assigned to the resources that have the smallest normalized
total value. The ETSA technique strikes a balance between completion
time and utilization and provides more reliable results. This approach
balances workload and completion time but does not consider SLA.

In the first phase of the intended approach, scheduling focuses
on VM computational capabilities. The VM with the Earliest Finish
Time (EFT) is selected for job mapping in the second phase [11].
Resource Aware Load Balancing Algorithm (RALBA) improves resource
utilization, reduces makespan, and minimizes execution time. However,
RALBA is unsuitable for the dependent task, and quality of service is
not part of this approach.

Adaptive three-threshold framework energy-aware algorithms cat-
egorize hosts into four categories: less, little, normal, and overloaded
hosts. When a host is overloaded, virtual machines must migrate to the
less busy host. All VM remain unchanged if a host is normal and a little
busy. When the host is less active, all VM migrate to a less busy host.
Zhou et al. [12] only considered the CPU and I/O intensive tasks on
the VM. If the task is CPU intensive, the VM with a maximum CPU
ratio to memory usage is selected. If the task is I/O-bound, the VM
selection multiplies by the CPU and memory utilization. Zhou et al.
considered the CPU and I/O-intensive tasks but ignored the memory-
intensive tasks on the overloaded host. This approach minimized power
consumption based only on the CPU workload, while CPU and memory
are the main components responsible for host power consumption in a
CC data center.

The research presented in [13] proposes a scheduling technique for
CC systems that is cost-effective and saves energy. While the approach
minimizes schedule gaps by performing approximate computations
using per-core DVFS on different multi-core processors, it also accounts
for input errors in component tasks. This study aims to maintain
quality at the desired standard and provide a cost-effective solution that
provides energy efficiency and timelessness with precision. However,
this approach increases potential network traffic.

Energy Efficiency Optimization of Virtual Machine Migrations
(EEOM) [15] consists of three steps: VM selection, trigger time, and
host location. The EEOM technique migrates some lightly and heavily
loaded VMs to another physical host. The inactive host is put into a
power-saving mode so that the host’s power consumption can minimize.
The EEOM approach tries to reduce the number of running hosts but
neglects the remaining factors such as cooling system, network traffic,
3

and migration costs.
The authors aim to reduce power consumption, and SLA violations
in the Space Aware Best Fit Decreasing (SABFD) [21] approach. This
approach selects a VM for migration with maximum CPU utilization and
places a VM on the host with lower computational power, i.e., Millions
of Instructions Per Second (MIPS). It minimizes power consumption
based only on CPU utilization. The SABFD does not examine the type of
applications running on the VM and cannot reduce data center power
consumption and minimize SLA.

Buyya et al. [28] proposed an approach to mitigate the problem of
energy consumption in the cloud. This approach helps to reduce data
center energy consumption and enables low-cost cloud production. This
paper presents and implements an energy-aware resource allocation al-
gorithm based on a VM consolidation mechanism. Experimental results
show that this technique is efficient compared to other energy-aware
approaches; however, it introduces significant overhead. Moreover, this
approach does not consider the application types running on the VMs.

Liu et al. [29] presented a VM consolidation approach for a cloud
computing environment. The central concept was to minimize the
VMMs and thus minimize energy consumption in the cloud. The main
aspects achieved by the proposed approach were: reducing the possi-
bility of host overload, avoiding unwanted VMMs, and consequently
minimizing the total number of VMMs. The proposed method improves
the resource utilization of the host machines. It works very well under
different workload traces. Therefore, this approach satisfies the require-
ment of minimizing the cost of data centers for resource providers. This
technique’s prospects are beneficial for service providers and end-users.

Uddin et al. [30] correspond to the proposition of a server con-
solidation technique to increase the efficiency of pre-installed server
machines and their utility by shifting them to virtual server machines
to promote eco-friendly and energy-efficient cloud data servers. A novel
virtualized task scheduling algorithm evenly distributes tasks from
physical server machines to virtual machines. The experimental results
show that 30% could increase the efficient utilization of resources (on
the deployed VMs). Moreover, the study showed that the least amount
of servers used (i.e., up to 50%), resulting in significant energy savings.

Energy-Aware VM Consolidation (EVMC) [31] system implements a
resource parameter-based scheme to regulate overutilized hosts in a vir-
tual cloud environment. The comparisons of VMs and hosts determine
for analyzing overloaded hosts, while the Cumulative Available-to-
Total Ratio (CATR) uses to determine the underutilized hosts. Transfer
VMs to appropriate hosts; VM placement uses a criterion based on
normalized resource parameters of hosts and virtual machines. Several
tests were performed on many virtual machines using traces from
PlanetLab workloads to calculate the performance of VM consolidation.
The results show that the EVMC approach is on par with other well-
known methods by improving energy savings, SLA violations, and the
number of VM migrations.

The GradeCent algorithm [32] uses the Stochastic Gradient Descent
technique. This technique promotes an upper CPU utilization thresh-
old for detecting overloaded hosts using an actual CPU workload. In
addition, the authors proposed a dynamic VM selection algorithm,
i.e., Minimum Size Utilization (MSU), to select the VMs of an over-
loaded host for VM consolidation. Gradient and MSU maintain the
tradeoff between minimizing energy consumption and maximizing QoS
among the specified SLA objectives. The proposed algorithms focus on
increasing energy saving and violation of SLA by 23% and 27.5% on
average, respectively, compared to the baseline methods.

In [33], authors present a frequency-aware management technique
for controlling processors’ dynamic and static power in data centers
that operate virtual machines. A frequency-aware model capable of
determining the best frequency ratio for reducing processor energy
usage. The energy consumption of a data center may be enhanced
with this model in place by altering the processor’s rate to meet the
appropriate frequency ratio. This paper devises a management strategy
for intelligently adjusting the frequency ratio to save energy while

compliant with virtual machine frequency requirements. The result
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Table 1
Summary of literature review techniques.

