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Abstract
Consumer demand for automobiles is changing because of the vehicle’s dependability and utility, and the superb design

and high comfort make the vehicle a wealthy object class. The creation of object classes necessitates the creation of more

sophisticated computer vision models. However, the critical issue is image quality, determined by lighting conditions,

viewing angle, and physical vehicle construction. This work focuses on creating and implementing a deep learning-based

traffic analysis system. Using a variety of video feeds and vehicle information, the developed model recognizes, cate-

gorizes, and counts vehicles in real-time traffic flow. The dynamic skipping method offered in the developed model speeds

up the processing of a lengthy video stream while ensuring that the video picture is delivered accurately to the viewer. In

real-time traffic, standard vehicle retrieval may assist in determining the make, model, and year of the vehicle. Previous

MobileNet and VGG19 models achieved F-values of 0.81 and 0.91, respectively. However, the proposed solution raises

MobileNet’s frame rate from 71.2 to 89.17 and VGG19’s frame rate from 48.2 to 59.14. The method may be applied to a

wide range of applications that require a dedicated zone to monitor real-time data analysis and normal multimedia

operations.
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1 Introduction

With 5G technology, current innovative vehicles are net-

worked and distributed systems creating the Internet of

Vehicles (IoV). IoV provides autonomous driving, real-

time video analytics, and traffic and vehicle management.

Increase traffic efficiency, driving safety, and passenger

comfort. In-vehicle processing power and interconnect

capacity between vehicle and cloud are limited for IoV

applications. Edge processing leverages processing

resources near IoT nodes to deliver services quickly and

with fewer cloud visits, which can be time-consuming or

unreliable. Edge computing enables low-latency service

delivery for safety- and mission-critical applications such

as autonomous driving and non-critical applications such

as infotainment.

Intelligent Transportation Systems (ITS) use AI to

manage and control traffic. ITS has attracted interest from

the transportation industry and other businesses and orga-

nizations because it can solve transportation problems.

With Big Data and the Internet of Things (IoT), access to

big traffic data, including photographs, videos, and texts, is

becoming easier. Big Data processing and data analysis

using video and trajectory data can help model human

behavior, analyze traffic routes, project traffic patterns and

trends, and explore hotspots. Due to the unique character-

istics of multimedia data, the complexity of human

behavior, and the diversity of ITS trajectory patterns, such
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as spatiotemporal attributes, cognitive and behavioral

modeling, and evidence-based decision-making, several

problems arise. Future research needs more inventive

methods that depend on ITS application conditions [1]. ITS

is steeped in multimedia cognitive computing. In today’s

world of Deep Learning and multimedia Big Data, ITS

needs breakthrough multimedia cognitive computing

approaches and applications.

Figure 1 shows the communication mechanism of the

Internet of Drones (IoD) (V2I: vehicle to infrastructure,

V2V: vehicle to vehicle, I2I: infrastructure to infrastruc-

ture, UAV: unmanned aerial vehicle). The communication

shows that the Internet of Things data volume flows

through V2V or V2I. It shows the extraction of video

content near the smart Internet of Things network. The V2I

receives and sends UAV data to the I2I. This information is

sent to V2V in different scenarios. The multimedia data is

used to provide live video feeds to data centers. After

storing and processing the data, management can act

quickly under various conditions. With 5G and 6G net-

works, the Internet of Drones (IoD) has become critical for

surveillance applications. Smart traffic monitoring requires

urban innovations, vehicle classification, and traffic data.

They provide information to traffic management for law

enforcement, crime prevention and control, increasing

traffic safety, better planning of traffic infrastructure, and

minimizing congestion and accidents.

