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ON THE DIFFERENTIAL AND VOLTERRA-TYPE INTEGRAL
OPERATORS ON FOCK-TYPE SPACES

TESFA MENGESTIE

Abstract. The differential operator fails to admit some basic structures in-
cluding continuity when it acts on the classical Fock spaces or weighted Fock
spaces, where the weight functions grow faster than the classical Gaussian
weight function. The same conclusion also holds in some weighted Fock
spaces including the Fock–Sobolev spaces, where the weight functions grow
more slowly than the Gaussian function. We consider modulating the classi-
cal weight function and identify Fock-type spaces where the operator admits
the basic structures. We also describe some properties of Volterra-type inte-
gral operators on these spaces using the notions of order and type of entire
functions. The modulation operation supplies richer structures for both the
differential and integral operators in contrast to the classical setting.

1. Introduction

The boundedness and compactness of the differential operator Df = f ′ have
been studied on various function spaces defined over the unit disc or finite domains;
see for example [3, 4, 5, 10] and the references therein. The operator is known to
act in unbounded way in many Banach spaces including the classical Hilbert space
L2(R) defined over an infinite domain. In [21], Ueki showed that the operator is
unbounded on the classical growth type Fock space. We continued the study in [18]
and verified its unboundedness on all classical Fock spaces and weighed Fock spaces
where the weight functions grow faster than the Gaussian weight function. Later
in [16], we drew the same conclusion on the Fock–Sobolev spaces, which are typical
examples of weighted Fock spaces with weight function growing more slowly than
the Gaussian function. Following these, the author in [13] posed the question of
how fast the weight function should grow in order for the corresponding weighted
Fock spaces to support a bounded differentiation operator. To shed light on the
question, we considered the spaces Fp

ψm
, which consist of entire functions f for
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which

∥f∥ψm =
(∫

C
|f(z)|pe−pψm(z) dA(z)

) 1
p

< ∞,

where ψm(z) = −|z|m, m > 0, and dA denotes the Lebesgue area measure on the
complex plane C. We proved among others the following main result.

Theorem 1.1 ([13, Theorem 1.1]). Let 0 < p, q < ∞.
(i) If p ≤ q, then D : Fp

ψm
→ Fq

ψm
is bounded if and only if

m ≤ 2 − pq

pq + q − p
(1.1)

and compact if and only if the inequality in (1.1) is strict.
(ii) If 0 < q < p, then the following statements are equivalent:

(a) D : Fp
ψm

→ Fq
ψm

is bounded.
(b) D : Fp

ψm
→ Fq

ψm
is compact.

(c) m < 1 − 2
(

1
q − 1

p

)
.

The result showed that the spaces Fp
ψm

support a bounded differential operator
when the weight function ψm actually grows much more slowly than the classical
Gaussian function. In particular, when p = q, we note that D is bounded only
when m is at most one. A natural question is what happens to the structures when
we modulate the classical weight function by some positive parameters α instead of
changing the rate of its growth. The first main theme of this note is to investigate
this question and study the interplay between the exponents of the Fock spaces
and the modulating parameters. Interestingly, it turns out that such an approach
offers a rich supply of Fock-type spaces which support the operator D enriched
with basic structures.

1.1. The differential operator on the Fock-type spaces Fp
α. We may first

specify our working spaces. For a positive parameter α and 0 < p < ∞, the
Fock-type space Fp

α consists of all entire functions f for which

∥f∥(p,α) =
(
pα

2π

∫
C

|f(z)|pe− pα
2 |z|2

dA(z)
) 1

p

< ∞.

Then, our first main result asserts that D acts continuously between these spaces
if and only if it is compact as precisely stated below.

Theorem 1.2. Let 0 < p, q, α, β < ∞. Then the following statements are equiva-
lent:

(i) D : Fp
α → Fq

β is bounded.
(ii) α < β and p ≤ q.
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(iii) D : Fp
α → Fq

β is compact. In this case,√
βα

(β − α)e ≤
∥∥D∥∥ ≤

√
(2πq)

1
q e

αβ
β−α

√√√√ (βα)
2
q

(β − α)
3
q

. (1.2)

Note that condition (ii) is a strict inclusion property Fp
α ⊂ Fq

β . Consequently,
further spectral and dynamical structures of the operator make no sense on the
spaces Fp

α as the operator is not bounded when α = β. Thus, the novelty to enrich
D with some basic structures is the fact that it acts between two different under-
lying spaces, that is, β ̸= α. In contrast, following the description in Theorem 1.1,
several dynamical properties of D have been recently studied on the spaces Fp

ψm
[6].

When α = β = 1, the spaces Fp
α correspond to the classical Fock spaces, and

Theorem 1.2 reiterates that the operator D has no bounded structure in its action
on them.

1.2. The Volterra-type integral operator. In this section we study the effect
of modulating the weight function on the structures of the Volterra-type integral
operator as compared to the existing results on the classical setting. We recall that
for holomorphic functions f and g, the Volterra-type integral operator Vg is given
by

Vgf(z) =
∫ z

0
f(w)g′(w) dw.