Heuristics Strengths Weaknesses

Optimal Online Deterministic Algorithms
[4]

Minimize the total number of active hosts, live
migrations, and performance degradation

Minimize energy base only CPU utilization whereas neglects
memory, and disk storage

Dynamic Virtual Machines Consolidation
Algorithm [6]

Meet end-to-end performance requirements,
energy-efficient, cost-effective

CPU, memory and I/O intensive tasks are not considered
running on the VM

Energy-Efficient Task Scheduling
Algorithm [7]

Improve resource utilization, consider heterogeneous
tasks

SLA violations and temperature of host increase

Resource Aware Load Balancing Algorithm
[11]

Improve resource utilization, minimal scheduling
overhead, reduced makespan

SLA is not considered, not efficient for dependent tasks

Adaptive Energy-Aware Algorithm [12] Minimize SLA and consider migration overhead They do not consider the total amount of resource cost

An Energy-Efficient, QoS-Aware and
Cost-Effective Scheduling [13]

Maintain QoS, maximize resource, energy and cost
savings

Bandwidth and network traffic is also increasing

Energy Efficiency heuristic of VM
Migrations [15]

CPU and memory are considered for migration
purpose

Cooling system, network traffic, and migration cost are not
considered

Space Aware Best Fit Decreasing [21] Minimize resource waste, energy optimize VM placement base on CPU utilization whereas memory is not
considered

Energy-Aware Data Centre Resource
Allocation [28]

CPU and memory are considered energy efficiency
heuristic

Operational cost increase, neglect the application type running
in the VMs

Energy-Efficient and QoS DVM
Consolidation [29]

Reduce the amount of VMs migrations, low
operating costs, meet SLA

Neglects the essential factors like workload, type of host, and
temperature

Virtualized Task Scheduling Algorithm
[30]

Reduce time, infrastructure overhead, operational
costs

Required load balancing algorithm, including server and
network in the data center

Energy-aware VM consolidation [31] Improvement in Quality of Service, Meet SLA Performance degradation

GradeCent algorithm [32] Minimize live migration and execution time Neglects VM placement policy

Frequency-aware DVFS model [33] Energy efficiency of a data center maximize by
adjusting the processor’s frequency

Decreasing the CPU frequency will reduce the system
performance

Energy Optimization Algorithm [34] better performance in contrast to the interquartile
range and local regression algorithms, high
throughput

SLA violation
shows that a modest static power percentage leads to excellent energy-
saving performance after studying the relationships between frequency
ratio and energy usage.

This paper [34] presents an Energy Optimization Algorithm (EOA)
to optimize energy without losing performance. In this technique,
we identify the overload by looking at the whole workload usage of
the data center. With this method, the performance-to-power ratio
increase. Achieve high throughput; virtual machines must migrate less
frequently. This EOA’s primary purpose is to decrease the number of
live migrations while preserving performance.

In summary (see Table 1), most studies [4,6,12,13,21,28–30] target
to minimize energy consumption only in terms of CPU, while stor-
age is an important component of energy consumption in cloud-host
machines. Some of the proposed approaches [7,11,15,31–34] use VM
migration mechanisms from overloaded host machines to underloaded
hosts. However, these approaches do not define appropriate thresholds
(set at runtime) to detect whether host machines are overloaded or
underloaded. In addition, existing approaches do not consider the
types of applications running on the VMs, which can lead to incorrect
migration decisions that result in fewer energy savings and more SLA
violations.

3. Evaluation models and metrics

3.1. Power model

Several studies [4,6,13,25] mainly target CPU-intensive tasks to
model energy saving in a cloud data center. Memory, networking,
bandwidth, cooling systems, storage system, and other specialized com-
puting devices such as GPUs have significant energy requirements in
CC data centers. Currently, our study targets the most energy-intensive
resources in a cloud data center, namely CPU and memory. CPU
and memory consume almost 79% of the power in the cloud data
center [17], as shown in Fig. 1. Therefore, the proposed approach
targets CPU and memory most energy-intensive resources in a cloud.
4

Moreover, this study assumes two important cloud application classes:
memory-intensive and CPU-intensive. The proposed scheduling heuris-
tic considers the most prominent energy-hungry resources and guides
appropriate placement/mapping schemes for VMs. The total power
consumption of a physical server is composed of two components: 𝑃𝑠
and 𝑃𝑢, as shown in Eq. (1) [35,36]. 𝑃𝑠 is the fixed power consumption
of the server regardless of whether VMs are operating or not, and 𝑃𝑢 is
the dynamic power utilized by the VMs running on it.

𝑃(𝑡𝑜𝑡𝑎𝑙) = [𝑃𝑠 + 𝑃𝑢], (1)

As given in Eq. (2) [36], 𝑃𝑐𝑝𝑢 is the amount of power consumed by
the CPU in the physical host computer, while 𝑃𝑚𝑒𝑚𝑜𝑟𝑦 is the amount of
power consumed by the memory in the physical host machine.

𝑃(𝑢) = [𝑃𝑐𝑝𝑢 + 𝑃𝑚𝑒𝑚𝑜𝑟𝑦] (2)

Several recent studies [37–40] highlight that in a host machine,
almost 70% of the power is consumed when a host is idle compared
to other fully utilized hosts. This fact justifies that when an inactive
host turns off, it saves power significantly, resulting in excellent energy
efficiency. Therefore, the energy model [4] used (in our proposed VM
placement or scheduling heuristic) is the energy consumed by both
active and inactive hosts, as shown in Eq. (3) [28].

𝑃(𝑢) = [𝐾 × 𝑃𝑚𝑎𝑥𝑐𝑝𝑢 + (1 −𝐾) × 𝑃𝑚𝑎𝑥𝑐𝑝𝑢 × 𝑢]

+ [𝐾 × 𝑃𝑚𝑎𝑥𝑚𝑒𝑚𝑜𝑟𝑦 + (1 −𝐾) × 𝑃𝑚𝑎𝑥𝑚𝑒𝑚𝑜𝑟𝑦 × 𝑢], (3)

where 𝑃𝑚𝑎𝑥𝑐𝑝𝑢 is the maximum power consumption of a host (tak-
ing into account the computationally intensive tasks performed on
the CPUs) when it is fully utilized [37,38]. 𝑃𝑚𝑎𝑥𝑚𝑒𝑚𝑜𝑟𝑦 is the max-
imum power consumption of a host machine (taking into account
the memory-intensive tasks performed in memory) when it is fully
utilized [39,40]. There are several studies [37–40] show that a host
machine, although underutilized, also consumes a significant amount
of energy, about 70% compared to a busy host machine. Therefore,
the energy model [4] used represents this fact with the term K. The
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remaining host machines (machines that are not idle) are represented
by the term 1-K. The notation u represents the current CPU and memory
utilization of an idle host machine.

However, energy utilization may vary (i.e., increase or decrease) as
CPU and the memory usage of the busy host machines vary. Therefore,
the model emphasizes that CPU and memory utilization is a function of
time and is represented as the term 𝑢 = (𝑡). The busy host machines have
different energy requirements at various execution times, depending on
the percentage of CPU used during each execution. Therefore, the total
energy represented by the term E consumption of a host machine can
be interpreted by the integral power consumption function over some
time, as shown in Eq. (4) [28] of the model used.

