
On the evaluation of android malware
detectors against code-obfuscation
techniques
Umair Nawaz1, Muhammad Aleem1 and Jerry Chun-Wei Lin2

1 Computer Sciences, National University of Computer and Emerging Sciences, Islamabad,
Islamabad, Pakistan

2 Computer Sciences, Western Norway University of Applied Sciences, Bergen, Norway

ABSTRACT
The Android mobile platform is the most popular and dominates the cell phone
market. With the increasing use of Android, malware developers have become active
in circumventing security measures by using various obfuscation techniques.
The obfuscation techniques are used to hide the malicious code in the Android
applications to evade detection by anti-malware tools. Some attackers use the
obfuscation techniques in isolation, while some attackers use a mixed approach (i.e.,
employing multiple obfuscation techniques simultaneously). Therefore, it is crucial
to analyze the impact of the different obfuscation techniques, both when they are
used in isolation and when they are combined as hybrid techniques. Several studies
have suggested that the obfuscation techniques may be more effective when used in a
mixed pattern. However, in most of the related works, the obfuscation techniques
used for analysis are either based on individual or a combination of primitive
obfuscation techniques. In this work, we provide a comprehensive evaluation of anti-
malware tools to gauge the impact of complex hybrid code-obfuscations techniques
on malware detection capabilities of the prominent anti-malware tools. The
evaluation results show that the inter-category-wise hybridized code obfuscation
results in more evasion as compared to the individual or simple hybridized code
obfuscations (using multiple and similar code obfuscations) which most of the
existing related work employed for the evaluation. Obfuscation techniques
significantly impact the detection rate of any anti-malware tool. The remarkable
result i.e., almost 100% best detection rate is observed for the seven out of 10 tools
when analyzed using the individual obfuscation techniques, four out of 10 tools on
category-wise obfuscation, and not a single anti-malware tool attained full detection
(i.e., 100%) for inter-category obfuscations.

Subjects Computer Networks and Communications, Data Science, Databases, Security and Privacy
Keywords Android, Android’s anti-malware system, Obfuscation techniques, Reverse engineering

INTRODUCTION
Google Play was originally launched in October 2008 (Threatpost, 2020). Android
smartphones are among the most sought-after handheld devices around the world.
Millions of apps are supported on these devices. According to Statista (2021), Android has
become the most employed platform in the world with approximately 1999.12 million
users worldwide. The increasing number of applications in the PlayStore makes Android

How to cite this article Nawaz U, Aleem M, Lin JC-W. 2022. On the evaluation of android malware detectors against code-obfuscation
techniques. PeerJ Comput. Sci. 8:e1002 DOI 10.7717/peerj-cs.1002

Submitted 20 December 2021
Accepted 18 May 2022
Published 21 June 2022

Corresponding author
Jerry Chun-Wei Lin,
jerrylin@ieee.org

Academic editor
Chi-Hua Chen

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.1002

Copyright
2022 Nawaz et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1002
mailto:jerrylin@�ieee.�org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1002
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

smartphone users an attractive target too for cyber-criminals. Google has stepped up its
efforts to ban malicious apps potentially being hosted on Google Play. In several other
studies, researchers found that malicious or unwanted apps have their presence even on
the Google Play Store. The number of new apps for Android devices decreased slightly in
the first half of 2018. Even Google has taken measures to protect Android users from
malware; however, there are numerous mechanisms employed by malware developers to
bypass security measures. Malware authors are always looking for new tricks and
mechanisms to bypass Android security. The malware authors adopt different obfuscation
and transformation techniques to bypass the anti-malware detection (Elsersy, Feizollah &
Anuar, 2022). The main motivation of this work is to evaluate the anti-malware tools
against the malware that uses code-obfuscations. As shown in Fig. 1, the malware APK is
blocked by the anti-malware tool after scan but when malware is obfuscated it is not
detected by the anti-malware tool and the user will receive a malware. A large number of
malware use obfuscation techniques to increase the evasion rate. There is a need to
evaluate the anti-malware tools for complex obfuscation techniques.

With the largest market share of 85% (Statista, 2021), Android is dominating the mobile
platform market and had become the most popular platform for mobile devices. The
increase in popularity of the Android is because it is based on one of the most trusted
and secure operating systems i.e., the Linux kernel, and that provides great performance
and security. The Linux OS kernel is compatible with different hardware and can cut
hardware costs too. Android is an open-source platform which means anyone can expand
and inspect its source code considering the specific requirements. According to the
researchers and application developers, Android is not only the most popular but also the
most targeted platform too because of the huge number of Android-based devices
worldwide.

Figure 1 Malware vs obfuscated malware. Full-size DOI: 10.7717/peerj-cs.1002/fig-1

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 2/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-1
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Some of the significant threats on the Android platform (Bakour, Ünver & Ghanem,
2019) include ransomware, adware, trojan-spy, and SMS trojans. Most of the malware
developers evade detection by applying different code obfuscations (Preda & Maggi, 2017;
Hammad, Garcia & Malek, 2018) to hide the malicious code within the original APKs.
Europe’s largest cyber-security services provider Kaspersky Lab estimated that in 2020,
approximately 6 million attacks per month affected Android mobile devices (Chebyshev,
2021). Most of malicious applications hide the malicious code using different code
obfuscations. A summary of similar studies is presented in Table 1. Most of the anti-
malware tools use signature-based mechanisms to detect malware (Preda & Maggi,
2017). A signature can easily be evaded using various obfuscation techniques. Malware
developers can increase the evasion rate by using a variety of obfuscation techniques
(Preda & Maggi, 2017; Hammad, Garcia & Malek, 2018). Code obfuscation refers to code
transformation to hide the code and execution patterns of the malware and produce an
illusion of legitimate applications. In code obfuscation, the code is changed in such a
manner that the program semantics remain the same. Malware authors use a wide range of
obfuscation techniques to evade potential malicious activities. This study will provide
researchers and developers of anti-malware tools with in-depth insight into the potential
impact of different code-obfuscations and help them to assess the resilience of the
prominent anti-malware tools against the potential threats based on code obfuscations.

The work aims to provide a comprehensive study to evaluate anti-malware tools.
This study employs various code-obfuscation techniques applied to the Android-based
malware APKs to perform a comprehensive analysis of the prominent anti-malware
tools. The obfuscation techniques are used in different ways, such as in isolation or
individually, or in combination (from the same or different types of obfuscations) often
referred to as hybrid obfuscation. Obfuscation techniques are applied in isolation, inter-
category-wise, and inter-category to evaluate anti-malware tools. The main contributions
of this work are as follows:

� Twenty different obfuscation techniques are used to evaluate prominent anti-malware
tools;

� Obfuscation techniques are applied in isolation, category-wise, and inter-category-wise
to evaluate anti-malware tools;

� Possible complex combinations that can be generated by applying multiple obfuscation
categories simultaneously are used to evaluate anti-malware tools;

Table 1 Malicious applications with total no. of downloads (Threatpost, 2020).

Harmful app type Number of apps Number of installs

Adware 48 300,600,000+

Subscription scam 15 20,000,000+

Hidden ads 57 14,550,000+

SMS premium subscription 24 472,000+

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 3/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

� The study has highlighted some of the significant hybridized code-obfuscations
mechanisms which result in the highest evasion. The study provides a ground for future
research for anti-malware tools developers and companies.

The remainder of the paper is as follows: “Related Work” discusses a literature review or
related work. “Obfuscation Techniques and Working of Anti-malware Tools” provides
background, discussing how anti-malware tools work and various obfuscation techniques.
Then, in “Evaluating Anti-malware Tools”, the methodology for evaluating anti-malware
tools is presented. The evaluation of the experiments and discussions are presented in
“Experimental Evaluation”. The last “Conclusions and Future Work” is devoted to
conclusions and future work.

RELATED WORK
Bakour, Ünver & Ghanem (2019) analyze the performance of various anti-malware tools,
including Kaspersky (Kaspersky, 2022), McAfee (McAfee, 2022), Symantec (Symantec,
2021), ESET-NOD32 (ESET, 2022), Avira (Avira, 2022), and Dr. Web (Web, 2022),
using different obfuscation techniques. These techniques are hybridized with the three
different attacks proposed by the authors. These include the app re-signing attack, which
replaces the original application signed with a new one by using a new certificate. The
second attack proposed by the authors is the permission injection attack. In this, a list of all
benign permissions is extracted from the manifest file and another malicious permission is
injected into an application to evade detection by anti-malware tools. The third attack is
permission code injection, where malicious code is injected into the application along
with the permissions. Three different obfuscation techniques are used to create three
different datasets (i.e., Refection Dataset, String Encryption Dataset, and Class Encryption
Dataset). Then, these datasets are combined with the different attacks called app-resigning,
permission injection attack, and permission-code injection attack. Different obfuscation
techniques are mixed with different attacks. If the attacks are combined with only
three different obfuscation techniques, a more diverse hybridization could have been used
for the analysis.

