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Heart disease is an emerging health issue in the medical field, according

to WHO every year around 10 billion people are affected with heart

abnormalities. Arteries in the heart generate oxygenated blood to all body

parts, however sometimes blood vessels become clogged or restrained due

to cardiac issues. Past heart diagnosis applications are outdated and suffer

from poor performance. Therefore, an intelligent heart disease diagnosis

application design is required. In this research work, internet of things

(IoT) sensor data with a deep learning-based heart diagnosis application is

designed. The heart disease IoT sensor data is collected from the University of

California Irvine machine learning repository free open-source dataset which

is useful for training the deep graph convolutional network (DG_ConvoNet)

deep learning network. The testing data has been collected from the

Cleveland Clinic Foundation; it is a collection of 350 real-time clinical

instances from heart patients through IoT sensors. The K-means technique

is employed to remove noise in sensor data and clustered the unstructured

data. The features are extracted to employ Linear Quadratic Discriminant

Analysis. DG_ConvoNet is a deep learning process to classify and predict heart

diseases. The diagnostic application achieves an accuracy of 96%, sensitivity

of 80%, specificity of 73%, precision of 90%, F-Score of 79%, and area under

the ROC curve of 75% implementing the proposed model.

KEYWORDS

heart disease, detection, IoT - internet of things, sensor data, deep learning, artificial
neural network
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Introduction

According to WHO, cardiovascular disease (CVD) is a
significant reason of death worldwide, with 17.8 million
deaths every decade (Rath et al., 2021). The American
Cardiac Organization (Zhang and Xu, 2021) specifies detailed
indications like sleep disorders, slight pain increase as well as a
drop-in heart rate and fast weight improvement (up to 1.5-2.5 kg
per 7 days) (Vincent Paul et al., 2021). However, more study
data and patient records from hospitals become available as
time goes on. Machine learning (ML) and artificial intelligence
(AI) are now widely recognized as able to play a vital role in
the medical industry. ML and deep learning (DL) methods are
often used to diagnose conditions as well as classify or anticipate
results. ML algorithms can do a complete examination of genetic
data in a short amount of time. Medical records are modified
and analyzed extra thoroughly for improved predictions, and
methods are trained for knowledge pandemic predictions (Liu
et al., 2022). Heart disorders are identified with congenital,
coronary and rheumatic events, and 370,000 Americans died
due to coronary heart disease (HD) type heart attacks in 2015.
Annually Americans are spending $250 billion USD on HD
diagnosis and treatment. According to the American heart
association, medical HD disorders will be able to be predicted
by 2030.

Exercise stress tests, chest X-rays, CT scans, MRI, coronary
angiograms, and electrocardiograms (ECG) are currently used
to diagnose the severity of HD in patients. Patients need
early and precise diagnoses of coronary HD to receive timely
and effective treatment and boost their chances of long-
term survival. Unfortunately, cardiovascular specialists may
not be available in many resource-limited places worldwide
to do these diagnostic tests. Missing diagnoses, incorrect
diagnoses, and therapies put patients’ health in danger in
many circumstances. In addition, early detection of HD causes
preventative interventions such as drugs, lifestyle changes,
angioplasty, or surgery, which can help to slow disease
development as well as minimize morbidity (Morris and Lopez,
2021). As a result, precise and timely heart disease diagnostics
are critical for lowering mortality as well as enhancing long-term
survival rates in patients. Because early detection of coronary
HD is challenging, computer-assisted techniques for detecting
and diagnosing heart disease in people have been developed.
In medical institutions, ML methods that analyze clinical data,
evaluate it, and diagnoses medical conditions is becoming
increasingly common in healthcare fields.

The research contributions of this paper are as follows:

1. Collect internet of things (IoT) sensor-based heart disease
data in the detection of heart disease using a deep
learning architecture.

2. Process input data for noise removal and cluster the data
using K-means clustering.

3. Extract the features using Linear Quadratic
Discriminant Analysis.

4. Classify the extracted data using a deep graph
convolutional network (DG_ConvoNet).

Appendix

Internet of things (IoT), World Health Organizations
(WHO), cardiovascular disease (CVD), Receiver Operating
Characteristic Curve (ROC), Machine learning (ML), Artificial
Intelligence (AI), Deep learning (DL), Heart-Disease (HD),
Support Vector Machine (SVM), Heart Rate Variability
(HRV), Convolution Neural Network (CNN), Magnetic
Resonance Imaging (MRI), Deep Graph Convolutional
Network (DG_ ConvoNet).

Related work

In this section, a brief literature has been employed from
the latest research papers related to heart disease prediction
using IoT sensor data. Feature extraction, classification and
predictions are the major steps involved in intelligence
algorithms. Manogaran et al. (2017) utilized a variety of big
data methods to detect cardiac illness, as well as hyperparameter
tuning to improve the accuracy of results. Kanksha Aman
et al. (2021) employed generalized discriminant analysis for
extracting nonlinear HD features. A binary classifier with
extreme ML has been used to reduce overfitting issues as
well as increase training time on finding heart disorders
prediction. For detecting coronary HD, the accuracy was 73%
had been attained which was very less. Heart rate variability
was classified as an arrhythmia by Divya et al. (2021). The
heart abnormality disorders classification was done with a
multilayer perceptron neural network, and 91% accuracy was
reached by decreasing features or using Gaussian Discriminant
Analysis, in this research work hidden features haven’t been
included. Hasan and Bhattacharjee (2019) employed Gaussian
discriminant analysis to reduce HRV signal characteristics to
15 and an SVM classifier to obtain 70% precision, this research
work cannot solve unstructured sensor data from IoT networks.
An enhanced CNN model is proposed by Huang et al. (2019), in
which 92.35% accuracy had been detected, the main limitation
of this work is STFT-based spectrogram analysis. The STFT
model is very old and faces clustering issues when large datasets
have been applied to it. The Fruit classification is a complex
process to predict heart diseases through IoT sensor data. The
following challenge was solved by using a CNN-based technique
by Wang et al. (2020). According to the researchers, designed
past HD detection methods has a less classification accuracy,
which is get improved than the existing methods. Zhang et al.
(2019) proposed a comprehensive description of multimodal
data fusion of heart-related sensor data. A combination of
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CT, MRI, PET, optical imaging and radionuclide datasets has
resulted in complete pathology of heart disorders in a radiology
manner. The image fusion-based approach has been found
to improve clinical diagnosis in recent years but failed at
emergency diagnosis conditions. The CNN-based diagnosis
algorithm implemented by Zhang et al. (2020a). In this research,
stochastic pooling, as well as optimization of hyperparameters
connected with CNN. The major drawback of this study is
neuroimages orientation is altered from patient to patient so that
when applying a new image to the designed application, the HD
abnormality detection rate had been getting changes extremely.

