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Abstract: High security for physical items such as intelligent machinery and residential appliances
is provided via the Internet of Things (IoT). The physical objects are given a distinct online address
known as the Internet Protocol to communicate with the network’s external foreign entities through
the Internet (IP). IoT devices are in danger of security issues due to the surge in hacker attacks during
Internet data exchange. If such strong attacks are to create a reliable security system, attack detection
is essential. Attacks and abnormalities such as user-to-root (U2R), denial-of-service, and data-type
probing could have an impact on an IoT system. This article examines various performance-based AI
models to predict attacks and problems with IoT devices with accuracy. Particle Swarm Optimization
(PSO), genetic algorithms, and ant colony optimization were used to demonstrate the effectiveness of
the suggested technique concerning four different parameters. The results of the proposed method
employing PSO outperformed those of the existing systems by roughly 73 percent.

Keywords: artificial intelligence; cyber security threats; optimization techniques; particle swarm
optimization; ant colony optimization; genetic algorithm

1. Introduction

As a result of increasing demand and expansion in the advanced network system
of the Internet of Things (IoT), IoT concepts are becoming more complex every day [1].
The IoT is challenging to define because it has evolved and improved since it was initially
introduced. Still, the best definition is a network of connected digital and analog computer
devices with unique UIDs that can exchange data without a human being involved [2]. This
is frequently considered a user interface for the centralized location system or application,
typically a smartphone app that sends data or instructions to one or more edge IoT de-
vices [3]. The peripheral can perform functions and transmit data to the primary computer
system or application as needed, which a person can then access and use. IoT devices are
vulnerable to Internet attacks because of various threat vectors, their uniqueness, and the
absence of safety standards and guidelines. Hackers may use a range of cybersecurity risks
against IoT devices, depending on the part of the network they target and the outcomes
of the attack [4]. IoT-related cybersecurity research is therefore very active at the moment.
Concerns regarding cyber security may be substantially helped by artificial intelligence [5].
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Artificial intelligence may prove to be a helpful ally in the construction of defense against
attackers. AI is capable of detecting and analyzing patterns for any anomaly [6,7]. This
entails protecting IoT systems from hackers and using artificial intelligence to detect anoma-
lous behaviour that might point to an assault. However, cybercriminals always have the
upper hand [8] in the IoT scenario, since they only need to locate a hole, as opposed to
cybersecurity experts who must secure several sites. As a result, cyber attackers increas-
ingly turn to artificial intelligence (AI) to bypass sophisticated algorithms that can miss
unusual behaviour [9,10]. IoT technology’s development has generated much interest in
AI. Several AI optimization tools can now recognize potential dangers and activities in IoT
cyber security applications as a result of this progress.

For several reasons, IoT applications are more susceptible to vulnerabilities than
traditional computer systems. First of all, a variety of IoT systems are available, including
devices, platforms, communication channels, and protocols. Second, rather than being
created for Internet communication, IoT systems consist of “things” that are used to link
physical systems. Third, IoT systems lack clearly defined limitations and undergo constant
change due to the mobility of users and devices. Technical risks would also exist with
IoT systems.

Last but not least, the restricted energy supply of IoT devices makes it challenging to
deploy better security and solutions on linked devices [11–13]. Numerous nodes in an IoT
ecosystem often govern lighting, heating, ventilation, air conditioning, and other services
ranging from light detection, temperature, and noise to control systems. Through various
networking protocols such as Bluetooth, Wi-Fi, RFID, etc., all sensors and control systems
communicate with one another [14–16]. IoT gateways are utilized to connect these devices
to the Internet. Each tier of the IoT ecosystem, which is made up of many levels of protocols,
services, and technology, presents challenges for privacy protection. They can share data,
limit the use of computer resources, and connect an enormous number of IoT nodes [17–19].
The rapid expansion of IoT-based devices will undoubtedly leave these networks more
susceptible to challenges to privacy protection. Easily accessible IoT devices such as sensors
have brought on numerous security issues in IoT networks. Because IoT devices have
less processing power and appear to have a better signal than the present access point
(AP) with the same service set identifier (SSID), the attacker has made all IoT devices
vulnerable to connection to the software-enabled access point (SoftAP) [20–22]. This has
made it possible for man-in-the-middle (MiTM) and eavesdropping attacks to compromise
Internet communications. To develop IDSs and identify the hazards associated with IoT
devices, such assault scenarios have been employed in IoT networks. The Internet of Things
(IoT) concept is centered on the methods used to communicate with a real, physical world
through the Internet [23,24].