Malware developers today are often able to evade malicious application detection
through obfuscation (Preda & Maggi, 2017). Preda & Maggi (2017) have proposed an
approach called Automatic Android Malware Obfuscator (AAMO). In this work, 17
different obfuscation techniques were used, including Android-specific, simple control
flow modifications, advanced control flow modifications, renaming, and encryption, to
name a few of the most important obfuscation aspects. Each original APK is passed to the
APKTool for decompression, after which the obfuscation technique is applied using the
obfuscation tool. After that, the APK is recompressed with the APKtool and re-signed with
the tool jarsigner. This obfuscated APK is given to the anti-malware software for
evaluation. For the evaluation, the authors used six anti-malware tools (i.e., Avast, Norton,
Dr. Web, Kaspersky, Trend Micro, and Zoner). The obfuscation techniques are divided
into categories and one of the category-based obfuscations was applied in each case. The
authors did not provide an assessment with a hybrid assessment with multiple categories.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 4/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Hammad, Garcia & Malek (2018) use the technique of code obfuscation to evade
detection by any anti-malware tool. They have developed a framework consisting of four
modules: IR converter, IR transformer, APK generator, and data analyzer. The IR
converter takes an APK file and converts the code into an Intermediate representation
format. IR transformation applies obfuscation. IR generator repacks the obfuscated APK
file, while the data Analyzer scans the APK and displays the results on whether the
obfuscated APK is detected or not. The authors explained that anti-malware tools are slow
to update their databases. If the databases are not up to date, signature-based detection
becomes ineffective. The authors used different obfuscation techniques to evaluate the
anti-malware tools, using only one of the obfuscation methods at a time.

Chua & Balachandran (2018) proposed an automated framework consisting of four
obfuscation techniques (i.e., try-catch, method overloading, opaque predicate, and switch
statement obfuscation) was developed. VirusTotal API is used to identify the malware
samples. After applying obfuscation, a measure called Escape Detection Rate (EDR) was
introduced. The EDR of more than 0.8 proves that signature-based detection is bypassed.
The 57 anti-malware tools listed on VirusTotal were used for the evaluation. In this work,
only occasional obfuscation techniques are used and only four basic techniques are used
for the evaluation.

Aonzo et al. (2020) proposed an open-source tool Obfuscapk is used to apply
obfuscation techniques. The Obfuscapk is an automated open-source tool for Android
applications. An original APK file of any android is given for obfuscation, applying various
obfuscation techniques and recreating the new APK file with a new signature and
alignment. The newly generated APK file is encrypted once. In this work, five different
obfuscation techniques are used. After applying the obfuscation, the obfuscated APK file is
uploaded to VirusTotal for evaluation. In this work, the obfuscation techniques were
mainly used in isolation and the effects of hybridizing the different obfuscation techniques
on virus evasion were not studied.

Badhani & Muttoo (2019) divided obfuscation techniques into four levels to evaluate
anti-malware tools. Level-A obfuscation techniques do not modify the source code of
applications. Level-B includes all control flow-related obfuscation techniques. Level-C
includes other obfuscation techniques such as renaming, etc., and Level-D includes
encryption-related obfuscation techniques. The authors used three different automated
obfuscator tools to obfuscate the app. Both single-level and multi-stage obfuscations are
used to test the resistance of anti-malware tools.

The code reordering obfuscation technique is used by Cimitile et al. (2017) to make
ransomware samples unrecognizable. The technique consists of two main steps. In the first
step, a Java bytecode is compiled and code obfuscation (random reordering) is applied.
The original execution order is preserved using goto statements. The second step is mainly
concerned with verifying the obfuscation technique before using the example for
evaluation. The Virustotal platform is used for the evaluation. This work uses only the
simple obfuscation by reordering and ignores other potent obfuscation mechanisms.

Bacci et al. (2018) discuss the impact of obfuscation techniques on static and dynamic
malware analysis. Eight different obfuscation techniques are used for the evaluation of

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 5/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

anti-malware tools. For dynamic analysis, each application is executed on an Android
mobile device for at least one minute to detect whether the application is malicious or not.
The experiments confirm that the dynamic analysis-based detection is more robust to the
code obfuscation techniques than the static analysis-based detection.

Li et al. (2019) proposed an approach called Obfusifier to identify the Android malware
applications that have been transformed by various obfuscation techniques. An Android-
platform-specific Java-based tool called ALAN is employed to apply code obfuscations.
The tool ALAN supports seven different obfuscation techniques. After applying the
obfuscation techniques, the virustotal platform is used to analyze the obfuscated malware
samples. Various anti-malware tools from the virustotal platform are used. Along with the
detection of obfuscated malware the other performance aspects such as the time taken for
the analysis were also noted.

In the above literature as shown in Table 2, most of the related works (Preda & Maggi,
2017; Hammad, Garcia & Malek, 2018; Bakour, Ünver & Ghanem, 2019; Chua &
Balachandran, 2018; Balachandran et al., 2016) use a limited number of obfuscation
techniques and their combinations. In Chua & Balachandran (2018), only basic four
obfuscation techniques (i.e., try-catch, method overloading, opaque predicate, and switch
statement obfuscation) are used. However, the combinations of these techniques are not
experimented with to evaluate the anti-malware tools. Although in Preda & Maggi (2017),
17 different obfuscation techniques are mentioned, these techniques are categorized
and used to evaluate the anti-malware tools. However, the complex combinations (i.e.,
employing several inter-category techniques simultaneously) were not used for evaluation.
In Hammad, Garcia & Malek (2018), 11 different obfuscation techniques are used
sequentially (i.e., applying one at a time). In Bakour, Ünver & Ghanem (2019), three
different obfuscation techniques are combined with the different attacking mechanism
(i.e., app redesigning, permission injection attacks, and permission code injection attack,
etc.) to increase the evasion rate. In some other related works (Hammad, Garcia & Malek,
2018; Chua & Balachandran, 2018), obfuscation techniques are used separately. There
are few studies (Bakour, Ünver & Ghanem, 2019; Preda & Maggi, 2017) that use
obfuscation techniques in a hybrid form to evaluate anti-malware tools. However, these
techniques employ naive obfuscation techniques for the evaluation.

In summary, this work employs extensive obfuscation techniques (i.e., 20 potent
techniques) along with the complex combinations of these obfuscations. The complex
combinations are employed both category-wise (combining similar) or inter-category-wise
(such as in the hybridized form) which most of the existing work lacks. Before producing
the complex hybrid combinations, we initially grouped related obfuscation techniques.
Using these obfuscation groups, we produced hybrid obfuscated malware samples by
applying multiple obfuscation methods from a specific group. After that, the more
complex hybrid obfuscations are applied to build malware samples. These complex hybrid
mechanisms are based on multiple obfuscation techniques from different code-obfuscation
groups (combining inter-category techniques) which most of the related work lacks.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 6/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Table 2 Anti-malware evaluation techniques.

Ref. Methodology/Approach Limitations Strengths

Chua &
Balachandran
(2018)

• An automated framework. • Used four obfuscation techniques.
-Each technique is used separately
without any combination.

• An automated framework does
obfuscation.

• Four obfuscation techniques (i.e., try catch,
method overloading, Opaque Predicate, and
Switch Statement Obfuscation).

• Anti-malware tools that are listed on
VirusTotal were used for evaluation.

• VirusTotal API is used to classify the malware
samples.

• EDR greater than 0.8 proved that signature-
based detection is evaded.

Preda & Maggi
(2017)

• AAMO (Automatic Android Malware
Obfuscator) framework.

• The same Obfuscation techniques
are categorized.

• An automated framework AAMO
does obfuscation.

• 17 different Obfuscation techniques are used. • A combination of any two
categories is not used.

• 17 obfuscation techniques are listed on
AAMO

• Any original APK is given to APKTool for un-
compression

• Then obfuscation technique is applied

• APK is then resigned with jarsigner.

Bakour, Ünver &
Ghanem (2019)

• Three different obfuscation techniques are used • Attacks are combined with only
three different obfuscation
techniques.

• Various attacks are introduced with
obfuscation techniques.

• Three different datasets (i.e., Refection Dataset,
String Encryption Dataset, Class Encryption
Dataset)

• Various attacks named app-resigning,
permission injection attack, and permission-
code injection attack are used.

Hammad, Garcia
& Malek (2018)

• Framework based on four modules. • Only one obfuscation technique is
applied at a time.

• An automated framework with four
different modules is used for applying
obfuscation to applications.

• IR converter takes an APK file and converts
code into Intermediate representation format.

• This work shows that anti-malware
tools are slow to update their
databases.

• IR transformation applies Obfuscation.

• IR generator repacks the obfuscated APK file.

•Data Analyzer scans the APK and shows results
if the obfuscated APK is detected or not.

Aonzo et al.
(2020)

• Obfuscapk an obfuscation tool for android
applications.

• All the work is automated. • An automated framework is used for
obfuscating the applications.

• An original APK file is given to obfuscapk. • Obfuscation techniques are applied
through obfuscapk.

• VirusTotal API is used to evaluate the
anti-malware tools.

• Rebuild the new APK file with a new signature
and new alignment.

• VirusTotal shows detection results.

Balachandran
et al. (2016)

• Seven different control flow techniques are
used.

• Eight various automated
obfuscation tools are used.

• Control flow obfuscation techniques
are applied with various tools.

• Dalvik bytecode to apply obfuscation
techniques.

• Used two techniques at a time.