The realized methods which are shown in Table 1 have less
operational sensitivity, specificity, and accuracy. Zhang et al.
(2020b) introduced an FGCNet-based HD features extraction
from GCN and CNN models. This method is used to diagnose
chest CT scan-based heart disorders prediction but fails at noise-
based CT scan radiology images specified as test input. The
FGCNet is said to aid quick COVID 19 detection utilizing
chest CT scans. Wang et al. (2021a) presented the CCSHNet
method for heart disorders detection, which combines deep
fusion. The designed CCSHNet models failed at large data
samples applied at the training stage. The DCA and transfer
learning-based models are very critical to detecting HD at
large dimensional data. The CCSHNet is a viable option
for detecting infectious heart illnesses, including COVID 19,
according to deep exhaustive analysis. The literature review
from many latest articles identified that traditional ML-based
detection of arrhythmia with ECG signals analysis methods are
outdated. However, fewer research works have been published
on HD detection utilizing ECG signals and DL techniques are
trending but IoT-related works are not much efficient to predict
HD. Wang et al. (2021b) evaluate classification algorithms
using an ML technique to predict cardiac disease. This work
demonstrated the bagging technique prediction for HD with
a good performance rate, as well as accuracy level. Superior
HD prediction models other than past techniques are necessary.
Martins et al. (2021) offer a genetic approach for predicting
human heart disease through echocardiographic, the designed
method is limited to huge unstructured data. The implemented
method might reduce the number of test cases required to
detect HD issues based on Ali et al. (2021) and Ladefoged
et al. (2021). The successful HD abnormality prediction based
on the radiology dataset is outdated as well as latest IoT-based
techniques are required. Saikumar et al. (2022) aim to develop
a precise categorization algorithm for accurately predicting
cardiac disease but are unable to work on IoT sensor data.
The following work concluded that regression classification is
used to predict HD more accurately than other techniques
by Saikumar and Rajesh, 2020a,b. R-C4.5 is proposed, and its
features are extractí from the given technique by Koppula et al.
(2021). The study used their equipment and found it a very
beneficial machine in the healthcare industry for predicting ML-
based approaches Garigipati et al. (2022). The above discussions

are providing information about earlier HD prediction models
and its limitations. It is clear that many cardiac diagnosis models
are facing various low-level and high-level issues under dynamic
conditions. This research work looks to solve some of the
indicated issues from the related works.

System model

This section discusses the proposed DL technique based
on feature extraction as well as classification in heart disease
diagnosis. Here, the input data has been collected as IoT sensor
data from a patient monitoring system.

The collected data has been processed for noise abstraction
using a clustered-based K-means algorithm. Gaussian noise
that was present in the medical images was removed at
this block. Clustered information is used to extract the
features utilizing Linear Quadratic Discriminant Analysis.
Finally, the extracted features have been classified using the
DG_ConvoNet. The architecture of the proposed method is
shown in Figure 1. The pre-processing unit categorizes image
registration from the medical raw image data (University of
California Irvine machine learning repository). The registration
enhancement process is used to line up the image for de-
noise processing. Due to speckle disturbances, medical images
get damaged and hinder the ability to identify deep features
needed for DL. As a result, medical images are de-specked
using a filtering approach technique to improve categorization
results.

K-means clustering

Since k represents the number of clusters, there are k
centroids, one for every cluster. After the Euclidean distance
between each data point and the centroid has been evaluated, the
assignment of data points to the centroid is based on the shortest
Euclidean distance from that centroid. An early grouping is
done when no point is left unassigned. Now, k new centroids
are generated, and the iteration continues until the k centroids’
positions do not change. In this stage, 256 clusters had to be
created and processed for the centroid calculation of the cluster.

Let Y = {x1, x2, x3, ..., ..., xn} are set of dataset opinions as
well as Z = {z1, z2, ..., ...zc} be set of centers.

1. Arbitrarily choose ‘c’ cluster centers.
2. Evaluate the distance among each information point as

well as cluster centers.
3. Allot data points to the cluster center with the shortest

distance between it and all other cluster centers.
4. Again, evaluate the original cluster center using the

following Eq. (1):

Zi = (1/ci) .6E1
j = 1xI (1)
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TABLE 1 Recent studies related to heart abnormality prediction.