Numerous nodes in an IoT ecosystem often govern lighting, heating, ventilation, air
conditioning, and other services ranging from light detection, temperature, and noise to
control systems. Through various networking protocols such as Bluetooth, Wi-Fi, RFID,
etc., all sensors and control systems communicate with one another [25]. IoT gateways
are utilized to connect these devices to the Internet. Each tier of the IoT ecosystem, which
comprises many levels of protocols, services, and technology, presents challenges for
privacy protection. They can share data, limit the use of computer resources, and connect
an enormous number of IoT nodes [13]. The rapid expansion of IoT-based devices will
undoubtedly leave these networks more susceptible to challenges to privacy protection.
Easily accessible IoT devices such as sensors brought on numerous security issues in
IoT networks. Because IoT devices have less processing power and appear to have a
better signal than the present access point (AP) with the same service set identifier (SSID),
the attacker has made all IoT devices vulnerable to connection to the software-enabled
access point (SoftAP) [25]. This made it possible for man-in-the-middle (MiTM) and
eavesdropping attacks to compromise Internet communications. To develop IDSs and
identify the hazards associated with IoT devices, such assault scenarios have been employed
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in IoT networks. The Internet of Things (IoT) concept is centered on the methods used to
communicate with a real, physical world through the Internet [26].

For this reason, IoT settings feature several heterogeneous linkages and dependencies.
Every connected ecosystem poses a cyber risk to every IoT system. IoT environments face
threats from various dimensions, both real and virtual. Figure 1 deliberates the types of
cyber security that are present in the IoT process, such as the interface from different users,
variety of services from the cloud with multiple-system formation, and level of attacks [4].
In all the above-mentioned categories, a high level of attacks is present, and thus, these
processes require high-security features at different dimensionalities. Even though multiple
IoT systems are providing low attack features, the implementation of protocol-level features
is much higher than that used by all individuals. Hence, a high-level feature needs to be
provided to prevent any type of threat that enters the designed system.
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1.1. Primary Literature Exploration

Ref. [1] presented the identification of a fake network node ‘on’ and ‘off’ assault in
industrial IoT locations. It suggested that rogue nodes might target IoT networks while
in an active or “on” state because of how they would turn on and off. In addition, the
attacker node in the IoT network behaves normally, whether active or idle. A light-probe
routing method was utilized to determine the confidence estimate of each surrounding
node for an intrusion detection system. The authors of [2] developed a network traffic
monitoring approach for all hypervisor-level virtual machines to protect the decentralized
system. Using a binary bat approach with numerous targets was advised to properly
determine the attributes. A warning was produced based on the outcomes of the random
forest classification. A new signature for the assault was developed using the intrusion
alarms from the various servers. The outcomes of both PSO and GSO are provided in terms
of accuracy, where security boosting is highly enhanced by about 52 percent. However,
this rise in accuracy does not guarantee protocol attack prevention and score, which is
predicted in terms of the F-measure and is not measured [3]. The system’s evaluations
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were conducted using 22 benchmarking functions. The results show that the binary hybrid
approach beats BGSA and BPSO.

Ref. [4] reported a hybrid fusion of the ABC and Adaboost algorithms. The ABC
is utilized for the subset, and Adaboost characteristics are used to analyze, classify, and
examine the device’s utility. It is recommended to use the ISCX1DS2012 and the NSL-
KDD data sets to check the accuracy and detection rate. It has improved efficiency by
comparing the proposed solution to an existing structure. Ref. [5] employed the PSO hybrid
technique with rough sets to choose features well. The primary goal of the method being
given is to increase classification accuracy while reducing the number of feature subsets.
Across numerous datasets, the suggested strategy has proven effective as an attribute,
instance, and class. One type of evolutionary algorithm has been introduced in double
folds, where the presence of attacks is handled using deep learning models. This type of
algorithmic integration is used at two levels to maximize the score of individual variables
which provides more protection against service attacks [10]. Unfortunately, the test set
only included a small number of assault types instead of a training set that would have
evaluated participants’ ability to recognize them.

The limitations that are present using gateways [22] are that only corresponding nodes
can access security features, whereas the remaining nodes remain in an idle mode of opera-
tion. Even some of the boundaries must be defined in transportation applications which
are divided into separate layers, but all layers cannot be used at distinct periods [27–31]. In
addition, high-end limitations are defined without any data-handling method, but more
effectiveness can only be achieved if the data set is defined in a proper way [27–33]. In the
case of intrusion detection and pathway management strategies [34–39], industrial opera-
tions are carried out, but basic limitations still exist in terms of application enhancement
with two-directional security features.

1.2. Proposed Methodology

In this article, we looked at a typical smart home application where a large number
of IoT devices may be linked and controlled via an IoT gateway on the Azure host, as
shown in Figure 2. The IoT device area, IoT field gateway area, Azure area, cloud gate
area, and client region are the five sections that comprise the entire device. All of the
IoT devices that have been installed in the smart home are located in the IoT Device
zone [5,8,11]. The main control mechanism for the various parts of our smart home system
is in the cloud region. Similar site sections are used to break up the Azure and Cloud
Gateway zones. While Azure comprises multiple modules that monitor and manage all
IoT devices, the Cloud Gateway area establishes links between the IoT Device Area and
the Consumer Region. The client area also contains end-user interface gadgets (tablets,
smartphones, etc.), which let a customer monitor the state of each IoT system as well as
submit IoT applications to Azure components both online and offline [15]. Particle swarm
optimization, ant optimization, and genetic algorithms are only a few of the optimization
methods used in the approach’s main phases. The following subsections of the graphic
detail each component of our home automation use case, and the visual contains data
gathered from the NSL-KDD databases [17]. The blocks in Figure 2 represent multiple IoT
devices that are installed in a particular region using wireless modules, where a gateway is
directly connected for collecting secured data that is provided by a particular consumer.
Once the data is transferred from the consumer, a separate encoded cloud monitoring
system is then used for both pre-processing and collecting data at output units (Table 1).
Further different features are selected by adding an artificial intelligence technique for
recognizing the unformatted data in the entire system.
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Table 1. Comparison of the proposed technique with previous works.

