
/Published online: 11 October 2022

Diabetologia (2023) 66:116–126

ARTICLE

The contribution of functional HNF1A variants and polygenic
susceptibility to risk of type 2 diabetes in ancestrally
diverse populations

Lauren A. Stalbow1,2,3
& Michael H. Preuss1,2,3 & Roelof A. J. Smit1,2,3,4 & Nathalie Chami1,2,3 &

Lise Bjørkhaug5
& Ingvild Aukrust6,7 & Anna L. Gloyn8,9

& Ruth J. F. Loos1,2,3,10

Received: 6 June 2022 /Accepted: 8 August 2022
# The Author(s) 2022

Abstract
Aims/hypothesis We examined the contribution of rare HNF1A variants to type 2 diabetes risk and age of diagnosis, and the
extent to which their impact is affected by overall genetic susceptibility, across three ancestry groups.
Methods Using exome sequencing data of 160,615 individuals of the UKBiobank and 18,797 individuals of the BioMeBiobank, we
identified 746 carriers of rare functional HNF1A variants (minor allele frequency ≤1%), of which 507 carry variants in the functional
domains. We calculated polygenic risk scores (PRSs) based on genome-wide association study summary statistics for type 2 diabetes,
and examined the association ofHNF1A variants and PRSwith risk of type 2 diabetes and age of diagnosis.We also tested whether the
PRS affects the association between HNF1A variants and type 2 diabetes risk by including an interaction term.
Results RareHNF1A variants that are predicted to impair protein function are associated with increased risk of type 2 diabetes in
individuals of European ancestry (OR 1.46, p=0.049), particularly when the variants are located in the functional domains (OR
1.89, p=0.002). No association was observed for individuals of African ancestry (OR 1.10, p=0.60) or Hispanic-Latino ancestry
(OR 1.00, p=1.00). Rare functional HNF1A variants were associated with an earlier age at diagnosis in the Hispanic-Latino
population (β=−5.0 years, p=0.03), and this association was marginally more pronounced for variants in the functional domains
(β=−5.59 years, p=0.03). No associations were observed for other ancestries (African ancestry β=−2.7 years, p=0.13; European
ancestry β=−3.5 years, p=0.20). A higher PRS was associated with increased odds of type 2 diabetes in all ancestries (OR 1.61–
2.11, p<10−5) and an earlier age at diagnosis in individuals of African ancestry (β=−1.4 years, p=3.7 × 10−6) and Hispanic-Latino
ancestry (β=−2.4 years, p<2 × 10−16). Furthermore, a higher PRS exacerbated the effect of the functional HNF1A variants on
type 2 diabetes in the European ancestry population (pinteraction=0.037).
Conclusions/interpretation We show that rare functional HNF1A variants, in particular those located in the functional domains,
increase the risk of type 2 diabetes, at least among individuals of European ancestry. Their effect is even more pronounced in
individuals with a high polygenic susceptibility. Our analyses highlight the importance of the location of functional variants within
a gene and an individual’s overall polygenic susceptibility, and emphasise the need for more genetic data in non-European populations.
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Introduction

Over the past 15 years, genome-wide association studies
(GWASs) have identified more than 700 independent genetic
loci that are associatedwith type 2 diabetes [1–3], of which the
vast majority were first identified in individuals of European
ancestry [1]. Summary statistics fromGWASs have been used
to quantify an individual’s overall genetic susceptibility to
type 2 diabetes, by aggregating the risk-increasing alleles,
weighted by the effect size, into a polygenic risk score
(PRS). People with a high PRS (top 3.5%) have been shown

to have a more than threefold increased risk of type 2 diabetes,
which is comparable to the risk of diabetes in individuals who
carry a monogenic variant [4].

