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A B S T R A C T

Massive data parallelism can be achieved by using general-purpose graphics processing units (GPGPU) with
the help of the OpenCL framework. When smaller data with higher GPU memory is executed, it results in a low
resource utilization ratio and energy inefficiencies. Up until now, there is no existing model to share GPU for
further execution. In addition, if the kernel pair requires the same computation resource, then kernel merging
also results in a significant increase in execution time. Therefore, optimal device selection, as well as kernel
merging, can significantly speed up the execution performance for a batch of jobs. This paper proposes a kernel
merging method that leads to high GPU occupancy. As a result, it reduces execution time and increases GPU
utilization. Additionally, a machine learning (ML)-based GPU sharing mechanism is presented to select pairs of
kernels in OpenCL frameworks. The model first selects suitable architecture for the jobs and then merges GPU
kernels for better resource utilization. From all the GPU candidates, the optimal pair of the kernel concerning
data size is selected. The experimental results show that the developed model can achieve 0.91 F1-measure
for device selection and 0.98 for the scheduling scheme of kernel merging.
1. Introduction

Recently, we have witnessed the emergence/evolution of Graphics
Processing Units (GPU) as a viable alternative to the Central Processing
Unit (CPU), which is used to speed up the execution of data-parallel
applications. Program-oriented applications for General-Purpose Com-
puting on GPU (GPGPU), Open Computing Language (OpenCL), and
Compute Unified Device Architecture (CUDA) have emerged as the
industry standard and requirement in many domains and applica-
tions. Among them, OpenCL has garnered widespread adoption by the
industry due to its great support for running varied applications in het-
erogeneous architectures. OpenCL-based applications can be executed
on a CPU, a GPU, or any other supported accelerators, thus making
OpenCL-based applications are truly heterogeneous.

To utilize parallel architecture avoiding heavy execution of com-
puter programs, programmers tend to map OpenCL applications to
GPU. The suitability of the job architecture (i.e., CPU or GPU) depends
on the type of computation and input data size. With the increase of
parallel computing with the utilization of OpenCL-based applications,
a scheduler needs to map jobs efficiently by concerning the type of
applications. To attain high throughput and reduce execution time, the
kernel-based scheduler helps to map the applications according to the
computational requirements and device architecture.
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In merging two kernels, two or more code segments of OpenCL are
merged into a single kernel. The merged kernel is then executed serially
according to the resource requirements. The lack of operating system
support for the GPU kernel merging method has raised interest for
researchers to implement the kernel merging method for multitasking
on GPU. The merging results can increase the resource utilization and
help to reduce the execution time of the GPU mapped jobs [1,2].
However, the issue with merging is that the identification of suitable
candidates on particular data sizes is a non-trivial task. This task
requires careful instrumentation to create an optimal combination. The
irregular combination of candidate kernels results in the degradation
of the execution time of GPU tasks. In this paper, we only consider
merging two kernels since according to recent studies, the fusion of
more than two kernels results in degrading computational performance.

1.1. Motivation

In real cases, some kernels can improve resource utilization; how-
ever, many kernels have poor performance due to data transfer and
contention of the shared resources, i.e., GPU memory, bandwidth, and
streaming cores, among others. We highlight this fact in Fig. 1, which
represents the relative speedup of the merged kernel under sequential
vailable online 12 February 2022
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Fig. 1. Merged kernel speedup achieved over sequential kernel executions.
executions. These experimental jobs are taken from the Polybench
suite [1,2]. In Fig. 1, the x-axis represents the number of the merged
kernels, and the y-axis represents the achieved speedup after merging
progress. Fig. 1 shows clearly that kernel merging can lead to high
speedup. However, some kernels suffer from significant slowdown. This
motivates us to propose a machine learning (ML)-based model, which is
capable of forecasting potential speedups or slowdowns of the merged
kernels.