Reference Data Technique Used Type of Algorithm Objectives

[22] Internet of Things Artificial Intelligence Cyber security operations with high
network gateways

[27] Layering procedure using
Internet of Things Artificial Intelligence Compatibility of transportation

applications with cyber security

[33] - Artificial Intelligence Intelligent interactive devices for smart
home applications with cyber security

[34] Intrusion detection Artificial Intelligence Better service for cyber security operation
and intelligent management

[39] Pathway management Artificial Intelligence Increasing the secured operations for
industrial applications

[40–43] Deep generative model Deep learning Face recognition with a clone
detection mechanism

Proposed Internet of Things and cloud
management Artificial Intelligence Building smart homes with enhanced cyber

security features

The aforementioned unformatted data is passed to the server station for checking the
type of attack in the data. In case attacks are not detected, the data is taken in a particular
way that is useful to individuals.

1.3. Objectives

One of the main objectives of this research is to design and build an IoT-based smart
home. Smart home architecture is susceptible to IoT exposure to various cyberattacks, such
as denial-of-service, data-type probing, and U2R attacks. To properly demonstrate the
safety status of the IoT-based smart home system, it is required to identify and examine
any safety risks. An optimization-based solution is offered to locate and protect the system
in an abnormal state in this situation. Three optimization strategies have been applied to
this problem.
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2. System Model: Pre-Processing

The two datasets are the initial input data source for the experimental analysis. After
that, the input data is prepared for sound and missing data removal [33]. The classifiers
raised a great number of erroneous alerts as a result of the harsh characteristics. Preprocess-
ing is essential as a result. Since some common qualities raise calculation time and memory
requirements, classification procedures cannot be avoided. The NSL-KDD dataset classifies
rough variables as follows [4],

rs = { fs1 + fs2 + . . . + fsn} (1)

where n represents the dataset distinct characteristics.
As a result of the additional expense and redundancy, rough features do not include

the usual features. The rough characteristics that have been modified [4] are shown as:

r
.
s =

{
fs1, fs2, fs3 . . . . . . . . . fsp

}
(2)

where p represents the best distinct characteristics.
After the elimination process, some weak traits are still present. After the dataset has

been examined to ascertain its relative relevance, preprocessing is utilized to make the most
of the feature collection. The study uses a variety of data preparation techniques for this
aim, including data cleaning, normalization, integration, and description of each stage.

2.1. Data Cleaning and Normalization

Modifying data that has been duplicated, inaccurate, irrelevant, incomplete, or incor-
rectly framed is known as data cleansing. Data are not required for data analysis because it
would be harder to make mistakes in findings. Information is removed by data cleansing
in addition to being purged [35,36]. Incorrect data changes, data removal, and wiping
of unnecessary information are all included in data cleaning. The primary goal was to
exclude the information from the data sets that standardized the data analysis and made
it easy to find the appropriate information for the investigation. Since there were already
some incomplete or ambiguous data, it was necessary to alter the missing data to improve
quality by removing bad information. When integrating and normalizing data, the MinMax
normalization technique is crucial [37]. The highest feature value is changed to 1, and the
lowest feature value is set to 0. All 0 and 1 values are converted to their binary equivalents.
The normalization procedure [4] is described in Equation (3).

Rnorm =
Ri − Rmin

Rmax − Rmin
, (3)

where Ri represents data points, Rmin describes the value of the lowest data point, and Rmax
denotes the value of the highest data point

All three variables determine the normalized value at two defined data points in
the presence of structured data [32,33]. The data will still be questionable after the full
normalization for unstructured information has been completed because of contaminated
traffic data. The examination of assault prediction is made possible by collecting these traits
from many complex systems [36].

2.2. Discretization and Integration of Data

The decentralization approach is used for discrete counterparts of periodic functions
expressed in parameters [32]. When numerous discrete variables have been summed, it
is known that the discretization technique alters the granularity category variable. The
primary goal of the developed model is to reduce the amount considered for modelling
applications [34]. The data integration focuses on the unique conceptual task of resolving
multiple open challenges. Integration of data facilitated collaboration between internal
and external users [35,36]. The collected information was added to the heterogeneous
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database, which already included reliable information for accessing customer files. The
feature selection technique used to reduce the number of features is called Recursive Feature
Elimination (RFE). According to the RFE, the feature numbers’ validity was unknown in
advance, so the RFE helped choose and select the characteristics [37].