The theory of the Volterra-type integral operator has attracted much research
interest, especially in the last two decades. Several properties of the operator
acting on various spaces of analytic functions have been extensively studied. See
for example [1, 2, 7, 8, 9, 18, 19, 20]. In [7, 17], it was shown that a symbol g
induces a bounded operator Vg on the classical Fock spaces if and only if it is a
polynomial of degree at most two. The same conclusion was drawn on the Fock–
Sobolev spaces [16, 15] which are typical examples of weighted Fock spaces with
weight function growing more slowly than the Gaussian function. The study was
continued in [8, 18] on weighted Fock spaces with weight function growing faster
than the classical weight, where it was shown that the operator admits a richer
operator-theoretic structure than on the classical setting.

Although many studies have already been done on this class of operators, there
are still some interesting settings where the basic structures of the operators are
unknown. The second theme of this note is to investigate such structures on Fock-
type spaces generated by modulating the Gaussian function by positive parameters
again. It turns out that such spaces provide a richer structure of the operator in
contrast to the classical spaces.

We may first characterize the bounded and compact Vg : Fp
α → Fq

β in terms of
the function

M(αβ,g)(z) = |g′(z)|e
α−β

2 |z|2

1 + |z|
, (1.3)
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where α and β are henceforth positive numbers. A more simplified version of the
characterization will be given in the subsequent corollaries and Theorem 1.6.

Theorem 1.3.
(i) Let 0 < p ≤ q < ∞, and let g be an entire function on C. Then Vg : Fp

α →
Fq
β is bounded if and only if M(αβ,g) ∈ L∞(C, dA), and the operator is

compact if and only if M(αβ,g)(w) → 0 as |w| → ∞. In this case,
∥Vg∥ ≃ ∥M(αβ,g)∥L∞ .

(ii) Let 0 < q < p < ∞, and let g be an entire function on C. Then the
following statements are equivalent:
(a) Vg : Fp

α → Fq
β is bounded.

(b) M(αβ,g) ∈ L
pq

p−q (C, dA).
(c) Vg : Fp

α → Fq
β is compact. In this case,

∥Vg∥ ≃ ∥M(αβ,g)∥
L

pq
p−q

. (1.4)

By the notation U(z) ≲ V (z) (or equivalently V (z) ≳ U(z)) we mean that there
is a constant C such that U(z) ≤ CV (z) holds for all z in the set in question. We
write U(z) ≃ V (z) if both U(z) ≲ V (z) and V (z) ≲ U(z).

Now we consider some of the implications of Theorem 1.3. In contrast to the
classical setting, the theorem shows that modulating the classical weight function
provides richer operator-theoretic properties to Vg only under the condition that it
acts between two different Fock-type spaces again. If it acts on a space, the result
remains as in the classical case. We record this as follows.

Corollary 1.4.
(i) Let 0 < p, q < ∞, α > β and let g be an entire function on C. Then

Vg : Fp
α → Fq

β is bounded (compact) if and only if g is identically the zero
function.

(ii) Let 0 < p ≤ q < ∞, α = β and let g be an entire function on C. Then
Vg : Fp

α → Fq
β is

(a) bounded if and only if g(z) = az2 + bz + c for some a, b, c ∈ C;
(b) compact if and only if g(z) = az + b for some a, b ∈ C.

(iii) Let 0 < q < p < ∞, α = β and let g be an entire function on C. Then
Vg : Fp

α → Fq
β is bounded (compact) if and only if q > 2p

p+q and g(z) =
az + b for some a, b ∈ C.

The corollary refines the conditions in Theorem 1.3 when α ≥ β. In this case
the symbol g can be a complex polynomial of degree at most two. It remains to
find an analogous and simpler description for the case when α < β, which is the
main purpose of the next section.

1.3. The order and type of the symbol g. In this section we study the growth
of the inducing maps g using the notions of order and type of analytic functions and
simplify further the conditions in Theorem 1.3 whenever β > α. Interestingly, we
find that the order and type properties of g completely determine the bounded and
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compact Volterra-type integral operators acting between two different Fock-type
spaces.

For an entire function f and a positive r, we set Mf (r) = max{|f(z)| : |z| = r}.
Then the order ρ(f) of f is defined by

ρ(f) = lim sup
r→∞

log
(

logMf (r)
)

log r .

If 0 < ρ(f) < ∞, then we also define the type σ(f) of f by

σ(f) = lim sup
r→∞

logMf (r)
rρ(f) .

By definition, all polynomials have order 0, while f(z) = eaz has order 1 and type
|a|, and h(z) = eaz

2 has order 2 and type |a|.
The next result shows that if Vg : Fp

α → Fq
β is bounded, then g can be at most

of order 2 and type β−α
2 .