(Continued)

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 7/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Table 2 (continued)

Ref. Methodology/Approach Limitations Strengths

• The proposed approach preserves the execution
order of the original instructions.

• New instructions to redirect to original
instructions.

Badhani &
Muttoo (2019)

• Level-wise categorization of obfuscation
techniques to test the resilience of anti-malware
tools.

• All work is automated. • Apply level wise obfuscation to test the
resilience of different tools.

• Level A: Obfuscations that do not alter the
source code.

• Three automated obfuscators were
used in experiments.

• Three different tools are used to apply
obfuscation on different level.

• Level B: Alter the code by changing the control
flow.

• Three automated obfuscators were
used in experiments.

• Level C: Perform renaming. • level A is the easiest, and level D is
the toughest to defeat.

• Level D: Perform encryption.

Cimitile et al.
(2017)

• Two primary processes are used • Only ransomware samples are
obfuscated.

• VirusTotal API is used to evaluate the
anti-malware tools.

• 1. Translation of Java bytecode. • Code reordering obfuscation is
used.

• Ransomware malware samples are
obfuscation with simple obfuscation
techniques.

• 2. Investigate if the application is obfuscated or
not.

• After obfuscation, the test is conducted
to check if obfuscation techniques are
applied successfully or not.

• VirusTotal is used for the detection of malware
samples.

Bacci et al. (2018) • Static and dynamic two different malware
detection methods are used.

• Only eight Obfuscation techniques
are used in an isolated way for
analysis.

• These malware samples are installed
on mobile devices to test the anti-
malware tool’s resilience.

• Eight different code obfuscations are used.

• Each application is executed on an android
mobile device for at least one minute to detect
if the application is malicious or not.

Li et al. (2019) • Obfusifier is introduced to identify the android
malware applications.

• Obfuscate malicious applications
by the ALAN tool.

• An automated framework used for
obfuscation.

• ALAN: A Java-based code obfuscation tool for
Android is used for applying obfuscation
techniques.

• Obfusifier cannot detect malicious
applications which are obfuscated
other than the ALAN tool.

• Anti-malware tools that are listed on
VirusTotal were used for evaluation.

• VirusTotal is used for the detection of malware
samples.

• ALAN supports only seven
different obfuscation techniques.

Tang et al. (2022) • AVPASS tool is used for obfuscation of any
application.

• Obfuscation techniques are applied
through AVPASS.

• Obfuscation techniques are applied
through an automated framework.

• AVPASS supports seven different obfuscation
techniques.

• AVPASS only supports seven
different obfuscation techniques.

• VirusTotal API is used for evaluation
purposes.

• Any original APK is given to AVPASS for
obfuscation.

• After obfuscation, the application is assigned to
Virustotal for detection of results.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 8/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

OBFUSCATION TECHNIQUES AND WORKING OF
ANTI-MALWARE TOOLS
Anti-malware tools use various mechanisms and techniques to analyze whether the file is
malicious or benign (Al-Asli & Ghaleb, 2019). Anti-malware tools usually use three
techniques for detection, namely signature-based, pattern-based, and heuristic-based
models (Fang et al., 2017). The signature-based mechanisms (i.e., using malware
signatures) are the most common method for detecting malicious files (Canfora et al.,
2015). The signature-based method is the most used mechanism to detect malware.
However, pattern-based malware detection is one of the most effective mechanisms. In
pattern-based detection, the anti-malware tools use a specific code sequence to detect
malicious applications (Malhotra & Bajaj, 2016). In heuristic-based analysis, the behavior
of any application is monitored and related run-time information is employed for
analysis (Alharbi et al., 2020). If the behavior of the file is suspicious or the application
performs a certain suspicious activity, it is classified as malicious. Malware authors use
many obfuscation techniques to perform malicious activities. Below are some of the most
common obfuscation techniques employed by malware developers and Table 3 shows
the impact factors of these obfuscation techniques.

� RePacking (RP): Since most anti-malware tools rely on signatures, a simple obfuscation
mechanism is to decompress the APK file, add junk code or malicious code, and then
recompresses the APK file (Hammad, Garcia & Malek, 2018) (as shown in Fig. 2).

� Junk Code Insertion (JCI): This technique does not change the flow or logic of the
program. A random amount of code is inserted in each method executed, however, it
does not affect the rest of the program (Hammad, Garcia & Malek, 2018). The goal of
this technique is to change essential code signatures, e.g., by increasing the size of the
App.

� Try-Catch (TC): This technique always executes the catch block by inserting an
exception into the try block (Preda &Maggi, 2017). This obfuscated example creates the
illusion that the catch block is rarely executed when an error occurs in a try block.

Table 3 Obfuscation techniques and impact on app code and manifest file.

Obfuscation technique Code changes Manifest changes Obfuscation technique Code changes Manifest changes

Repackaging ✓ ✗ Junk Code Insertion ✓ ✗

Try-catch ✓ ✗ String Encryption ✓ ✗

Call Indirection ✓ ✗ Opaque Predicate ✓ ✗

Code Reordering ✓ ✗ Identifier Renaming ✓ ✗

Data Encoding ✓ ✗ Members Reordering ✓ ✗

Package Renaming ✗ ✓ Reflection ✓ ✗

Disassembling, Reassembling ✓ ✗ Manifest transformation ✗ ✓

Resource Renaming ✓ ✗ Method Overloading ✓ ✗

Re-order Loop ✓ ✗ Unconditional Jump ✓ ✗

Debug Removal ✗ ✓ Re-aligning ✓ ✗

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 9/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

However, the error is always present in the try block, and the catch block is always
executed.

� String Encryption (SE): The strings in the code can be used as signatures (Graux,
Lalande & Tong, 2019) to identify the malicious behavior of the application. This
technique is used to encrypt strings. Encrypting the strings makes signature-based
detection more difficult. For example, a plaintext is stated as “defend the east wall of the
castle”, which can be encoded as the ciphertext as “efgfoe uif fbtu xbmm pg uif dbtumf”.

� Call Indirection (CI): Some anti-malware tools use the structure of method call graphs
to generate signatures (Hammad, Garcia & Malek, 2018). The original method call can
be modified by inserting a randomly generated proxy method before the original
method call. Each method call is redirected to the proxy method, and the proxy method
forwards the call to the original method with the same parameters.

� Opaque Predicate (OP): This obfuscation uses conditional expressions to ensure that
one branch is always gets executed (Chua & Balachandran, 2018). This technique can be
combined with the junk code insertion obfuscation technique. An opaque predicate
statement is inserted between the original code and always set to execute one branch.

� Code Reordering (CR): This technique aims to randomly change the order of
instructions however it preserves the original execution order of the instruction by
adding goto the instruction (Hammad, Garcia & Malek, 2018). The signature generated
by this technique is significantly different from the original signatures because of the
order of the instructions.

� Identifier Renaming (IR): This obfuscation mechanism replaces each class, method,
and field name with random strings (Hammad, Garcia & Malek, 2018). The identifier is
renamed by the random encrypted string, which can be generated by various algorithms.

� Data Encoding (DE): This technique is used to encode strings and arrays (Hammad,
Garcia & Malek, 2018). The strings and arrays in the code can be used as a signature to
identify the malicious behavior of the application. By encrypting strings and arrays,
signature-based detection is no longer as effective.

� Members Reordering (MR): This technique aims to change the order of variables or
methods in a program (Hammad, Garcia & Malek, 2018). If the anti-malware product

Figure 2 App repacking sequence. Full-size DOI: 10.7717/peerj-cs.1002/fig-2

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 10/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-2
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

depends on a sequence of variables and methods, it can be easily bypassed using this
technique.

� Package Renaming (PR): The application package name is specified in the application
manifest file (Preda &Maggi, 2017). Packages are defined by using slashes instead of the
dot-like directory structure, which is a unique identifier for each application.

� Reflection (Re): This technique aims to hide the methods and fields that the code calls
at runtime (Graux, Lalande & Tong, 2019). The original method is called another
method to redirect the execution flow. Each method call is redirected to a new method,
and that method redirects the calls to the original method with the same parameters.
The calling mechanism is known as reflection.

� Disassembling and Reassembling (DRe): This technique simply disassembles and
reassembles the application using the APK tool (Hammad, Garcia & Malek, 2018).
Disassembling and reassembling the app reorders the order of the elements in the
classes.dex file.

� Android Manifest Transformation (AMT): Each Android application contains a
configuration file called androidmanfest.xml (Hammad, Garcia & Malek, 2018).
Various permissions are defined in it. We can change the permissions or add new ones.
Some of the permissions include android.permission. ACCESS _BLUETOOTH_SHARE,
which is used for Bluetooth sharing.

� Resource Renaming (RR): This technique parses the name from the XML file extracted
from the APK file and renames the resource name to an arbitrary encrypted string
(Preda & Maggi, 2017). The resources are available in the res folder in the Android
application, which is changed after the application is extracted.

� Method Overloading (MO): This technique uses the overloading feature of the JAVA
language to assign the same name to different methods with different additional
arguments (Chua & Balachandran, 2018). If the method name already exists, this
technique creates a new method with the same name and different arguments.