2.3. Feature Selection

When the data is taken from the RFE procedure, the feature values are automatically
applied to the feature selection process, which aids in improving accuracy [38]. Unchecked
functional values that are unnecessary, redundant, or irrelevant will no longer help cat-
egorize assaults. Therefore, key features are selected using feature selection methods
to evaluate the search area’s accuracy. Based on relevance, the classifier eliminates the
unimportant parts and chooses the top 10 features. Service, Dst host srv count, Src byte,
Dst byte, Dst host same src port rate, Count, Dst host diff srv rate, Srv error rate, Diff-srv rate,
and Protocol type are among the features. The strength of the exploration is increased
by combining optimization approaches with exploration algorithms. Three optimization
techniques are used to increase accuracy: genetic algorithms, ant colony optimization, and
particle swarm optimization.

3. Analysis Using AI Optimization Procedure

This research evaluates the performance of three different classifiers using the data
set mentioned above. To be more precise, we used the genetic algorithm, ant colony
optimization, and particle swarm optimization.

3.1. Particle Swarm Optimization

The PSO algorithm, an SI global random search technique that imitates the migratory
and swarming behaviour of feeding bugs, was developed by Kennedy and Eberhart. The
traditional approach to each component of the swarm aggregation model is as follows:
Every individual information must be protected, each information rate must be achieved
in the immediate vicinity, and in the case of PSO, the information center must change
independently of their destination. Particle swarm optimization (PSO) [34] identifies a
particle in the search space for each optimization issue. The optimal function determines
each particle’s fitness value, and its velocity determines its distance. Following the optimal
particle, the particles will go through the subspace. The basic PSO algorithm’s flow diagram
is shown in Figure 3 [39]. In the integration process, PSO is used with a determined
analytical model for increasing the security of the data transfer process, and thus, different
attacks that are present in the system are identified. Since PSO is chosen, the iteration
values are set using a set of population matrices where each individual is given a specific set
of fitness values that starts from 0.5 and ends at 1. The change in these two values provides
a binary matrix that determines two individual best values that are denoted using variables
p and g. The above-mentioned best values change according to each iteration between 10
to 100 in a step variation of 20. After determining the best value position of low-security
elements, corresponding rapidity rates are measured as the output of PSO, where the
speed of search space is increased with security measures. Further, the procedure of PSO
does not require differentiable parameters, thus a providing great advantage of using the
most optimal solutions in the entire process [37]. The optimum location that particle j has
found is designated by the term Pbest [j], or the individual extremum. Gbest [j] stands
for the global ideal point discovered by the complete particle swarm search. According to
Equation (4), the particle positions and velocities are updated using the following random
values for the subsequent generation.

iter(i + 1) = iter(i) · h + ϑi · Randi · (pbest(i) ∗ gbest(i)− yi) (4)

yi(iter + 1) = yi(iter) + zi(iter + 1), (5)
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where iter describes the ith iteration of the current generation, Randi indicates uniformly
distributed random numbers between [0 and 1], ϑi represents the individual velocity
value of each particle, and ‘h’ is the weight of inertia that dictates the particle speed
before the current speed and functions as a balanced global search algorithm and local
search capability.
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The IPSO method’s accuracy falls as inertia weight accelerates convergence and im-
proves the best solution. The suggested method converges too slowly but is more accurate
because it has a smaller inertia weight. The inertia weight factor can be calculated to
reduce the inaccuracy of the IPSO algorithm. Equation (4), the fundamental particle swarm
algorithm [4], is rewritten as:

zj(k + 1) = B1 + B2 + B3 (6)

where
B1 = zj(k) (7)

B2 =
n

∑
i=1

diRandi · (pbesti − yi(iter)) (8)

B3 =
n

∑
i=1

diRandi · (gbesti − yi(iter)) (9)

where di indicates the dynamic speed rate of PSO search points.
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The actual speed was substituted for the approaching rate for the existing B1, B2, and
B3, which is the position most suited for accounting for the component effect on the current
position [38].

3.2. Ant Colony Optimization

Pheromones are dispersed throughout the search area by the path in ACO, and the
quantity of these pheromones indicates the trail’s strength. The ants prefer the direction of
the track with the greatest amount of trail energy. One can suppose that the global system
memory is the path’s most vital component [39,40]. Daemon activity is utilized to gather
global data that is inaccessible to a single ant and use the data to assess whether more
pheromones are required to aid with convergence. The algorithm is durable and messy in
a dynamic environment via decentralized control. As an ACO, the system must decide
whether to lose one ant or another to get through this uneasy decentralized structure. These
crucial components work together to produce the shortest paths, which reflect the beginning
phase, the middle condition of any system, and the outcomes of the ACO algorithm. A
pheromone is released by,

ωij = (1− µ)ωij + ∑m
n=1ωij

n (10)

where µ is the evaporation rate, m is the number of ants, and ωij
n is the quantity of

pheromone laid by ant n.