In addition, the number of the merged kernels is also affected by
input data size. For a few ranges of data size, the merged kernels could
suffer from a slowdown. This is due to the ratio of GPU memory to
bandwidth. Fig. 2 represents two merged kernels, i.e., 2dconv and
tax, under different data sizes over their sequential execution, which
can be represented as the baseline model for comparison. The y-axis
represents the gain speedup, where 2.17𝑥 is attained for a data size
of 135, 360, and a slowdown is observed when 1, 053, 696 data size is
considered as the input data. This highlights the fact that a scheduler
should consider the data size as an essential feature for merging two
kernels. The kernel gesummv, 2 mm, 3 mm and gemm, perform well,
while others, e.g., combination, slow down because of the data transfer
overhead and communication cost. The serial execution of the merged
kernel can improve performance. However, the pair of the kernel, type
of dataset, data size, and amount of computation resource required
to run the merged kernel is critical. The GPU resource requirement
for the specific kernel is called resource allocation. Determining two
kernel percentages of the allocation directly depends on the operations
performed, called a mixing ratio. The allocation is essential decision
making and can result in a slow down in performance; the device selec-
tion and kernel merging method can improve performance. However,
selecting the kernel, data size, type of operations, and correct mixing
ratio are critical, otherwise, it will result in low resource allocations.
We proposed just in time compiler to create and schedule separate and
merge kernels to heterogeneous platforms without the profiling of the
applications.

1.2. Contribution

In previous works, RALB-HC (an OpenCL scheduler) maps jobs on
clusters of CPU and GPU devices in a batch-processing manner [1].
The model considers the device suitability and speedup forecasting to
select computing devices after job execution time and speedup device
selection. The model performs a load balancing mechanism based on
the computing capabilities. RALBHC increases the number of clusters
2

throughput when compared to the state of the heuristics. As the num-
ber of applications utilizing GPUs-based accelerators increases, there
should also be an increase in the utilization of complete resources by
executing multiple compute kernels to improve resource utilization,
as well as device occupancy [2]. However, RALBHC cannot perform
scheduling by considering GPU as a shared resource. This paper pro-
poses a machine learning (ML)-based scheduling method that combines
two OpenCL kernels to increase GPU resource utilization for the batch
of jobs. Similar to RALBHC, the proposed method first selects jobs based
on the computation requirements and speedup attained on a specific
device. In addition, a classification model is developed that is trained
on the proposed features to predict whether the combination of two
OpenCL kernels or their separate execution will produce better speedup
performance. The following are the major contributions of this paper:

1. Extraction and selection of significant features are used to fore-
cast the relative speedup of merged kernel execution.

2. A machine learning (ML)-based kernel merging classification
model is designed to predict the kernel suitability of OpenCL
kernels.

3. Experimental evaluation is then performed to show the perfor-
mance of the proposed model in terms of execution time and
prediction by using 15 mainstream benchmark applications.

2. Literature review

Scheduling problems [3–5] have been investigated for many years
based on different domains and applications. Scheduling of computing
kernels has been discussed in recent years, and some of them are
still developed in progress [6–11]. As we can see, different models
have been described based on different criteria, i.e., scheduling type,
scheduling method, load-balancing, code instrumentation, applications
or resource-aware, architecture support, and feature reduction, among
others. Some works required code instrumentation and application
profiling [12–14]. In general, the load imbalance frequently exists in
the multiple heterogeneous machines [15]. In addition, the scheduler
assigns the kernels to the computing devices (i.e., CPU or GPU) based
on the workload [16–18]. As we know in general, the low overhead
of the scheduling method helps to minimize execution time. However,
up to now, the GPU-based kernel merging is not performed for the
heterogeneous system and has not been discussed and studied yet.

Supervised learning models [8,9] have also been widely applied
in many domains and applications. A kernel computation operation is
used for predictive modeling. Data that comes in as a paired feature
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Fig. 2. 2dconv and atax kernels are merged to speedup analysis on different data sizes.
vector is then labeled as output. There are two types of kernel code
features, i.e., static and dynamic. The static code features are extracted
from the data without any modification, i.e., loop operation, maths
operation, and data type, while the dynamic code features include input
data size. In most cases, the prediction model assigns the OpenCL kernel
to a specific processor. This response is categorized as a classification
problem, and most of the learning models find the functions mapping
to minimize unseen data by measuring the loss function.