S No Author Techniques Performance
accuracy

Limitation

1 Rahmani et al., 2018 IoT based e-health Accuracy = 93.24%
HD Detection rate = 0.76
Application score = 0.86

Data clustering is a
complex issue

2 Majumder et al., 2019 Smart IoT-based cardiac
disorders detection

Accuracy = 95.23%
HD Detection rate = 0.79
Application score = 0.72

Limited large
dimensional data

3 Golande et al., 2019 Smart medical
applications using IoT

Accuracy = 91.47%
HD Detection rate = 0.86
Application score = 0.83

Network issue due to
conventional data

analysis

4 Haq et al., 2018 ML-based HD detection Accuracy = 95.42%
HD Detection rate = 0.83
Application score = 0.71

Radiology data-based
analysis is sometimes

altered from sample to
sample

5 Hinton and
Salakhutdinov, 2006

High dimensional HD
data-based abnormality

detection

Accuracy = 93.68%
HD Detection rate = 0.69
Application score = 0.82

Limited to structured
HD data

FIGURE 1

Proposed IoT sensor data-based heart disease (HD) prediction.
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FIGURE 2

Flow chart K-means.

5. Where ’ci’ indicates the number of data opinions in
the ith cluster.

6. Again, calculate the distance between every data point as
well as the original cluster centers.

7. Stop if no information points were reallocated; otherwise,
start over at step 3.

The flow chart of K-means clustering is shown in Figure 2.
In this K-means flow is explained with clustered extraction on
the dataset. The centroid, Euclidean and particle estimation
parameters have been providing information about deep dataset
information. The dataset consists of shape-based image features
which are processed by the K-means algorithm.

Linear quadratic discriminant analysis
based feature extraction

Let Sb and Sw be among and within-class scatter matrices,
low-dimensional complement space of null space of Sb,
related as S ′ , is first extracted. Let Vb = [vb1, ..., vbM]
be M eigenvectors of Sb corresponding to M non-zero
eigenvalues A = [λb1, ...,λbM], where M = min(C−1, J).
The Sb subspace B′ is thus spanned by Vb, which is further
scaled by U = VbA−1/2

b so that UTSbU = I , where

Ab = diag (A), diag()indicates the diagonalization operator
and I is the (M = M) identity matrix by Eq. (2):

6̀i(α, γ) = (1−γ)6̀i(α)+
γ

M
tr
[
6̀i(α)

]
I,

6̀i(α) =
1

Ci(α)
[(1−α)Si+αS] , (2)

M is the dimensionality of B′ .Ci(α) = (1−α)Ci+αN
and Si is the covariance matrix of ith class evaluated in B′ ,
i.e., Si = 6Ci

j = 1
(
yij−yi

) (
yij−yi

)T
, yij = UTzij, yi = (1/Ci)

6Ci
j = 1yij and S = 6C

i = 1Si.

Let 8 = [φ (z11) , ...,φ (zCCc)] be corresponding
feature representations of training samples in kernel
space FF. Let K be N = N Gram matrix, i.e.,
K = (Klh)

h = 1,,CIh
l = 1,,C is a Cl × Ch sub−matrix of K composed

of samples from classes Il and Zh, i.e., Klh =
(
kij
)j = 1,

i = 1,.,Cl
,

where kij = k
(
zli, zhj

)
and k( · )indicates kernel function

defined in RJ. Let Sb be between-class scatter in FF, described as
Eq. (3)

S̀b =
1
N

C∑
i = 1

Ci

(
↼
φ i−

↼
φ

)(
↼
φ i−

↼
φ

)T
(3)

where
↼
φ i = (1/Ci) 6Ci

j = 1φ
(
zij
)

is the mean of Yi in FF and
↼
φ = (1/N)6C

i = 16
Ci
j = 1φ

(
zij
)

is mean of training samples FF.
Eigenvectors of Sb, i.e., V̀b = [vb1, ..., vbM], corresponding

to M largest eigenvalues. V̀bis obtained by solving the eigenvalue
issue of Sb, which is represented as Eq. (4):

sb =
c∑

i=1

(√
ci
N

(
↼
φ i−

↼
φ)

)(√
ci
N

(
↼
φ i−

↼
φ)

)T

=

c∑
i=1

↼̀
φ i

↼̀
φ i

T
= 8b8

T
b (4)

where φ̀i =
√

Ci/N
(

↼
φ i−

↼
φ

)
and 8b =

[
φ̀1, ..., φ̀C

]
.

It is given that Sb is a matrix of size F × F, where
F indicates kernel space dimensionality. Due to HD
of FF, a direct computation of eigenvectors of Sb is

impossible
(
8b8

T
b
)
(8bebi) =

↼
λbi (8bebi). Therefore, it

is deduced that (8bebi) is the i th eigenvector of Sb = 8b8
T
b−

8T
b 8b =

1
N

B
(

AT
NC · K · ANC−

1
N

(
AT

NC · K · 1NC

)
−

1
N

(
1T

NC · K · ANC

)
+

1
N2

(
1T

NC · K · 1NC

))
B (5)

where B = diag
[√

C1, ...,
√

CC
]
, 1NC is an N × C matrix

with all elements equal to 1,ANC = diag
[
aC1 , ..., aCC

]
is an

N × C block diagonal matrix and a Ciis a Ci = 1 vector with
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all elements equal to 1/Ci. Let EbM =
[
eb1, ..., èbM

]
consist

of M significant eigenvectors of 8T
b 8b corresponding to M

largest eigenvalues
↼
λb1 > , · · · , >

↼
λbM and V̀b = 8bEbM,

it is not difficult to derive that VT
b SbVb =

↼
3b, where

↼
3b = diag

[
↼
λ

2

b,1, ...,
↼
λ

2

b,M

]
. Thus, the transformation matrix

−→
U such that UTS̀bU = Iis evaluated as Eqs. (6), (7):

U = Vb
↼
A
−1/2

b , Vb = 8bÈbM (6)

ỳij = UT
φ
(
zij
)
=

↼
A
−1/2

b ET
bM8T

b φ
(
zij
)

(7)

where 8T
b φ
(
zij
)

can be expressed as Eq. (8)

8T
b φ
(
zij
)
=

1
√

N
B
(

ANC · v
(
φ
(
zij
))
−

1
N

1T
NC · v

(
φ
(
zij
)))

(8)
where v

(
φ
(
zij
))

=
[
φ
(
z11
)
φ
(
zij
)
, φ
(
z12
)
φ
(
zij
)
, ...,φ(

zCCC

)
φ
(
zij
)]Tis evaluated implicitly through the kernel

function described in RJ, i.e., φ (zmn) φ
(
zij
)
= k

(
zmn, z ij

)
.