3.3. Genetic Algorithm

The natural search algorithm serves as the foundation for the genetic algorithm. It
uses the fitness survival tenet of Darwinian evolution theory. In a genetic algorithm, n
members from each search space are explored by determining the energy rate by following
four different steps, such as member support vector, reproduction stage, propagation factor,
and pre-/post-processing stages, that minimize evolution procedures. Therefore, genetic
algorithms mimic the evolution process. Every linage resembles an iteration, process,
or succeeding linage when evolution is getting better and better [34]. Consequently, the
objective function improves with each repetition. The fitness function of each of these
chromosomes, sometimes called the evaluation or objective function, is encoded as a
chromosome [39], also referred to as a genotype [40,41]. A chromosome’s fitness value
impacts its capacity for resistance and procreation. Maximization is preferred based on the
high fitness value, whereas minimizing is preferred based on the low fitness value [42]. In
the case of the GA, two different representations are made after determining the type of data
as genotype and phenotype. Whenever a genotype representation is made, the original data
with a subset of the data type is then framed, but if the phenotype is used, then conversion
is not processed as physical representations are made in the direct format. Moreover,
both methods change concerning decision variables that are provided using search space
depictions that contain separate chromosome values with variation in operational cases.
Additionally, in GA, the random selection of data is not allowed, and thus, a sequential list
must be arranged for processing data using mutation crossover.

In the case of swarm optimization, algorithms are combined, then parallel operations
can be processed in some applications, and this is termed the binary swarm optimization
process. The major applications in the combinational procedure are that different features
are selected instead of standard ones, and thus, the accuracy of the binary model increases to
a higher extent. Moreover, PSO and GA parameters are combined to predict the individual
score of a particular application with a pre-processing technique. Once the data is processed,
weighted combinations are chosen with the flip-pointing technique, thus preventing a
high amount of data variations in the system. Further, the combination technique uses a
controlling mechanism for preventing data attacks at a reduced cost of implementation.

4. Dataset

The most well-known IoT dataset is NSL-KDD. The NSL-KDD dataset comprises
unique, redundancy-free sections that are copies of the original KDD Cup 75 dataset. There
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are 41 characteristics in the NSL-KDD dataset which are categorized as regular linkages or
attack types. The KDD 75 dataset highlights several fundamental problems addressed in
the NSL-KDD data collection [23,29]. There are a reasonable number of records and test
sets in the NSL-KDD training. This is an advantage as it makes running the entire test
set affordable instead of just picking a random, small portion. As a result, the evaluation
results of different study efforts will be consistent and uniform. Three attacks by the
NSLKDD, including DoS, U2R, and Sample Attack, are thoroughly described. The probe
attack occurs throughout the network imaging procedure and is designed to abuse the data
collected after the network information has been collected. Portsweep, Satan, Ipsweep,
Mscan, Saint, and Nmap are examples of probing attacks that collect information from
computers connected to the Internet [33].

After obtaining an ordinary account, U2R is given access to an account with root
privileges. The attacks in U2R include buffer overflow, load module, Perl, SQLattack,
Xterm, Rootkit, and Ps, to name a few [24]. A denial-of-service (DoS) attack occurs when a
system cannot provide a service due to increased network traffic. Some DoS assaults that
may be conducted against a target over the Internet are Neptune, Apache2, UDP Storm,
Back, Land, Smurf, Teardrop, Worm, and Pod [35].

In Table 2, statistical values that are related to both training and testing phases are
provided using the KDD data set, where abnormal values related to three distinct attacks
are provided. In addition, the originally recovered normalized data is added to store the
original data set attributes. Moreover, high data set values are trained in the proposed
method, as compared to existing approaches where, for determining the presence of service
attacks, more than 50,000 data are added. Similarly, the information that is passed in the
training data set is completely trained in the entire process, and thus, normalized values
are increased to 9823 per iteration cycle.

Table 2. Statistical information about the NSL-KDD dataset.

KDD Dataset
Abnormal

Normal Total
DOS Probing U2R

Training data 55,967 12,378 75 70,656 139,076
Test data 7590 3021 220 9823 20,654

Outcomes

To validate the performance measures, this work compares the hybrid optimization
model’s predicted performance with those of three different optimization strategies. In this
study, testing was conducted using NSL-KDD datasets. The suggested method uses the
parameters listed to evaluate the results.

The outcomes of the proposed hybrid optimization approach are assessed using
the efficiency attained for the binary classification of the NSL-KDD data set. The NSL-
KDD dataset for multi-classification attacks is used to validate the results in Table 3 for
attacks such as DoS, probing, and U2R. For each assault, the results’ precision, recall,
accuracy, and F-measure are assessed. From Figure 4 and Table 3, it is observed that four
parametric values that represent accuracy, precision, recall, and F-measure of three distinct
algorithms are simulated. During this simulation process, two individual representations
are made using subplot and contour programming code, and thus, colour values are
provided to avoid complications. The accuracy and precision values of PSO provide
optimal values as compared to the other two methods with nearly 99 percent values for
service attacks. Similarly, the Fi rate of projected and existing methods is compared in
Table 3, and corresponding values are plotted in Figures 5 and 6. From the represented
values in Figures 5 and 6, it is very clear that the best values are achieved at low h values in
the case of PSO.
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Table 3. Performance metrics for different optimization techniques based on the attack detected.

