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Abstract

Accurate network traffic classification is an essential and challenging issue for wireless net-
work management and survivability. Existing network traffic classification algorithms, on
the other hand, cannot meet the required specifications of real networks’ in terms of user
privacy control overhead, latency, and above all, classification speed. For wireless network
traffic classification, machine learning-based and hybrid optimization techniques have
been deployed. This paper takes a software-defined wireless network (SDWN) architecture
for network traffic classification into account. Because the proposed scheme is perfectly
contained within the network controller,the SDWN controller’s higher processing capa-
bility, global visibility, and programmability can be used to achieve real-time, adaptive, and
precise traffic classification. In this paper, a neuro-evolutionary approach is proposed in
which the feed forward neural network (FFNN) is the base classifier and particle swarm
optimization (PSO) is used to train the FFNN to accurately classify traffic while minimiz-
ing communication overhead between the controller and the SDWN switches. Simulation
experiments were conducted by acquiring real-world internet datasets to test the efficacy
of the proposed scheme. The results and the state-of-the-art comparisons show that the
proposed approach has outperformed in terms of accuracy in wireless traffic classification.

1 INTRODUCTION

Substantial growth in a myriad of applications has led to a
vast rise in data with strict network needs. Conventional net-
work devices operate with proprietary protocols, basically, a
closed set of interfaces. They have inter-wined control with the
forwarding/data plane, which makes quality of services (QoS)
and deployment of any newer policy as per the application
requirements very difficult [1].

Software-defined wireless networks (SDWN) have been
regarded as the de facto standard for network paradigms owing
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to the removal of the control plane from the forwarding plane.
This separation of planes facilitates innovation, removal of ven-
dor lock-in, and flexibility in the network through specific policy
enforcement as dictated by the application [2, 3]. The ‘to’ and
‘from’ communication is enabled by a well-known OpenFlow
(OF) protocol [4, 5]. OF protocol amasses together the net-
work statistics from the forwarding plane to a central point
known as the control plane [6]. The control plane then dictates
the network policy for each flow based on the global infor-
mation/status received from all the devices operating in the
network, which is depicted in Figure 1.
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2 PRADHAN ET AL.

FIGURE 1 Software defined network planes overview

SDWN facilitates smooth big-data network handling through
data streams emanating from increased IoT sensors to the num-
ber of Cloud data centers or inter-data center network traffic.
The distributed information gathering from network devices
enables the SDWN controller to make informed decisions.
With emerging information and communication technologies
(ICT) and the proliferation of next-generation networks, real-
time IoT applications have a vast variance in the magnitude
of data and frequency. Traffic classification might aid the con-
troller in better network optimization, traffic engineering, and
application-aware routing decisions. Works focused on traf-
fic classification have emphasized handling application-centric
nature while keeping the critical driver, namely QoS, unat-
tempted for real-time IoT-based applications. Machine learning
techniques predict effective decision-making with the help of
historical and real-time data [4]. The statistical analysis of net-
works is easily done by every OF switch with the help of
counters. Hence, these can be utilized by the controller to
implement precise decision-making for networks. The demands
of a myriad of applications and their conflicting resource
requirements can be met by enabling application-aware net-
working. The key requirement to application-aware networking
is network traffic classification. Network traffic classification in
SDWN by the controller is pertinent to making informed deci-
sions about network requirements of the application and overall
network survivability. This kind of traffic classification would
enable the way we segregate both small (mice) and large flows
that affect data-center performance and thus QoS requirement
is fulfilled considerably [7]. This segregation of both small and
large flows is pertinent due to consuming considerable band-
width, thus severely affecting the performance of the small
flow because of having less delay. Furthermore, to satisfy the
resource allocation requirements (QoS) for every application,
traffic classification is pertinent for seamless operation in the
network [4]. With a centralized view in SDWN, traffic classi-
fication by the controller will dictate application-specific rules
to the forwarding plane which is essential in terms of both net-

work efficiency as well as seamless network operation. Although
traffic classification has been studied profoundly, it is still a
pertinent research problem. FFNN-PSO is leveraged for fine-
tuning overall performance. As per the literature surveyed, such
SDWN traffic classification and the performance exhibited with
ML and hybrid approaches are not found in the literature [8, 9].
Hence, the main contributions of this paper are as follows:

∙ A neuro-evolutionary approach has been implemented to
improve the accuracy of traffic classification

∙ Machine learning algorithms are employed to test the
suitability of the novel SDWN traffic classification problem.