6̀i(α, γ) = (1−γ)6̀i(α)+
γ

M
tr
[
6i(α)

]
I,

6̀i(α) =
1

Ci(α)

[
(1−α)Si+αS

]
,

Ci(α) = (1−α)Ci+αN,

S̀i =

Ci∑
j = 1

(
yij−yi

) (
yij−yi

)T
,

S =
C∑

i = 1

S̀i.

yi = (1/Ci)

Ci∑
j = 1

yij (9)

and (α, γ) is a pair of regularization parameters.
The key component in the evaluation of 6i(α, γ)is to arise

covariance matrix of ith class, i.e., Siwhich is given as Eq. (10):

S̀i =

Ci∑
j1

(
ỳij−yi

) (
yij−yi

)T

=

Ci∑
j1

yijy
T
ij−

Ci∑
j1

yiy
T
ij−

Ci∑
j1

yijy
T
i +

Ci∑
j1

ỳ
T
i yT

i

=

Ci∑
j1

yijỳ
T
ij−Ciyi

↼
y

T

i −Ciyiy
T
i +Ciyiy

T
i

=

Ci∑
j1

ỳijyT
ij−Ciyiy

T
i

= J1−Ci × J2, (10)

where J1 = 6Ci
j = 1ỳijyT

ij and J2 = yiy
T
i . The detailed derivation

of J1 and J2is determined in Appendices A and B.
Mahalanob is distance between feature representation of test

image q and each class centre yi is then used to identify the test
image. i.e., ID

(
p
)
= arg minidi

(
q
)
, that can be calculated in

Eq. (11) as:

di(q) =
(
q−yi

)T
6̀−1

i (α, γ)
(
q−yi

)
+ln

∣∣6i(α, γ)
∣∣−2lnπi,

(11)

where πi = C i /N.(
À = arg maxA

∣∣∣ÀTS̀bÀ
∣∣∣ / ∣∣∣ÀTSbA

∣∣∣+ ∣∣∣ÀTS̀wÀ
∣∣∣)

when
(
α = 1,γ =

(
tr
(
Si/N

)
+M

)
/M
)

Classification using deep graph ConvoNet (convolutional
network)- DG_ ConvoNet:

G = (Y, E,H) defines an undirected and connected
graph, Here A and S are limited sets of | A| = S vertices
as well as edgesW ∈ RN × N. Numerous variables in each
vertex represent the graph signals. L = D−W, where
D = diag

(
d̀0, · · · , dN−1

)
is a grading matrix designed in

steps di = 6jWi,jof vertex i. {χl}
N−1
/ = 0, as well as nonnegative

eigenvalues 0 ≤ λ0 ≤ · · · λN−1 · L. L is verified by
a matrix of eigenvectors X = [χ0, · · · ,χN−1] such that
L = X3X Twhere L is a diagonal matrix of eigenvalues.

Instead of complex exponentials, the eigenvectors,
{
χ,

}N−1
/ =0

of Laplacian matrix L that meet perpendicularity criteria are
utilized as breakdown bases for graph-structured data is defined
as Eq. (12):

f̂ (λ′) = 6N−1
n = 0χ

T
, (n)f(n) = X Tf (12)

Inverse Fourier transformation is shown in Eq. (12):

f(n) = 6N−1
l = 0̂f (λ′) χ′(n) = x̂f (13)

In the Fourier domain, convolution is converted to a
point-wise product, which can then be reconverted to vertex
domain utilizing graph Fourier transform as well as convolution
theorem, as shown in Eq. (14):

f∗g = 6N−1
/ = 0̂f

(
λ/

)
g̀
(
λζ

)
χf(n) = X

((
X Tf

)
·

(
X Tg

))
= Xdıag

(
g̀ (λ0) , · · · ,g̀ (λN−1)

)
X Tf (14)

The graph convolution process of 2 graph signals f(n) and
g(n) is shown in Figure 3, and its transform, g () l, is called a
Conv kernel. A set of free parameters θN−1 in Fourier domain,
i.e., Laplacian eigenspace is used to build this kernel. It can
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also be thought of as a function of eigenvalues, written as g(A).
Convolution is then written as Eq. (15):

f∗g = xdıag (θ0, · · · ,θN−1)XTf = XG(3)XTf (15)

The convolution mentioned above on a graph has two
drawbacks: (1) Each process involves an Eigen decomposition,
which incurs high computational costs; (2) after this operation,
the variable value of a vertex is associated with global vertices
without considering its locality in space, which is inconsistent
with CNNs’ local connections.

suggested a low-order polynomial approximation based on
rapid localized convolution that depicts g(A) as a polynomial
function of eigenvalues Eq. (16):

G(3) = 6K
k = 0θk3

k (16)

θk is the polynomial order, and _k is a vector of polynomial
coefficients. The convolution is then rewritten where K is a small
positive integer, such as Eq. (17).

f∗g = X
(
6K

k = 0θk3
k
)
X Tf =

(
6K

k = 0θk

(
X3kX T

))
f

= 6K
k = 0θkLkf (17)

The convolution is performed by K multiplications of sparse
matrix L, which speeds up computation by avoiding the Eigen
decomposition procedure.