While the majority of variants identified so far are common
and mostly located in untranslated/non-coding regions of the
genome, some variants are rare and protein-encoding, and
located in genes that are directly involved in diabetes-related
pathways [5]. Some of these genes have been previously
implicated in development of monogenic diabetes. For exam-
ple, rare variants in the hepatocyte nuclear factor 1 homeobox
A gene (HNF1A), which encodes a transcription factor
involved in pancreatic beta cell development and function,
are responsible for 30–65% of all diagnoses of maturity-
onset diabetes of the young [6]. The role of HNF1A variants
in type 2 diabetes in the general population remains unclear. In
an exome-wide analysis in 3756Mexican and US Latino indi-
viduals, p.E508K inHNF1Awas the only variant significantly
associated with risk of type 2 diabetes (OR 5.48) [7, 8]. The
p.G319S variant, which is unique to the Oji-Cree people of
Northern Ontario (Canada), was found to increase the risk of
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type 2 diabetes in 451 individuals (OR 1.97 for heterozygote
carriers and 4.00 for homozygote carriers) [7, 8]. However, a
large-scale study of almost 75,000 individuals of European
ancestry that examined pathogenic variants across HNF1A
found no evidence of association with type 2 diabetes.
Another study that combined data from three cohorts
(n=4115) found no association between any of the 27
HNF1A variants and type 2 diabetes, except when analyses
were restricted to the 11 variants that reduced transcriptional
activity to <60% of normal activity (OR 5.04) [9].

Whether the effect of these rare HNF1A variants on type 2
diabetes is exacerbated or attenuated by an individual’s over-
all genetic susceptibility to type 2 diabetes, as shown for other
conditions [10], has so far not been reported.

Here, we examine the association between rare functionally
damagingHNF1A variants and type 2 diabetes in the ancestral-
ly diverse Mount Sinai BioMe Biobank and the less diverse
population-based UK Biobank, together comprising almost
180,000 individuals. We compare the effect of all functionally
damaging variants identified in HNF1A with that of variants
located within a functional domain. We also examine how an
individual’s polygenic susceptibility, assessed using a PRS,
affects the impact of rare HNF1A variants on type 2 diabetes.

Methods

Study participants

The Mount Sinai BioMe Biobank The Mount Sinai BioMe
Biobank, founded in 2007, is an ongoing electronic health
record-linked biorepository that enrols participants non-
selectively from the Mount Sinai Health System, comprising
approximately 60,000 participants. The Mount Sinai Health
System serves a diverse group of communities in the greater
New York City area. Participants are between 18 and 89 years
of age, with a broad racial and ethnic diversity (24% African,
32% European, 35% Hispanic-Latino, 9% other ancestries).
At enrolment, participants consent to linkage of their DNA
and plasma samples to their de-identified electronic health
records. The clinical and electronic health record information
is complemented by a questionnaire that gathers demographic
and lifestyle information. The median number of clinical
encounters for BioMe participants is 21. In the present study,
data from 5244 participants of African ancestry, 6107 partic-
ipants of European ancestry and 7446 participants of
Hispanic-Latino ancestry were used (total 18,797), after
restricting participation to those individuals with both exome
sequencing and array data available, were of the three largest
ancestries (African, European and Hispanic-Latino ancestries;
self-reported), were considered a case or control for type 2
diabetes, had BMI data available, and were not first- or
second-degree relatives of each other, as determined using

KING software (https://www.kingrelatedness.com) [11] (see
electronic supplementary material [ESM] Fig. 1).

The UK Biobank The UK Biobank is a large population-
based prospective cohort study from the UK comprising
genotypic and phenotypic data on approximately 500,000
individuals, aged 40–69 years at enrolment [12]. The partic-
ipants are predominantly of European ancestry (90.3%), and
the remainder are of Asian (2.5%), African (1.8%) or other
ancestries (5.4%), as determined by genetic ancestry
analysis. At enrolment, participants provided baseline
information and biological samples, and answered ques-
tionnaires that collected health and lifestyle information.
In the present study, exome sequencing data from 3433
participants of African ancestry and 157,182 participants
of European ancestry were used (total 160,615), after
restricting participation to: those individuals who had both
exome sequencing and array data available; were of African
or European ancestries; were considered a case or control
for type 2 diabetes; had BMI data available; and were not
first-or second-degree relatives of each other, as determined
using KING software [11] (ESM Fig. 1).