∙ Stability analysis has been performed to validate the
hybridization of FFNN and PSO

The remainder of the manuscript is organized as follows:
Section 2 presents the state-of-the-art for traffic classification
in networks. Section 3.1 provides a summary of the WSN and
its application vis-a-vis SDWN. Section 4 discusses the overall
solution methodology as well as problem formulation. Sec-
tion 5 illustrates the details surrounding the implementation
and conveys the results drawn. Finally, Section 6 concludes
this manuscript.

2 RELATED WORKS

Numerous attempts for network traffic classification have been
taken care of, including QoS awareness, flow awareness, and
application-aware. It was envisioned that application-aware clas-
sification should be focused on rather than QoS and flow-aware,
whereas QoS helps distinguish the classes of a multitude of
flows. The QoS-based traffic classification work is made up of
semi-supervised learning, and deep packet inspection (DPI) for
classification of traffic as was done by Wang et al. [10].

Flow-aware classification divides network traffic into ele-
phant (huge) and mice (small) flows and Glick et al. [11]
focussed on scheduling flow in a data center which is a hybrid
architecture. ML algorithms find suitable applications at the
network edge for classifying elephant flows. Peng et al. [12] clas-
sified elephant flows by employing a two-way strategy. Firstly,
the identification of elephant flows was based on fields associ-
ated with the packet header. Secondly, a popular ML technique
namely a decision tree was leveraged to classify elephant-type
flows. Amaral et al. [13] utilized an OF-based SDN system
for an enterprise network for traffic classification. When data
collection was completed, then with the help of multiple clas-
sifiers, traffic flows are categorized into several applications.
Li et al. [12] utilized a multi-classifier for traffic classification
and employed both DPI and ML-based classifiers. For the start
of every new-flow, an ML-based classifier was employed first
and a check is given on reliability if it is above some pre-
determined threshold. Rossi et al. [14] utilized UDP traffic to
enable traffic classification. To enable application-aware traffic
classification, a scheme based on behavioural classification was
proposed. The SVM algorithm is leveraged for classification of
UDP traffic depending on the reception of packets and this
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PRADHAN ET AL. 3

traffic classification scheme shows a 90% accuracy. Qazi et al.
[15] proposed Atlas, a traffic classification framework which
enabled traffic classification for mobile applications. A crowd-
sourcing approach is used to deal with ground-truth data and a
decision tree was employed for traffic classification. The Atlas
framework had a good accuracy of 94%. Shao et al. [16] then
developed a neural-evolving model in which the model achieves
good performance compared to past comparable works. Nakao
et al. [17] utilized deep neural networks (NN) for identifying
mobile-based applications. Experimental data was collected for
traffic classification. For an eight layer NN model, five features
were selected (type of the protocol, destination (address, port),
size of the packet, and time to live (TTL)). Results for the mobile
traffic classification scheme had an efficacy of around 93.5%
and had categorized a total of 200 applications.

Existing works on network classification are limited by their
application-centric nature, thus overlooking key criterion for
real-time IoT applications, namely quality of service (QoS).
In this paper, the focus is on augmenting SDN controllers’
decision-making capacity and SDWN (software defined wireless
networks) with machine learning (ML) algorithms to achieve
real-time [18–20], QoS-aware network traffic classification. In
short, the proposed framework jointly exploits optimization
algorithms and semi-supervised ML for precise traffic classifica-
tion while keeping communication overhead between controller
and SDN switches minimal.

3 PRELIMINARIES

Here in this section, a brief description of SDWN and the basics
of Feed Forward Neural Networks (FFNN) and Particle Swarm
Optimization (PSO) are discussed.