Proposition 1.5. Let 0 < p, q < ∞, α < β and let g be an entire function on C.
(i) If p ≤ q, then Vg : Fp

α → Fq
β is

(a) bounded if and only if ρ(g) < 2 or ρ(g) = 2 and σ(g) ≤ β−α
2 ;

(b) compact if and only if ρ(g) < 2 or ρ(g) = 2 and σ(g) < β−α
2 .

(ii) If p > q, then Vg : Fp
α → Fq

β is bounded (compact) if and only if ρ(g) < 2
or ρ(g) = 2 and σ(g) < β−α

2 .

The result provides an interesting interplay between the order and type of the
symbol g to generate a bounded and compact Volterra-type integral operator Vg.
We can now give a refined form of Theorem 1.3 for the case when the inducing
symbol g is zero free on the complex plane.

Theorem 1.6. Let 0 < p, q < ∞, α < β and let g be a non-vanishing entire
function on C.

(i) If p ≤ q, then Vg : Fp
α → Fq

β is
(a) bounded if and only if

g(z) = ec+bz+az2
(1.5)

for some a, b, c ∈ C such that |a| < β−α
2 , or |a| = β−α

2 and either
b = 0 or a = − (β−α)b2

2|b|2 ;
(b) compact if and only if g has the form in (1.5) and |a| < β−α

2 .
(ii) If p > q, then Vg : Fp

α → Fq
β is bounded (compact) if and only if g has the

form in (1.5) and |a| < β−α
2 .

We close this section with the following particular case of Vg. When g(z) = z,
the operator Vg reduces to the classical Volterra operator Jf(z) =

∫ z
0 f(w) dw. We

also note that DJf = f and JDf(z) = f(z)−f(0) for all z ∈ C. Thus, it is natural
to ask how the conditions for the operator J corresponding to Theorem 1.2 turn
out to be. Setting g(z) = z in Theorem 1.3, we deduce the following.
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Corollary 1.7.
(i) Let 0 < p ≤ q < ∞. Then J : Fp

α → Fq
β is bounded (compact) if and only

if α ≤ β.
(ii) Let 0 < q < p < ∞. Then J : Fp

α → Fq
β is bounded (compact) if and only

if either α < β or α = β and q > 2p
p+q .

It follows that only compact Volterra operators are bounded, and this happens
because of the linear factor in the expression in (1.3), which originates from the
Littlewood–Paley type description of the spaces as stated in (2.2) below.

2. Proofs of the results

Before we begin the proofs, we record some known facts that are required in
the sequel. For each entire function f and 0 < p < ∞, the subharmonicity of |f |p
implies the point estimate

|f(z)| ≤ e
α|z|2

2

(∫
D(z,1)

|f(w)|pe− pα|w|2
2 dA(w)

) 1
p

≤ e
α|z|2

2 ∥f∥(p,α), (2.1)

where D(z, 1) is a disc of radius 1 and center z. This shows that point evaluations
are bounded linear functionals. Thus, the Fock space F2

α is a reproducing kernel
Hilbert space with kernel function at each point w ∈ C given by

K(w,α)(z) = eαwz and k(w,α)(z) =
K(w,α)(z)

∥K(w,α)∥(2,α)
= eαwz− α

2 |w|2
.

Moreover, from a straightforward computation we get that, for all 0 < p < ∞,

∥K(w,α)∥(p,α) = e
α
2 |w|2

.

Another useful result is due to Constantin [7], who describes the Fock-type spaces
in terms of derivatives; namely that

∥f∥p(p,α) ≃ |f(0)|p +
∫
C

|f ′(z)|p

(1 + |z|)p e
− pα

2 |z|2
dA(z). (2.2)

2.1. Proof of Theorem 1.2. Since (iii) obviously implies (i), we plan to show
that (i) implies (ii) and that (ii) implies (iii). Thus, suppose that D : Fp

α → Fq
β is

bounded. Then, applying the operator to the reproducing kernel K(w,α), we have

∥K(w,α)∥q(p,α)∥D∥q ≥ qβ

2π |wα|q
∫
C

∣∣∣K(w,α)(z)
∣∣∣qe− qβ

2 |z|2
dA(z)

= |wα|q
(
qβ

2π

∫
C

∣∣∣eβ(αw
β

)
z
∣∣∣qe− qβ

2 |z|2
dA(z)

)
= |wα|q

∥∥∥K(αw
β ,β
)∥∥∥q

(q,β)

for all w ∈ C. It follows that

∥D∥ ≥ sup
w∈C

|wα|
∥∥∥K( αw

β ,β)

∥∥∥
(q,β)∥∥K(w,α)

∥∥
(p,α)

= sup
w∈C

|wα|e
α
2 |w|2

(
α
β −1

)
,
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from which the necessity of α < β holds when |w| → ∞. Moreover,