Update equation for a layer l is defined as Eq. (18):

h̀l+1
i = Ol

hHk = 1

(
6j∈Ni w

k,l
ij Vk,lhl

j

)
èl+1

i = Ol
eHk = 1(

ẁk,l
i,j

)
wk,l

ij = softmaxj

(
ẁk,l

i,j

)
wv̀k,l

i,j =

(
Qk,lhl

i · K
k,lhl

j√
dk

)
Ek,lel

i,j′
(18)

with Qk,l, Kk,l, Vk,l, Ek,l
∈ Rdk, Ol

h′
, Ol

e ∈ Rd × d, k ∈
{1, 2, ..., H} represents the number of attention heads, and
where Ol

h ∈ Rd × d, Vk,l
∈ Rdk × dH indicates the number of

heads, L number of layers, d is the hidden dimension and dkis
the dimension of a head d H = dk. Note that hl

i is ith node’s
feature at lth layer Eq. (19).

cut
(

Sk, S̀k

)
=

∑
vi∈Sk,vj∈Sj

e
(
vi, vj

)
(19)

where Sk is the kth set of a given eigenvector, S̀kindicates residual
sets excluding Sk and e

(
vi, vj

)
is an edge among vertex vi and

vj.The cut problem can be rewritten as follows when referring to
several sets Eq. (20):

cut
(
S1, S2, S3...Sg

)
=

1
2

g∑
i = k

cut (Sk, Sk) (20)

The minimum cut problem is extensively researched in
literature, with normalized cut reflecting a separate direction Eq.
(21):

Ncut
(
S1, S2...Sg

)
=

g∑
k = 1

cut
(

Sk, S̀k

)
vol (Sk, V)

(21)

wherever vol (Sk, V) = 6vi∈Sk,vi∈Ve
(
vi, vj

)
is the entire grade

of bulges from Sk in diagram g.
utilizing DL optimization to turn the minimum cut issue

into a DL format Eq. (22):

Lcut =
∑

lower sum

[(Y� 0)(1−Y)T]
⊙

A+
∑

lower sum

(
1TY−

n
g

)2

(22)

The normalized cut is the first term, and Y is defined as an n
∗ g dimension matrix that indicates the neural network’s output.
Finally, 0, Y calculates A, which is the adjacency matrix Eq. (23).

H[l+1]
j = σ

( Fin∑
i = 1

( K∑
k = 0

θi,jkL
kH[l]i

)
+b[l]j

)
(23)

Manifold convolutional and pooling layers, as well as one
fully associated layer, make up the model. Figure 4 depicts the
model’s architecture with two convolutional layers.

Convolutional network: Convolutional layers are the
foundation of a convolutional neural network. It has some
filters (or kernels) whose settings will be figured out as the
training progresses. Typically, its filter’s size will be less than
that of the image it’s applied. Each filter performs a convolution
on the image, yielding an activation map. For convolution,
the filtration is moved throughout the height & width of the
image, and at each point in space, the dot product between
each component of the filter & the input is measured. The
implemented design with the Deep Graph CNN model can
provide better heart disease prediction compared to earlier
models. The main features of this design are to give less ToC
and accurate diagnosis results compared to earlier models.
Heart diseases had been predicted at the classification stage
using the GS-CNN process. The shape-based features are more
helpful to find the information medical image such that getting
differentiation with training data.

Performance analysis

A thorough experimental analysis was used to calculate the
suggested hybrid technique performance. The proposed hybrid
technique was tested on a PC with the following parameters:
Intel(R) Core (TM) i5-7500 CPU, 32-bit Windows 7 OS, 4
GB RAM with SciPy, NumPy, Pandas, Keras and Matplotlib
frameworks and Python 2.7 as the programming language.
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FIGURE 3

Graphical illustration of convolution f (n) and g (n).
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FIGURE 4

Model’s architecture with two convolutional layers.
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TABLE 2 Comparative analysis of diagnostic accuracy.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 45 52 59 65

200 49 55 63 72

300 52 59 65 79

400 55 61 69 85

500 59 65 72 96

FIGURE 5

Comparative analysis of diagnostic accuracy.

TABLE 3 Comparative analysis of sensitivity.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 52 55 57 60

200 59 61 63 65

300 63 65 66 69

400 65 69 72 75

500 66 70 75 80

Dataset description

Public Health Dataset, which dates from 1988 and consists
of four databases: Cleveland, Hungary, Switzerland and Long
Beach V, was used for this study. Even though there are 76
qualities in total, including expected attributes, all published
studies only utilize a selection of 14 of them.

Information on heart disease

The clinical HD data used in this study came from 303
patients at CCF in Cleveland, Ohio, in the US. Dataset was

collected from UCI_MLRepository (Hinton and Salakhutdinov,
2006), part of the Heart Disease Database. There were 75
attributes and a target attribute in each of the 303 clinical
situations. The target attribute was an integer ranging from 0
to 4, indicating whether a patient had HD [0] or not [1, 2, 3].
Target qualities for the absence or presence of cardiac disease
in patients were ascribed to binary values of 0 and 1 for this
study. There were 125 cases with heart disease (44.33%) and 157
cases without heart disease (55.67%) among the 282 total clinical
episodes. A total of 76 raw attributes were used to describe each
clinical event. Due to missing values among other raw variables,
only 29 of the raw attributes were used in the building of DNN
models (Djenouri et al., 2022; Mezair et al., 2022).
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FIGURE 6

Comparative analysis of sensitivity.

TABLE 4 Comparative analysis of specificity.