� Re-Order Loop (ROL): This technique (Graux, Lalande & Tong, 2019) is used to change
the control flow of any application. A loop can be executed in reverse order by changing
conditions and variables in a loop. The simple order of the control flow of any
application is changed with this technique.

� Unconditional Jump Insertion (UJI): This technique (Faruki et al., 2016) is used to
change the control flow structure of any application. Goto-statements introduce
unconditional jumps. Forward and backward jumps are introduced, but the
functionality of the program remains the same.

� Debug Removal (DebR): This technique removes all debug information (Preda &
Maggi, 2017) that is by default enabled by the developers. By allowing the debugger, you
help the developer find the location of the error log information. This technique
removes all directories where the error logs are stored. By eliminating the log directories,
the developer cannot find out where exactly the errors occurred.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 11/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

� Re-Aligning (RA): This technique (Preda & Maggi, 2017) realigns all uncompressed
data, including images and miscellaneous files in the APK file. This realignment changes
the signature of the APK file. This technique can easily bypass the anti-malware tools
that detect the malicious app based on its signature.

EVALUATING ANTI-MALWARE TOOLS
This section explains the proposed research methodology for evaluating anti-malware
tools. The main objective of this work is to provide a comprehensive study for the
evaluation of anti-malware tools. In this work, 20 major obfuscation techniques are
discussed and applied to malware samples in isolation, inter-category-wise, and inter-
category. The obfuscated malware files are then analyzed with known anti-malware tools
to evaluate the effectiveness of detection. To manage the large number of combinations
for the 20 obfuscation techniques, we divide these techniques into several categories.
Then, we deploy these obfuscation combinations in the hybridized form by using inter-
category-wise and inter-category hybridization combinations. In code obfuscation, the
application code is modified. However, the functionality of the code is preserved.
Obfuscation can be used to hide malicious code in benign code, making it difficult to
determine whether the code could perform the malicious activity or not. Before applying
obfuscation, we need to extract the source code of the application. After extracting the
application code, the obfuscation techniques with possible combinations are applied to the
APK file. This obfuscated APK may contain malicious code or other malicious activities.
Now, this obfuscated APK is analyzed using the anti-malware tools.

As shown in Fig. 3, the APK dataset is used to obtain the APK files. After obtaining an
APK from the dataset, the first phase is to extract the resource files (i.e., resources,

Figure 3 Anti-malware tools evaluation methodology. Full-size DOI: 10.7717/peerj-cs.1002/fig-3

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 12/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-3
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

manifests, and other code files) from the APK using APKTools (Apktool, 2022) or another
equivalent software program. The extracted manifest.xml contains all configurations for
the application. All permissions for using the application are specified in the manifest
file. The user must grant these permissions at the time of installing the Android
application. In general, a program cannot access application components and other
resources without certain permissions. We have also extracted the source code files using
APKTool. The extracted source code is in the form of Java or Smali code. We use the Smali
code of an application to make obfuscation-related changes. Before applying any code
modification, it is necessary to check whether it is possible to apply a particular obfuscation
in the code or not. Also, the program execution flow is closely examined to ensure that
the obfuscation does not change the semantics or meaning of the program. Considering
the 20 obfuscation techniques used and their further classification into categories or classes
(as in Table 4), the possible combinations are formed. The obfuscation techniques are
applied in isolation, category by category, and inter-categories.

Furthermore, the obfuscated APK folder is made available to the APKTool so that the
application can be rebuilt. After rebuilding, the APK is signed with the developer’s unique
key. The Jarsigner tool is used for signing. The signed application looks like a non-
obfuscated application sample, which can hide malicious activities. For analysis, the
obfuscated malware is provided to the anti-malware tools to see whether these tools can
detect the malware or not.

Table 4 Category wise distribution of obfuscation techniques.

Category Obfuscation techniques

Android Specific (AS) • Repackaging

• Disassembling and Reassembling

• Android Manifest transformation

• Re-aligning

Simple Control-flow Modifications (SCF) • Junk Code Insertion

• Debug Removal

• Try-catch

• Members reordering

• Re-order Loop

Advanced Control-flow Modifications (ACF) • Call Indirection

• Code Reordering

• Reflection

• Opaque Predicate

• Method Overloading

• Unconditional jump insertion

Renaming (RN) • Package Renaming

• Identifier Renaming

• Resource Renaming

Encryption (EN) • String Encryption

• Data Encoding

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 13/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Obfuscation techniques
In Table 4, 20 different obfuscation techniques are mentioned, which can be divided
into five categories. The Android-specific obfuscation techniques leave the bytecodes
unchanged while applying the obfuscations. The simple control flow modification-related
obfuscation techniques are based on the mechanisms that potentially change or add
new code in an application; however, simple control flow modification techniques deal
with the simpler code. The advanced control flow modification techniques mostly involve
the obfuscation approaches that use more complicated and advanced steps to modify
the application code. However, both simple and advanced control flow modifications
require changes to the application code while keeping the semantics of the code the same.
Renaming-related obfuscation techniques include all techniques that use renaming
mechanisms for application resources such as folders, code, and so on. For example, the
package renaming technique does not change anything but renames the application
packages in the application folder. Some of the renaming techniques can also change the
application code, such as renaming identifiers. Encryption-based mechanisms include any
technique that encrypts the code, data, strings, or application resources such as folders.

EXPERIMENTAL EVALUATION
This section presents the evaluation of the top 10 commercially available prominent
Android malware detectors. The malware samples are taken from the Drebin dataset
(Arp et al., 2014). The experimental evaluation presented in this section shows the
potential impact of obfuscation mechanisms on the detection rate of these anti-malware
tools.

Malware dataset
Drebin (Arp et al., 2014) is a comprehensive dataset based on a large number of Android
malware, i.e., 5,560 malicious APK files belonging to 179 different malware families.
We selected some random malware samples and used them as base APKs to create
700 different obfuscated samples for evaluation, which can be observed in Table 5.

Table 5 Evaluated anti-malware tools.

Anti-malware tool, reference Current version Total downloads Ratings Offered by

Avast, (Avast, 2022) 6.38.2 100M+ 4.7 Avast Software

AVG Mobile, (AVG Technologies, 2022) 6.38.4 100M+ 4.7 AVG Mobile

Kaspersky, (Kaspersky, 2022) Varies with device 50M+ 4.8 Kaspersky Lab

McAfee, (McAfee, 2022) 5.13.0.136 50M+ 4.5 McAfee LLC

Avira, (Avira, 2022) 7.7.1 10M+ 4.6 AVIRA

Dr. Web, (Web, 2022) 12.6.9 10M+ 4.6 Doctor Web, Ltd

ESET Mobile Security, (ESET, 2022) 6.3.41.0 10M+ 4.8 ESET

Malwarebytes Security, (Malwarebytes, 2021) 3.7.5.8 10M+ 4.6 Malwarebytes

Bitdefender, (Bitdefender, 2022) 3.133.939 5M+ 4.7 Bitdefender

Sophos, (Sophos, 2022) 9.6.3415 1M+ 4.3 Sophos Limited

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 14/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

We have selected the 10 popular and prominent anti-malware tools for evaluation.
These anti-malware tools were selected based on the number of downloads and ratings in
the Play store. The choosing criteria for these anti-malware tools are a minimum of 4.3
ratings with a large number of downloads (minimum of 1 million downloads). Table 5
shows the anti-malware tools considered in this study including the metadata such as
number of downloads, current version, and star rating against, etc. We use the VirusTotal
(virusTotal, 2012) platform, which helps us scan the obfuscated samples with one of these
tools.

Experimental setup
To reverse engineer an Android APK, we use Apktool (Apktool, 2022), which generates
Smali code files. We apply the intended obfuscation techniques to the Smali code obtained
from these APKs by using the Visual Studio tool (Visual Studio Code, 2016) (a lightweight
source code editor). The details of the machines used in the experiments can be found
in Table 6.

Results
Twenty different malware sample APKs are obfuscated and a total of 700 variants are
developed for evaluation. These twenty malware samples are selected from the Drebin
dataset (Arp et al., 2014). These malware samples are detected initially as malware by
all anti-malware tools available in this study. We create 400 variants using single
obfuscation techniques (i.e., in isolation). One hundred malware variants are created using
obfuscation techniques by category, while 200 malware variants are created using inter-
category combinations. The evaluation results for each anti-malware tool are presented in
three diagrams. The first chart shows how effective the obfuscation techniques are
when used in isolation. The second chart shows the detection performance when inter-
category obfuscation. Details on inter-category obfuscation can be found in Table 5. The
designed model is applied to the 100 malware samples. The third chart shows the detection
performance of the anti-malware tools when tested against the obfuscated samples based
on inter-category obfuscation. Below are the detailed evaluation results of each anti-
malware tool.

Avira
The detection rate of the Avira anti-malware tool shows that 100% of the original malware
samples were detected as malicious APKs. The evaluation results for the isolated

Table 6 Machine specifications.