Algorithm Attacks Accuracy (%) Precision (%) Recall (%) F-Measure (%)

GA
DOS 98.90 98.90 94.90 96.89
Probe 84.78 91.89 68.12 70.01
U2R 99.90 99.78 99.67 99.21

ACO
DOS 98.89 97.95 95.87 98.45
Probe 86.23 88.92 84.54 83.67
U2R 99.87 99.05 82.76 88.94

PSO
DOS 99.50 99.93 99.54 99.65
Probe 86.78 88.90 86.98 84.81
U2R 99.98 99.67 99.01 98.34
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Even existing methods achieve 99% accuracy only after crossing 0.6 determination
values at the last round. However, PSO achieves the same accuracy at the 0.5 iteration
round even though its particles are higher, and thus, the increasing number of particles with
high iteration values is plotted in Figure 7. The values that are represented in Table 4 are
used for plotting three-dimensional illustrations where six iteration values from 25 to 30 are
considered. These iteration values are changed concerning the same particle initialization,
which is set at 2500. By using 2500 particles, the accuracy, predication score, and F-measure
are increased concerning PSO as compared to GA and ACO by a high factor, rising to
97%. This increase provides the best feature extraction of 10 to 20, which is provided in
Table 5 and plotted in Figures 8 and 9. From Figure 9, it is pragmatic that accuracy and
precision values are changed concerning different features, and thus, at 20 different feature



Sensors 2022, 22, 6117 13 of 17

extractions, PSO achieves 98% accurate service attack detection, whereas other feature
extractions provide much lower service attack detection.
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Table 4. Algorithm parameters for the PSO using empirical data.

F1 F2 h Accuracy

0.8 0.6 1.0 98.45
0.8 0.6 0.9 97.73
0.8 0.6 1.0 98.12
0.7 0.6 1.0 98.09
0.6 0.5 1.0 99.46

Table 5. PSO method results in utilizing a constant number of particles and increasing the number
of iterations.

Particles Iterations Accuracy Precision F-Measure

2500 25 97.90 97.89 97.12
2500 26 98.06 97.03 97.56
2500 27 98.45 96.43 96.49
2500 28 98.23 97.63 98.62
2500 29 99.56 99.54 99.32
2500 30 97.96 97.87 97.51

To assess the overall performance of the given strategy, we perform an analysis
utilizing several PSO-selected attributes. The PSO parameters with the highest degree of
precision are F1 = 0.6, F2 = 0.5, and h = 1.0. The test results for various parameters are shown
in Table 4. We undertake several preliminary trials to determine the best empirical particle
number and iteration combination. We find that 2500 particles and 29 iterations result in
the final performance result shown in Table 5 and Figure 8. The same PSO configuration
from Table 6 is used to examine this approach for various basic feature sets, including 10,
12, 15, 18, and 20 features. The outcomes are contrasted with those of a selection of 10
features shown in Figure 9.
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Table 6. Observations of the PSO algorithm with different feature sizes.

Features Accuracy Precision F-Measure

10 99.45 99.03 99.89
12 98.09 97.46 97.43
15 98.83 98.03 98.69
18 98.23 98.67 97.52
20 97.12 97.23 98.86

If the network topology is rationalized to fifth-generation networks, then the process
of handling IoT devices will be a much more challenging task as the design of a compatible
IoT system is not built. In addition, IoT devices are highly vulnerable to the extraction of
data, as, in the chosen route, many configuration flaws are present in the system. Even
if the device is modernized, the system must not break all the violation rules that are
allocated for a particular network configuration. However, the IoT is a free source that
enables devices, where all the data is transmitted and stored in the system using a dynamic
management strategy.
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5. Conclusions

IoT devices are given a unique IP address that can be shared with the network’s exter-
nal systems (i.e., users of a smart home). Since the number of assaults in the IoT ecosystem
is increasing swiftly, safety issues with IoT devices are a serious concern. The data will be
protected if the attacks by Internet hackers are stopped as they happen. Device capabilities
vary between IoT tiers; as a result, different degrees of security-measure implementation
have other elements and features. However, current methods are insufficient to detect
and examine IoT malware. DoS attacks occur in IoT environments because of inadequate
security monitoring and preventive tools. This paper uses hybrid particulate swarm op-
timization, ant optimization, and genetic optimization techniques to recognize attacks
such as DoS, probe, and U2R. Even though the proposed method provides high-security
features in IoT applications, some of the limitations are observed in case it is applied in
practical cases. The foremost limitation of security constraints in IoT applications is that if
attacks are processed in a large surface area, then no encrypted user can provide complete
access control. Additionally, the execution environment which determines the level of
security break in a particular data set is a major challenge, as some of the encrypted users
with special keys transmit the data using deep-rooted software models that will force the
external user to erase all necessary data in the entire storage system. However, all the
above-mentioned limitations are solved in the proposed method using U2R procedures
with a distinct protocol declaration.

As compared to other techniques, the particle swarm optimization method produces
results with higher accuracy. The necessary plots prove that accuracy of the proposed
method using PSO increases to 99% without any feature extraction procedures. On the
contrary, in the case of feature extraction with 25,000 units, the proposed method provides
98% accuracy, which is much higher than the observed values in the existing method.
Moreover, with iteration values from 25 to 30, PSO provides optimized results that increase
the prediction and measurable score in the entire process. Therefore, the findings show
that PSO outperformed both ant colony optimization and genetic algorithm optimization
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in terms of performance. In the future, the proposed work using PSO can be extended with
multiple cloud computing platforms where the entire data set can be enhanced with high-
security features. In addition, the extension is also possible by considering the separation of
internal and external attacks where all users can transmit and receive multiple data using
an artificial intelligence technique.