𝐸 = ∫

∞

𝑡
𝑃 (𝑢(𝑡))𝑑𝑡 (4)

3.2. SLA violations

SLA is an agreement between cloud providers and users. This agree-
ment specifies the requirements, price, and QoS between the two
parties [41]. Meeting the quality of service requirements is essential for
cloud computing environments. These are usually formalized in terms
of an SLA that can determine properties such as minimum throughput
or maximum response time provided by the deployed system. The follow-
ng two matrices are used to measure the SLA level in the Infrastructure
s a service cloud model [28]:
(1): As shown in Eq. (5) [42], when an active host is being utilized

00%, then Service Level Agreement Violations Time per Active Host
SLATAH) can be represented as:

𝐿𝐴𝑇𝐴𝐻 = 1
𝑁

×
𝑁
∑

𝑖=1

𝑇𝑠𝑖
𝑇𝑎𝑖

(5)

One of the concerning aspects of SLATAH is that when a host serv-
ng an application is fully utilized (i.e., 100%), it limits the application
erformance [43]. The Eq. (5) [42] uses N as the number of hosts, 𝑇𝑠𝑖
s the total time that the host machine i experienced full utilization
i.e., 100%) leading to SLAV, 𝑇𝑎𝑖 is the total time that the host i is served
n the active state (i.e., serving VMs).
(2): The Performance Degradation caused by the VM Migration

PDM) as shown in Eq. (6) [42] can be formulated as follows:

𝐷𝑀 = 1
𝑀

×
𝑀
∑

𝑗=1

𝐶𝑑𝑗

𝐶𝑟𝑗
(6)

M is the number of VMs; 𝐶𝑑𝑗 is the estimate of Performance Degrada-
ion of VM j due to migrations (PDM), and 𝐶𝑟𝑗 is the total CPU capacity

requested by the VM j during its lifetime. The value of 𝐶𝑑𝑗 during the
experiments was estimated to be about 10% of the CPU workload in
Millions Instructions Per Second (MIPS) estimated (during all migra-
tions of the VM j). Both the SLATAH and PDM metrics are independent
and equally important to characterize the level of SLAV. Therefore,
in this study, we propose a hybrid metric that includes both VMM
and performance degradation as a result of host overloading [44]. The
combined metric was presented as service level agreement violations,
which is calculated as shown in Eq. (7) [28].

𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻 × 𝑃𝐷𝑀 (7)

3.3. Performance

By comparing the efficiency of the algorithms with the literature,
a new metric can be defined by calculating the product of energy
consumption along the SLAV. Energy (E) and SLAV, represented in
Eq. (8) [28,45].

𝐸𝑆𝑉 = 𝐸 × 𝑆𝐿𝐴𝑉 (8)
5
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Fig. 2. Cloud computing system architecture [17].

4. Proposed energy efficiency heuristic using VM consolidation
(EEHVMC)

The proposed technique is based on VM consolidation and place-
ment heuristic to conserve energy. Like a typical heuristic based mecha-
nism, the proposed Energy Efficiency Heuristic using VM Consolidation
(EEHVMC) employ various methods to produce solutions in a reason-
able time. The EEHVMC approach is designed generically and suits the
various classical cloud computing framework and the specialized cloud
platforms such as hadoop, spark, etc.

Cloud users can access applications anytime, anywhere via the
Internet. System Access Layer acts as an interface between consumers
and the cloud infrastructure. Energy-Aware Dynamic VM Consolida-
tion moves VM from one physical host to another host to minimize
power consumption. Multiple VM can fulfill accepted requests on a
single machine and dynamically power on and off. Physical Machines
create VM resources using hardware infrastructure to meet service
requests.

The EEHVMC approach uses CPU and memory to reduce power
consumption and SLAV. By defining two thresholds, 𝑇ℎ𝑖𝑔ℎ and 𝑇𝑙𝑜𝑤, the
hosts in the data centers classify into three main classes; Host Over-
Loaded (HOL), Host Medium-Loaded (HML), and Host Under-Loaded
(HUL). First, CPU and memory utilization of the data center’s host
compared with the defined threshold. If 𝐶𝑈𝐻𝐼 ≥ 𝑇ℎ𝑖𝑔ℎ ∥ 𝑀𝑈𝐻𝐼 ≥ 𝑇ℎ𝑖𝑔ℎ,
hen the host is overloaded. Some of the VMs on the HOL should
igrate to the HML to reduce power consumption. If 𝑇ℎ𝑖𝑔ℎ ≤ 𝐶𝑈𝐻𝐼 ≥
𝑙𝑜𝑤 ∥ 𝑇ℎ𝑖𝑔ℎ ≤ 𝑀𝑈𝐻𝐼 ≥ 𝑇𝑙𝑜𝑤 then the hosts are medium loaded and
ll VMs remain unchanged. In HUL, the proposed technique collects all
M and assigns them to HML to reduce the number of active hosts and
ut the remaining inactive hosts to sleep, as shown in Fig. 2.

.1. An adaptive utilization threshold

Thresholds represent dynamic values affected by the computing
nvironment (resources in the cloud data center). The inter-quartile

ange (IQR) defines the threshold and splits the data set into quartiles.
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Table 2
EEHVMC flow chart abbreviations.

Variables Description

HostList Total number of Host
VMList Total number of VM
𝐶𝑈𝐻𝐼 CPU Utilization of 𝑖th Host
𝑀𝑈𝐻𝐼 Memory Utilization of 𝑖th Host
𝐶𝑈𝑣𝑖 CPU Utilization of 𝑖th VM
𝑀𝑈𝑣𝑖 Memory Utilization of 𝑖th VM
𝑇ℎ𝑖𝑔ℎ High Threshold
𝑇𝑙𝑜𝑤 Low Threshold
HOL Host Over-Loaded
HML Host Medium-Loaded
HUL Host Under-Loaded
VM𝑖 First VM on a certain Host
VM𝑀 Last VM on a certain Host
CRU𝐻 Current Resource Utilization of Host
LRU𝐻 Less Resource Utilization of Host