3.1 Software defined wireless networks

Software defined wireless networks (SDWN) [21] are ideally
suited for low-rate personal area wireless networks with the uti-
lization of minimal resources and shorter ranges. Sensor nodes
in WSN are equipped with sensing, processing units and radio
unit but with the proliferation of IoT sensors, WSN faces mul-
tiple challenges due to limited resources [22]. SDN [23, 24] can
be perfectly used as a test case in WSN because of the central-
ization of the controller which is depicted in Figure 2. With
the centralization at the controller, sensors can just become
data/forwarding plane elements and can be relieved from all
network control/management tasks like topology discovery,
routing, etc.

3.2 Feed forward neural networks

Feed forward neural networks (FFNN) are a pertinent data-
driven computational technique that finds applications in
various network traffic problems having a combination of
topology information and network traffic. Basic details related
to FFNN have been extracted from ref. [25].

FIGURE 2 A SDWN architecture

3.3 Basics of PSO

Particle Swarm Optimization (PSO) came into existence in the
year 1995 investigated first by Kennedy and Eberhart [26]. It is
regarded as a stochastic population-based meta-heuristic algo-
rithm. Let us assume that the search space and the size of the
swarm are D-dimensional and N (population size). The detailed
mathematical notation for the same is extracted from ref. [27].

The ith particle position is represented as xid =

(xi1, xi2, ..., xiD ) where xid ∈ [l bd , ubd ], d ∈ [1,D] and ubd

and lbd are the upper and lower bounds of the d th dimension
of the search space. The velocity of the ith particle is repre-
sented as vi = (vi1, vi2, ..., viD ). After each time step elapses,
the velocity and position of the particle get changed as per the
equations discussed below:

vi j (t + 1) = 𝜔 × vi j (t ) + c1 × r1 ×
(

plB
i j

(t ) − xi j (t )
)

+ c2 × r2 ×
(

pgB
j
(t ) − xi j (t )

)
(1)

xi j (t + 1) = xi j (t ) + vi j (t + 1) (2)

where

∙ 𝜔: inertia weight which balances the exploration and exploita-
tion ability of PSO.

∙ r1, r2: two distinct random numbers, r1, r2 ∼ U (0, 1).
∙ c1, c2: acceleration-coefficients which pulls particle informa-

tion in terms of best and global-best positions.
∙ t : current iteration.
∙ plB

i : best previous position found so far by the particle, called
local best.

∙ pgB : best position discovered so far by the whole swarm,
called global best.

∙ 𝜔 × vi j (t ): provides exploration ability for PSO.
∙ c1 × r1 × (plB

i j
(t ) − xi j (t )): represents private thinking.
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4 PRADHAN ET AL.

FIGURE 3 Flowchart of working procedure of the proposed approach

∙ c2 × r2 × (pgB
j
(t ) − xi j (t )): represents collaboration of parti-

cles.

4 MATERIALS AND METHODS

In this section, proposed approach details, benchmark dataset
description, experimental setup, and finally performance met-
rics are provided.

4.1 Proposed approach

The software-defined network traffic classification problem
and methodology adopted for this study are described in this
section. Traffic classification methodologies have been briefly
described, ranging from data collection to optimized network
traffic. Figure 3 describes the working procedure for this traf-
fic classification problem leveraging the neuro-evolutionary
approach. In the consequent subsections, detailed discussions
are addressed.

4.1.1 Queries are to be addressed

While collecting the internet traffic dataset, the below-
mentioned queries are to be considered:

∙ Will there be any problem if testing and training datasets are
collected from different networks?

∙ Will it is beneficial if testing and training datasets are obtained
from identical network requirements?

∙ What if network attributes are changed and will they affect
network traffic?

4.2 Implementation of algorithm

To address the above queries, dataset collection and ML algo-
rithm implementations are done tactfully. The primary issue
is to fit the proposed problem with ML algorithms. Numer-
ous ML algorithms exist, but it is hard to decide which

algorithm will be the best fit for specific SDWN applications.
To test the efficacy of the proposed traffic classification prob-
lem, two popular ML algorithms, namely Logistic Regression
(LR) and Naïve Bayes (NB) have been identified to fit the
suitability of the problem. The detailed explanation of these
two algorithms is extracted from ref. [27]. In this paper, the
traffic classification problem is investigated with other classi-
fiers, and it is envisioned that a neuro-evolutionary approach
is found to be best suited for the problem. An activity dia-
gram as shown in Figure 3 represents the working procedure
of ML-based traffic classification for SDWN. The importance
of using a neuro-evolutionary approach for this problem is to
test the suitability of two different dimension-based problems.
In this regard, a stability analysis for this proposed approach is
employed.