Number of
epochs

SVM CNN FGCNet K-means_LQDA
_DG_ConvoNet

100 41 45 51 55

200 45 49 55 59

300 49 51 61 62

400 52 55 63 65

500 55 59 67 73

Table 2 and Figure 5 show comparative analysis
in diagnostic accuracy for proposed K-means_LQDA_
DG_ConvoNet. The diagnostic accuracy has been analyzed
based on the number of epochs the neural network carries
out. The epochs are taken as 100, 200, 300, 400 and 500.
For all the iterations of the neural network, the proposed
K-means_LQDA_ DG_ConvoNet obtained optimal results
than the existing technique. The accuracy obtained in
the diagnosis of disease by proposed K-means_LQDA_
DG_ConvoNet is 96% and existing SVM achieved
59% for 500 epochs and CNN obtained 65%, FGCNet
attained 72%.

Table 3 and Figure 6 show comparative sensitivity
analysis for proposed K-means_LQDA_ DG_ConvoNet.
The sensitivity calculation refers prediction of the true
positive and false positive rate of the proposed technique in
diagnosing heart disease. The sensitivity obtained in disease
diagnosis by proposed K-means_LQDA_ DG_ConvoNet
is 80% for 500 epochs and existing SVM achieved
66% for 500 epochs and CNN obtained 70%, FGCNet
attained 75%.

Table 4 and Figure 7 show comparative analysis in terms
of specificity for proposed K-means_LQDA_ DG_ConvoNet.
The specificity calculation relates to the percentage of real
negatives projected as negatives. This means that a part of
true negatives is forecasted as positives, which is denoted as
false positives in the suggested method for identifying HD. The
specificity obtained in the diagnosis of disease by proposed

FIGURE 7

Comparative analysis of specificity.

TABLE 5 Comparative analysis of precision.

Number of
epochs

SVM CNN FGCNet K-means_LQDA
_DG_ConvoNet

100 55 59 63 76

200 59 63 67 79

300 62 66 71 82

400 65 69 75 85

500 71 73 79 90

FIGURE 8

Precision analysis differentiation.

K-means_LQDA_ DG_ConvoNet is 73% for 500 epochs and
existing SVM achieved 55% for 500 epochs and CNN obtained
57%, FGCNet attained 67%.

Table 5 and Figure 8 show qualified examination in terms of
Precision for proposed K-means_LQDA_ DG_ConvoNet. The
precision calculation mentions the number of true positives
separated by the whole number of positive calculations made
by the suggested technique in diagnosing heart disease,
as well as the superiority of a positive forecast made
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TABLE 6 Comparative analysis of F-Score.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 51 55 59 63

200 56 61 65 66

300 59 63 69 71

400 63 66 72 75

500 65 71 79 79

FIGURE 9

Comparative analysis of F-Score.

TABLE 7 ROC curve on various methods.

Number of epochs SVM CNN FGCNet K-means_LQDA_ DG_ConvoNet

100 31 36 45 61

200 35 39 49 65

300 39 42 53 69

400 42 49 56 72

500 45 53 62 75

by the proposed technique. The precision obtained in
the diagnosis of disease by proposed K-means_LQDA_
DG_ConvoNet is 90% for 500 epochs and existing SVM
achieved 71% for 500 epochs and CNN obtained 73%, FGCNet
attained 79%.

Table 6 and Figure 9 show a comparative analysis in terms
of F-Score for proposed K-means_LQDA_ DG_ConvoNet.
The F-Score computation is utilized to assess binary
classification techniques which categorize examples as
“positive” or “negative.” F-score is shown as the harmonic
mean of precision and recall. For example, F-Score obtained
in the diagnosis of disease by proposed K-means_LQDA_
DG_ConvoNet is 79% for 500 epochs and existing SVM
achieved 65% for 500 epochs and CNN obtained 71%, FGCNet
attained 79%.

Table 7 and Figure 10 show an examination of the
area under the ROC curve for proposed K-means_LQDA_
DG_ConvoNet. The calculation of the extent under the ROC
curve is a measure of a classifier’s ability to distinguish

FIGURE 10

ROC curve analysis.

between classes as well as used as an instant of the
ROC curve.

AUC indicates how well the method differentiates
between positive and negative classes. F-Score
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FIGURE 11

Classification of heart disease prediction.

obtained in the diagnosis of disease by proposed
K-means_LQDA_ DG_ConvoNet is 75% for 500 epochs
and existing SVM achieved 45% for 500 epochs and
CNN obtained 53%, FGCNet attained 62% shown in
Figure 11.

Conclusion

The proposed work is a novel technique for detecting heart
disease based on IoT sensor data with a monitoring application
using deep learning architectures. Here, the input data has been
collected from IoT sensor data from the University of California
Irvine machine learning repository. The collected data has
been processed for noise removal and clustered based on
K-means clustering. The clustered data has been extracted using
Linear Quadratic Discriminant Analysis where the features of
clustered data have been extracted. The extracted features have
been classified using the deep graph ConvoNet (convolutional
network)- DG_ConvoNet. The diagnostic accuracy of 96%,
sensitivity of 80%, specificity of 73%, precision of 90%, F-Score
of 79%, and area under the ROC curve of 75% are obtained
by the proposed classification and prediction model, according
to the testing findings. Our strong results clearly show the
strength of our methodology and DG_ConvoNet. In the
future, we wish to test our system model on other datasets
and also look at implementing the DG_ConvoNet for other
diseases.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here at doi: 10.1136/bmjopen-2020-044070.