This paper applies state-of-the-art deep learning meth-

ods to solve real-world difficulties in fine-grained vehicle

categorization. Fine-tuning pre-trained CNNs has led to

outstanding performance on several challenging classifi-

cation tasks in computer vision. However, pre-trained

models such as AlexNet and VGG are unsuitable for real-

time applications due to their huge memory requirements

and lengthy training procedures. Due to MobileNet’s sim-

plified design, we chose a smaller CNN architecture with

incredibly few training parameters, execution times, and

memory requirements. Extensive testing on a huge and

diverse dataset has shown promising results, suggesting

state-of-the-art deep learning techniques that can be used

for fine-grained categorization of vehicles. In addition,

there is a lack of qualitative data on car manufacturers,

types of automobile models, and generations of car models.

We have compiled a large and diverse dataset based on

automakers, the types of models available, and the year

each model was first introduced. Researchers in academia

are using this dataset to develop and verify various com-

puter vision and deep learning approaches. Below are some

of the specific contributions made by the paper:

UAV

v2I

I2I v2v

Monitoring
v2v

Fig. 1 The overview of the

Multi-feed scenario
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1. A hierarchical feature learning strategy with multi-

level vehicle type identification is accomplished by

embedding features and semantic information.

2. Improve memory-efficient and dynamic frame-skip-

ping for multiple feed object detection.

3. Extensive experiments reveal that the developed model

outperforms existing state-of-the-art approaches.

The remainder of the paper is organized as follows: Sect. 2

reviews current methods for fine-grained vehicle classifi-

cation described in the literature. Section 3 presents the

proposed method, dataset, experimental protocol, and

evaluation metrics. Section 4 presents the experimental

results as well as observations, followed by a conclusion in

Sect. 5. Finally, a section on future directions this research

may take finalizes the paper in Sect. 6.

2 Related work

Deep learning, often referred to as DL, has already sig-

nificantly increased the power of computer vision. This is

the result of recent developments in GPU technology,

enormous amounts of training data, and algorithmic

improvements. Recent applications of advanced deep

learning algorithms for feature extraction [2], and object

identification in computer vision difficulties include image

and video classification and forensic analysis. The use of

advances in machine vision and artificial intelligence has

also helped improve law enforcement on the road. Machine

vision and machine learning techniques have been devel-

oped for use in traffic surveillance, activity monitoring,

traffic anomaly detection, driver assistance, and other

traffic management approaches [3]. Several attempts have

been made to overcome the barriers associated with con-

ventional vehicle detection and categorization challenges.

Autonomous license plate recognition (ALPR) and human

inspection-based vehicle detection technologies fall short

of real-time requirements. Identifying and classifying

automobiles using these approaches takes time and effort

due to the wide range of vehicle brands, models, and

decades.

The rise of smart cities has heightened interest in fine-

grained vehicle categorization. Several problems exist in

fine-grained vehicle categorization [4], including intra-

class similarity, viewing angles, and illumination. Several

initiatives have been started recently. Traffic control, traffic

flow analysis, traffic composition, and other operations are

part of an intelligent transportation system (ITS). Many

research studies have utilized CNN to classify vehicles [5].

Using preprocessed pictures and data augmentation, In [6]

detects traffic congestion using a dataset of approximately

30,000 photographs. Traficant, based on residual learning,

is given for traffic congestion detection.

Deep learning has already been shown to significantly

improve the performance of computer vision techniques

due to technological advances such as graphics processing

units (GPU), the availability of large amounts of training

data, and algorithm optimization [7]. Recent applications

of the method known as deep learning include feature

extraction, object recognition, and categorization. Traffic

regulation has also benefited from recent developments in

artificial intelligence (AI) and machine vision technology.

Various methods of image processing and machine learn-

ing have been developed for the purposes of traffic moni-

toring, activity monitoring, traffic anomaly detection,

driver assistance, traffic behavior analysis, monitoring, and

traffic management [8, 9]. In response to the growing

concern about road safety, several approaches have been

proposed to circumvent the challenges posed by traditional

vehicle identification and categorization methods. Tradi-

tional methods of vehicle identification and categorization,

such as human inspection or automatic license plate

recognition, are unable to keep pace with the demands of

real-time operations. Vehicle identification and catego-

rization is a process that is both time consuming and labor

intensive due to a large number of different vehicle types,

models, and generations. These tactics complicate the

process.