The application-based kernel scheduling is proposed for scheduling
tasks [11]. It is performed by assigning the kernel to a particular
processor. The drawback for Qilin index-based scheduling is that it has
a code instrumentation overhead. In addition, a heterogeneous device
scheduler for OpenCL is also proposed [10]. This technique solved the
issue related to heterogeneity communication load and load balancing
caused by the iterative computation. Huchant et al. [10] then presented
a method that maps to a single OpenCL kernel. A heterogeneous device
scheduler is proposed [6] that is considered as a multi-application
scheduling method based on the application requirement and varied
characteristics. It uses the iterative scheduling model, which is based
on profiling of the data dependency and execution time. A greedy
approach is designed to map the kernel on devices. However, this model
does not require profiling as a learning method to predict the optimal
set of devices based on the configurations. Augonnet et al. [7] proposed
an innovative solution for scheduling devices based on CPU utilization
and characteristics of the running applications. This developed StarPU
model provides the execution environment for the runtime kernel.
Becchi et al. [16] showed that optimization could be achieved with
minimal usage of the hardware characteristics. However, the devel-
oped model requires an offline profiling overhead, and the proposed
scheduler can use allocation data-parallel application without profiling.

Belviranli et al. [17] addressed the issue regarding the under-
utilization of heterogeneous resources. The proposed HDSS partitioned
the tasks among CPU and GPU to achieve low execution time and high
throughput. However, the proposed model does not require job splitting
and kernel code transformation. Binotto et al. [18] considered that
the workload distribution is vital in a heterogeneous environment and
addressed the cost issues by using a task scheduling system. However,
this method requires online profiling and code instrumentation.

Gregg et al. [19] then developed a model that can profile the
processing performance and address performance-related problems in
generating partitions of code. A dynamic approach is considered to
partition workload without profiling and training. The kernel splitting
is done based on processor capabilities. Kaleem et al. [20] proposed the
use of kernel splitting approach based on the profiling. The proposed
3

model ensures lower execution time by combining two kernels. Choi
et al. [21] addressed processor selection critical issues, predicted the
execution time of the kernel, and used it to schedule the application
on a CPU or a GPU device. Grewe et al. [9] designed a model that
can improve performance by using the specific application on a suit-
able processing unit. A heterogeneous system is then also developed
by partitioning the OpenCL programs. At compile time, application
operations are then extracted as features. After that, a pre-trained
support vector machine is used to train and predict the suitability of
the application devices. Several in-depth analyses are then conducted
to show the control flow divergence and its impact on the scheduling.
In addition, the branch divergence analysis [8,9] is then used to train
the classification model.

A computational framework is developed by using the source to
source compiler to translate a kernel code into multi-device kernel
code [22]. The static features and data transfer size is used as a
feature to train the neural network, and the 0.87 prediction accuracy is
achieved by the developed model. Wen et al. [23] addressed the issues
in the resource utilization of the heterogeneous system. Based on the
developed model, it can observe that the application-aware processor
selection helps to increase system throughput and decrease turnout
time. The code features, i.e., number of instructions, load/store operations
and input size, output size, and global work size can also help to predict
the speedup over the CPU.

To the best of our knowledge, GPU kernel merging speedup as
well as device suitability for a given kernel has not yet been explored
without code-splitting overhead, profiling, or indexing application ex-
ecuting time. Our research here proposes an approach to map the
applications based on the application computation required and GPU
capability. The proposed resource utilizer uses the prioritized list of
resources and relative speed up to reduce the batch of the jobs in terms
of execution time by the developed fusion model for kernel merging.

3. Methodology

In this section, we discuss the model development and Fig. 3 shows
the workflow of the designed model. The dataset is collected by using a
static feature extractor for CPU and GPU suitable application features.
The computational oriented features are extracted i.e., hardware, code,
and run-time as stated in the GPU & GPU Execution block and Execution
time shown in Fig. 4. For the device suitability classifier, we use 137
kernels on separate CPU and GPU with different data sizes. For the
merging classifier, all the applications (both merged and separated) are
executed with several input sizes to create a job pool of 236 programs.
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Fig. 3. Utilization in the heterogeneous computing environments.
Fig. 4. Feature extraction and selection by using LLVM and TPOT.
After the features extraction stage, features are labeled by the most

suitable device having minimum execution time in the block. The tree-

based pipeline optimization method is adopted to feature reduction and

classification model selection, as mentioned in the block TPOT of Fig. 4.