∥D∥ ≥ sup
w∈C

|wα|e
α
2 |w|2

(
α
β −1

)
=

√
αβ

(β − α)e ,

which is the lower estimate in (1.2).
Next, we proceed to show the other requirement, p ≤ q. Assume on the contrary

that p > q. We plan to follow a classical technique whose original idea goes back to
Luecking [12]. Consider a sequence (λj) in C such that infj ̸=i |λj − λi| > 0. Then,
for any given positive number r, there exists a positive integer Nr such that any
disc of radius r contains at most Nr points of the sequence (λj). Furthermore, we
assume that the sequence (λj) is dense in C in the sense that there exists a small
positive number ϵ such that every point of C is contained in some disc D(λj , ϵ). It
follows that the function

F =
∑
j≥1

ajk(λj ,α)

belongs to Fp
α for every ℓp sequence (aj) with norm estimate ∥F∥(p,α) ≲ ∥(aj)∥ℓp .

See [23, Theorem 2.34] or [11, 22] for details.
If (rj(t))j is the Rademacher sequence of functions on [0, 1] chosen as in [12],

then the sequence (ajrj(t)) also belongs to ℓp with ∥(ajrj(t))∥ℓp = ∥(aj)∥ℓp for
all t. Consequently, the parameterized functions

Ft =
∑
j≥1

ajrj(t)k(λj ,α)

belong to Fp
α with norm estimates ∥Ft∥(p,α) ≲ ∥(aj)∥ℓp . Furthermore, an applica-

tion of Khinchine’s inequality [12] yields(∑
j≥1

|aj |2|k′
(λj ,α)(z)|2

) q
2

≲
∫ 1

0

∣∣∣∣∑
j≥1

ajrj(t)k′
(λj ,α)(z)

∣∣∣∣q dt. (2.3)

Making use of (2.3), and subsequently of Fubini’s theorem, we further have

∫
C

(∑
j≥1

|aj |2|k′
(λj ,α)(z)|2

) q
2

e− qβ
2 |z|2

dA(z)

≲
∫
C

∫ 1

0

∣∣∣∣∑
j≥1

ajrj(t)k′
(λj ,α)(z)

∣∣∣∣q dt e− qβ
2 |z|2

dA(z)

=
∫ 1

0

∫
C

∣∣∣∣∑
j≥1

ajrj(t)k′
(λj ,α)(z)

∣∣∣∣qe− qβ
2 |z|2

dA(z) dt

≃
∫ 1

0
∥DFt∥q(q,β) dt ≲ ∥(aj)∥qℓp .
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Now since the discs D(λj , 2ϵ) cover C, we estimate∑
j≥1

|aj |q
∫
D(λj ,2ϵ)

(1 + |z|)q dA(z)

≃
∑
j≥1

|aj |q
∫
D(λj ,2ϵ)

(1 + |z|)q
|k′
λj

(z)|qe− qβ
2 |z|2

(1 + |λj |)q
dA(z)

≲ max{1, N1−q/2
max }

∫
C

(∑
j≥1

|aj |2|k′
λj

(z)|2
) q

2

e− qβ
2 |z|2

dA(z) ≲ ∥(aj)∥qℓp ,

where we also used that 1+ |z| ≃ 1+ |λj | whenever z ∈ D(λj , 2ϵ). Applying duality
between the spaces ℓp/q and ℓp/(p−q), we get

∑
j≥1

(∫
D(λj ,2ϵ)

(1 + |z|)q dA(z)
) p

p−q

< ∞.

On the other hand, for each z ∈ D(λj , 3ϵ/2),

(1 + |z|)q ≲
∫
D(λj ,2ϵ)

(1 + |w|)q dA(w),

and hence∫
C
(1 + |z|)

qp
p−q dA(z) ≤

∑
j≥1

∫
D(λj ,3ϵ/2)

(1 + |z|)
qp

p−q dA(z)

≲
∑
j≥1

(∫
D(λj ,2ϵ)

(1 + |w|)q dA(w)
) p

p−q

< ∞,

which is a contradiction as p > q and 1 + |z| cannot be pq/(p− q) integrable over
the whole complex plane C.

Assume now that (ii) holds and let fn be a sequence of functions in Fp
α such that

supn ∥fn∥(p,α) < ∞ and fn → 0 uniformly on compact subsets of C as n → ∞.
Then, for R > 0,

∥Dfn∥q(q,β) = qβ

2π

∫
|z|≤R

|f ′
n(z)|qe− qβ

2 |z|2
dA(z) + qβ

2π

∫
|z|>R

|f ′
n(z)|qe− qβ

2 |z|2
dA(z)

≲ sup
|z|≤R

(|f ′
n(z)|q)

∫
|z|≤R

e− qβ
2 |z|2

dA(z)

+ sup
|z|>R

(
(1 + |z|)qe− q

2 (β−α)|z|2
)∫

|z|>R

|f ′
n(z)|qe− qα

2 |z|2

(1 + |z|)q dA(z).