The North West–Haydock Research Ethics Committee
approved the UK Biobank study (REC reference 11/NW/
0382), and the current analysis was carried out under UK
Biobank application 1251.

Genotyping and quality control

The Mount Sinai BioMe Biobank BioMe participants
(n=32,595) were genotyped using the Illumina Global
Screening Array (GSA, USA) version 1.0 platform.
Individuals were removed if the sample call rate was <95%,
or if the heterozygosity rate was outside 6 SDs of themean (p<1
× 10−5 in those of African and European ancestry, or p<1 ×
10−13 in those of Hispanic-Latino ancestry) (n=684). We
removed data for individuals with discordant or missing data
on sex (n=88) and any duplicates (n=102). Missing genotypes
were imputed on theMichigan Imputation server pipeline using
the TOPMed freeze 5 variants as the reference panel [13].

The Regeneron Genetics Center (Tarrytown, NY, USA)
generated exome sequencing files from 31,591 BioMe partic-
ipants, using the Illumina NovaSeq 6000 platform. Samples
that had low coverage, were genotype–exome-discordant or
sex-discordant or were duplicates were removed. After quality
control measures, 30,813 samples were available for analysis.

The UK Biobank A total of 487,409 participants (97%) were
genotyped using genome-wide genotyping arrays. Among
these, a subset of approximately 50,000 participants were
genotyped using the Applied Biosystems KBB Lung Exome
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Variant Evaluation (UKBiLEVE) AxiomArray (Affymetrix).
The remaining participants were genotyped using the related
Applied Biosystems UK Biobank Axiom Array.

Exome sequencing was performed for 200,633 participants
(initially sequencing data from 49,960 participants followed
by the remainder) using the Illumina NovaSeq 6000 platform
[14]. The data that were used were the Original Quality
Functional Equivalent (OQFE), and SNPs were restricted to
those that met published criteria [15]. We further restricted to
SNPs that had a read depth >10, genotype quality >20 and
Phred-scaled likelihoods >20.

Phenotypes

The Mount Sinai BioMe Biobank We identified individuals
with a type 2 diabetes diagnosis using an electronic phenotyp-
ing algorithm developed by the Electronic Medical Records
and GEnomics (eMERGE) consortium [16, 17]. In brief, the
presence in the patient’s record of a type 2 diabetes-related
ICD-9 (http://www.icd9data.com/2007/Volume1/default.
htm) or ICD-10 (https://icd.who.int/browse10/2016/en) code
in combination with either (1) prescription of insulin or other
glucose-lowering medications or (2) an HbA1c>6.5% (48
mmol/mol), was necessary to qualify as a case. In the BioMe
Biobank, the age of diabetes diagnosis was defined as the age
at which the participant met the criteria for the type 2 diabetes
algorithm. For this analysis, we calculated the median BMI
(kg/m2) across all outpatient encounters where BMI was
measured, filtering out outlying and pregnancy-related
measurements [18]. Age, ancestry and sex were self-reported.
A total of 5244 (28%) individuals of African ancestry, 6107
(32%) individuals of European ancestry and 7446 (40%) indi-
viduals of Hispanic-Latino ancestry were included in the anal-
yses, of whom 1720 (33%), 672 (11%) and 2596 (35%),
respectively, had been diagnosed with type 2 diabetes.

UK Biobank The presence of type 2 diabetes at the time of
enrolment was defined using the algorithm described by
Eastwood et al [19], involving diabetes diagnosis, type, medi-
cations and complications, as well as age at diagnosis. Age of
diabetes diagnosis and sex were self-reported. BMI was calcu-
lated at the time of enrolment. Ancestry was defined using the
first four genetic principal components (PCs) of the genotyped
dataset with k-means clustering (k=4). A total of 3433 (2%)
individuals of African ancestry and 157,182 (98%) individuals
of European ancestry were included, of whom 374 (11%) and
6621 (4%), respectively, were diagnosed with type 2 diabetes.