The training process of the machine learning model is then performed

in the final phase with developed parameters from TPOT and extracted

features. Then, the trained model is then used in the online mode

to produce device suitability and merging model. Each experiment is

explained, and the evaluation results are reported as follows:
4

3.1. Dataset and feature extraction

For experimental setup, we used two datasets, namely AMD and
Polybench, respectively [9,13,15,22]. The applications in both bench-
marks contain mathematical computation, image processing, and pat-
tern
recognition tasks. These application-driven task helps to generalize
better for the application used in the development sets. For different
architecture, data labeling requires to be performed for certain appli-
cations. In total, 155 data-parallel kernel codes are used as shown in
Table 2. We run the application under different input sizes. We used
two CPUs (Haswell 3.2 GHz and Skylake i7-6700 3.4 GHz) and two
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Table 1
Full features set.

Index Feature

1 Data size
2 Total number of return statement
3 Total number of control statement
4 Total number of an allocation instruction
5 Total number of load instructions
6 Total number of store instructions
7 Total number of multiplication (float data type) operation
8 Total number of addition (integer data type) instruction
9 Total number of multiplication (integer data type) instruction
10 Total number of division (float data type) instruction
11 Total number of division (integer data type) instruction
12 Total number of condition check instruction
13 Total number of addition (float data type) instruction
14 Total number of addition (integer data type) instruction
15 Total number of subtraction (float data type)
16 Total number of subtraction (integer data type)
17 Total number of function call instruction
18 Total number of functions
19 Total number of blocks
20 Total number of instructions
21 Total number of float operation
22 Total number of integer operation
23 Total number of loop operation

GPUs (NVIDIA Geforce 760 and 7401) in the experiments. In addition,
we used the minimum execution time and energy as output label as
mentioned in the block Labeling of Fig. 4. We developed our LLVM pass
for feature extraction in Table 1.

The purpose of the static code analyzer is to gather attributes
of kernel code. These sets of attribute values represent the program
behavior. The static analyzer consists of two parts; a clang LLVM
parser [24] and a Python script. First, to ensure that the kernel code
is error-free, the OpenCL kernel is Just-In-Time compiled using clang
(front-end compiler). Then, the clang LLVM parser obtains features
based on LLVM intermediate representation (IR). The python script uses
regular expressions to detect features that are not available or detected
by the LLVM (IR).

3.2. Feature selection

Since the feature set is extracted by non-domain experts and/or do-
main experts, the key attribute selection is vital. Fig. 5 shows the corre-
lation matrix of the employed code features (mentioned in Table 1). Ta-
ble 3 shows the relative feature importance. We reduce the feature set
from 24 distinct features to 10 distinct features i.e., 1, 3, 5, 6, 9, 12, 16, 20,
21,… , 22. The data size is the most important factor as it directly
affects resource allocation. If the data size of the selected kernel is
full, filling the resource capacity, then the model will not select it as
a candidate for the kernel merging task. A single kernel will perform
independently without participating in the merging task. This is the
reason that the information gain of the data size is high, among other
features. The merged kernel has two independent datasets, as two
different scientific applications have different formulations of the task.
Therefore, merged kernels have separate datasets and are performed
separately. The selection criteria for the features to be selected is high
related importance and negative correlation among other features, as
shown in block feature selection of Fig. 4. The highly correlated features
result in model overfitting and lower predictive power.

1 https://www.nvidia.com/en-us/
5

3.3. Data labeling

By running concurrent training runs of programs, both code features
and run-time features are extracted. The feature vector, along with the
execution time information, is used to develop the dataset. Similarly,
the feature vector and the suitable class/label are used to develop
the suitability classifier. The data labeling is performed by running all
applications on 𝐶𝑃𝑈 and all 𝐺𝑃𝑈 a device. The device which has a
ower execution time is labeled as a selected device for that application.
he vital code factors are mentioned in Table 3 where data size features
1 plays a vital role in the selection of CPU and GPU.