Author Contributions: Data curation: H.A.A. and N.A.; writing original draft: H.M., P.R.K. and S.S.;
supervision: H.M., P.R.K. and S.S.; project administration: S.S. and P.R.K.; conceptualization: H.M.
and P.R.K.; methodology: S.S. and H.M.; validation: H.A.A. and N.A.; visualization: H.A.A. and
N.A.; resources: S.S. and H.M.; review and editing: G.S. and J.C.-W.L.; funding acquisition: G.S. and
J.C.-W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is partially supported by the Western Norway University of Applied Sciences,
Bergen, Norway.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, X.; Liu, Y.; Liu, A.; Yang, L.T. Defending on–off attacks using light probing messages in smart sensors for industrial

communication systems. IEEE Trans. Ind. Inf. 2018, 14, 3801–3811. [CrossRef]
2. Patil, R.; Dudeja, H.; Modi, C. Designing an efficient security framework for detecting intrusions in virtual network of cloud

computing. Comput. Secur. 2019, 85, 402–422. [CrossRef]
3. Mirjalili, S.; Wang, G.G.; Coelho, L.D.S. Binary optimization using hybrid particle swarm optimization and gravitational search

algorithm. Neural Comput. Appl. 2014, 25, 1423–1435. [CrossRef]
4. Mazini, M.; Shirazi, B.; Mahdavi, I. Anomaly network-based intrusion detection system using a reliable hybrid artificial bee

colony and AdaBoost algorithms. J. King Saud. Univ. Comput. Inf. Sci. 2018, 31, 541–553. [CrossRef]
5. Huda, R.K.; Banka, H. Efficient feature selection and classification algorithm based on PSO and rough sets. Neural Comput. Appl.

2018, 31, 4287–4303. [CrossRef]
6. Aljuhani, A.; Alharbi, T.; Taylor, B. Mitigation of Application Layer DDoS Flood Attack Against Web Servers. J. Inf. Secur.

Cybercrimes Res. 2019, 2, 83–95. [CrossRef]
7. Fadlil, A.; Riadi, I.; Aji, S. Review of detection DDOS attack detection using naive bayes classifier for network forensics. Bull.

Electr. Eng. Inform. 2017, 6, 140–148. [CrossRef]
8. Casola, V.; de Benedictis, A.; Rak, M.; Villano, U. Toward the automation of threat modeling and risk assessment in iot systems.

Int. Things 2019, 7, 100056. [CrossRef]
9. Cagnazzo, M.; Hertlein, M.; Holz, T.; Pohlmann, N. Threat modeling for mobile health systems. In Proceedings of the 2018 IEEE

Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; pp. 314–319.
10. Elmasry, W.; Akbulut, A.; Zaim, A.H. Evolving deep learning architectures for network intrusion detection using a double PSO

metaheuristic. Comput. Netw. 2020, 168, 107042. [CrossRef]
11. Khadidos, A.O.; Shitharth, S.; Khadidos, A.O.; Sangeetha, K.; Alyoubi, K.H. Healthcare Data Security Using IoT Sensors Based on

Random Hashing Mechanism. J. Sens. 2022, 2022, 8457116. [CrossRef]
12. Schaad, A.; Binder, D. Ml-supported identification and prioritization of threats in the ovvl threat modelling tool. In Data and

Applications Security and Privacy XXXIV; Singhal, A., Vaidya, J., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 274–285.

13. Sion, L.; van Landuyt, D.; Wuyts, K.; Joosen, W. Privacy risk assessment for data subject-aware threat modeling. In Proceedings
of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 19–23 May 2019; pp. 64–71.

14. Malik, A.J.; Khan, F.A. A hybrid technique using binary particle swarm optimization and decision tree pruning for network
intrusion detection. Clust. Comput. 2018, 21, 667–680. [CrossRef]

15. Garg, S.; Batra, S. Fuzzified cuckoo based clustering technique for network anomaly detection. Comput. Electr. Eng. 2018,
71, 798–817. [CrossRef]

16. Moustafa, N.; Creech, G.; Sitnikova, E.; Keshk, M. Collaborative anomaly detection framework for handling big data of cloud
computing. In Proceedings of the 2017 Military Communications and Information Systems Conference (MilCIS), Canberra,
Australia, 14–16 November 2017; pp. 1–6.