The difference between a data set’s upper and lower quartile is the
following step to determine the interquartile range. First, arrange the
data in ascending order. The second step is calculating the ordered set’s
median (Q2). The third step is to separate the data in half and find
the median of the first half of the ordered set (lower quartile Q1) and
the median of the second half (upper quartile Q3). The final step is
𝐼𝑄𝑅 = 𝑈𝑝𝑝𝑒𝑟𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒−𝐿𝑜𝑤𝑒𝑟𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒. We present a strategy that uses
wo thresholds: an upper threshold and a lower threshold. The lower
hreshold calculates using the median of the first half of the ordered
ataset (host utilization). In contrast, the upper threshold calculates
sing the median of the second half of the ordered data set (host
tilization). For example, the proposed approach uses two thresholds
ℎ𝑖𝑔ℎ and 𝑇𝑙𝑜𝑤. When a host observes the CPU or memory utilization,
t compares them to the defined thresholds for that particular data
enter. If the threshold 𝑇ℎ𝑖𝑔ℎ exceeds, the proposed algorithm assumes
hat the current host machine is overloaded, which means that VM
igrations from that host machine are required. If the threshold is

elow the threshold 𝑇𝑙𝑜𝑤, the host machine of a particular data center
s underloaded, so VMs migrate to other hosts (see Table 2).

.2. CPU and memory intensive tasks

There are two types of applications that run on virtual machines:
PU and memory-bound applications. If most of an application’s ex-
cution time is used for compute-intensive operations, it is called a
PU-intensive application (i.e., the CPU resource is used in most cases).
he VM with the maximum CPU consumption (due to most computa-
ionally intensive tasks) is selected for migration. Of these selected VMs,
he VM with the ultimate memory consumption pattern is selected first.
ransferring a large amount of memory may consume more resources,
ut due to the host’s memory source limitation, the slower migration
ill likely result in more delays. For example, the new task might not
e processed due to insufficient memory, resulting in a higher rate of
ystem violations. Effectively migrating such a VM also frees up more
emory on the host, which can use to allocate new incoming tasks.

.3. Host over-loaded

If 𝐶𝑈𝐻𝐼 ≥ 𝑇ℎ𝑖𝑔ℎ ∥ 𝑀𝑈𝐻𝐼 ≥ 𝑇ℎ𝑖𝑔ℎ, then the host is overloaded. Each
virtual machine in a host is given CPU (𝐶𝑈𝑣𝑖) and memory utilization
(𝑀𝑈𝑣𝑖), then it is compared to the defined thresholds, e.g., 𝑇ℎ𝑖𝑔ℎ and
𝑇𝑙𝑜𝑤. If 𝐶𝑈𝑣𝑖 ≥ 𝑇ℎ𝑖𝑔ℎ ∥ 𝑀𝑈𝑣𝑖 ≥ 𝑇ℎ𝑖𝑔ℎ, then the VM is overloaded.

The proposed EEHVMC system detects which type of application
consumes the most power. Suppose most of the power consumption
is related to CPU-bound applications (VMs with high CPU utilization).
In that case, the VMs migrates to the HML that consumes fewer CPU
resources to reduce the CPU-intensive load from the overloaded and
underloaded hosts. After the VMs migrates, the host workloads are
6

updated accordingly. Similarly, the memory-intensive VMs migrates
to HML, which consumes fewer memory-related resources. The host
machine utilization in terms of memory usage is updated for both host
machines involved in the migration, as shown in Fig. 3.

4.4. Host medium-loaded

If 𝑇ℎ𝑖𝑔ℎ ≤ 𝐶𝑈𝐻𝐼 ≥ 𝑇𝑙𝑜𝑤 ∥ 𝑇ℎ𝑖𝑔ℎ ≤ 𝑀𝑈𝐻𝐼 ≥ 𝑇𝑙𝑜𝑤, then the host is
medium loaded, and all virtual machines remain unchanged.

4.5. Host under-loaded

As shown in Fig. 3, Host Under-Loaded (HUL) moves all VMs to
medium-loaded hosts to reduce the number of active hosts, and inactive
hosts are forced to low-power mode to reduce energy consumption.

4.6. Virtual machine selection and placement

In this study, we assume that the workload can be CPU or memory
intensive. A task is CPU intensive if its completion depends mainly
on the use of CPU resources, while a task that spends most of its
time interacting with memory (i.e., spends most of its time performing
load/store operations) is said to be memory intensive. In the Scheduling
model, the earliest finish time of all most significant jobs determines
by considering all VMs in the first stage. The second stage selects the
VM with the maximum CPU or memory utilization and assigns it to
the concerned VM in the host medium load. The ready time of virtual
machines updates after each schedule, and this process repeats until
all jobs execute successfully. We propose a new VMs selection method
named MRCU (Maximum ratio of CPU utilization to memory utiliza-
tion) to select VMs for migration when CPU-intensive tasks overload
a host. Let the CPU and memory utilization of i VM by 𝐶𝑢

𝑣𝑚 𝑎𝑛𝑑 𝑀𝑢
𝑣𝑚

respectively. Let CPU and memory utilization of any VM e be referred
by 𝐶𝑒

𝑣𝑚 𝑎𝑛𝑑 𝑀𝑒
𝑣𝑚 respectively. The MRCU technique chooses a VM v

from the host for migration if it fits the following criteria:

𝐶𝑢
𝑣𝑚

𝑀𝑢
𝑣𝑚

>
𝐶𝑒
𝑣𝑚

𝑀𝑒
𝑣𝑚

(9)

Eq. (9) [12] shows that the lower 𝑀𝑢
𝑣𝑚 value, the higher 𝐶𝑢

𝑣𝑚 value,
higher 𝐶𝑢

𝑣𝑚 / 𝑀𝑢
𝑣𝑚 value is. As a result, Eq. (9) chooses the VM with

the highest 𝐶𝑢
𝑣𝑚 / 𝑀𝑢

𝑣𝑚 value to migrate, because higher CPU usage
indicates more energy consumption. When transferring possible VMs,
the MRCU technique considers both the CPU and memory factors.
For example, if the server is overloaded with CPU -intensive tasks,
the power consumption of CPU (s) will account for most of the total
energy consumption compared to the other components of the host
machine. Therefore, the algorithm selects a VM with the highest CPU
value for migration, since a higher CPU workload means higher power
consumption (the objective is to save energy).