3.4. Machine learning classifier phase

The machine learning classifier process is the final step. We make
use of two models as mentioned in Table 4. Device suitability clas-
sifies the suitable device for the submitted job. Then, GPU device
jobs are further classified into the merger kernel or to be performed
separately, as mentioned in Fig. 6. We used the genetic programming-
based autoMl system that optimizes the features selections, model
selection, and model hyperparameter to maximize the accuracy of the
supervised learning task [25], which is called a Tree-based pipeline
optimization method. The selected model is then used to train and
compare with the traditional statistical learning methods. We used five
classification models, i.e., Random Forest, Decision Tree, Naïve Bayes,
Tree-based pipeline optimization method, and KNN in the experiments.
The novelty and contribution of the proposed model is the extraction
of computationally relevant features that helps in the distribution of
resource based on the learning method.

3.5. Model training and testing

In this step, the model is trained and tuned according to hyper-
parameters. The final model is trained on the tuning parameters and
selected features as mentioned in Table 5. We used 137 applications
with different data sizes and distributed 80% for training and 20%
pplications for testing purposes. The benchmark model on the specific
rchitecture took less than a day; both models are trained offline.
he overhead of feature extraction includes feature extraction from
achine-level code. The overhead of the feature extraction is negligible

s we used the llvm passer that extracted the mentioned features
uring just-in-time (JIT) compiling; the training and prediction are
ne-off-cost. For the experimentation, the hyper tuning progress of the
raining model took 2−3 hours. However, training took 3 seconds, and
rediction is under one millisecond.

. Experimental results

The scheduling method is evaluated on the heterogeneous system
ith a CPU (Intel Core i5-4460) and a GPU (NVIDIA GeForce GTX
60). We used the Linux environment (UBUNTU 18.04) for the exper-
mentation and compiler (GCC 5.4.0). The empirical evaluation was
onducted to evaluate the performance of the proposed model. We used
𝐾-fold cross-validation method for our experiments. The dataset is

ross-validated 𝑘 times; the subset of every single time is selected for
esting, and 𝐾 −1 subsets are used for training. In this way, every data
oint is validated and hence removes any bias from the results.

The results mentioned in Table 6 are obtained from hold on policy
0∕30 split ratio using five selected classifiers. The results in Table 6
how classifier performance on a reduced feature set. Moreover, it
s seen that the number of OpenCL kernel supporting CPU devices
s significantly less as compared to GPU devices, and particularity to
ave several samples of a given class under-represented compared to
ther classes gives rise to the ‘‘class imbalance’’ problem. To handle
his problem, we used SMOTE [27] to tackle the curse of imbalanced
ata. The performance of a classifier is measured with three evaluation

https://www.nvidia.com/en-us/
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Table 2
Benchmarks details.

Suits Benchmark Input data size Versions

AMD Matrix multiplication 1,769,472–12,582,912 3
Binomial options 32,768–294,912 9
Bitonic sort 32,768–268,435,456 13
Fast walsh transform 8,192–221,184 17
Matrix transpose 131,072–536,870,912 6
Discrete cosine transformation 2,097,152–1,887,436,800 17
Floyd warshall 524,288–25,690,112 6

Polybench 3MM (3 Matrix Multiplications) 7,000,000–17,920,000 3
GEMM (Matrix-multiply) 3,000,000–27,000,000 5
GESUMMV (Scalar, vector and matrix multiplication) 8,012,000–1,800,180,000 17
MVT (Matrix vector product and transpose) 4,016,000–900,240,000 17
ATAX (Matrix transpose and multiplication) 4,012,000–900,180,000 17
2MM (2 matrix multiplications) 5,000,000–45,000,000 5
2DCONV (2D convolution kernel) 2000000–1,568,000,000 17
3DCONV (3D convolution kernel) 1,000,000–1,728,000,000 17

Own developed Matrix–vector multiplication 4,202,496—1,514,299,392 16
Fig. 5. Correlation analysis.
Table 3
Feature importance and reduced feature set.