Deep learning was also used to classify flowers [10],

pets [11], and automobiles [4]. With the growth of smart

cities, the emphasis has switched to fine-grained vehicle

categorization in recent years. Several hurdles to fine-

grained vehicle classification include significant intra-class

similarity, uncontrolled perspectives, and variable lighting

conditions. In recent years, many initiatives have been

started in this area. Wang et al. [12] created a deep learning

system for recognizing vehicle parts based on their loca-

tion. A localization network provides segmentation masks

or component locations for improved categorization. This

model learns discriminative region attention and regional

representations of characteristics at different sizes without

requiring annotated training regions. Lam et al. [13] pre-

sented a search-based framework for fine-grained recog-

nition in which CNN feature maps are employed to build

the search space for component identification and classifi-

cation. Pooling is an essential component of deep learning

architectures. To improve fine-grained categorization, low-

rank bilinear feature pooling was used in a compact CNN

classification framework [14]. A polynomial kernel-based

predictor was utilized to extract high-order statistical data

from convolutional activations, which was subsequently

fed into a standard CNN for fine-grained classification [15].

The primary purpose of CNN training is to maximize the

backpropagation method’s loss function to extract generic
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and robust features for general classification and recogni-

tion tasks. However, when it comes to fine-grained vehicle

categorization, this frequently results in duplicate charac-

teristics that are too fitted to the model. A lightweight CNN

model [16]. That extracts compact, low-dimensional fea-

tures may perform remarkably well on training data while

improving the network’s generalization. Furthermore, with

a CNN design, the layer connecting the convolutional

layers to the fully connected layer comprises many neurons

and training parameters. Biglari et al. [17] pioneered

channel max pooling, a method for integrating several

feature maps from distinct channels into a single feature

map. This method minimizes the number of train param-

eters while enhancing generalization. Ma et al. [12] used

channel max-pooling in CNNs to detect fine-grained cars

and empirically evaluated the efficiency and generalization

of two datasets.

Chang et al. [18] provide sparse encoding and autoen-

coding techniques for data with visual occlusions. Fol-

lowing vehicle identification, neural learning is used to

classify vehicles (car, van, bus). A saliency map feature

lowers the computational cost by selecting target regions

and then labelling the output, which is subsequently sent to

the ResNet50 (CNN) model for vehicle classification.

However, it only categorizes vehicles into three types: cars,

trucks, and buses [19]. The proposed work uses the Stan-

ford Cars-196, Label-Me, UIUC-Sports, and CIFAR-10

datasets to train eight classes using VGG16 and Dense-

Net161 CNN models [20]. In addition to solving the van-

ishing gradient problem, they suggest a new loss function

called dual cross-entropy loss. Some studies employed less

complicated but less accurate procedures than CNN. A

feature is assigned to the cluster centre using K-means

clustering. The features are extracted using a DNN. Using

high- and low-resolution pictures, the features are calcu-

lated and combined [21]. Other vehicle categories are

covered. The authors claim that this system can adapt to

changing image resolutions and learn vehicle features.

A cascade ensemble classifier based on MLP and

K-Nearest Neighbor (K-NN) is provided for categorizing

vehicle kinds. Our hierarchical classifier achieves 97.8%

reliability [22] with only five vehicle kinds. Valid et al.

[23] develop a computationally efficient approach for

length-based vehicle categorisation with 99.98 percent

accuracy. This method is easy and transferrable. However,

it cannot detect automobiles of similar length or modified

vehicles. R-CNN classifies automobiles using VGG16

models. They utilize the MIT and Caltech vehicle datasets

for training and testing. The results demonstrate over 80%

identification accuracy for seven specific vehicle kinds.

This paper presents a ResNet-based vehicle categorization

and localization technique using traffic surveillance video

[5]. It employs a MIOvision traffic dataset with 11

categories to further characterize the model. Cooperative

fine-tuning (CFN) is implemented using CNN (DropCNN).