CPU Intel core I5 2.5 GHz

Installed RAM 8 GB

Operation System Windows 10 Pro

Reverse engineering Tool Apktool v2.5.0

Tool for Smali code edit Visual studio code v1.56.2

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 15/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

application of obfuscation techniques show that Avira’s detection rate drops to 85% after
applying the obfuscation associated with string encryption. In its original form, Avira was
able to detect 100% of files as malicious. However, after creating variants of malicious
APKs by applying string encryption, Avira’s performance drops to 85%, as seen in Fig. 4.
The results show that Android manifest conversion, member reordering, identifier
renaming, resource renaming, and data encryption also degraded the detection rate a bit.
When obfuscation techniques are applied in the category-by-category configuration,
Avira’s detection rate drops to 75% (for example, for the encryption category), as shown in
Fig. 5A. Simple control flow changes and category renaming also have little effect on the
detection rate of the Avira anti-malware tool, as shown in Fig. 5A.

When obfuscation techniques are applied with inter-category configurations, Avira’s
detection rate drops to 35% with a combination of Android-specific and encryption
(as shown in Fig. 5B). These experiments highlight the fact that the combinations between
the categories for obfuscation are inherently stealthier and significantly reduce the
detection capability.

In experiments, the minimum detection rate decreases from 100% to 85% when the
obfuscation techniques are applied in isolation, from 100% to 75% when they are applied
category-wise, and from 100% to 35% when the obfuscation techniques are combined inter
categories. The results show that the detection rate drops significantly when the
obfuscation techniques are combined with inter-categories.

Figure 4 Avira: isolated obfuscation evaluation. Full-size DOI: 10.7717/peerj-cs.1002/fig-4

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 16/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-4
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Avast

The detection rate of the Avast anti-malware tool shows that 90% of the original malware
samples (without any obfuscation) were detected as malicious applications. However,
after applying 20 different obfuscation techniques (i.e., in isolation), the detection rate
dropped to 65%, which can be observed in Fig. 6. The notable obfuscation techniques that
caused a drop in detection rate are string encryption and data ending.

When obfuscation techniques are applied on a category-by-category basis, Avast’s
detection rate drops from 90% to 55%, especially in the case of the encryption category, as

Figure 5 Avira: category-wise and inter-category-wise results. (A) Avira: category-wise obfuscation results. (B) Avira: inter-category-wise
obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-5

Figure 6 Avast: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-6

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 17/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-5
http://dx.doi.org/10.7717/peerj-cs.1002/fig-6
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

shown in Fig. 7A. The evaluation results for applying obfuscation techniques in a category
show a significant drop in the detection rate, i.e., 55% for the Encryption category (as
shown in Fig. 7A).

When obfuscation techniques are applied inter categories, Avast’s detection rate drops
further to 35% when Android-specific and encryption categories are combined, which can
be seen in Fig. 7B. The most significant drop was caused by the combination of Android-
specific and encryption categories, while the other inter-category combinations cause a
notable drop in the detection rate.

AVG mobile

AVG Mobile anti-malware tool detects 80% of the original malware samples as malicious
applications. The evaluation results when obfuscation techniques are applied in isolation
show that the detection rate of AVG Mobile drops to 60% (as shown in Fig. 8). The
decrease in detection rate is mainly due to string encryption, data encryption, application
of additional try-catch blocks, opaque predicates, and code reordering mechanisms.

When obfuscation techniques are applied on a category-by-category basis, the detection
rate of AVG Mobile decreases from 80% to 50%, as shown in Fig. 9A. The results show
that the categories of simple-control-flow, advanced-control-flow and renaming have a
significant impact on the detection rate of the anti-malware tool AVG Mobile, that can be
seen in Fig. 9A.

When obfuscation techniques are applied inter categories, the detection rate of AVG
Mobile drops to 30% with a combination of Android-specific and encryption techniques
that can be seen in Fig. 9B. The effects of the other inter-category obfuscation techniques
are also notable, as can be seen in Fig. 9B.

Figure 7 Avast: category-wise and inter-category-wise results. (A) Avast: category-wise obfuscation results. (B) Avast: inter-category-wise
obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-7

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 18/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-7
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Bitdefender
This work shows that 100% of the original malware samples were detected as malicious by
Bitdefender anti-malware tool. After applying 20 different obfuscation techniques, one
by one, the results dropped to a detection rate of 80%. The evaluation results for the

Figure 8 AVG Mobile: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-8

Figure 9 AVG Mobile: category-wise and inter-category-wise results. (A) AVG Mobile: category-wise obfuscation results. (B) AVG Mobile:
inter-category-wise results. Full-size DOI: 10.7717/peerj-cs.1002/fig-9

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 19/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-8
http://dx.doi.org/10.7717/peerj-cs.1002/fig-9
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

isolated application of obfuscation techniques show that Bitdefender’s detection rate
dropped to 80% after applying re-aligning or try-catch, as shown in Fig. 10. The results
show that opaque-predicate, package-renaming, string-encryption and data-encryption
also affect the detection rate of the Bitdefender anti-malware tool.

Figure 10 Bitdefender: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-10

Figure 11 Bitdefender: category-wise and inter-category-wise results. (A) Bitdefender: category-wise obfuscation results. (B) Bitdefender:
inter-category-wise obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-11

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 20/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-10
http://dx.doi.org/10.7717/peerj-cs.1002/fig-11
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

When the obfuscation techniques are applied category-wise, the detection rate of the
Bitdefender anti-malware tool in the Android-specific and simple control flow
modifications category drops from 100% to 75% that can be found in Fig. 11A. These
results highlight the fact that all applied category-specific obfuscations led to a significant
decrease in the detection rate.

When obfuscation techniques are applied to inter-categories, Bitdefender’s detection
rate drops to 40% (for the inter-category combination of Android-specific and simple
control flow modifications), as shown in Fig. 11B. The results also show that the other
inter-category combinations also have a remarkable impact on the detection rate of the
Bitdefender anti-malware tool.

Dr. Web
Dr. Web’s detection rate for the original malware was 100%, as seen in Fig. 12. After
applying 20 different obfuscation techniques, one after another, the detection rate dropped
to 40% (especially after applying call indirection or reflection obfuscations). Moreover, the
results show that the code-reordering, resource-renaming, and data encoding have a
significant impact on the detection rate of the Dr. Web anti-malware tool.

When obfuscation techniques are applied category-wise, the detection rate drops
significantly from 100% to 20%. All category-wise combinations have a remarkable
effect on the detection rate; however, the advanced control-flow modifications has a high
impact, as shown in Fig. 13A. For the inter-category wise combination, the detection rate
dropped drastically to 0% for the combinations of advanced control-flow modifications
and encryption, as shown in Fig. 13B. In addition, the combination of advanced
control-flow modifications and renaming had a significant impact on the detection rate

Figure 12 Dr. Web: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-12

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 21/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-12
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

(i.e., it dropped to 5%). The other inter-category combinations between categories also had
a large impact on the detection rate, as shown in Fig. 13B.

ESET mobile security
The ESET Mobile Security tool detected 100% of the original malware samples as
malicious. However, when it was equipped with the 20 different obfuscation techniques
(one at a time), the detection rate dropped to 80%, as shown in Fig. 14. The results show
that obfuscations such as Members Re-Ordering, Re-Order-Loop, Call Indirection, Code

Figure 13 Dr. Web: category-wise and inter-category-wise results. (A) Dr. Web: category-wise obfuscation results. (B) Dr. Web: inter-category-
wise obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-13

Figure 14 ESET Mobile Security: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-14

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 22/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-13
http://dx.doi.org/10.7717/peerj-cs.1002/fig-14
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Re-Ordering, Identifier Renaming, Resource Renaming, and Data Encoding also have a
notable impact on the detection rate.

When obfuscation techniques are applied category by category, the detection rate of
ESET Mobile Security drops to 70%. The maximum drop in detection rate was observed
when the Advanced control-flow modifications obfuscation category was applied (as
shown in Fig. 15A). The other category-related obfuscations also have a notable impact on
the detection rate.

When obfuscation techniques are applied inter categories, ESET’s detection rate drops
further to 50% (i.e., for the combination of advanced control-flow modifications and
renaming), as shown in Fig. 15B. The experiments also found that all combinations of
intermediate categories also have a significant impact on the detection rate of the ESET
anti-malware tool.

Kaspersky

Kaspersky’s detection rate for the original malware was 100%, as shown in Fig. 16. After
applying 20 different obfuscation techniques, one after the other, the detection rate
dropped to 55% (see Fig. 16). In addition, the obfuscation mechanisms such as try-catch,
members-reordering, method-overloading, identifier-renaming, resource-renaming, string
encryption and data encoding also have a significant impact on the detection rate of the
Dr. Web anti-malware tool.

When obfuscation techniques are applied in category-wise configurations, Kaspersky’s
detection rate drops to 45%, as shown in Fig. 17A. In addition, the other obfuscation
mechanisms also affect the detection rate, such as the categories control flow
modifications, enhanced control flow modifications and renaming (see Fig. 17A). With
inter-category obfuscation, the detection rate drops further to 35%. The notable inter-
category obfuscation mechanisms that cause a low detection rate are Android-specific with

Figure 15 ESET Mobile Security: category-wise and inter-category-wise results. (A) ESET Mobile Security: category-wise obfuscation results.
(B) ESET Mobile Security: inter-category-wise obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-15

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 23/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-15
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

encryption, simple control flow modifications along encryption, and advanced control
flow modifications along encryption (as shown in Fig. 17B).