Rank No. Feature Information Gain

1 1 Data size 0.45
2 9 Total no of multiplication (integer) instruction 0.08
3 19 Total no of blocks 0.07
4 17 Total no of function call instruction 0.07
5 20 Total no of instructions 0.05
6 3 Total no of control statement 0.04

Table 4
Models output class and description.

Model Type Output

Device Suitability Predictor Classification Model needs to predict
application suitability on specific
𝐶𝑃𝑈 or 𝐺𝑃𝑈

Merging classifier Classification Model needs to predict
application weather to merge two
kernel or not

metrics, for example, Precision, Recall, and F-measure. In Table 6, the
SMOTE class balancing is performed. Table 6 demonstrates that when
kernel selection is performed using the device suitability dataset, then
TPOT produces the higher F-measure as compared to the other models.
However, the performances of Naïve Bayes and KNN are the very low
end, indicating that the kernel selection for the specific resource has an
enormous impact on the performance of the classifiers.
6

Fig. 6. A framework for the GPUGPU kernel merging.

In Table 6, the experiment is conducted on 16, 000 samples using
reduced features set for the merging classifier. We compared the re-
sults with another kernel merging method that used machine learning
classification [26]. Table 6 demonstrates that when the reduced feature
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Table 5
Device suitability model tune parameters.
Methods Hyper tuning

Stacking estimator estimator = GaussianNB()
Features selector PCA (iterated-power = 7 ,svd-solver = ‘‘randomized’’)
Classification modelXGBClassifier (learning-rate = 0.5, max-depth = 8 ,min-child-weight = 1, n-estimators = 100, nthread = 1,subsample = 0.5)
Fig. 7. Device suitability classification results.
Table 6
Reduced feature set device suitability and merger comparison with traditional
classifiers.

Classifier Device suitability

F-measure Precision Recall

Tpot 0.91 0.91 0.92
RandomForest 0.75 0.75 0.79
DecisionTree 0.50 0.56 0.50
Naïve 0.23 0.26 0.36
KNN 0.37 0.39 0.37

Classifier Merger classifier

F-measure Precision Recall

Tpot 0.98 0.99 0.99
FusionCL [26] 0.98 0.97 0.99
RandomForest 0.93 0.94 0.94
Decision Tree 0.61 0.63 0.62
Naïve 0.62 0.58 0.59
KNN 0.58 0.59 0.58

set is used with device suitability, then TPOT produces the higher
F-measure as compared to FusionCL, and others. FusionCL used the
heuristic-based method for further load balance scheduling of the task.
We only proposed using the Just In Time (JIT) compiler kernel selection
method to improve speed up against single kernel execution. However,
the other classifier is on the very low end, indicating that the reduced
features have a large impact on the performance of the classifiers.
The higher recall indicated that the tuned parameters returned the
most relevant results. The higher precision shown in Table 6 indicates
that the TPOT predicts the relevant class results more correctly than
the irrelevant. The merger classifier has improved results of 0.98 as
compared to device suitability of 0.91 F-measure. This indicates that
the model after selection of device regarding the computing capability
and data size of the kernel, accurate selections for kernel for merging
is achieved with higher F-measure.
7

The reason behind the improved accuracy of the tree-based pipeline
method is the usage of genetic programming to evolve the sequence
of pipeline operators. The pipeline operators include (e.g., random
forest, the operator selects the number of trees and KNN the weights
(uniform or distribute) or the number of nearest neighbor). On another
hand, the tree-based pipeline method used genetic programming to
maximize the classification accuracy and minimize the model complex-
ity [25]. Therefore, the method is based on Pareto optimization to
optimize the two different objectives concurrently. Since the dataset
varies in terms of the number of features, diverse samples, and pat-
terns, therefore no globally optimal solution optimizes both objectives.
The pipelines reproduction is done according to the NSGA-II selection
method [25]. In this way, TPOT on each generation is able to add new
pipelines operator to improve the fitness function and intelligent search
for the high-performing ensemble learning method. The final output
contains the optimized data transformations and machine learning
model with maximized classification accuracy and minimize model
complexity with references to the learning data.