4.3 Complexity analysis of PSO

The number of computations required for a complete run of the
PSO algorithm is the sum of computations required to calculate
the cost of a candidate solution (based on the current position
of the particles) and computations required to update each par-
ticle’s position (1) and velocity (2). Both of these are directly
proportional to the number of iterations.

The computational complexity of evaluating the cost func-
tion depends on the particular cost function under consid-
eration. These computations need to be performed at every
iteration for all PSO variants and cannot be reduced.

For the second set of computations (i.e. the ones required
for the update equations), the standard PSO algorithm requires
5DN multiplications per iteration. This shows that the cost
associated with the update equations makes a significant con-
tribution to the total computational cost of the PSO algorithm.

4.4 Stability analysis of FFNN-PSO

PSO stability analysis is carried out for the problem mentioned
above. Here, FFNN gets trained with PSO & the trained FFNN
with PSO is leveraged for network traffic classification. Further,
the PSO stability analysis concludes that the proposed neuro-
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PRADHAN ET AL. 5

evolutionary approach is also stable to implement for the traffic
classification problem.

Here, the stability-analysis derivation is presented. In this
derivation, pbest (tl ) and gbest (tg ) are kept fixed for an iteration
[28, 29]. The detailed parameter information can be found from
ref. [27]. The proposed algorithm discussion can be minimized
further without any loss of generality to one-dimensional based
analysis which is as follows:

gs+1 = 𝜔 ∗ gs + 𝛾1 ∗ (sl − ns ) + 𝛾2 ∗ (tg − vs ) (3)

Let

𝛾 = 𝛾1 + 𝛾2, p =
𝛾1sl + 𝛾2sg

𝛾1 + 𝛾2
(4)

Then, Equation (3) can be facilitated as:

gs+1 = gs ∗ 𝜔 + (t − vs ) ∗ 𝛾 (5)

d (qs+1) = d (qs ) ∗ (1 − d (𝛾)) + d (𝛾) ∗ t (6)

d (qs+1) = d (qs ) ∗ (1 − 𝜏𝛾 ) + 𝜏𝛾 ∗ t (7)

Here, 𝜏𝛾 is the normal value of 𝛾 and it is random [0,1] one. So,

d (𝛾) =
1

2
.

The generic formulation for recurrence relation is as follows:

d (qs ) =
1
2s
∗ (q0 − 𝛾) + t (8)

where the initial position is denoted as q0.

Lemma 1. The sequence d (qs ) is convergent and converges to t.

Proof: d (qs ) converging to t suggests that the value of s
′
(𝜈)

exists for ∃ 𝜈 > 0, such that if s > s
′
(𝜈)

|d (qs ) − t | < 𝜈 (9)

Considering Equation (8)

1
2s
|(q0 − Z )| < 𝜈 (10)

Therefore it can be concluded that

2s >
|(q0 − Z )|

𝜈
(11)

So,

s > log(
|(q0 − Z )|

𝜈
) (12)

4.5 Stability analysis for second-order

The mathematical formulation for the random variable’s v vari-
ance is expressed through second-order stability analysis which

is mentioned below:

N (q) = d 2(q) − d (q2) (13)

In this way, it is necessary to compute d (qs
2) for calculating

N (q). q2
s+1 will be computed as per the following;

q2
s+1 = [qs ∗ (1 − 𝛾) + p ∗ 𝛾]2 (14)

q2
s+1 = (𝛾2 + 1 − 𝛾 ∗ 2) ∗ q2

s + 2 ∗ p ∗ qt ∗ 𝛾(1 − 𝛾) + t 2 ∗ 𝛾2

(15)
So the desired value of q2

s+1 is

d (q2
s+1) = d [(1 − 2 ∗ 𝛾 + 𝛾2) ∗ q2

s

+ 2 ∗ 𝛾(1 − 𝛾) ∗ t ∗ qs + 𝛾2 ∗ t 2] (16)