Assuming the tasks are memory intensive, the virtual machine with
the highest memory use selects for migration. Although migrating
extensive memory data may consume more resources because the host’s
memory source is overloaded, delayed migration will likely cause more
significant damage. For example, the new task may not be received
due to insufficient memory, increasing the rate of system corruption.
Timely migration of such virtual machines can also free up additional
RAM on the host, which can use for the new task. The scheduling model
shifts the memory usage of the overloaded host and sends these tasks to
HML, which uses less memory in HML, and then changes the memory

resources in the medium-loaded host.
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Fig. 3. Energy efficiency heuristic using vm consolidation.
4.7. EEHVMC algorithm

The proposed methodology reduces both power consumption and
Service Level Agreement (SLA). The ‘‘vmlist’’ is a collection of VMs
in the physical host and the ‘‘hostlist’’ is a list of hosts in the cloud
data center (see Algorithm 1). Thresholds 𝑇ℎ𝑖𝑔ℎ and 𝑇𝑙𝑜𝑤 have been set,
which divide the host into three main classes (see Algorithm 1).

EEHVMC return MigrationMap scheme in which VM placement
policy scheme is saving. When the VM migrates, it checks the next VM
from HOL (lines 10–17, Algorithm 1).

If 𝑇ℎ𝑖𝑔ℎ ≤ 𝑐𝑈𝐻𝑖 ≥ 𝑇𝑙𝑜𝑤 ∥ 𝑇ℎ𝑖𝑔ℎ ≤ 𝑚𝑈𝐻𝑖 ≥ 𝑇𝑙𝑜𝑤, then it will be
considered as HML. In HML, there is no requirement for any migration.
All of the VMs on that host are left undisturbed (lines 18–19, Algorithm
1).

If both conditions are not met, the host is classified as underutilized
(lines 20–21, Algorithm 1). A loop is executed in HUL to determine the
CPU and memory usage of this VM (lines 22, Algorithm 1). To save
energy wasted by inactive hosts in the HUL (lines 23–25, Algorithm
1), the algorithm collects all VM from the HUL and moves them to the
HML to reduce the number of active hosts and shut down the remaining
empty hosts. EEHVMC return MigrationMap scheme in which VM
placement policy scheme is saving. When the VM migrates, it checks
the next virtual machines from HUL (lines 26–29, Algorithm 1) (see
Table 3).

‘‘Hostlist’’ is a collection of hosts stored in variable m, while vm-
list is a collection of VMs stored in variable n (lines 1–2, Algorithm
1). A loop is executed in the variable ‘‘hostlist’’ (line 3, Algorithm 1) and
determines CPU and the memory usage of that host (lines 4, Algorithm
1). If CPU or the memory usage is greater than the 𝑇 values, then it
7

ℎ𝑖𝑔ℎ
Table 3
EEOVMS algorithms abbreviations.

Variables Description

Hostlist Total number of Host
vmlist Total number of VM
VM𝑖 First VM on a certain Host
VM𝑀 Last VM on a certain Host
𝑐𝑈𝐻𝐼 CPU Utilization of 𝑖th Host
𝑚𝑈𝐻𝐼 Memory Utilization of 𝑖th Host
𝑐𝑈𝑣𝑗 CPU Utilization of 𝑗th VM
𝑚𝑈𝑣𝑗 Memory Utilization of 𝑗th VM
𝑇ℎ𝑖𝑔ℎ High Threshold
𝑇𝑙𝑜𝑤 Low Threshold
vmOverLoaded Virtual Machine Over-Loaded

is a HOL (lines 5–6, Algorithm 1). A loop is made in the ‘‘vmlist’’ (line
7) and determines CPU and the memory utilization of that VM (lines
8, Algorithm 1). It is a VM over-loaded (lines 9, Algorithm 1) if CPU
or the memory usage is above the 𝑇ℎ𝑖𝑔ℎ values. A migration scheme is
mapped that sends a VM from HOL to HML.

4.8. Algorithm complexity

We store the host and VM list in a separate data structure that takes
𝑂(𝑛𝑙𝑜𝑔𝑛) time. We retrieve the virtual machine from the data structure
and check its load for each host, which also requires constant time
complexity. Then we select the VMs stored in the structure to distribute
the load. This also takes 𝑂(𝑛) time, where n is the number of VMs. So
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input : hostlist, vmlist, 𝑇ℎ𝑖𝑔ℎ, 𝑇𝑙𝑜𝑤
output: migration scheme

1 𝑚 ← 𝑔𝑒𝑡𝐶𝑜𝑢𝑛𝑡(ℎ𝑜𝑠𝑡𝑙𝑖𝑠𝑡);
2 𝑛 ← 𝑔𝑒𝑡𝐶𝑜𝑢𝑛𝑡(𝑣𝑚𝑙𝑖𝑠𝑡);
3 for 𝑖 ← 1 to 𝑚 do
4 𝑐𝑈𝐻𝑖 ← 𝑔𝑒𝑡𝑐𝑈𝐻𝑖(ℎ𝑜𝑠𝑡) and 𝑚𝑈𝐻𝑖 ← 𝑔𝑒𝑡𝑚𝑈𝐻𝑖(ℎ𝑜𝑠𝑡);
5 if 𝑐𝑈𝐻𝑖 ≥ 𝑇ℎ𝑖𝑔ℎ||𝑚𝑈𝐻𝑖 ≥ 𝑇ℎ𝑖𝑔ℎ then
6 ℎ𝑜𝑠𝑡𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑 ← 𝑔𝑒𝑡𝐻𝑜𝑠𝑡𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑;
7 for 𝑗 ←1 to 𝑛 do
8 𝑐𝑈𝑣𝑗 ← 𝑔𝑒𝑡𝑐𝑈𝑣𝑗 (𝑣𝑚) and 𝑚𝑈𝑣𝑗 ← 𝑔𝑒𝑡𝑚𝑈𝑣𝑗 (𝑣𝑚);
9 if 𝑐𝑈𝑣𝑗 ≥ 𝑇ℎ𝑖𝑔ℎ||𝑚𝑈𝑣𝑗 ≥ 𝑇ℎ𝑖𝑔ℎ then
10 𝑣𝑚𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑 ← 𝑔𝑒𝑡𝑉 𝑚𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑;
11 𝑣𝑚𝑇 𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ← 𝑔𝑒𝑡𝑉 𝑚𝑇 𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒(ℎ𝑜𝑠𝑡𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑);
12 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ←