HNF1A variant classification

We used Variant Effect Predictor version 96.0 [20] to identify all
rare non-synonymous variants in HNF1A (transcript

NM_000545.8) that had a high or moderate impact on protein
function (transcript ablation, splice acceptor variant, splice donor
variant, stop gained, frameshift variant, stop lost, start lost, tran-
script amplification, in-frame insertion, in-frame deletion,
missense variant and protein altering variant). Rare variants were
defined as those that had a minor allele frequency ≤1% in any
ancestry in the Genome Aggregation Database (gnomAD).
Importantly, we retained variants that have previously been
shown to impair luciferase-based transactivation or nuclear local-
isation to ≤60% of wild-type function [9, 21–25] (ESM Fig. 2
and ESMTable 1).We restricted the data on the luciferase assays
to those performed in the HeLa cell line, which lacks endogenous
HNF1A expression [26]. We considered participants who carried
one of these variants as a carrier. No individuals carried more
than one variant.We further classified the functional variants into
those that were orwere not located in one of the domains required
for function: the NH2-terminal dimerisation domain (amino acids
1–32), the DNA-binding domain (amino acids 91–281) and the
COOH-terminal transactivation domain (282–631) [27]. We use
the terms ‘functional variant’ or ‘any variant’ to describe rare
non-synonymous variants in HNF1A with reduced activity, and
‘functional domain variants’ to describe those variants that fall
within one of the HNF1A functional domains.

Polygenic risk scores

An individual’s overall genetic susceptibility to type 2 diabe-
tes was assessed using PRSs. We used the PRS-CS software
[28] to calculate trans-ancestry and European-ancestry PRSs.
Summary statistics from the GWAS by Scott et al [29]
(n=159,208; DIAGRAM Consortium) were used to calculate
a PRS for the UK Biobank European ancestry population.
Summary statistics from the trans-ancestry GWAS by
Vujkovic et al [2] (n=1,407,282) were used to calculate a
trans-ancestry PRS for all BioMe ancestries, and for the
African ancestry group of the UK Biobank. Summary statis-
tics were downloaded from dbGaP (Vujkovic) [30] (study
accession: phs001672.v1.p1) and the DIAGRAM
Consortium website (Scott) [31]. The trans-ancestry GWAS
summary statistics could not be used for the European ances-
try group of the UK Biobank, because the Vujkovic et al
GWAS already included the UK Biobank European ancestry
data, which would potentially lead to inflation of the results
[32]. We removed BioMe summary statistics from the Scott
et al GWAS, to avoid overlap, using MetaSubtract [33].

For the trans-ancestry PRS, default parameters were used
as defined by the PRS-CS software [27], which does not pre-
specify the global shrinkage parameter, allowing the software
to specify it (‘auto’). For the European-ancestry PRS, the
global shrinkage parameter, phi, was set to 1e−2, as recom-
mended by the PRS-CS developers for highly polygenic traits.
SNPswere restricted to those with an imputation quality great-
er than 0.4 and a minor allele frequency above 0.1%.
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Summary statistics from SNPs in the HNF1A region were
excluded before calculating the PRS. We summed the scores
using the score command from PLINK2 [34] (https://www.
cog-genomics.org/plink/2.0/).

For the European-ancestry PRS, we used the publicly
available European Linkage Disequilibrium reference panel,
developed by the PRS-CS developers, based on the 1000
Genomes Project phase 3 [28]. For the trans-ancestry PRS,
we used a trans-ancestry reference panel [35] that was devel-
oped based on the 1000 Genomes Project phase 3 [35]. A total
of 1,223,016 (BioMe) and 1,097,294 (UK Biobank) variants
were included in the trans-ancestral PRSs, and 1,118,835 vari-
ants in the European-ancestry PRS.