The sequence f ′
n → 0 uniformly on compact subsets of C. Thus

sup
|z|≤R

(|f ′
n(z)|q)

∫
|z|≤R

e− qβ
2 |z|2

dA(z) → 0
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as n → ∞. On the other hand,

sup
|z|>R

(
(1 + |z|)qe− q

2 (β−α)|z|2
)∫

|z|>R

|f ′
n(z)|qe− qα

2 |z|2

(1 + |z|)q dA(z)

≲ sup
|z|>R

(
(1 + |z|)qe− q

2 (β−α)|z|2
)(

|fn(0)|q +
∫

|z|>R

|f ′
n(z)|qe− qα

2 |z|2

(1 + |z|)q dA(z)
)

≲ ∥fn∥q(q,α) sup
|z|>R

(
(1 + |z|)qe− q

2 (β−α)|z|2
)
,

where, for the last inequality, we used (2.2). Since p ≤ q, applying the inclusion
property on Fock spaces and the assumption on the sequence fn, we have

∥fn∥q(q,α) sup
|z|>R

(
(1 + |z|)qe− q

2 (β−α)|z|2
)

≤ ∥fn∥q(p,α) sup
|z|>R

(
(1 + |z|)qe− q

2 (β−α)|z|2
)
≲ sup

|z|>R
(1 + |z|)qe− q

2 (β−α)|z|2
.

Then, for β > α, letting R → ∞ in the last inequality, we observe that Dfn
converges to zero in the space Fq

β .
It remains to verify the upper estimate in (1.2). Thus, let α < β and f ∈ Fp

α.
Applying Cauchy’s derivative formula

f ′(z) = 1
2πi

∫
|w|=1

f(z + w)
w2 dA(w),

it follows that

∥Df∥q(q,β) = qβ

2π

∫
C

|f ′(z)|qe− qβ
2 |z|2

dA(z)

≤ qβ

(2π)q+1

∫
C

(∫
|w|=1

|f(z + w)||dA(w)|
)q
e− qβ

2 |z|2
dA(z).

The inner integral is estimated as∫
|w|=1

|f(z + w)||dA(w)|

≤
∫

|w|=1
e

α
2 |z+w|2

(
sup
z∈C

|f(z + w)|e− α
2 |z+w|2

)
|dA(w)|

≤ ∥f∥(p,α)

∫
|w|=1

e
α
2 |z+w|2

|dA(w)| ≤ 2πeα
2 ∥f∥(p,α)e

α
2 |z|2+α|z|,

where we used the inequality

sup
z∈C

|f(z + w)|e− α
2 |z+w|2

≤ ∥f∥(p,α).
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Integrating with polar coordinates we get

∥Df∥q(q,β) ≤ qβ

2π e
qα
2 ∥f∥q(p,α)

∫
C
e− q(β−α)

2 |z|2+qα|z| dA(z)

= qβe
qα
2 ∥f∥q(p,α)

∫ ∞

0
re− q(β−α)

2 r2+qαr dr

≤ qβe
qα
2 ∥f∥q(p,α)

√
2παe

qα2
2(β−α)√

q(β − α)3

=

√
2πq

(β − α)3 βαe
qαβ

2(β−α) ∥f∥q(p,α),

from which the right-hand estimate in (1.2) follows, and this completes the proof.
□

2.2. Proof of Theorem 1.3. (i) Let 0 < p ≤ q < ∞. We first prove the necessity
of the condition for boundedness. Considering the action of the operator on the
normalized reproducing kernels, and applying (2.2) and (2.1), we obtain

∥Vg∥q ≥ ∥Vgk(w,α)∥q(q,β) ≳
∫
C

|g′(z)|q

(1 + |z|)q |k(w,α)(z)|qe− βq
2 |z|2

dA(z)

≥
∫
D(w,1)

|g′(z)|q

(1 + |z|)q |eαwz|qe− q
2 (β+α)|z|2

dA(z) ≳ |g′(w)|q

(1 + |w|)q e
q
2 (α−β)|w|2

for all w ∈ C. This gives

∥Vg∥q ≳ sup
w∈C

|g′(w)|q

(1 + |w|)q |e
q
2 (α−β)|w|2

= sup
w∈C

Mq
(αβ,g)(w). (2.4)

Conversely, the relations (2.4) and (2.2) imply

∥Vgf∥q(q,β) ≃
∫
C

|g′(z)|q

(1 + |z|)q |f(z)|qe− βq
2 |z|2

dA(z)

≤ sup
z∈C

(
|g′(z)|q

(1 + |z|)q e
q(α−β)

2 |z|2
)∫

C
|f(z)|qe− αq

2 |z|2
dA(z)

= 2π
qβ

∥f∥q(q,α) sup
z∈C

|g′(z)|q

(1 + |z|)q e
q(α−β)

2 |z|2
≲ ∥f∥q(p,α),

where the last inequality follows by the inclusion property. From this and (2.4),
we get that

∥Vg∥ ≃ sup
w∈C

M(αβ,g)(w).