Malwarebytes security
The Malwarebytes anti-malware tool detects 100% of the original malware samples when
analyzed against the raw malware samples. However, after applying the 20 obfuscation
techniques, the detection rate dropped to 60%, which can be seen in Fig. 18. The effects of
the different obfuscation techniques on the detection rate are shown in Fig. 18. When

Figure 16 Kaspersky - isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-16

Figure 17 Kaspersky: category-wise and inter-category-wise results. (A) Kaspersky: category-wise obfuscation results. (B) Kaspersky:
inter-category-wise obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-17

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 24/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-16
http://dx.doi.org/10.7717/peerj-cs.1002/fig-17
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

obfuscation techniques are applied in category-wise configurations, the detection rate
increases to 50%, as shown in Fig. 19A. The results presented show that most of the
obfuscation categories have a significant impact on the detection rate that can be found in
Fig. 19A.

When obfuscation techniques are applied inter-category-wise, Malwarebytes’ detection
rate drops to 40%, as shown in Fig. 19B. In addition to the Android-specific category with

Figure 18 Malwarebytes: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-18

Figure 19 Malwarebytes: category-wise and inter-category-wise results. (A) Malwarebytes: category-wise obfuscation results. (B) Malwarebytes:
inter-category-wise results. Full-size DOI: 10.7717/peerj-cs.1002/fig-19

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 25/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-18
http://dx.doi.org/10.7717/peerj-cs.1002/fig-19
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

encryption, the other inter-category obfuscation techniques (i.e., advanced control flow
modifications with encryption) also have a significant impact and reduced the detection
rate to 40% that can be seen in Fig. 19B.

McAfee
McAfee’s anti-malware tool detected all the original malware samples as malicious.
However, after applying 20 different obfuscation techniques (each separately), the
detection rate dropped to as low as 0% for obfuscation data-encoding (as shown in Fig. 20).

Figure 20 McAfee: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-20

Figure 21 McAfee: category-wise and inter-category-wise results. (A) McAfee: category-wise obfuscation results. (B) McAfee: inter-category-wise
obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-21

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 26/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-20
http://dx.doi.org/10.7717/peerj-cs.1002/fig-21
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

As Fig. 20 shows, the detection rate dropped significantly for the other obfuscation
mechanisms in addition to data-encoding.

When obfuscation techniques are applied category-wise, McAfee’s detection rate drops
to as low as 0% (i.e., encryption along renaming obfuscation). As can be seen in Fig. 21A,
all categories significantly affect the detection rate of the Malwarebytes anti-malware
tool. The maximum detection rate with category-wise obfuscation is only 20%. These
results show that combinations of obfuscation techniques significantly affect McAfee.
When obfuscation techniques are applied inter-category-wise, McAfee’s detection rate also
drops by 0% for most of the inter-category combinations that can be seen in Fig. 21B.

Sophos
Sophos’ anti-malware tool shows 100% detection of the raw malware samples. However,
after applying 20 different obfuscation techniques (each separately), the detection rate
drops to 90% (i.e., resource renaming and data encryption), as shown in Fig. 22. The results
also show that Android-manifest-transformation, try-catch, members-reordering,
reflection, and string-encryption also have notable effects on the detection rate of the
Sophos anti-malware tool. When obfuscation techniques are applied on a category-wise,
Sophos’ detection rate drops to 80% for the encryption category, as shown in Fig. 23A. The
results show that all categories have an impact on the detection rate of Sophos’s anti-
malware tool, with the Encryption category having the greatest impact, as shown in
Fig. 23A. When using obfuscation categories, the maximum detection rate was 95%, and
the minimum detection rate was 80%.

Figure 22 Sophos: isolated way obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-22

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 27/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-22
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

When tested using the inter-category obfuscation, Sophos’ detection rate dropped to
just 10% (i.e., combining Android-specific with encryption category), as shown in Fig. 23B.
In addition, the other inter-category obfuscations also resulted in a significantly lower
detection rate.

Results discussion
We use various obfuscation techniques applied to the well-known Android anti-malware
tools in isolation, category-wise, and inter-category. Table 5 shows the summarized data
related to the code obfuscation techniques used and the detection rates achieved. In
general, the results show that obfuscation enhances the malware with stealth attributes.
The results show that the more complicated the obfuscation mechanism is (i.e., inter-
category obfuscations), the more likely the malware is to go undetected.

As shown in Table 7, Avira attains a detection rate of 100% when RP, DRe, RA, JCI,
DebR, TC, ROL, CI, CR, Re, OP, MO, UJI, and PR are applied individually, but this rate
drops to 85% with the obfuscation mechanism SE. When obfuscation techniques of the
category EN are applied, this rate drops to 75%. In the case of an inter-category
application, the detection rate drops even further, to 35%. Avast achieved the maximum
detection rate of 80% with single obfuscation schemes, e.g., RP, DRe, AMT, RA, DebR,
MO, PR, and RR. For avast, this detection rate drops further to 65% when the obfuscations
SE and DE are used. The EN category shows the worst detection rate (i.e. 55%), which
drops further to 35% when this obfuscation is combined with the AS category. In the
AVG Mobile category, a maximum detection rate of 80% was achieved when the RP, DRe,
AMT, RA, DebR, PR and RR obfuscation mechanisms were used. In the categories-wise
analysis of AVG Mobile, the detection rate dropped to 50% for the category EN and
35% when the combination of the categories AS and EN was used. The Bitdefender
anti-malware tool achieved a maximum detection rate of 100% for the individual
obfuscation techniques. However, when the inter-category combination of AS and SCF

Figure 23 Sophos: category-wise and inter-category-wise results. (A) Sophos: category-wise obfuscation results. (B) Sophos: inter-category-wise
obfuscation results. Full-size DOI: 10.7717/peerj-cs.1002/fig-23

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 28/34

http://dx.doi.org/10.7717/peerj-cs.1002/fig-23
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

was used, the detection rate dropped to 40%. In the case of Dr. Web, the maximum
detection rate was 100% for the individual obfuscation techniques such as RP, DRe, AMT,
RA, JCI, DebR, ROL, OP, UJI, PR, IR, and SE. For individual obfuscation categories, the
detection rate was 100%, however, when multiple categories such as ACF and EN were
combined, the detection rate dropped to 0% (i.e., all malicious applications escaped
detection by Dr. Web). ESET Mobile Security has the lowest detection rate of 80% when
single obfuscation techniques are used (such as Re); this rate drops further, i.e., to 70%
when the ACF obfuscation category is applied; and to 50% when the combination of
ACF and RN is used. In Kaspersky’s case, the worst detection rate is 55% when the
obfuscation technique DE is applied individually. A detection rate of 45% is calculated for
the category EN, when the obfuscation is used with a combination of two categories AS
with EN, ACF with EN, and RN with EN, the results drop to 35%. The worst detection
rate of Malwarebytes Security is 60% when DE is applied individually. Malware Security’s
detection results dropped to 40% on inter-categories-wise combinations of AS with EN
and ACF with EN.

Table 7 Tool-wise evaluation results.

Anti-
Malware
tools

Individual techniques Category-wise
techniques

Inter-category-wise techniques

Best Worst Best Worst Best Worst

Avira RP, DRe, RA, JCI, DebR, TC,
ROL, CI, CR, Re, OP, MO, UJI,
PR, (100%)

SE (85%) AS, ACF
(100%)

EN (75%) AS+SCF, SCF+ACF,
SCF+RN, ACF+RN,
(90%)

AS+EN (35%)

Avast RP, DRe, AMT, RA, DebR, MO,
PR, RR, (80%)

SE, DE
(65%)

AS (80%) EN (55%) AS+ACF, ACF+RN
(75%)

AS+EN (35%)

AVG Mobile RP, DRe, AMT, RA, DebR, PR,
RR, (80%)

SE, DE
(60%)

AS (80%) EN (50%) AS+SCF, AS+ACF,
SCF+ACF, (75%)

AS+EN (30%)

Bitdefender RP, DRe, AMT, MR, ROL, CI,
CR, Re, MO, UJI, IR, RR,
(100%)

RA,TC
(80%)

ACF,EN
(90%)

AS, SCF
(75%)

ACF+RN, RN+EN
(90%)

AS+SCF (40%)

Dr. Web RP, DRe, AMT, RA, JCI, DebR,
ROL, OP, UJI, PR, IR, SE,
(100%)

CI, Re
(40%)

AS (100%) ACF (20%) AS+SCF, AS+RN
(90%)

ACF+EN (0%)

ESET Mobile
Security

RP, DRe, AMT, RA, JCI, DebR,
TC, OP, UJI, PR, IR (100%)

Re (80%) AS (100%) ACF (70%) AS+RN (95%) ACF+RN (50%)

Kaspersky RP, DRe, AMT, RA, JCI, DebR,
ROL, CI, CR, Re, OP, UJI, PR,
(100%)

DE (55%) AS (100%) EN (45%) AS+SCF (90%) AS+EN, ACF+EN, RN+EN
(35%)

Malwarebytes RP, DRe, DebR, ROL, MO, PR,
(100%)

DE (60%) AS, SCF
(85%)

EN (50%) AS+SCF, AS+RN,
SCF+RN, (70%)

AS+EN, ACF+EN (40%)

McAfee RA (95%) DE (0%) AS (20%) RN, EN
(0%)

AS+SCF, SCF+ACF
(10%)

AS+RN, AS+EN, SCF+RN, SCF
+EN, ACF+RN, ACF+EN, RN
+EN (0%)

Sophos RP, DRe, RA, JCI, DebR, ROL, CI,
CR, OP, MO, UJI, PR, IR,
(100%)

RR, DE
(90%)

AS, ACF
(95%)

EN (80%) SCF+ACF, SCF+RN
(85%)

AS+EN (10%)

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 29/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Table 8 Technique-wise results.