Statistical methods

Before conducting any analyses, we standardised each of the
PRSs to mean 0 and SD 1 in each ancestry group separately.
To calculate the goodness-of-fit of the PRS, we generated a
Nagelkerke R2 [36] and a liability threshold score [37]. We used
both statistical measures because the Nagelkerke R2 is affected
by disease prevalence, whereas liability threshold scores rely on
accurate population prevalence, which can be difficult to ascer-
tain. We ascertained a population prevalence from the 2017–
2018 National Health and Nutrition Examination Survey
(NHANES, 2017–2018) for BioMe data using the code

DIQ010 (Doctor told you have diabetes) [38]. We then perform-
ed age adjustment using the WHO age distribution. For the UK
Biobank data, we used prevalence estimates reported for the UK
[39].

We performed logistic regression analyses to assess the
association of HNF1A variant carrier status and PRSs
(standardised-by-ancestry) with risk of type 2 diabetes,
adjusting for age, sex, BMI and the first ten genetic PCs (plus
assessment centre and genotyping chip in UK Biobank), for
each ancestry group separately. The reference group
comprises individuals who do not carry any functionally
damaging HNF1A variant. We then tested whether the PRS
affects the association between HNF1A carrier status and type
2 diabetes by including an interaction term (carrier status ×
PRS). We grouped the PRS into quintiles (1–20%, 20–40%,
40–60%, 60–80%, 80–100%) for visualisation.We performed
all regression analyses using either carrier status of (1) any
rare HNF1A functionally damaging variant or (2) only rare
functionally damaging variants within the functional domains
of HNF1A.We repeated all analyses for age of diabetes diag-
nosis, using linear regression models.

All results were meta-analysed by ancestry using the Meta
package in R [40]. Random-effects statistics are reported for
all the African and European ancestry analyses where the
biobank data is combined. A p value of <0.05 was considered
statistically significant.

Fig. 1 Position of functionally damagingHNF1A variants in the HNF1A
protein sequence identified in the three ancestry groups: (a) African, (b)
European and (c) Hispanic-Latino. The illustrations show the number of

carriers of each variant and where in the protein the variant is located. The
three functional domains of HNF1A are indicated in orange, green and
blue
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Results

Identification of variants that affect HNF1A function

A total of 269 coding variants inHNF1A across BioMe and UK
Biobank participants (n=746) had a minor allele frequency
≤1%. Of these, 35 variants reduced the functional activity of
HNF1A to ≤60% compared with the wild-type genotype
(BioMe NUnique=10; UK BiobankNUnique=9), of which 16 vari-
ants were observed in both biobanks (n=507) (ESM Fig. 2,
ESM Table 1). The majority of functional variants are within
one of the three domains (dimerisation, DNA binding and
transactivation domains) (n=30) (Fig. 1).Most of the function-
al variants (22 out of 35, or 63%) are located in the
transactivation domain, which is known to be the most toler-
ant to missense variants when diagnosing maturity-onset
diabetes of the young [27, 41].

HNF1A variants associate with type 2 diabetes and
age of diabetes diagnosis in an ancestry-specific
manner

We observed a significant association between HNF1A vari-
ants and type 2 diabetes in the population of European ances-
try (OR 1.46 [95% CI 1.00, 2.13], p=0.049), but not in those
of African ancestry (OR 1.10 [95% CI 0.77, 1.58], p=0.60) or
Hispanic-Latino ancestry (OR 1.00 [95% CI 0.60, 1.64],
p=1.0) (Fig. 2, ESM Table 2). When we restricted our analy-
ses to variants located in one of the three functional domains
ofHNF1A, the association in individuals of European ancestry
was more pronounced (OR 1.89 [95% CI 1.27, 2.83],
p=0.002), but no such effect was seen for other ancestries
(African ancestry OR 1.50 [95% CI 0.98, 2.30], p=0.064;
Hispanic-Latino ancestry OR 0.83 [95% CI 0.47, 1.44],
p=0.52).