Next, suppose that Vg : Fp
α → Fq

β is compact. Since k(w,α) is uniformly bounded
on Fp

α and converges to zero as |w| → ∞, we have

M(αβ,g)(w) ≲ ∥VgK(w,α)∥(q,β) → 0

as |w| → ∞. Therefore, M(αβ,g)(w) → 0 as |w| → ∞.
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To prove the sufficiency of the condition, let (fn) be a sequence of functions in
Fp
α such that supn ∥fn∥(p,α) < ∞ and fn → 0 uniformly on compact subsets of C

as n → ∞. Then, for R > 0, applying (2.2) again we have

∥Vgfn∥q(q,β) ≃
∫
C

|fn(z)|q |g′(z)|q

(1 + |z|)q e
− βq

2 |z|2
dA(z)

=
∫

|z|≤R
|fn(z)|q |g′(z)|q

(1 + |z|)q e
− βq

2 |z|2
dA(z)

+
∫

|z|>R
|fn(z)|qMq

(αβ,g)(z)e
− αq

2 |z|2
dA(z)

≲ ∥Vg1∥q(q,β) max
|z|≤R

|fn(z)|q + ∥fn∥q(q,α) sup
|z|>R

Mq
(αβ,g)(z).

Note that, by (i), the condition obviously implies boundedness. Consequently,
∥Vg1∥(q,β) ≤ ∥Vg∥∥1∥(p,α) and hence

∥Vgfn∥q(q,β) ≤ ∥1∥q(p,α) max
|z|≤R

|fn(z)|q + ∥fn∥q(p,α) sup
|z|>R

Mq
(αβ,g)(z),

where in the last inequality we use the inclusion property on Fock spaces. Now let
n → ∞ and then R → ∞ in the above relation to deduce that ∥Vgfn∥(q,β) → 0 as
n → ∞. Thus, Vg is compact as asserted.

(ii) If M(αβ,g) ∈ L
pq

p−q (C, dA), applying (2.2) and Hölder’s inequality we have

∥Vgf∥q(q,β) ≃
∫
C

|g′(z)|q|f(z)|q

(1 + |z|)q e− βq
2 |z|2

dA(z)

=
∫
C

|f(z)|qMq
(αβ,g)(z)e

− αq
2 |z|2

dA(z)

≤
(∫

C
|f(z)|pe− pα

2 |z|2
dA(z)

) q
p
(∫

C
M

pq
p−q

(αβ,g)(z) dA(z)
) p−q

p

≲ ∥f∥q(p,α).

This verifies that (b) implies the statement in (a) and the one-side estimate
∥Vg∥ ≲ ∥M(αβ,g)∥

L
pq

p−q
. (2.5)

Next, we show that (b) implies (c). Let (fn) be a sequence of functions in Fp
α such

that supn ∥fn∥(p,α) < ∞ and fn → 0 uniformly on compact subsets of C as n → ∞.
Then, for R > 0,

∥Vgfn∥q(q,β) ≃
∫
C

|fn(z)|q |g′(z)|q

(1 + |z|)q e
− βq

2 |z|2
dA(z)

=
∫

|z|≤R
|fn(z)|q |g′(z)|q

(1 + |z|)q e
− βq

2 |z|2
dA(z)

+
∫

|z|>R
|fn(z)|qMq

(αβ,g)(z)e
− αq

2 |z|2
dA(z)

≲ ∥Vg1∥q(q,β) max
|z|≤R

|fn(z)|q +
∫

|z|>R
|fn(z)|qMq

(αβ,g)(z)e
− αq

2 |z|2
dA(z).
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On the other hand, applying Hölder’s inequality, we obtain∫
|z|>R

|fn(z)|qMq
(αβ,g)(z)e

− αq
2 |z|2

dA(z)

≤
(∫

|z|>R
|fn(z)|pe− pα

2 |z|2
dA(z)

) q
p
(∫

|z|>R
M

pq
p−q

(αβ,g)(z) dA(z)
) p−q

p

≲ ∥fn∥q(p,α)

(∫
|z|>R

M
pq

p−q

(αβ,g)(z) dA(z)
) p−q

p

≲

(∫
|z|>R

M
pq

p−q

(αβ,g)(z) dA(z)
) p−q

p

.

Collecting all the above estimates, we get

∥Vgfn∥q(q,β) ≲ ∥Vg1∥q(q,β) max
|z|≤R

|fn(z)|q +
(∫

|z|>R
M

pq
p−q

(αβ,g)(z) dA(z)
) p−q

p

.

Letting n → ∞ and then R → ∞ in the above relation, we get that ∥Vgfn∥(q,β) → 0
as n → ∞. Therefore, condition (iii) holds.