The authors claim their model outperforms VGG16,

AlexNet, and ResNet50.

3 Methodology

It is difficult to distinguish between uninteresting things in

traffic monitoring. For example, analyzing all video feeds

and evaluating the results might take a long time if a traffic

analyzer searched for a certain car by manufacturer, model,

and year of production. This review method requires at

least as much time as the length of the video feed. This

wastes time analyzing data and results from a lack of

appropriate screening technologies. The option to look for

automobiles and utilize the same screening methods as the

complete video might help solve this issue. The system

may be able to identify and process traffic. After finding

the data, traffic analysis might examine the results for the

higher-level agency. This technique takes far less time than

watching the complete film. This technology can also

discriminate between various car model makers, kinds, and

years.

Figure 2 illustrates the communication strategy for

multiple feeds in an IoD context. The communication

shows how the Internet of Things (IoT) enables vehicle-to-

vehicle (V2V) as well as vehicle-to-infrastructure (V2I)

data exchange. It shows the extraction of multimedia video

from a network connected to the Smart Internet of Vehic-

ular Things. Data from the environment flows to UAVs that

communicate with the V2I, which collects and sends data

to the I2I. This data is then transmitted to the V2V in

various settings. The data centres get a live video feed of

all multimedia content. After storing the data, management

may be able to act quickly. The Internet of Drones is vital

for surveillance applications now that high-speed mobile

networks like 5G and 6G are available. Intelligent traffic

monitoring in intelligent cities requires efficient vehicle

categorization and traffic data to help traffic management

make informed judgments about law enforcement, crime

prevention, traffic safety, traffic infrastructure develop-

ment, and congestion and accident reduction.

This work tackles the topic of fine-grained vehicle cat-

egorization in real-time utilizing media sources and cut-

ting-edge deep learning techniques. Pre-trained CNNs have

excelled at tough classification jobs in various computer

vision challenges. Because of their significant memory

needs and lengthy training methods, models like AlexNet

[24] and VGG [25] are unsuitable for real-time applica-

tions. We picked the MobileNet CNN architecture because

it has fewer movement parameters, execution durations,

and memory needs. We have extensively tested state-of-
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the-art Deep Learning approaches for fine-grained vehicle

classification on a large and diverse dataset, with encour-

aging results [26]. Moreover, qualitative data on car man-

ufacturers, model kinds, and model generations are lacking.

We have compiled a large and diversified collection of

automobile manufacturers, models, and generations. This

would allow researchers to design and test computer vision

and deep learning techniques. Specifically, the proposed

model aims to improve average accuracy, reduce process-

ing time, and reduce the false-negative rate in vehicle

recognition.

3.1 Dataset

This study’s data will come from a web source. Web-based

data sources include car forums, search engines, and public

websites. Different scenarios assess the impacted model’s

response to a problem [27]. The data sets’ properties allow

for examining underlying problems under various picture

quality settings. The fundamental issue is distortion in

various image quality settings. A shot near a moving object

becomes gradually distorted [27]. When a high-quality

camera examines the image slowly, the form is exhibited

with incredible precision and quality.

3.2 Data augmentation

Augmentation enhances the performance of the learning

process by augmenting the training set with new instances.

When a learning model has accumulated sufficient data, it

may be extended to generate more accurate results. Data

collection and labelling is a time-consuming and costly

procedure. Businesses may be able to cut operational and

data processing expenses by utilizing data augmentation.

The augmentation strategy adds new training patterns to

the training set to address data scarcity, reduce overfitting,

promote variety, boost generalization, and resolve the class

imbalance problem. Overfitting happens when the model

excels at learning the training patterns but struggles to learn

new ones. This may be addressed by using extension

strategies to diversify the training patterns. The data mainly

was included to prevent our proposed system from being

too close to the training data [28]. We enhanced our data

using rotation, latitude shift, height shift, shear, zoom,

horizontal flip, and brightness range.