17. Khadidos, A.O.; Manoharan, H.; Selvarajan, S.; Khadidos, A.O.; Alyoubi, K.H.; Yafoz, A. A Classy Multifacet Clustering and
Fused Optimization Based Classification Methodologies for SCADA Security. Energies 2022, 15, 3624. [CrossRef]

http://doi.org/10.1109/TII.2018.2836150
http://doi.org/10.1016/j.cose.2019.05.016
http://doi.org/10.1007/s00521-014-1629-6
http://doi.org/10.1016/j.jksuci.2018.03.011
http://doi.org/10.1007/s00521-017-3317-9
http://doi.org/10.26735/16587790.2019.002
http://doi.org/10.11591/eei.v6i2.605
http://doi.org/10.1016/j.iot.2019.100056
http://doi.org/10.1016/j.comnet.2019.107042
http://doi.org/10.1155/2022/8457116
http://doi.org/10.1007/s10586-017-0971-8
http://doi.org/10.1016/j.compeleceng.2017.07.008
http://doi.org/10.3390/en15103624


Sensors 2022, 22, 6117 17 of 17

18. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.; Du, X.; Guizani, M. A survey of machine and deep learning methods for internet of
things (IoT) security. arXiv 2018, arXiv:1807.11023. [CrossRef]

19. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security based on
Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]

20. Farivar, F.; Haghighi, M.S.; Jolfaei, A.; Alazab, M. Artificial intelligence for detection, estimation, and compensation of malicious
attacks in nonlinear cyber-physical systems and industrial IoT. IEEE Trans. Ind. Inf. 2020, 16, 2716–2725. [CrossRef]

21. Setiawan, B.; Djanali, S.; Ahmad, T. Increasing accuracy and completeness of intrusion detection model using fusion of normaliza-
tion, feature selection method and support vector machine. Int. J. Intell. Eng. Syst. 2019, 12, 378–389. [CrossRef]

22. Kuzlu, M.; Fair, C.; Guler, O. Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity. Discov. Internet Things
2021, 1, 7. [CrossRef]

23. McDermott, D.; Isaacs, J.P.; Petrovski, A.V. Evaluating awareness and perception of botnet activity within consumer internet-of-
things (IoT) networks. Informatics 2019, 6, 8. [CrossRef]

24. Wang, Y.; Geng, X.; Zhang, F.; Ruan, J. An Immune Genetic Algorithm for Multi-Echelon Inventory Cost Control of IoT Based
Supply Chains. IEEE Access 2018, 6, 8547–8555. [CrossRef]

25. Han, J.; Jeon, Y.; Kim, J. Security considerations for secure and trustworthy smart home system in the IoT environment. In
Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju,
Korea, 28–30 October 2015; pp. 1116–1118. [CrossRef]

26. Kraijak, S.; Tuwanut, P. A survey on IoT architectures, protocols, applications, security, privacy, real-world implementation
and future trends. In Proceedings of the 11th International Conference on Wireless Communications, Networking and Mobile
Computing (WiCOM 2015), Shanghai, China, 21–23 September 2015; pp. 1–6.

27. Jun, Y.; Craig, A.; Shafik, W.; Sharif, L. Artificial Intelligence Application in Cybersecurity and Cyberdefense. Wirel. Commun.
Mob. Comput. 2021, 2021, 3329581. [CrossRef]

28. Suroor, N.; Hassan, S.I. Identifying the factors of modern-day stress using machine learning. Int. J. Eng. Sci. Technol. 2017,
9, 229–234.

29. Akojwar, S.; Kshirsagar, P. A Novel Probabilistic-PSO Based Learning Algorithm for Optimization of Neural Networks for
Benchmark Problems. Wseas Trans. Electron. 2016, 7, 79–84.

30. Shamshirband, S.; Anuar, N.B.; Kiah, M.L.M.; Patel, A. An appraisal and design of a multi -agent system based cooperative
wireless intrusion detection computational intelligence technique. Eng. Appl. Artif. Intell. 2013, 26, 2105–2127. [CrossRef]

31. Alabbas, A.R.; Hassnawi, L.A.; Ilyas, M.; Pervaiz, H.; Abbasi, Q.H.; Bayat, O. Performance enhancement of safety message com-
munication via designing dynamic power control mechanisms in vehicular ad hoc networks. Comput. Intell. 2021, 37, 1286–1303.
[CrossRef]

32. Galeano-Brajones, J.; Carmona-Murillo, J.; Valenzuela-Valdés, J.F.; Luna-Valero, F. Detection and mitigation of DoS and DDoS
attacks in iot-based stateful SDN: An experimental approach. Sensors 2020, 20, 816. [CrossRef]

33. Qi, B.W. Analysis on the Application of artificial Intelligence in classroom. J. Phys. Conf. Ser. 2019, 1345, 402–420.
34. Sarker, I.H.; Furhad, M.H.; Nowrozy, R. AI-Driven Cybersecurity: An Overview, Security Intelligence Modeling and Research

Directions. SN Comput. Sci. 2021, 2, 1–18. [CrossRef]
35. Bao, H.; He, H.; Liu, Z.; Liu, Z. Research on information security situation awareness system based on big data and artificial

intelligence technology. In Proceedings of the 2019 international conference on robots intelligent system (ICRIS), Haikou, China,
15–16 June 2019; pp. 318–322.

36. Shitharth, S.; Kshirsagar, P.R.; Praveen, B.; Khaled, K.; Omar, A. An Innovative Perceptual Pigeon Galvanized Optimization
(PPGO) Based Likelihood Naïve Bayes (LNB) Classification Approach for Network Intrusion Detection System. IEEE Access 2022,
10, 46424–46441. [CrossRef]
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