It remains to show that (a) implies (b). Assume that Vg : Fp
α → Fq

β is bounded;
then

∥Vg∥q∥f∥q(p,α) ≥ ∥Vgf∥q(q,β) ≃
∫
C

|g′(z)|q|f(z)|q

(1 + |z|)q e− βq
2 |z|2

dA(z)

=
∫
C

|f(z)|qe− αq
2 |z|2

dµ(αβ,g,q)(z),

where dµ(αβ,g,q)(z) = Mq
(αβ,g)(z) dA(z). It follows that µ(αβ,g,q) is a (p, q) Fock–

Carleson measure, and by [14, Theorem 2.3] this holds if and only if

˜µ(αβ,g,q)(z) =
∫
C

|k(z,α)(w)|qe− αq
2 |w|2

dµ(αβ,g,q)(w) ∈ L
p

p−q (C, dA)

and

∥µ(αβ,g,q)∥q ≃ ∥ ˜µ(αβ,g,q)∥
L

p
p−q (C,dA)

, (2.6)

where ∥µ(αβ,g,q)∥ denotes the norm of the embedding map from Fp
α to

Lq
(
C, e− qα

2 |w|2
dµ(αβ,g,q)

)
. Furthermore, by (2.1), we have that∫

C
|k(z,α)(w)|qe− αq

2 |w|2
dµ(αβ,g,q)(w)

=
∫
C

|k(z,α)(w)|qe− αq
2 |w|2 |g′(w)|q

(1 + |w|)q e
q(α−β)

2 |w|2
dA(z)

≥
∫
D(z,1)

|k(z,α)(w)|qe− αq
2 |w|2 |g′(w)|q

(1 + |w|)q e
q(α−β)

2 |w|2
dA(z)

≥ |k(z,α)(z)|qe− αq
2 |z|2 |g′(z)|q

(1 + |z|)q e
q(α−β)

2 |z|2
= Mq

(αβ,g)(z).

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



DIFFERENTIAL AND VOLTERRA-TYPE INTEGRAL OPERATORS 391

Thus, ∫
C
M

pq
p−q

(αβ,g)(z) dA(z) ≤
∫
C

˜µ(αβ,g,q)(z)
p

p−q

dA(z) < ∞.

This and (2.6) yield the other side estimate,

∥M(αβ,g)∥
L

pq
p−q

≲ ∥Vg∥,

which, together with (2.5), gives the estimate in (1.4) and completes the proof. □

2.3. Proof of Proposition 1.5. (i) Consider first that ρ(g) < 2. Then, for some
positive number ϵ,

ρ(g) = lim sup
r→∞

log
(

logMg(r)
)

log r = 2 − ϵ.

This means that one can find a positive number R0 such that, for all r > R0,

Mg(r) ≤ er
2−ϵ

.

Thus, for all |z| = r > R0, we have |g(z)| ≤ er
2−ϵ and

|g′(z)|e
α−β

2 |z|2

1 + |z|
≤ er

2
(
r−ϵ+ α−β

2

)
. (2.7)

Observe that the right-hand side above goes to zero as r → ∞. By Theorem 1.3,
it follows that the operator is bounded and compact.

If ρ(g) = 2 and σ(g) ≤ β−α
2 , arguing as above we have, for all r > R0,

logMg(r)
r2 ≤ σ(g)

and hence
|g′(z)|e

α−β
2 |z|2

1 + |z|
≲ er

2
(
σ(g)+ α−β

2

)
. (2.8)

Therefore, by Theorem 1.3, Vg is bounded whenever σ(g) ≤ β−α
2 and compact

when the inequality is strict.
Conversely, suppose ρ(g) > 2, then there exists a sequence of positive numbers

rn such that
log
(

logMg(rn)
)

log rn
≥ ρ(g) + 2

2
and hence

Mg(rn) ≥ er
ρ(g)+2

2
n .

It follows that one can find a sequence zn such that |zn| = rn → ∞ and

|g′(zn)|e
α−β

2 |zn|2

1 + |zn|
≳ er

ρ(g)+2
2

n + α−β
2 r2

n → ∞

as n → ∞. Then by Theorem 1.3 again, the operator is not bounded in this case.
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Next, if ρ(g) = 2 and σ(g) > β−α
2 , we show that the operator is not bounded.

Indeed, arguing as above, there exists a positive sequence rn such that
logMg(rn)

r2
n

≥ σ(g)
2 + β − α

4

and hence Mg(rn) ≥ e
σ(g)

2 + β−α
4 . Thus, we can find a sequence zn such that |zn| =

rn → ∞ and
|g′(zn)|e

α−β
2 |zn|2

1 + |zn|
≳ e

(
σ(g)

2 + β−α
4 + α−β

2

)
r2

n → ∞

as n → ∞, and our assertion follows after an application of Theorem 1.3.
The proof of the compactness part follows from a simple modification of the

arguments made above.