Obfuscation technique Best Average Worst

Repackaging 100%, (AVIRA, Bitdefender, Dr. Web, ESET, Kaspersky, Malwarebytes,
Sophos)

87.50% 15%, (McAfee)

Disassemble-Reassemble 100%, (AVIRA, Bitdefender, Dr. Web, ESET, Kaspersky, Malwarebytes,
Sophos)

93.50% 75%, (McAfee)

Manifest transformation 100%, (Bitdefender, Dr. Web, ESET, Kaspersky) 85% 15%, (McAfee)

Re-aligning 100%, (AVIRA, Dr. Web, ESET, Kaspersky, Sophos) 92.50% 80%, (Avast, AVG,
Bitdefender)

Junk Code Insertion 100%, (AVIRA, Dr. Web, ESET, Kaspersky, Sophos) 85.50% 15%, (McAfee)

Debug Removal 100%, (AVIRA, Dr. Web, ESET, Kaspersky, Sophos, Malwarebytes) 87.50% 20%, (McAfee)

Try-catch 100%, (AVIRA, ESET) 81% 10%, (McAfee)

Members reordering 100%, (Bitdefender) 81.50% 5%, (McAfee)

Re-order Loop 100%, (AVIRA, Bitdefender, Dr. Web, Kaspersky, Malwarebytes,
Sophos)

85% 10%, (McAfee)

Call Indirection 100%, (AVIRA, Bitdefender, Kaspersky, Sophos) 77% 10%, (McAfee)

Code Reordering 100%, (AVIRA, Bitdefender, Kaspersky, Sophos) 81% 5%, (McAfee)

Reflection 100%, (AVIRA, Bitdefender, Kaspersky) 75% 10%, (McAfee)

Opaque Predicate 100%, (AVIRA, Dr. Web, ESET, Kaspersky, Sophos) 83% 10%, (McAfee)

Method Overloading 100%, (AVIRA, Bitdefender, Malwarebytes, Sophos) 84% 10%, (McAfee)

Unconditional jump insertion 100%, (AVIRA, Bitdefender, Dr. Web, ESET, Kaspersky, Sophos) 86% 15%, (McAfee)

Package Renaming 100%, (AVIRA, Dr. Web, ESET, Kaspersky, Malwarebyte, Sopho) 86.50% 10%, (McAfee)

Identifier Renaming 100%, (Bitdefender, Dr. Web, ESET, Sophos) 83% 10%, (McAfee)

Resource Renaming 100%, (Bitdefender) 81.50% 5%, (McAfee)

String Encryption 100%, (Dr. Web) 74.50% 10%, (McAfee)

Data Encoding 95%, (AVIRA, Bitdefender, ESET) 70% 0%, (McAfee)

Obfuscation Categories

Android Specific 100%, (AVIRA, Dr. Web, ESET, Kaspersky) 83.50% 20%, (McAfee)

Simple Control-flow
Modifications

95%, (AVIRA) 76.50% 10%, (McAfee)

Advanced Control-flow
Modifications

100%, (AVIRA) 68.50% 5%, (McAfee)

Renaming 95%, (Bitdefender, ESET) 77% 0%, (McAfee)

Encryption 90%, (Bitdefender) 61% 0%, (McAfee)

Obfuscation Inter-categories

AS+SCF 90%, (AVIRA, Dr. Web, Kaspersky) 69.50% 10%, (McAfee)

AS+ACF 85%, (AVIRA, Kaspersky) 59.50% 5%, (McAfee)

AS+RN 95%, (ESET) 69.50% 0%, (McAfee)

AS+EN 80%, (ESET) 39.50% 0%, (McAfee)

SCF+ACF 90%, (AVIRA) 60% 10%, (McAfee)

SCF+RN 90%, (AVIRA) 66% 0%, (McAfee)

SCF+EN 75%, (Dr. Web) 50% 0%, (McAfee)

ACF+RN 90%, (AVIRA, Bitdefender) 57.50% 0%, (McAfee)

ACF+EN 85%, (Bitdefender) 46.50% 0%, (McAfee, Dr.Web)

RN+EN 90%, (Bitdefender) 55% 0%, (McAfee)

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 30/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

As shown in Table 8, a total of 700 obfuscated applications are generated using these
obfuscation schemes to evaluate anti-malware tools. When 20 different obfuscation
techniques are applied individually, the maximum average detection rate is 93.50% for
disassembly and reassembly, while the minimum average detection rate is 70% for
data-encryption related obfuscation. The worst detection rate is 0% for Data Encoding by
McAfee.

When the obfuscation techniques are applied category-wise, five categories emerged as
shown in Table 4 (to evaluate anti-malware tools). The maximum average detection
rate is 83.50% in the Android Specific category, while the minimum average detection rate
is 61% in the Encryption category. The worst detection rate is 0% in McAfee’s Encryption
category. The best detection rate is 100% in the Android Specific category by AVIRA,
Dr. Web, ESET, and Kaspersky.

A significant effect on recognition was observed when two categories were combined.
The maximum average recognition rate goes down to 69.50% for a variety of Android-
specific categories with simple control flow and Android-specific categories with
renaming, from 93.50% in single obfuscation cases and 83.50% for category-wise
obfuscation schemes. The lowest average detection rate is 46.50% for a combination of
advanced control-flow with renaming category, 70% in individual cases, and 61% for
category-wise obfuscation schemes. The results also show the worst detection rate of
0% for 8 out of 10 inter-category-wise combinations. The best detection rate for inter-
category combinations is 95% for the category Android-specific with renaming, which is
detected by the ESET anti-malware tool.

McAfee has the worst detection rates of all anti-malware tools. McAfee’s best detection
rate is 95% for the obfuscation technique RA. This rate drops to 0% with the single
obfuscation technique DE. None of the anti-malware tools shows 0% with a single
obfuscation technique except McAfee. It offers the best detection rate of 20% at AS, when
the tool is evaluated by category. When inter-category combinations are applied,
McAfee shows the best detection rate of 10% when combining AS with SCF and SCF with
ACF. The results show a significant drop in McAfee’s detection rate (i.e., 0%) when inter-
categories of AS with RN, AS with EN, SCF with RN, SCF with EN, ACF with RN,
ACF with EN, and RN with EN. Sophos has a detection rate of 100% when RP, DRe, RA,
JCI, DebR, ROL, CI, CR, OP, MO, UJI, PR, and IR are applied individually, but this rate
drops by 90% with RR and DE. When obfuscation techniques of the category EN are
used, this rate drops to 80%. In the case of the inter-category, this rate drops from 80% to
10% when the combination of AS and EN is applied.

CONCLUSIONS AND FUTURE WORK
In the past, researchers have evaluated anti-malware tools using various methods a
limited number of and basic obfuscation techniques (Preda & Maggi, 2017; Hammad,
Garcia & Malek, 2018; Bakour, Ünver & Ghanem, 2019; Chua & Balachandran, 2018;
Balachandran et al., 2016). This work provides a comprehensive study based on a large
number of obfuscation techniques applied individually, category-wise, and inter-category
to evaluate prominent Android anti-malware tools. We use twenty different obfuscation

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 31/34

http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

techniques and applied them individually, category-wise, and inter-category-wise
combinations to evaluate the top 10 commercially available prominent anti-malware tools.
Five different categories are generated using the basic 20 obfuscation mechanisms.
The evaluation results show that most of the malware tools could not able to detect
malicious applications that have been obfuscated using multiple obfuscation techniques
simultaneously (especially the inter-category wise combinations). The complex
hybridization of obfuscation techniques used in this study provides a concerning
insight into the weak detection capabilities of the prominent anti-malware tools against
complex obfuscation mechanisms (i.e., inter-category wise obfuscations). In the future,
we plan to evaluate these tools using more complex yet realistic obfuscation mechanisms
by combining more inter-category-wise combinations.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This article was supported by Western Norway University of Applied Sciences. There was
no additional external funding received for this study. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Western Norway University of Applied Sciences.

Competing Interests
Muhammad Aleem is an Academic Editor for PeerJ Computer Science.

Author Contributions
� Umair Nawaz conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

� Muhammad Aleem analyzed the data, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

� Jerry Chun-Wei Lin performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub: https://github.com/umairnawaz64/evaluation_of_
antimalware_tools.