African 

Associations n OR (95% Cl) p 

Any variant 201 1.10 (0.77, 1.58) 0.600 

Functional domain variants 137 1.50 (0.98, 2.30) 0.064 

PRS 8677 1.70 (1.58, 1.81) <2.0x10−16

0.40 1.0 1.5 2.0 2.5 3.0 

OR for T2D

European 

Associations n OR (95% Cl) p 

Any variant 458 1.46 (1.00, 2.13) 0.049 

Functional domain variants 298 1.89 (1.27, 2.83) 0.002 

PRS 163,289 1.61 (1.31, 1.98) 4.8x10−6

0.40 1.0 1.5 2.0 2.5 3.0

OR for T2D

Hispanic-Latino 

Associations n OR (95% Cl) p 

Any variant 87 1.00 (0.60, 1.64) 1.000 

Functional domain variants 72 0.83 (0.47, 1.44) 0.520 

PRS 7446 2.11 (1.97, 2.27) <2.0x10−16

0.40 1.0 1.5 2.0 2.5 3.0

OR for T2D

a

b

c

Fig. 2 Risk of type 2 diabetes in each ancestry by HNF1A variant (any
functionally damaging variant identified, and those within a functional
domain of the protein) and PRS in (a) African, (b) European and (c)
Hispanic-Latino ancestry groups. The OR was calculated using a logistic
regression model, with age, sex, BMI and the first ten ancestry PCs as

covariates. In the UK Biobank, centre and chip were included as covar-
iates. The estimates obtained for the specific biobanks were meta-
analysed together, and the random-effect ORs are shown. Boxes represent
OR; horizontal lines represent 95% CI. T2D, type 2 diabetes
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In the Hispanic-Latino population, the age at diagnosis for
individuals carrying a functional variant was 5.00 years earlier
([95% CI −9.38, −0.62], p=0.03). Restricting analyses to vari-
ants in one of the three functional HNF1A domains only
marginally affected the association (−5.59 years [95% CI
−10.73, −0.44], p=0.03) (Fig. 3, ESM Table 2). In participants
of African or European ancestry, no association with age of
diagnosis was observed (Fig. 3, ESM Table 2).

Polygenic risk is associated with type 2 diabetes and
an earlier age of diabetes diagnosis

A higher PRS was associated with an increased odds of type 2
diabetes (Fig. 2, ESM Table 2). Specifically, per SD increase
in the PRS, the odds of type 2 diabetes increase by 1.70 (95%

CI 1.58, 1.81, p<2 × 10−16) in the population of African ances-
try, 1.61 (95% CI 1.31, 1.98, p=4.8 × 10−6) in the population
of European ancestry, and 2.11 (95% CI 1.97, 2.27, p<2 ×
10−16) in the population of Hispanic-Latino ancestry.

A higher PRS is also associated with an earlier age of diag-
nosis in the participants of non-European ancestry, such that
per SD increase in the PRS, the diagnosis of diabetes occurred
1.42 years earlier (95% CI −2.02, −0.82], p=3.71 × 10–6) in
individuals of African ancestry and 2.44 years earlier ([95% CI
−3.01, −1.88], p<2 × 10–16) earlier in those of Hispanic-Latino
ancestry. However, no association was observed in the popu-
lation of European ancestry (Fig. 3, ESM Table 2). The
explained variance of the trans-ancestry PRS in relation to type
2 diabetes susceptibility is higher for individuals of European
ancestry than for individuals of African or Hispanic-Latino
ancestry (ESM Table 3).