𝑔𝑒𝑡𝑁𝑒𝑤𝑉 𝑚𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑣𝑚𝑠𝑇 𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒);
13 return 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝;
14 else
15 𝑣𝑚++;
16 end
17 end
18 else if 𝑇ℎ𝑖𝑔ℎ ≤ 𝑐𝑈𝐻𝑖 ≥ 𝑇𝑙𝑜𝑤||𝑇ℎ𝑖𝑔ℎ ≤ 𝑚𝑈𝐻𝑖 ≥ 𝑇𝑙𝑜𝑤 then
19 ℎ𝑜𝑠𝑡𝑀𝑒𝑑𝑖𝑢𝑚𝐿𝑜𝑎𝑑𝑒𝑑 ← 𝑎𝑑𝑑𝑇 𝑜𝐻𝑜𝑠𝑡𝑀𝑒𝑑𝑖𝑢𝑚𝐿𝑜𝑎𝑑𝑒𝑑;
20 else
21 ℎ𝑜𝑠𝑡𝑈𝑛𝑑𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑 ← 𝑔𝑒𝑡𝐻𝑜𝑠𝑡𝑈𝑛𝑑𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑;
22 for 𝑘 ←1 to 𝑛 do
23 𝑐𝑈𝑣𝑘 ← 𝑔𝑒𝑡𝑐𝑈𝑣𝑘(𝑣𝑚) and 𝑚𝑈𝑣𝑘 ← 𝑔𝑒𝑡𝑚𝑈𝑣𝑘(𝑣𝑚);
24 𝑣𝑚𝑇 𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ← 𝑔𝑒𝑡𝑉 𝑚𝑇 𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒(ℎ𝑜𝑠𝑡𝑈𝑛𝑑𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑);
25 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ← 𝑔𝑒𝑡𝑁𝑒𝑤𝑉 𝑚𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑣𝑚𝑠𝑇 𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒);
26 return 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝;
27 end
28 end
29 end

Algorithm 1: Energy efficiency heuristic using vm consolidation

e check each host from the list of m number of host machines, and
then select a VM for each host that exceeds the threshold of n number
of VMs. Thus, the other load steps consume the constant time; hence,
the total complexity of the proposed approach is 𝑂(𝑛𝑙𝑜𝑔𝑛) + 𝑂(𝑚 × 𝑛),
which can be written as 𝑂(𝑚×𝑛), where m is the number of hosts and n
is the number of VMs. If 𝑚 = 𝑛, then the time complexity is 𝑂(𝑛2).

5. Experimental results and analysis

This paper’s approaches belong to heuristics; A heuristic technique
is an approach to problem-solving that uses a practical method or
various shortcuts to produce solutions. State-of-the-art (SOTA) Deep
Neural Networks (DNNs) are the best patterns you can use for any
specific task. A DNN can recognize SOTA based on its speed, precision,
or interest metric. It is costly to train due to complex data models.
Furthermore, deep learning requires expensive GPUs and hundreds of
machines. It expands the users’ cost as the number of VMs migration
rises [46]. The proposed approach EEHVMC minimizes the number of
VMs migration, so the SLAV and cost decrease. These approaches are
part of the cloud simulator: DVFS, IQR_MC, IQR_MMT, MAD_MC, and
MAD_MMT. The common thing in those approaches is that they only
use CPU utilization and neglect other parts of power consumption.
The proposed heuristic approach uses a cloud simulator to minimize
power consumption. Hosts, MIPS, Cores, RAM, and other aspects of
the parameter are the same as cloud simulator, and then we compare
them with related techniques. The Energy Efficiency Heuristic Virtual
Machine Consolidation (EEHVMC) testing results were compared to the
other VM consolidation strategies such as Energy optimize algorithms &
DVFS [13], IQR_MC [4], IQR_MMT [4], MAD_MC [6], MAD_MMT [6],
8

nd SABFD [21].
Table 4
Configuration of the simulation environment.

Simulator/version CloudSim version 3.0.2
Datasets Synthetic – I [4], GoCJ [47]
Energy optimize algorithms DVFS [13], IQR_MC [4], IQR_MMT [4], MAD_MC

[6], MAD_MMT [6], SABFD [21]
Performance parameters Energy consumption, VMs migration, PDM,

Average SLA, Execution time
Total cloud host machines 800
Total Virtual Machines 800 heterogeneous VMs
Total simulation limit 4800 s

Table 5
Workload characteristics.

Date Number of virtual machines

03/March/2011 1052
06/March/2011 898
09/March/2011 1061
22/March/2011 1516
25/March/2011 1078
03/April/2011 1463
09/April/2011 1358
11/April/2011 1233
12/April/2011 1054
20/April/2011 1033

5.1. Experimental setup

CloudSim Toolkit [42], a novel simulation framework, was selected
as the simulation platform for the CC environment. In addition, using
CloudSim offers two advantages: It supports on-demand resource pro-
visioning and management, as well as virtual environment modeling
and energy-aware simulation, including the ability to simulate service
applications with dynamic workloads [48,49]. Table 4 shows the setup
details for the simulation environment used. The experiments are con-
ducted with 800 VMs hosted on 800 host machines within a cloud
better to understand the concept of VMM and energy efficiency.

5.1.1. Realistic dataset based on PlanetLab
The PlanetLab dataset [4] enables the behavior modeling of Cloud

system components, including VMs, data centers, and resource provi-
sioning policies.

1. Hosts Features: The extensions used in the current study were
built using the CloudSim toolkit (version 3.0.3). The cloud con-
sisted of heterogeneous hosts, some HP ProLiant G4 hosts, and
the others HP ProLiant G5 hosts. HP ProLiant G4 hosts consist of
1860 MIPS, 2 CPU cores, and 4 GB of RAM, whereas HP ProLiant
G5 hosts consist of 2860 MIPS, 2 CPU cores, and 4 Gb of RAM
based on [4].

2. Virtual Machines Features: The functionalities of the VMs are
based on Amazon EC2 instance models [50]. CPU high, large,
small, and micro instances are the four categories of VMs used.
CPU high instance consists of 2500 MIPS and 870 GB of RAM,
whereas CPU large instance consists of 2000 MIPS and 1740 GB
of RAM. Similarly, CPU small instance consists of 1000 MIPS and
1740 GB of RAM, whereas the CPU micro instance consists of
500 MIPS and 613 GB of RAM based on [4].

3. Workload Characteristics: The experiments were carefully con-
ducted using an existing system’s workload traces to produce
more realistic results. Data for the tests came from Planet Lab’s
CoMon project [51]. In addition, thousands of VMs from servers
at over 500 sites worldwide use data on CPU consumption.
Table 5 lists the characteristics of the dataset in detail [4].
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Table 6
Google cloud jobs dataset.