3.3 Transfer learning

Transfer learning is a subset of machine learning that uses a

model generated for a specific task as a foundation. Two

powerful frameworks, MobileNet and Resnet52, have

already been developed and made publicly available in

TensorFlow. Both frameworks are based on an Imagenet

model that has been trained and fine-tuned on a dataset of

over 1.2 million RGB photos. The transfer learning process

was integrated into the initial and final phases of the

frameworks. The linked convolutional layers are overlaid

[29]. Convolutional layers retrieve information from ima-

ges containing a variety of data types. This approach has

been used in several scientific publications dealing with

image analysis topics such as classification.
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As mentioned in Fig. 2, we used different methods for

comparing and improving the computational costs. The

convolution, max-pooling, and flattening layers form dif-

ferent designs, which will be explained in the next sec-

tion. The convolution layer extracts image features using

filters, while the max-pooling layer reduces the image size

while extracting features from feature maps. Downsam-

pling uses a simple convolutional architecture to abstract

the visual input. Upsampling expands the abstract image

representations to fit the input image. Flattening converts

feature maps into 1D tensors (one for each class). The last

one is the soft-max layer. Fully connected layers look the

same in any network. All layers use ReLu activation except

the last classification layer, which uses softmax. In both

neural transfer learning techniques, the pre-trained model is

used as a feature extractor for the linked features. The goal

of using a pre-trained network is to optimize CNNs without

compromising state-of-the-art performance. Fine-tuning

involves making changes to both the first and last layers.

The fully connected layers of the custom class replace the

previous layer. The backpropagation algorithm becomes

convergent and adapts to the new classification objective

when this happens.

3.4 Multi-feed fine-grained classification

Automobiles are classified into five distinct 51 categories.

70–30% of the data is utilized for training and 30% for

testing. The categorization algorithm is trained on images

of automobiles collected from various perspectives.

MobileNet outscored Resnet considerably in the ImageNet

classification test [29]. However, more sophisticated net-

works incorporating attention processes may be employed

for activities involving many classes. A subsequent

experiment is conducted but with natural surveillance data

for fine-grained categorization. The data collection

includes instances of 44, 481 automobile models that class

51. 70% to 30% of these photographs are maintained for

educational or testing purposes. The photographs of the

automobiles are all front views shot in various weather

circumstances, including rain, fog, and night. This experi-

ment employs the same three network architectures utilized

in the online natural data application, such as ResNet and

MobileNet, as seen in reffig2 and reffig3. Additionally,

these networks were trained on ImageNet classification

tasks and tested using a single-centre crop [29]. The

cropping limits advised here leave a 7% gap on both sides

of the automobile images and boxes. After that, the photos

are downsized to a resolution of 256x256 pixels. Each of

the three networks operated without a hitch. The finding

implies that, despite significant contextual changes, the

frontal perspective enables relatively fine-grained

categorization.

3.5 Dynamic frame skipping

In this section, we discuss an innovative method for

reducing multiple feeds. The model reduces the computa-

tional cost of the proposed framework by dynamically

skipping redundant classifications. The transfer learning

method detects the object from the multi-feed. We used the

transfer learning method for object detection to tune the

network to the type of vehicle detection. The data is

manually labeled and then enhanced during the surveil-

lance. Then we use the detected frames for frame skipping

when searching for relevant information. We compare

consecutive frames structurally. We skip frames that are

fundamentally identical to previous frames and do not

require re-routing by the faster RCNN using a 90 threshold

(Algorithm 1, line 3). This value was determined by trial

and error and helped exclude frames with a high degree of

similarity. The difference between successive frames is

defined by the dynamic movement of the video scene with

respect to the direction of the camera. We set the threshold

to structsim ¼ 0:9 because image noise increases the sim-

ilarity of irregular images (Algorithm 1, lines 1-7). The

threshold value of 0.9 accounts for the problem of image

noise. Additionally, we classified the object based on the

probability t[ 0:9 associated with the backbone network

(where higher probability is better). If t[ is 0.9, the image

is discarded as a duplicate at the classification phase

(Algorithm 1, lines 8-15). Each feature map is held in

memory for a period of n classifications until no other

feature map of the image to be classified matches it. In this

experiment, we kept a feature vector in memory for non-

similar 5, 10, and 20 classifications (Algorithm 1, lines

11-15). Since most concurrent frames are similar and can

be skipped without data loss, dynamic frame skipping

reduces computation time by nearly 70% to 90%, as

described in Table 1 and Algorithm 1.