In our case, traditional model hyper tuning is done concerning the
grid search method whereas the proposed model output is mentioned
in Table 6. The proposed meta-learning method has the base model,
i.e., extreme gradient boosting and stacking layer of Naïve Bayes model.
The extreme gradient boosting method uses the residuals and not the
actual class labels. Therefore, the base estimators are regression trees,
i.e., 100 in our case and are controlled with the scaled learning rate,
i.e., 0.5 as mentioned in Table 6. This enables gradual improvement
of the base model at each step. The naive base stacker incorporates
strong model inference based on the independence assumptions. The
data transformer in our case is PCA that helps to convert the correlated
features into non-correlated ones. This optimization helps to achieve
high accuracy as compared to the other traditional method. As tradi-
tional method suffers from data standardization issues, low resilience
to overlapping patterns, and high sensitivity to noisy data. Another
reason includes that model is not able to converge for the given training
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Fig. 8. Kernel merging classification results.
Fig. 9. Kernel merging method comparison with first come first and random fusion method.
samples due to instances are not linear separable with respect to the
classes.

In Figs. 7 and 8, a summary of all the results is reported where the
best classification model is used for both classifiers. The TPOT model
achieved the highest classification score. The results are reported for
the learning curve, cross-validation score, KS static test, and confusion
matrix. Here, the higher value tells about the correct prediction of
both classifiers. The KS test helps to compare the reference probabil-
ity distribution between samples. Therefore, the higher value of KS,
which is 0.82 and 0.98 in Fig. 7, shows that a suitability classifier can,
mostly, correctly predict whether an application should be mapped to
the processor. If the value is lower, it indicates that the suitability
classifier is not exact and cannot identify whether an application is a
device suitable or unsuitable. The scale of the F-measure is 1.0: perfect
prediction, 0.9: excellent prediction, 0.8: good prediction, 0.7: mediocre
prediction, 0.6: poor prediction, 0.5: and random prediction is less than
0.5 [28]. If the percentage value of Precision and Recall is lower for the
suitability classifier, then applications are not suitable for processors.
Such a processor would have resulted in longer job pool execution time
and lower system throughput. The suitability classifier will only get a
high F1-score if both Precision and Recall are high. Therefore, in our
8

case, device suitability is 0.91, and the merging classifier has a 0.82
F1-score.

In Fig. 9, improvement of the kernel fusion on GPU is illustrated.
The GPU mapped kernel is compared with other scheduling schemes.
The 𝑋-axis represents scheduling methods whereas the 𝑌 -axis repre-
sents the execution time of the GPU mapped jobs. The proposed method
represents the merging method that used the learning-based predictor
based on job suitability. As seen the proposed model achieved a better
performance after the kernel merging. The First Come First Serve
(FCFS) method mapped the kernel according to its arrival time and exe-
cuted it serially. The results show that the model achieved the 2.2 times
reduced execution time when compared execution without predictor.
The random fusion method assigns GPU kernel randomly merged. The
indicates that the proposed technique achieved the reduced execution
time. It also shows that GPU occupancy is improved with the kernel
selection method. Therefore, the selection of pair of the kernel in the
job pool improves its overall performance. The selection of kernels
for merging and then merging with the appropriate method helps to
improve utilization, the results shows. The considerable reduction is
the result of the selection of appropriate kernels in the job pool.
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5. Conclusion and future work

The use of GPU in computing systems has made GPU applications
a new direction due to data parallelism. However, running concurrent
kernels (GPU sharing between kernels) is not supported due to archi-
tecture limitations. This results in the wastage of precious resources.
A kernel merging method is proposed in this paper to increase GPU
utilization and reduce wastage of GPU energy consumption to assist in
solving this problem. The machine learning (ML)-based kernel merging
identifies a pair of kernels from the submitted batch of jobs as a result
of merging their results in improving resource utilization. The extracted
features help to produce a high F-measure for device selection and
merging of the kernel with 0.91 and 0.98 values, respectively. The
imitation of the approach is that the submitted data size should be
n the GPU global memory range. In the future, we intend to use the
xtracted features to predict percentage usage of GPU resources that
ill be able to allocate a more efficient merged kernel. The proposed
ethod can also be used as part of job selection for the load balance

esource allocations. The impact and type of kernel can also be eval-
ated in future works to show which kernels execute most efficiently
nder certain loads.
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