REFERENCES
Al-Asli M, Ghaleb TA. 2019. Review of signature-based techniques in antivirus products. In: 2019

International Conference on Computer and Information Sciences (ICCIS). Piscataway: IEEE, 1–6.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 32/34

https://github.com/umairnawaz64/evaluation_of_antimalware_tools
https://github.com/umairnawaz64/evaluation_of_antimalware_tools
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Alharbi B, Alzahrani H, Asseri A, Taramisi K. 2020. Anti-malware efficiency evaluation
framework. In: 2020 2nd International Conference on Computer and Information Sciences
(ICCIS). Piscataway: IEEE, 1–4.

Aonzo S, Georgiu GC, Verderame L, Merlo A. 2020. Obfuscapk: an open-source black-box
obfuscation tool for Android apps. SoftwareX 11(3):100403 DOI 10.1016/j.softx.2020.100403.

Apktool. 2022. Apktool–a tool for reverse engineering 3rd party, closed, binary Android apps.
Available at https://ibotpeaches.github.io/Apktool/.

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C. 2014. DREBIN: effective
and explainable detection of android malware in your pocket. In: Network and Distributed
System Security Symposium (NDSS). Vol. 14, 23–26.

Avast. 2022. Download free antivirus software—avast 2021 android protection. Available at http://
www.avast.com/.

AVG Technologies. 2022. AVG free antivirus for Android: tablet and mobile security app.
Available at https://www.avg.com/en-ww/antivirus-for-android.

Avira. 2022. Download security software for Windows, Mac, Android and iOS: avira antivirus.
Available at http://www.avira.com/.

Bacci A, Bartoli A, Martinelli F, Medvet E, Mercaldo F, Visaggio CA. 2018. Impact of code
obfuscation on android malware detection based on static and dynamic analysis. In: 4th
International Conference on Information Systems Security and Privacy (ICISSP). 379–385.

Badhani S, Muttoo SK. 2019. Analyzing android code graphs against code obfuscation and app
hiding techniques. Journal of Applied Security Research 14(4):489–510
DOI 10.1080/19361610.2019.1667165.

Bakour K, Ünver HM, Ghanem R. 2019. A deep camouflage: evaluating android’s anti-malware
systems robustness against hybridization of obfuscation techniques with injection attacks.
Arabian Journal for Science and Engineering 44(11):9333–9347
DOI 10.1007/s13369-019-04081-5.

Balachandran V, Sufatrio, Tan DJJ, Thing VLL. 2016. Control flow obfuscation for android
applications. Computers & Security 61(4):72–93 DOI 10.1016/j.cose.2016.05.003.

Bitdefender. 2022. Bitdefender mobile security for Android devices. Available at https://www.
bitdefender.com/solutions/mobile-security-android.html.

Canfora G, Sorbo AD, Mercaldo F, Visaggio CA. 2015.Obfuscation techniques against signature-
based detection: a case study. In: 2015 Mobile Systems Technologies Workshop (MST).
Piscataway: IEEE, 21–26.

Chebyshev V. 2021.Mobile malware evolution 2020. Kaspersky. Available at https://securelist.com/
mobile-malware-evolution-2020/101029/.

Chua M, Balachandran V. 2018. Effectiveness of android obfuscation on evading anti-malware. In:
CODASPY’18: Proceedings of the Eighth ACM Conference on Data and Application Security and
Privacy. 143–145.

Cimitile A, Martinelli F, Mercaldo F, Nardone V, Santone A. 2017. Formal methods meet mobile
code obfuscation identification of code reordering technique. In: 2017 IEEE 26th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).
Piscataway: IEEE, 263–268.

Elsersy WF, Feizollah A, Anuar NB. 2022. The rise of obfuscated Android malware and impacts
on detection methods. PeerJ Computer Science 8(8):e907 DOI 10.7717/peerj-cs.907.

ESET. 2022. Antivirus for Android with app lock and anti-theft: ESET. Available at https://www.
eset.com/int/home/mobile-security-android/.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 33/34

http://dx.doi.org/10.1016/j.softx.2020.100403
https://ibotpeaches.github.io/Apktool/
http://www.avast.com/
http://www.avast.com/
https://www.avg.com/en-ww/antivirus-for-android
http://www.avira.com/
http://dx.doi.org/10.1080/19361610.2019.1667165
http://dx.doi.org/10.1007/s13369-019-04081-5
http://dx.doi.org/10.1016/j.cose.2016.05.003
https://www.bitdefender.com/solutions/mobile-security-android.html
https://www.bitdefender.com/solutions/mobile-security-android.html
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
http://dx.doi.org/10.7717/peerj-cs.907
https://www.eset.com/int/home/mobile-security-android/
https://www.eset.com/int/home/mobile-security-android/
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

Fang Y, Yu B, Tang Y, Liu L, Lu Z, Wang Y, Yang Q. 2017. A new malware classification
approach based on malware dynamic analysis. In: Pieprzyk J, Suriadi S, eds. Information Security
and Privacy. ACISP 2017. Lecture Notes in Computer Science. Vol. 10343. Cham: Springer
DOI 10.1007/978-3-319-59870-3_10.

Faruki P, Fereidooni H, Laxmi V, Conti M, Gaur M. 2016. Android code protection via
obfuscation techniques: past, present and future directions. ArXiv preprint.
DOI 10.48550/arXiv.1611.10231.

Graux P, Lalande JF, Tong VVT. 2019. Obfuscated android application development. In:
Proceedings of the Third Central European Cybersecurity Conference. 1–6.

Hammad M, Garcia J, Malek S. 2018. A large-scale empirical study on the effects of code
obfuscations on android apps and anti-malware products. In: Proceedings of the 40th
International Conference on Software Engineering. 421–431.

Kaspersky. 2022. Your mobile security and privacy covered. Available at https://www.kaspersky.
com/android-security.

Li Z, Sun J, Yan Q, Srisa-an W, Tsutano Y. 2019. Obfusifier: obfuscation-resistant android
malware detection system. In: Chen S, Choo KK, Fu X, Lou W, Mohaisen A, eds. Security and
Privacy in Communication Networks. SecureComm 2019. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering. Vol. 304. Cham:
Springer DOI 10.1007/978-3-030-37228-6_11.

Malhotra A, Bajaj K. 2016. A hybrid pattern based text mining approach for malware detection
using DBScan. CSI Transactions on ICT 4(2–4):141–149 DOI 10.1007/s40012-016-0095-y.

Malwarebytes. 2021. Mobile security protection for Android and iOS. Available at https://www.
malwarebytes.com/mobile.

McAfee. 2022. McAfee mobile security, the leading mobile security service for Android. Available
at https://www.mcafeemobilesecurity.com/.

Preda MD, Maggi F. 2017. Testing android malware detectors against code obfuscation: a
systematization of knowledge and unified methodology. Journal of Computer Virology and
Hacking Techniques 13(3):209–232 DOI 10.1007/s11416-016-0282-2.

Sophos. 2022. Sophos mobile. Secure Unified Endpoint Management (UEM). Available at https://
www.sophos.com/en-us/products/mobile-control.aspx.

Statista. 2021. Google Play: number of available apps 2009–2020. Available at https://www.statista.
com/statistics/266210/number-of-available-applications-in-the-google-play-store.

Symantec. 2021. Broadcom saas. Available at https://securitycloud.symantec.com/cc/landing.

Tang J, Li R, Jiang Y, Gu X, Li Y. 2022. Android malware obfuscation variants detection method
based on multi-granularity opcode features. Future Generation Computer Systems 129(6):141–
151 DOI 10.1016/j.future.2021.11.005.

Threatpost. 2020. Google Play malicious apps installed 335M+ times in september. Available at
https://threatpost.com/google-play-malicious-apps-racked-up-335m-installs-in-september.

virusTotal. 2012. VirusTotal-Free virus, malware and URL scanner. Available at https://www.
virustotal.com/gui/.

Visual Studio Code. 2016. Visual studio code–code editing. Redefined. Available at https://code.
visualstudio.com/.

Web D. 2022. Dr.Web security space (for Android). Available at https://products.drweb.com/
mobile/android.

Nawaz et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1002 34/34

http://dx.doi.org/10.1007/978-3-319-59870-3_10
http://dx.doi.org/10.48550/arXiv.1611.10231
https://www.kaspersky.com/android-security
https://www.kaspersky.com/android-security
http://dx.doi.org/10.1007/978-3-030-37228-6_11
http://dx.doi.org/10.1007/s40012-016-0095-y
https://www.malwarebytes.com/mobile
https://www.malwarebytes.com/mobile
https://www.mcafeemobilesecurity.com/
http://dx.doi.org/10.1007/s11416-016-0282-2
https://www.sophos.com/en-us/products/mobile-control.aspx
https://www.sophos.com/en-us/products/mobile-control.aspx
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://securitycloud.symantec.com/cc/landing
http://dx.doi.org/10.1016/j.future.2021.11.005
https://threatpost.com/google-play-malicious-apps-racked-up-335m-installs-in-september
https://www.virustotal.com/gui/
https://www.virustotal.com/gui/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://products.drweb.com/mobile/android
https://products.drweb.com/mobile/android
http://dx.doi.org/10.7717/peerj-cs.1002
https://peerj.com/computer-science/

	On the evaluation of android malware detectors against code-obfuscation techniques
	Introduction
	Related work
	Obfuscation techniques and working of anti-malware tools
	Evaluating anti-malware tools
	Experimental evaluation
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