African 

Associations n Beta (95% Cl) p 

Any variant 49 −2.66 (−6.08, 0.76) 0.128 

Functional domain variants 38 −3.77 (−7.67, 0.14) 0.059 

PRS 2048 −1.42 (−2.02, −0.82) 3.7x10−6  

−7 −5 −3 −1 1

1

Age of onset of T2D 

European 

Associations n Beta (95% Cl) p 

Any variant 36 −3.47 (−8.83, 1.89) 0.204 

Functional domain variants 32 −4.53 (−12.18, 3.13) 0.247 

PRS 7543 −0.43 (−1.97, 1.12) 0.588 

−7 −5 −3

−3

−1

Age of onset of T2D 

Hispanic-Latino 

Associations n Beta (95% Cl) p 

Any variant 29 −5.00 (−9.38, −0.62) 0.030 

Functional domain variants 21 −5.59 (−10.73, −0.44) 0.030

PRS 2577 −2.44 (−3.01, −1.88) <2.0x10−16 

−7 −5 −1 1

Age of onset of T2D 

a

b

c

Fig. 3 Age of type 2 diabetes diagnosis in each ancestry by HNF1A
variant (any functionally damaging variant identified, and those within
a functional domain of the protein) and PRS in (a) African, (b) European
and (c) Hispanic-Latino ancestry groups. The estimates were calculated
using a linear regression model, with sex, BMI and the first ten ancestry

PCs as covariates. In the UK Biobank, centre and chip were included as
covariates. The estimates obtained for the specific biobanks were meta-
analysed together, and the random-effect estimates (β) are shown. Boxes
represent estimates; horizontal lines represent 95% CI. T2D, type 2
diabetes
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Impact of PRS on the association between HNF1A
variants and type 2 diabetes risk

The association between rare HNF1A functional domain
variants and type 2 diabetes was more pronounced in individuals
with a higher PRS compared to those with a lower PRS among
those of European ancestry (ORinteraction=1.60, pinteraction=0.037),
but not other ancestries (pinteraction=0.32 for the African popula-
tion, pinteraction=0.45 for the Hispanic-Latino population) (Fig. 4).
For example, individuals of European ancestry who carried func-
tional domain variants and had a high polygenic susceptibility
(PRS in the top quintile; n=58) had 6.97 higher odds (95% CI
3.36, 14.46, p=1.85 × 10−7) of type 2 diabetes compared with
individuals with an average polygenic susceptibility (non-carriers
in the middle PRS quintile; n=32,717). We observed a similar
increased susceptibility in the Hispanic-Latino population (OR
3.69 [95% CI 1.11, 12.65], p=0.03) but not in individuals of
African ancestry (OR 1.97 [95% CI 0.56, 3.28], p=0.29)
(Fig. 4, ESM Table 4).

Discussion

Using data from more than 180,000 individuals across three
ancestry groups, from two biobanks, we observed that func-
tionalHNF1A variants are associated with an increased risk of
type 2 diabetes, but only in individuals of European ancestry.
This association was even more pronounced when analyses
were restricted to functional variants located in the functional
domains. HNF1A variants were associated with an earlier age

of diabetes diagnosis in the Hispanic-Latino population, but
not in the other populations. We did not observe any signifi-
cant associations between HNF1A and type 2 diabetes or age
of diagnosis in the population of African ancestry.While these
results may reflect true ancestry-specific differences, theymay
be due to the growing need to functionally validate variants
that are exclusively seen in non-European ancestry popula-
tions. A higher PRS was associated with an increased risk of
type 2 diabetes across all ancestries, and was also associated
with an earlier onset of diabetes in the populations of non-
European ancestry. Of further interest is that, in the
European ancestry population, the association between func-
tional domain HNF1A variants and type 2 diabetes is more
pronounced in individuals with a high polygenic burden. We
observed a similar association in the Hispanic-Latino popula-
tion, but not in the population of African ancestry. Our study
highlights the importance of the location of functional variants
in the HNF1A gene, the need for more and larger studies in
populations of non-European ancestry, and the role of poly-
genic burden on the impact of rare HNF1A variants on type 2
diabetes risk and age of diagnosis.

Few studies have examined the association between rare
HNF1A variants and type 2 diabetes at a population level [9,
42, 43]. A large study in approximately 75,000 individuals of
European ancestry examined the role of pathogenic or likely
pathogenic HNF1A variants as defined by the American
College of Medical Genetics and Genomics, and found no
association with type 2 diabetes (p=0.4) [42]. In a study that
pooled data from three cohorts (n=4115), 27 rare variants in
HNF1A were identified, and no significant association with
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Fig. 4 Risk of type 2 diabetes contributed by rare HNF1A variants in the
functional domains and common type 2 diabetes risk strata in the three
ancestry groups. Individuals were divided into groups based on their type
2 diabetes PRS quintile (0–20%, 20–40%, 40–60%, 60–80% and 80–
100%) and their HNF1A carrier status. The OR was calculated using a
logistic regression model, with age, sex, BMI and the first ten ancestry
PCs as covariates. In the UK Biobank, centre and chip were included as