Deriving from Equation (16)

d (y2
s+1) = (1 − 2 ∗ 𝜏𝛾 + d (𝛾2)) ∗ d (qs

2)

+ 2 ∗ t (𝜏𝛾 − d (𝛽2)) ∗ d (qs )

+ t 2 ∗ d (𝛾2) (17)

As is already mentioned, 𝛾, a random number, distributed
uniformly, varies between 0 to 1, So,

⎧⎪⎨⎪⎩
d (𝛾2) =

1
3

N (𝛾2) =
1
12

(18)

Substituting Equation (18) in Equation (17)

d (q2
s+1) =

1
3
∗ d (q2

s ) +
1
3
∗ t ∗ d (qs ) +

1
3
∗ t 2 (19)

The value of d 2(qs+1) is calculated as follows:

d (q2
s+1) =

1
4
∗ d 2(qs ) +

1
2
∗ Z ∗ d (qs ) +

1
4
∗ t 2 (20)

Now N (qs+1) can be obtained by substituting Equations (19)
and (20) in Equation (10) as:

N (qs+1) =
1
4
∗ N (qs ) +

1
12

∗ d (qs − t 2) (21)

Hence,

d (qs − t 2) =
1
3
∗ d (qs − t 2) (22)

Recurrence relation can be mathematically expressed as;

N (qs ) =
1
4s
∗ n(q0) + d (q0 − s)2 ∗

( 1
3s
−

1
4s

)
(23)

Lemma 2. The sequence n(qt ) is convergent and converges at 0.
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6 PRADHAN ET AL.

Proof: The ultimate limit of v(yt ) approaches following
v(y0) = 0 when t →∞

lim
t→∞

v(yt ) = lim
t→∞

(E (y0 − p)2) ∗
( 1

3t
−

1
4t

)

= E (y0 − p)2 lim
t→∞

( 1
3t
−

1
4t

)
= 0 (24)

Hence, it is evident that our proposed neuro-evolutionary
approach meets the criteria to qualify for the first and
second-order stability analysis.

4.6 Dataset description

We have used one dataset for our publicly available approach.
The brief description of those considered datasets is as follows:
The used dataset has 21K rows and covers ten local workstation
IPs for a tenure of 90 days. Each row consists of four columns:

∙ date: dd-mm-yyyy (from 01-07-2006 through 30-09-2006)
∙ l_ipn: local IP (signifies as an integer number between 0-9)
∙ r_asn: remote ASN (identifies the remote ISP as integer

number)
∙ f: flows (connections counting for a particular day)

In this dataset, 20,804 samples are there and four attributes are
present. The dataset source can be found in Kaggle1.

4.7 Performance metrics

The accuracy parameter is used to evaluate the classification
model. It signifies relationships and patterns between variables
in a dataset based on the input, or training, data. In the case of
binary classification, accuracy can also be calculated in terms of
positives and negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

where TP = true positives, TN = true negatives, FP= false
positives, and FN = false negatives.

4.8 System configuration and experimental
environment

In this paper, system setup, and software development setup is
as follows:

∙ System configuration: Windows 10 64 bit OS, processor
AMD A6-9225 Radeon R4 with RAM 4 Gb.

1 https://www.kaggle.com/datasets/crawford/computer-network-traffic

TABLE 1 Network traffic distribution related to different applications

Types of applications Traffic numbers Traffic class

Skype, FTPS, SFTP 554 File transfer

Firefox, Chrome 795 Web browsing

Whatsapp, Skype, Facebook, Hangouts 1045 Chat

YouTube 673 Streaming

FIGURE 4 TP percentage of different ML algorithms based on QoS
parameters

∙ Software development: The neuro-evolutionary approach
for traffic classification problems is implemented through
Python 3.7 with the help of Jupyter Notebook.