Type of jobs MI % of Jobs

Type of jobs MI % of Jobs
Small 15k–55k 20
Medium 59k–99k 40
Large 101k–135k 30
Extra-large 150k–337.5k 4
Huge 525k–900k 6

5.1.2. Gocj dataset
The GoCJ dataset [47] contains a variety of jobs. Table 6 shows the

different categories of tasks in the GoCJ dataset i.e., small, medium, big,
extra-large, and huge. It also shows the characteristics and specifications
of the host and VM that run in the GoCJ dataset.

5.1.3. Benchmark heuristics
The following is an overview of the other prominent approaches

used for experimental evaluation.

• DVFS [13]: Dynamic Voltage Frequency Scaling is a method to
reduce power consumption by automatically changing the fre-
quency and voltage;

• IQR_MC [4]: InterQuartile Range is utilized to detect overloading
on the host, and the Maximum Correlation policy is utilized for
migration;

• IQR_MMT [4]: InterQuartile Range is utilized to detect overloading
on the host, and the Minimum Migration Time policy is utilized for
migration;

• MAD_MC [6]: Median Absolute Deviation is utilized to indicate
overload on the host, and the Maximum Correlation policy is
utilized for migration [44].

• MAD_MMT [6]: Median Absolute Deviation is used to identify
overloading on the host, and the Minimum Migration Time policy
is utilized for migration purpose;

• SABFD [21]: This method selects a VM for migration that has the
highest CPU usage and is placed in the host with the fewest MIPS.

5.1.4. Performance parameters
The following performance metrics used to evaluate the outcomes

of the proposed approach:

• Energy Consumption kWh: Data centers are huge buildings
consisting of many physical machines that store and retrieve data.
A data center consumes over 91 billion kWh of electricity [5];

• VM Migrations: Transferring a Virtual Machine (VM) from one
physical host to another. VM Manager keeps track of VMs in the
cloud and their availability;

• Performance Degradation caused by the Migration: PDM
refers to the general performance degradation that occurs in VMs
as a result of live migrations;

• SLA Violations: The final SLAV simplify by lowering one of the
parameters, PDM, or SLATAH;

• Execution Time: Execution time is when a task execution takes
from start to finish.

5.2. Experimental results

The simulations compare DVFS [13], SABFD [21], and energy-
aware strategies (e.g. IQR, MAD) [4,6]. The proposed research is com-
pared with the most popular algorithms, such as IQR, MAD and VM
selection techniques, MC [4] and MMT [6]. The proposed algorithm,
EEHVMC, checks and calculates the host’s threshold based on CPU and
memory usage. Compared to the previous techniques, the proposed
algorithm EEHVMC consumes the least amount of energy.
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5.3. Realistic PlanetLab dataset

The characteristic of hosts and VMs are specified in host and virtual
machines features part. Fig. 4 shows that EEHVMC (24.34 kWh) has the
lowest energy usage, followed by DVFS (29.79 kWh), IQR_MC (27.06
kWh), IQR_MMT (27.29 kWh), MAD_MC (26.49 kWh), MAD_MMT
(26.64 kWh), and SABFD (28.38 kWh). The percentage improvement
of the proposed approach EEHVMC compared to the other approaches
followed by DVFS (22.39%), IQR_MC (11.18%), IQR_MMT (12.12%),
MAD_MC (8.83%), MAD_MMT (9.45%), and SABFD (16.50%).

The Dynamic Virtual Machine Consolidation (DVMC) method shows
that as the number of VM migrations increases, so does the cost.
Consequently, we need to reduce the number of VM migrations. DVFS
approach automatically changes the voltage and frequency to reduce
processor heat generation and lower power consumption. DVFS is a
frequency-aware model capable of determining the best frequency ratio
for reducing processor energy usage. DVFS approach does not include
the VM migration process; therefore, as shown in Figs. 5 and 10, their
result is 0, but the power consumption is too much compared to other
approaches as shown in Figs. 4 and 9. As shown in Fig. 5, the EEHVMC
strategy results in fewer migrations compared to the other related
approaches, which are based on migration-based mechanisms. Regard-
ing VM migration, our approach is better than IQR_MC by 13.13%,
IQR_MMT by 9.67%, MAD_MC by 8.38%, MAD_MMT by 5.98%, and
SABFD by 16.12%.

Performance Degradation caused by VMs migration (PDM) increases
if the number of VMs migration rises. Therefore, we need to care about
it that the migration will remain low, so PDM remains to decrease;
the DVFS approach is not part of VM migration, so PDM remains 0,
as shown in Figs. 6 and 11. The proposed EEHVMC approach reduces
the number of live migrations while lowering PDM. Fig. 6 shows that
EEHVMC has the least performance degradation (i.e., 0.14) compared
with IQR_MC (0.18), IQR_MMT (0.17), MAD_ MC (0.17), MAD_MMT
(0.16), and SABFD (0.19). Our approach as per PDM is up by 28.57%
than IQR_MC, 21.43% than IQR_MMT, 21.43% than MAD_MC, 14.29%
than MAD_MMT and 35.71% than SABFD.

Service Level Agreement Violations increase if one parameter, PDM
or SLATAH, grows. Compared to other methods, DVFS does not require
any VMs migration, so as a result,

PDM remains 0, so it does not affect any SLAV process. As shown in
Figs. 7 and 12, the development of DVFS is 0 compared to the other ap-
proaches. Fig. 7 illustrates that EEHVMC reduces SLA violations when
compared to other methods. The figure clearly shows that EEHVMC
has the lowest SLA violations (i.e., 9.01%) compared with IQR_MC
(10.23%), IQR_MMT (10.12%), MAD_MC (10.1%), MAD_MMT (10%),
and SABFD (10.89%).

DVFS takes less time than other approaches, which is why VM
migration executes early. But the difference is it takes more power
consumption, as shown in Figs. 4 and 9. Fig. 8 shows that the proposed
approach EEHVMC requires less execution time compared to other
approaches. As per Execution time, our approach is better by 5.284%
than IQR_MC, 5.186% than IQR_MMT, 4.228% than MAD_MC, 2.700%
than MAD_MMT, and 6.948% than SABFD.

5.4. GoCJ dataset

The GoCJ dataset comprises different task sizes such as small,
medium, large, extra large, and huge generated using dynamic task length
hresholds. The GoCJ task types [47] are listed in Table 6.

The EEHVMC uses the least amount of power (i.e., 16.23 kWh)
ollowed by DVFS (20.75 kWh), IQR_MC (18.9 kWh), IQR_MMT (18.79
Wh), MAD_MC (17.58 kWh), MAD_MMT (17.23 kWh), and SABFD
19.23 kWh), as shown in Fig. 9. With regards to energy consumption,
ur approach is higher than DVFS by 27.85%, IQR_MC by 16.45%,
QR_MMT by 15.77%, MAD_MC by 8.32%, MAD_MMT by 6.16%, and
ABFD by 18.48%.
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Fig. 4. Energy consumption — synthetic dataset.