Author contributions

KS and VR contributed to the conception and design of the
study. GS performed the statistical analysis. KS and JL wrote
the first draft of the manuscript. All authors contributed to the
manuscript revision, read, and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2022.964686
https://doi.org/10.1136/bmjopen-2020-044070
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-964686 October 7, 2022 Time: 6:29 # 13

Saikumar et al. 10.3389/fncom.2022.964686

References

Ali, F., Hasan, B., Ahmad, H., Hoodbhoy, Z., Bhuriwala, Z., Hanif, M., et al.
(2021). Protocol: Detection of subclinical rheumatic heart disease in children using
a deep learning algorithm on digital stethoscope: A study protocol. BMJ Open
11:e044070. doi: 10.1136/bmjopen-2020-044070

Divya, K., Sirohi, A., Pande, S., and Malik, R. (2021). “An IoMT assisted heart
disease diagnostic system using machine learning techniques,” inCognitive internet
of medical 4ings for smart healthcare, Vol. 311, eds A. E. Hassanien, A. Khamparia,
D. Gupta, K. Shankar, and A. Slowik (Cham: Springer), 145–161. doi: 10.1007/978-
3-030-55833-8_9

Djenouri, Y., Belhadi, A., Srivastava, G., and Lin, J. C. (2022). When explainable
AI meets IoT applications for supervised learning. Cluster Comput. 17:1. doi:
10.1007/s10586-022-03659-3

Garigipati, R. K., Raghu, K., and Saikumar, K. (2022). “Detection and
identification of employee attrition using a machine learning algorithm,” in
Handbook of research on technologies and systems for E-collaboration during global
crises, eds J. Zhao and V. Vinoth (Pennsylvania, PA: IGI Global), 120–131. doi:
10.4018/978-1-7998-9640-1.ch009

Golande, A., Sorte, P., Suryawanshi, V., Yermalkar, U., and Satpute, S. (2019).
Smart hospital for heart disease prediction using IoT. Int. J. Inform. Vis. 3,
198–202.

Haq, A. U., Li, J. P., Memon, M. H., Nazir, S., and Sun, R. (2018). A hybrid
intelligent system framework for the prediction of heart disease using machine
learning algorithms. Mob. Inf. Syst. 2018:3860146. doi: 10.1155/2018/3860146

Hasan, N. I., and Bhattacharjee, A. (2019). Deep learning approach to
cardiovascular disease classification employing modified ECG signal from
empirical mode decomposition. Biomed. Signal Process. Control 52, 128–140. doi:
10.1016/j.bspc.2019.04.005

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. science 313, 504–507. doi: 10.1126/science.1127647

Huang, J., Chen, B., Yao, B., and He, W. (2019). ECG arrhythmia classification
using STFT-based spectrogram and convolutional neural network. IEEE Access 7,
92871–92880. doi: 10.1109/ACCESS.2019.2928017

Kanksha, Aman, B., Sagar, P., Rahul, M., and Aditya, K. (2021). An intelligent
unsupervised technique for fraud detection in health care systems. Intell. Decis.
Technol. 15, 127–139. doi: 10.3233/IDT-200052

Koppula, N., Sarada, K., Patel, I., Aamani, R., and Saikumar, K. (2021).
“Identification and recognition of speaker voice using a neural network-based
algorithm: Deep learning,” inHandbook of research on innovations and applications
of AI, IoT, and cognitive technologies, eds J. Zhao and V. Vinoth Kumar
(Pennsylvania, PA: IGI Global), 278–289. doi: 10.4018/978-1-7998-6870-5.ch019

Ladefoged, C. N., Hasbak, P., Hornnes, C., Højgaard, L., and Andersen, F. L.
(2021). Low-dose PET image noise reduction using deep learning: Application to
cardiac viability FDG imaging in patients with ischemic heart disease. Phys. Med.
Biol. 66:054003. doi: 10.1088/1361-6560/abe225

Liu, J., Wang, H., Yang, Z., Quan, J., Liu, L., and Tian, J. (2022). Deep learning-
based computer-aided heart sound analysis in children with left-to-right shunt
congenital heart disease. Int. J. Cardiol. 348, 58–64. doi: 10.1016/j.ijcard.2021.12.
012

Majumder, A. K. M., ElSaadany, Y. A., Young, R., and Ucci, D. R. (2019).
An energy efficient wearable smart IoT system to predict cardiac arrest. Adv.
Hum.Comput. Interact. 2019:1507465. doi: 10.1155/2019/1507465

Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., and Sundarasekar,
R. (2017). “Big data analytics in healthcare internet of things,” in Innovative
healthcare systems for the 21st century, ed. H. Qudrat-Ullah (Cham: Springer),
263–284. doi: 10.1007/978-3-319-55774-8_10

Martins, J. F. B., Nascimento, E. R., Nascimento, B. R., Sable, C. A., Beaton,
A. Z., Ribeiro, A. L., et al. (2021). Towards automatic diagnosis of rheumatic heart
disease on echocardiographic exams through video-based deep learning. J. Am.
Med. Inform.Assoc. 28, 1834–1842. doi: 10.1093/jamia/ocab061

Mezair, T., Djenouri, Y., Belhadi, A., Srivastava, G., and Lin, J. C. (2022).
Towards an advanced deep learning for the internet of behaviors: Application to
connected vehicle. ACM Trans. Sens. Netw. 1–18. doi: 10.1145/3526192

Morris, S. A., and Lopez, K. N. (2021). Deep learning for detecting congenital
heart disease in the fetus. Nat. Med. 27, 764–765. doi: 10.1038/s41591-021-01
354-1

Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M.,
et al. (2018). Exploiting smart e-health gateways at the edge of healthcare internet-
of-yhings: A fog computing approach. Future Gener. Comput. Syst. 78, 641–658.
doi: 10.1016/j.future.2017.02.014