Table 1 Dynamic frame skipping. (n: represents number of feature

vector saved for the comparison)

Video ID Total frames Skipping ratio n=5 n=10

1 2017 1/7 204 651

2 4781 1/6 1810 2681

3 7109 1/5 2390 2819
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3.6 Duplicate classification avoidance

To prevent classifications from duplicating, we calculated

three distinct types of features for each categorization.

Histograms of colours A colour histogram is a graphical

depiction of a photograph’s colour distribution. It is a

phrase related to how colours are distributed throughout all

of the pixels in an image. As a result, it is unique to each

image and may be utilized as a feature map to differentiate

across photographs. We determined an image’s spatial

properties by compressing it to a shallow resolution of

32x32 over all three colour channels. Histogram of oriented

gradients (HOG) features: It possesses the following

qualities; namely, HOG is a sort of feature representation

in which an image’s pixel-based information is translated

into gradients with varying orientations. Already catego-

rized image characteristics are utilized to avoid clashes

with the Unknown class. These characteristics are gener-

ated for each picture and stored in memory before the

backbone network classifying them. They are then matched

with future photos, which are classified based on the cosine

similarity of their feature map, as defined in Eq. (1).

similarityðx; yÞ ¼ x � y
kxkkyk ð1Þ

While storing more information in memory increases the

system’s computational complexity, it also aids in avoiding

duplicate frames. This is because adding features to

memory increases the number of cosine comparisons at

each stage. Due to the extra complexity, more duplicates

are eliminated, but the procedure is also slower. Avoiding

duplicate categories has the unintended consequence of

increasing the complexity necessary to compute and com-

pare automotive attributes. This is acceptable since the

added time complexity of computing and comparing

characteristics overcomes the added difficulty of duplica-

tion. A limiting situation would be a collision or speed

bump near the surveillance cameras, undoubtedly inter-

rupting traffic flow and leading the algorithm to mislabel

similar automobiles. As a result, the additional temporal

complexity associated with avoiding repetitive catego-

rization is necessary to avoid certain boundary conditions,

as previously noted.

3.7 Evaluation metrics

A series of experiments are conducted to evaluate the

proposed model’s performance. The classification perfor-

mance is evaluated using Precision, Recall as well as F-

measure. The following equations are used to calculate the

metrics. Accuracy is the percentage of correctly identified

samples relative to the total number of samples.

Accuracy ¼# of correctly classified samples

Total samples
ð2Þ

Precision ¼ TP

TPþ FP
ð3Þ
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Recall ¼ TP

TPþ FN
ð4Þ

F1-Score ¼2 � ðPrecision� RecallÞ
ðPrecisionþ RecallÞ ; ð5Þ

where the number of classified outputs as true positive TP,

false positive FP, as well as false negative FN.

4 Experimental results

Extending the experiments reported in Sect. 3, we also

conduct tests on fine-grained car classification (manufac-

turer type, year, and model) utilizing the complete dataset

and numerous deep models to assess the models’ capability

on these tasks. The collection is organized into three sec-

tions (manufacturer type, year, and model) and contains

52,083 photos of 51 vehicle types.

For the classification tasks, the three network architec-

tures EfficientNETB0 [30], MobileNet [31], NASNET-

Mobile [32], and VGG with 16 and 19 variants [33]. These

models are pre-trained on the ImageNet classification

problem [34] as well as fine-tuned for each task using the

same mini-batch size, epochs, as well as learning rates. The

predictions of the deep models are made with a single

frame. For our experiments, we use the Tensorflow system.