5 RESULTS, ANALYSIS, AND
DISCUSSION

A real network traffic dataset is used to test the ensemble-based
network traffic classification. The Kaggle dataset was used as
the training and testing datasets. The following is the list of
network flows studied for network traffic classification which
is as follows: VoIP, P2P, streaming, file transfer, web brows-
ing, streaming, and chat. Table 1 summarizes the traffic types
and network applications that relate to them. We divided net-
work traffic into several classes based on QoS needs rather than
identifying specific applications.

The patterns used by the ML classifier for traffic identifi-
cation include the inter-arrival time and length of the packet.
Skype has gained huge prominence because it represents P2P
based application and it belongs to VoIP. Figure 4 shows the
traffic pattern (TP) percentage among the multiple protocols
leveraged for this study which includes FTP, Video Streaming,
HTTP, P2P and instant messaging.

Table 1 describes the traffic data distribution in SDWN for
the protocols used in this study. From Figure 5, it is shown
that the proposed neuro-evolutionary has suggested less traf-
fic accuracy than its counterparts due to carrying most traffic.
On the other hand, the accuracy of instant-messaging was the
highest compared to others due to carrying less traffic load.
The suitable proportion traffic percentage has been taken for
each traffic distribution. The accuracy comparison percentage
for the three different approaches has been presented. Figure 5
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PRADHAN ET AL. 7

FIGURE 5 Accuracy comparison among the different ML algorithms

FIGURE 6 Accuracy improvement using optimization algorithm

describes the net accuracy comparison for the above-mentioned
approaches. As already said, using neuro-evolutionary approach
results in a change in traffic classification accuracy. This is illus-
trated in Figure 6, which describes that inclusion of a hybrid
approach, more accuracy improvement is noted with a soli-
tary optimization algorithm. It can be effectively stated that the
network traffic classification is substantially improved with the
neuro-evolutionary process.

First, the optimization process is carried out by loading a feed
forward neural network with the initialized parameters. The set-
tings for the former include the comprehensive attribute set and
their reduction into a small enough to be collected and manip-
ulated in real-time. The one-time collection step will not ensure
that the data pre-processing classification process is not over-
whelmed. The count of the iterations is kept to be constant
afterward to ensure the optimization of the nodes and activation
function. Lastly, a stability analysis is executed on the training
iterations count. The step-by-step optimization method cannot
always converge to either a global maximum or a local mini-
mum. From our experimental analysis, a higher classification
accuracy of about (96%) is achieved which can be verified in
Table 2.

5.1 Comparison with the state-of-the-art

The proposed wireless traffic classification method was com-
pared with four deep learning (DL) algorithms. These DL
algorithms are: Long Short Term Memory (LSTM) [31], Deep

TABLE 2 Proposed wireless traffic network classification comparison

Methodology & ref. no utilized Precision Recall Accuracy

Deep belief network (DBN), [30] 95 96 96

Long short-term memory (LSTM), [31] 92 93 92

Recurrent neural network (RNN), [32] 94 93 94

Convolutional neural network (CNN), [33] 94 95 95

Proposed traffic classification (FFNN-PSO) 96 96 96

Belief Networks (DBN) [30], Convolutional Neural Networks
(CNN) [33], and Recurrent Neural Networks (RNN) [32].
Experimental results as described in Table 2 show that the pro-
posed FFNN-PSO based scheme has improvements in accuracy
classification when directly compared to other approaches.

6 CONCLUSION

This paper uses ML methods to classify traffic in SDN net-
works to make informed decisions regarding their quality of
service (QoS) requirements and their underlying applications.
Datasets were normalized for classification purposes, and effi-
cacy was increased through testing and training of datasets
acquired from open sources. Three ML classifiers, including
Logistic Regression (LR), Naïve Bayes (NB), and Feed For-
ward Neural Networks (FFNN), were considered with a hybrid
FFNN-PSO. ML algorithms were used to improve the accuracy
of traffic classification. Furthermore, using FFNN-PSO facili-
tates accuracy improvements of traffic classification using the
same classifiers. Because there is no processing overhead with
the proposed strategy, it appears to be promising. The future
works will deal with detecting flows of a new application, includ-
ing implementations on Windows, iOS, and Linux. Underwater
wireless sensor network research is also undergoing to address
the traffic classification problem.
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