covariates. The estimates obtained for the specific biobanks were meta-
analysed together, and the random-effect ORs are shown. The circles
represent the OR in each group. The solid colour represents the HNF1A
rare variant carriers, and the shaded circles represent the non-carriers.
Non-carriers in the middle quintile (40–60%) served as the reference
group for each ancestry
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type 2 diabetes was found. However, when analyses were
restricted to 11 damaging functional variants (as assessed by
nuclear localisation or transcriptional assays), they found that
carriers (NParticipants=59) had a fivefold increased risk of type 2
diabetes (p=0.0007) [9]. Even though the association that we
observed for variants located in the functional domains of
HNF1A was much lower (OR 1.89, p=0.002), possibly due
to different variants being included in our analyses, both stud-
ies highlight the importance of the location of variants in
genes and the need for large sample sizes, consistent with
previous observations for maturity-onset diabetes of the
young [44].

The associations between the PRS and functional
domain carrier status prompted us to investigate the inter-
play between the two. Our findings are consistent with the
results of a recent nested case–control study of type 2
diabetes showing that rare variants across 27 monogenic
diabetes genes are associated with increased risk of early-
onset type 2 diabetes (age ≤35 years), particularly among
those with a high overall genetic susceptibility [45].
Furthermore, similar findings have been reported regard-
ing other genes and diseases showing that a high polygen-
ic susceptibility exacerbates the effect of rare variants on
coronary artery disease, breast cancer and colon cancer
[10], prostate cancer [46] and obesity [47]. Here, we show
that polygenic burden also affects the impact of rare
HNF1A variants in a functional domain that have function-
al implications but are not known to cause monogenic
forms of diabetes, at least among individuals of European
ancestry.

Because our focus is on functionally validated variants, we
include fewer than 20% of all known exonic variants in our
study. As such, we may have excluded variants that have not
yet been functionally validated, but that indeedmay turn out to
affect the function of HNF1A. Furthermore, we identified
fewer variants in the populations of non-European ancestry,
probably due to the much smaller sample sizes. We identified
one BioMe participant of Hispanic-Latino ancestry who was a
heterozygous carrier of the p.E508K variant, which has been
shown to increase the odds of type 2 diabetes 5.5-fold [8].
This variant was found to be polymorphic in Hispanic popu-
lations, but was hardly present in populations of other ances-
try. We note that the allele frequency observed for the BioMe
Hispanic-Latino ancestry population (0.007%) is much lower
than previously reported for Hispanic populations (0.36%),
probably due to differences in the ancestral diversity.
Specifically, in the BioMe Biobank, the population of
Hispanic-Latino ancestry is predominantly of Puerto Rican
and Dominican origin [48], whereas the Hispanic population
in which the variant was observed were predominantly from
Mexico [8]. Because non-European ancestry populations are
under-represented in genetic association studies, including
monogenic diabetes studies, not all variants observed may

have been accurately annotated in terms of their functional
implications.

In conclusion, we have shown that biologically important
functional variants, specifically those within the functional
domains of HNF1A, are associated with type 2 diabetes in
populations of European ancestry, but not in those of
African or Hispanic-Latino ancestry. While only few individ-
uals carry these rare variants in HNF1A, those who do have a
substantially increased risk of type 2 diabetes. Thus, screening
a population for rareHNF1A variants will have a large impact
for those who do indeed carry a risk allele. Moreover, we
demonstrate that overall polygenic susceptibility to type 2
diabetes affects the association between rare HNF1A variants
in functional domains and type 2 diabetes risk in European-
ancestry populations. We highlight the importance of includ-
ing large-scale biobanks when studying rare variants, and
specifically the need to include populations of non-European
ancestry in the design.
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