The dataset divides objects into 51 distinct categories. 70%

of the data is utilized for training and 30% for testing. The

classification model is trained using photographs of auto-

mobiles taken from various angles. Figure 3 depicts the

three networks’ performance. MobileNet surpasses Resnet

by 6.0 percent, similar to their classification performance

on ImageNet. Another experiment is carried out to deter-

mine the accuracy of fine-grained classification. All items

are frontal views in various environments, including rain,

fog, and darkness. This experiment employs the same three

network architectures, including ResNet and MobileNet.

Additionally, these networks were trained on ImageNet

classification tasks, and the tests use a single clipping.

Cropping is performed on item images and boxes using the

given frame, which includes roughly 7% padding on each

side. These images are then downsized to a resolution of

256 � 256 pixels. Each of the three networks demonstrated

an unusually high degree of accuracy. The findings indicate

that, despite the high degree of contextual divergence, the

front view considerably increases the feasibility of fine-

grained classification tasks.

VGG employs deep, convolutional neural networks (up

to 19 weighting layers). As illustrated in Fig. 3, increasing

the depth of representation increases classification accu-

racy, and a typical ConvNet architecture may attain peak

performance on the ImageNet challenge dataset. The

method generalizes well over a wide range of objects and

equals or outperforms the performance of more compli-

cated identification pipelines based on flatter visual repre-

sentations. Our results again show the relevance of visual

representation depth, with increased accuracy of 0.90 for

51 items. The VGG19 model outperformed the other

models.

Mobilenet demonstrates that efficient models exist for

embedded image processing applications as well as

archives with 0.81 F-measure, as seen in Figs. 3, 4, and 3

but with longer processing time. MobileNets are based on a

simplified architecture that generates lightweight deep

neural networks with depth separable convolutions. The

hyperparameters enable the model maker to select the best

model for their application based on the limitations of the

problem. We present significant research on the tradeoffs

between resources and accuracy and good ImageNet clas-

sification performance compared to other regularly used

models. MobileNets employ width and resolution multi-

pliers to reduce size and latency while retaining

Fig. 3 F-measure of number of

architecture
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acceptable accuracy. MobileNets that excel in terms of

size, speed, and accuracy.

Convolutional Neural Networks (ConvNets) are often

developed with a restricted resource budget and then scaled

up for increased accuracy as more resources become

available. Discover how an optimal mix of network depth,

breadth, and resolution may be able to contribute to per-

formance benefits. Based on this, it employs a simple but

extremely effective composite coefficient to scale all depth/

width/resolution dimensions evenly. This strategy’s effi-

ciency and efficacy in MobileNets and ResNets. Effi-

cientNets are convolutional neural networks that exceed

prior ConvNets in accuracy and efficiency. However, as

shown in Figs. 3, 4, and 5, the technique is incapable of

achieving high accuracy. The EfficientNet model can be

scaled successfully at mobile size with fewer parameters

and processing time, but it does not generalize well to

ImageNet using this hybrid scaling approach.

As mentioned in Table 2, Mobilenet, VGG-16, and

VGG-19 performed better. The class activation map for

models with different scaling techniques is shown in Fig. 4

to show why frame duplication elimination performs better.

However, the frame rates of the mobile network perform

better with a measure of 0.81 and the frame rates with

enhancement are 89.17 per second. However, the VGG19

has the highest performance in type detection. As shown in

Figs. 3 and 4, the duplication reduction model can achieve

high frame rates while focusing on more relevant regions

with more extensive object details. The other models, on

the other hand, either lack object details or cannot capture

all objects in the images.

Fig. 4 Frame per seconds

comparison

Fig. 5 Testing time comparison
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Low inter-class or high intra-class variance leads to mis-

classification. The score shows mis-classification due to

low inter-class variance. Classes have comparable forms

and frontal features. Transfer learning and frame skipping

were evaluated with the dataset. First, fine-tune the deep

neural networks and extract high-level features from the

layers and the classification layer. VGG19 fine-tuning

outperformed feature extraction accuracy. High intra-class

variance or low inter-class variance resulted in some mis-

classifications after implementing the proposed technique.