Rath, A., Mishra, D., Panda, G., and Satapathy, S. C. (2021). Heart disease
detection using deep learning methods from imbalanced ECG samples. Biomed.
Signal Process. Control 68:102820. doi: 10.1016/j.bspc.2021.102820

Saikumar, K., and Rajesh, V. (2020a). A novel implementation heart diagnosis
system based on random forest machine learning technique. Int. J. Pharm. Res. 12,
3904–3916. doi: 10.31838/ijpr/2020.SP2.482

Saikumar, K., and Rajesh, V. (2020b). Coronary blockage of artery for heart
diagnosis with DT Artificial Intelligence Algorithm. Int. J. Res. Pharma. Sci. 11,
471–479. doi: 10.26452/ijrps.v11i1.1844

Saikumar, K., Rajesh, V., and Babu, B. S. (2022). Heart disease detection based
on feature fusion technique with augmented classification using deep learning
technology. Trait. Signal 39, 31–42. doi: 10.18280/ts.390104

Vincent Paul, S. M., Balasubramaniam, S., Panchatcharam, P., Malarvizhi
Kumar, P., and Mubarakali, A. (2021). Intelligent framework for prediction of
heart disease using deep learning. Arab. J. Sci. Eng. 47, 2159–2169. doi: 10.1007/
s13369-021-06058-9

Wang, H., Shi, H., Chen, X., Zhao, L., Huang, Y., and Liu, C. (2020). An
improved convolutional neural network based approach for automated heartbeat
classification. J. Med. Syst. 44:35. doi: 10.1007/s10916-019-1511-2

Wang, S. H., Govindaraj, V. V., Gorriz, J. M., Zhang, X., and Zhang, Y. D.
(2021a). Covid-19 classification by FGCNet with deep feature fusion from graph
convolutional network and convolutional neural network. Inf. Fusion 67, 208–229.
doi: 10.1016/j.inffus.2020.10.004

Wang, S. H., Nayak, D. R., Guttery, D. S., Zhang, X., and Zhang, Y. D. (2021b).
COVID-19 classification by CCSHNet with deep fusion using transfer learning
and discriminant correlation analysis. Inf. Fusion 68, 131–148. doi: 10.1016/j.
inffus.2020.11.005

Zhang, P., and Xu, F. (2021). Effect of AI deep learning techniques on possible
complications and clinical nursing quality of patients with coronary heart disease.
Food Sci. Technol. 42, 1–6. doi: 10.1590/fst.42020

Zhang, Y. D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, K., et al.
(2019). Image based fruit category classification by 13-layer deep convolutional
neural network and data augmentation, multimed. Tools Appl. 78, 3613–3632.
doi: 10.1007/s11042-017-5243-3

Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q., et al. (2020a).
Advances in multimodal data fusion in neuroimaging: Overview, challenges, and
novel orientation. Inf. Fusion 64, 149–187. doi: 10.1016/j.inffus.2020.07.006

Zhang, Y. D., Nayak, D. R., Zhang, X., and Wang, S. H. (2020b). Diagnosis
of secondary pulmonary tuberculosis by an eight-layer improved convolutional
neural network with stochastic pooling and hyperparameter optimization.
J. Ambient Intell. Humaniz. Comput. 1, 1–18. doi: 10.1007/s12652-020-02612-9

Frontiers in Computational Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2022.964686
https://doi.org/10.1136/bmjopen-2020-044070
https://doi.org/10.1007/978-3-030-55833-8_9
https://doi.org/10.1007/978-3-030-55833-8_9
https://doi.org/10.1007/s10586-022-03659-3
https://doi.org/10.1007/s10586-022-03659-3
https://doi.org/10.4018/978-1-7998-9640-1.ch009
https://doi.org/10.4018/978-1-7998-9640-1.ch009
https://doi.org/10.1155/2018/3860146
https://doi.org/10.1016/j.bspc.2019.04.005
https://doi.org/10.1016/j.bspc.2019.04.005
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/ACCESS.2019.2928017
https://doi.org/10.3233/IDT-200052
https://doi.org/10.4018/978-1-7998-6870-5.ch019
https://doi.org/10.1088/1361-6560/abe225
https://doi.org/10.1016/j.ijcard.2021.12.012
https://doi.org/10.1016/j.ijcard.2021.12.012
https://doi.org/10.1155/2019/1507465
https://doi.org/10.1007/978-3-319-55774-8_10
https://doi.org/10.1093/jamia/ocab061
https://doi.org/10.1145/3526192
https://doi.org/10.1038/s41591-021-01354-1
https://doi.org/10.1038/s41591-021-01354-1
https://doi.org/10.1016/j.future.2017.02.014
https://doi.org/10.1016/j.bspc.2021.102820
https://doi.org/10.31838/ijpr/2020.SP2.482
https://doi.org/10.26452/ijrps.v11i1.1844
https://doi.org/10.18280/ts.390104
https://doi.org/10.1007/s13369-021-06058-9
https://doi.org/10.1007/s13369-021-06058-9
https://doi.org/10.1007/s10916-019-1511-2
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.inffus.2020.11.005
https://doi.org/10.1016/j.inffus.2020.11.005
https://doi.org/10.1590/fst.42020
https://doi.org/10.1007/s11042-017-5243-3
https://doi.org/10.1016/j.inffus.2020.07.006
https://doi.org/10.1007/s12652-020-02612-9
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

	Heart disease detection based on internet of things data using linear quadratic discriminant analysis and a deep graph convolutional neural network
	Introduction
	Appendix
	Related work

	System model
	K-means clustering
	Linear quadratic discriminant analysis based feature extraction

	Performance analysis
	Dataset description
	Information on heart disease

	Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