Fig. 5. Virtual machine migrations — synthetic dataset.

Fig. 6. Performance degradation — synthetic dataset.

Fig. 7. Service level agreement violations — synthetic dataset.
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Fig. 8. Execution time — synthetic dataset.
Fig. 9. Energy consumption — GoCJ dataset.
Fig. 10. Virtual machine migrations — GoCJ dataset.
The DVMC technique shows that as the number of VM migrations
increases, the cost also increases. As shown in Figs. 5 and 10, DVFS
approach does not include the VM migration process; therefore, their
result is 0. EEHVMC requires fewer VM migrations than the other
approaches, as shown in Fig. 10.

In respect of VM migration improvement percentage of our ap-
proach is 100% by DVFS, 12.98% by IQR_MC, 11.56% by IQR_MMT,
7.48% by MAD_MC, 3.57% by MAD_MMT, and 16.54% by SABFD.

PDM will increase if the quantity of VMs migration rises. Therefore,
we want to care approximately that the migration will continue to
be low, so PDM stays decrease; the DVFS technique is not always a
part of VM migration, so PDM remains 0, as proven in Figs. 6 and
11. Performance degradation is mitigated by EEHVMC reducing the
number of live migrations.

EEHVMC suffers the least performance degradation (i.e., 0.15) com-
pared to IQR_MC (0.18), IQR_MMT (0.17), MAD_ MC (0.16 kWh),
11
MAD_MMT (0.16), and SABFD (0.19), as shown in Fig. 11. In connec-
tion with PDM our approach is better than 20% by IQR_MC, 13.33%
by IQR_MMT, 6.67% by MAD_MC, 6.67% by MAD_MMT and 26.67%
by SABFD.

SLAV remains 0 in DVFS because there is no involvement of Per-
formance caused by VM Migration (PDM), as shown in Figs. 7 and
12. Fig. 12 shows that the energy efficiency heuristic using virtual
machine consolidation (10.2%) has the lowest SLA violations compared
to IQR_MC (10.9%), IQR_MMT (10.8%), MAD_ MC (10.6%), MAD_MMT
(10.6%), and SABFD (10.89%).

Compared to other methods, DVFS takes less time to execute. This is
because DVFS does not provide for migrations, which results in better
execution performance, but also consumes more energy.

EEHVMC takes less time to execute compared to the other methods.
The reason is that less PDM and VMM are required, so it runs faster. As
shown in Fig. 13, the proposed approach takes less time to execute than
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Fig. 11. Performance degradation — GoCJ dataset.
Fig. 12. Service level agreement violations — GoCJ dataset.
Fig. 13. Comparison of execution time.
alternative strategies. Regarding execution time, our approach is up by
9.94% than DVFS, 10.24% than IQR_MC, 6.71% than IQR_MMT, 4.59%
than MAD_MC, 0.84% than MAD_MMT, and 12.52% than SABFD.

5.5. Result and discussion

The fundamental concept behind the proposed technique
‘‘EEHVMC’’ is to classify cloud hosts based on CPU and memory usage.
The host classifies into three main classes based on the two thresholds
of CPU and memory usage: HOL, HML, and HUL. EEHVMC has the low-
est energy consumption compared to DVFS, IQR_MC, IQR_MMT, MAD_
MC, MAD_MMT, and SABFD, as shown in Figs. 4 and 9. According to
the DVMC, the VM migration cost increases with the number of VM
migrations. Therefore, the technique that requires fewer VM migrations
leads to better computational performance. The results presented in
the previous section (e.g., Figs. 5 and 10) show that the proposed
12
EEHVMC technique requires fewer VM migrations and saves more
energy compared to the related approaches.

If the number of Virtual Machine Migration (VMM) increases, Per-
formance Degradation caused by VM migration (PDM) will increase.
The proposed technique has the most negligible performance degrada-
tion compared to other approaches, as shown in Figs. 6 and 11. The
final SLAV simplifies [4] by lowering one of the parameters, PDM or
SLATAH.

𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻 × 𝑃𝐷𝑀 (10)

Moreover, the proposed approach reduces the frequency of migra-
tions and PDM, resulting in a low SLAV. EEHVMC has the lowest
SLAV compared to the other techniques, as shown in Figs. 7 and 12.
Compared to the other methods, DVFS takes less time to execute.
The reason is that there is no VMM or PDM, so it runs faster than
the different approaches (mentioned in the previous section). Figs. 8
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and 13 show that the proposed approach takes less time to execute
than the alternative techniques such as IQR_MC, IQR_MMT, MAD_ MC,
MAD_MMT, and SABFD.

6. Conclusions

People and businesses worldwide use cloud computing to manage
and store data over the Internet. As cloud computing data centers
have become more prevalent, the power consumption of the host and
other infrastructures has increased. There is a need to reduce power
consumption without compromising the Quality of Service. This paper
presents the Energy Efficiency Heuristic with Virtual Machine Consol-
idation (EEHVMC), which reduces power consumption while reducing
SLA violations. The host classifies into three main categories based on
the two thresholds: Host Over-Loaded, Host Medium-Loaded, and Host
nder-Loaded. Over-loaded hosts consume more energy than other hosts

n the data center, so specific virtual machines must move from over-
oaded to medium-loaded hosts. All VMs that move from under-loaded
o medium-loaded and empty hosts are put into power-saving mode to
educe the number of active hosts. Compared to state-of-the-art, the
EHVMC process minimizes power consumption and SLA violations.
PU and memory are the hosts’ components used to consume power.
till, other parts are used to consume energy, like network bandwidth,
torage, cooling overhead, and power overhead. We will minimize
ower consumption by considering these parts’ network bandwidth,
PU, storage, cooling overhead, and power overhead in future work.
he proposed approach only finds CPU and memory-intensive tasks in
he virtual machine. There are other tasks as well which are part of
irtual machines, like I/O intensive tasks. Suppose the I/O intensive
asks consume more power than the other parts, mainly CPU and
emory. In that case, it will not consider this task. We plan to consider

/O intensive tasks to reduce power consumption at the data center
evel. Hadoop and Spark are models that use in CC. EEHVMC does not
ollow any of these models. In the future, we can use this approach in
adoop or the Spark model.
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