Using a deeper classification network reduces the intra-

class variance and increases the inter-class distance. Add-

ing more instances per class with transfer learning can

improve model performance. Super-resolution algorithms

can also improve low-resolution surveillance.

The IoT is collecting video from healthcare, smart city,

and surveillance. Video analytics requires the right per-

spective, format, and quality. The rapid increase in popu-

lation and cars in cities in developing countries leads to

traffic infractions, vehicle theft, congestion, and accidents.

Vehicle classification and traffic data must be accurate and

efficient to improve law enforcement, crime control and

prevention, traffic safety, transportation infrastructure, and

congestion and accidents. Safe cities projects have installed

CCTV cameras on a large scale for traffic monitoring and

management. The huge amounts of video data from CCTV

cameras provide AI solutions for traffic monitoring and

surveillance solutions. This study identifies cars by type,

year, and manufacturer. The model is trained with user-

defined data by transfer learning. Then, the model can use

object categorization to store RAM. We talked about data

collection and feed frames. Sharing and checking the

database can save processing costs. The sensitive data of

multiple acquisitions can be preprocessed on-site.

Any technology can support health care and border

security. A drone network can collect temperature,

humidity, video, acceleration, ultrasound, proximity, and

gas data to detect and analyze various objects. Due to

processing, battery life and other factors, drones cannot

cover large areas quickly. With query-based search,

analyzing a large amount of drone data can help detect an

occurrence. Military bases, transportation groups, and

energy utilities may use this method to manage a smart

grid. The smart power grid is a multimedia network

application. Energy generation and distribution must be

intelligent. Numerous media provide security for power

generation and distribution systems that require continuous

power flow. Multimedia monitors personnel for technical

and non-technical problems, including energy theft and

infrastructure damage. Multimedia can detect temperature

and humidity changes that cause power outages.

5 Conclusion

This study presents a skipping technique for multimedia

frames that may be utilized effectively for frame process-

ing in-vehicle networks. A-frame skipping strategy based

on a multi-class classifier is presented to help us reduce the

time required to query frames in multimedia networks. As

a basis, we employ a deep learning-based model. Then, to

lower the computational cost, the object recognition algo-

rithm employs a similarity-based frame skipping mecha-

nism. The video footage from several incidents is then

processed to establish the vehicle’s make, year, and man-

ufacturer. The model may be capable of reducing the

number of frames required for object detection while

enhancing object detection. Numerous grain properties are

dynamically examined in a vehicle surveillance situation to

skip frames. Extensive investigation and comparison

demonstrate that our technique effectively uses dynamic

frame skipping and important information identification.

The approach has the potential for further development,

application, and study in various multimedia sensing tasks.

The dynamic architectural search approach will be

enhanced in the future to consider more input frames,

domain kinds, and computational and energy resources.

Table 2 Effects of the proposed

model on architectures results
Methods F-measure FPS (without duplication) FPS (with duplication) Testing in seconds

EfficientNETB0 0.31 40.69 25 531.64

MobileNet 0.81 89.17 71.2 242.57

NASNETMobile 0.36 32.56 21.4 664.32

VGG16 0.86 66.91 56.1 323.27

VGG19 0.91 59.14 48.2 365.72

Bold values indicate the best results per column
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6 Future work

Dynamic frame skipping in-vehicle monitoring considers

multiple attributes. Extensive investigation and compar-

isons show that our technique dynamically skips frames

and detects relevant information. The method can be

applied to numerous multimedia tasks that require a careful

search for relevant information with limited resources.

Future studies will adapt the dynamic architectural search

to the input frames, the type of domain, and the compu-

tational and energy resources. We would also like to

incorporate the semi-supervised learning approach to

improve architectural performance and frame rates.
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