(ii) The case for p > q follows again easily from the estimates in (2.7) and (2.8),
and the second part of Theorem 1.3. □

2.4. Proof of Theorem 1.6. (i) (a) Suppose Vg : Fp
α → Fq

β is bounded. Then,
by Proposition 1.5, we have that ρ(g) ≤ 2. In addition, since g is non-vanishing on
C, an application of Hadamard’s product formula yields

g(z) = eh(z), (2.9)

where h(z) = c+ bz + az2 is a polynomial of degree equal to the order of g, which
is at most 2. If a = 0, then the necessity of the condition obviously follows from
this and Theorem 1.3. Thus we assume that a ̸= 0 and hence σ(g) = |a|. By
Proposition 1.5 we also have the relation

|a| = σ(g) ≤ β − α

2 ,

from which part of the necessity condition follows. It remains to show that when
|a| = β−α

2 we have either b = 0 or a = − (β−α)b2

2|b|2 .
Using the form in (2.9), we estimate the function M(αβ,g) in (1.3) as

M(αβ,g)(z) = |g′(z)|e
α−β

2 |z|2

1 + |z|
≃ |2az + b|

1 + |z|
eℜ(bz)+ℜ(az2)− β−α

2 |z|2
(2.10)

for all z ̸= 0. Setting a = |a|e−2iθ = β−α
2 e−2iθ, 0 ≤ θ < π, and replacing z by eiθw

in (2.10), we have

M(αβ,g)(weiθ) ≃ |2aweiθ + b|
1 + |w|

eℜ(bweiθ)+|a|ℜ(w2)− β−α
2 |w|2

= |2aweiθ + b|
1 + |w|

eℜ(bweiθ)+ β−α
2

(
ℜ(w2)−|w|2

) (2.11)

for all w ∈ C. In particular, when w is a real number, (2.11) simplifies to

M(αβ,g)(weiθ) ≃ |2aweiθ + b|
1 + |w|

ewℜ(beiθ). (2.12)
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By Theorem 1.3, boudedness of Vg implies that the quantity in (2.12) is uniformly
bounded and this happens only when ℜ(beiθ) = 0. This holds again only if either
b = 0 or e−iθ = ±ib/|b|, from which the assertion follows.

Conversely, assume g has the form in (1.5) and the conditions in (i) of the
theorem hold. If |a| < β−α

2 , then

M(αβ,g)(z) ≃ |2az + b|
1 + |z|

eℜ(bz)+ℜ(az2)− β−α
2 |z|2

→ 0

as |z| → ∞, and by Theorem 1.3, the operator is bounded and compact. Assume
|a| = β−α

2 . Since the case for b = 0 is immediate, we suppose a = − (β−α)b2

2|b|2

and write a = β−α
2 e−2iθ as before. Then an easy simplification using the relation

a = β−α
2 e−2iθ = − (β−α)b2

2|b|2 yields

(eiθb)2 = −|b|2,

which shows that eiθb is a purely imaginary number. Therefore, we set eiθb = iy
for some real number y. Furthermore, setting z = weiθ as before, we note that by
Theorem 1.3 Vg is bounded if and only if

sup
w∈C

M(αβ,g)(weiθ) ≃ sup
w∈C

|2aweiθ + b|
1 + |w|

eℜ(bweiθ)+ β−α
2

(
ℜ(w2)−|w|2

)
≃ sup
w∈C

eℜ(bweiθ)+ β−α
2

(
ℜ(w2)−|w|2

)
< ∞.

We show this as

sup
w∈C

eℜ(bweiθ)+ β−α
2

(
ℜ(w2)−|w|2

)
= sup
w∈C

eyℜ(iw)+ β−α
2

(
ℜ(w2)−|w|2

)
= sup
w∈C

e−ℑw
(
y+(β−α)ℑw

)
≲ e

y2
β−α < ∞,

as required.
(b) The sufficiency of the condition |a| < β−α

2 follows from (2.10) and Theo-
rem 1.3. To prove the necessity, note that by part (a) we have |a| ≤ β−α

2 . Thus,
we need to show that the operator is not compact whenever |a| = β−α

2 . From the
arguments made above in (2.12) related to boundedness, the expression

M(αβ,g)(weiθ) ≃ |2aweiθ + b|
1 + |w|

ewℜ(beiθ)

is uniformly bounded over the real numbers w only if ℜ(beiθ) = 0. It follows that

M(αβ,g)(weiθ) ≃ 1 (2.13)

when w → ∞, and it fails to satisfy the compactness condition in Theorem 1.3.
Therefore, |a| < β−α

2 .

(ii) All the estimations made above with M(αβ,g) are independent of the size of
the exponents p and q. If |a| < β−α

2 , then from the estimation in (2.10), we observe
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that M(αβ,g) belongs to L
pq

p−q (C, dA) and hence the sufficiency of the condition
follows from Theorem 1.3.

Conversely, it is enough to show that, when |a| = β−α
2 , the operator is not

bounded. But this follows by simply arguing as above and noting from (2.12) and
(2.13) that the function M(αβ,g) is not L

pq
p−q integrable over C. Then our assertion

follows again by Theorem 1.3. □
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