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Abstract: In September 2020, a fire at a liquefied natural gas (LNG) plant in the Arctic areas of
Norway received national attention. In an unengaged air intake, the heat exchanger designed to
prevent ice damage during production mode, was supplied hot oil at 260 ◦C. In sunny weather, calm
conditions, and 14 ◦C ambient temperature, overheating of the unengaged air intake filters (85%
glass fiber and 15% polyester) was identified as a possible cause of ignition. Laboratory heating
tests showed that the filter materials could, due to the rigid glass fibers carrying the polymers,
glow like smoldering materials. Thus, self-heating as observed for cellulose-based materials was a
possible ignition mechanism. Small-scale testing (10 cm × 10 cm and 8 cm stacked height) revealed
that used filters with collected biomass, i.e., mainly pterygota, tended to self-heat at 20 ◦C lower
temperatures than virgin filters. Used filter cassettes (60 cm by 60 cm and 50 cm bag depth) caused
significant self-heating at 150 ◦C. At 160 ◦C, the self-heating took several hours before increased
smoke production and sudden transition to flaming combustion. Since the engaged heat exchanger
on a calm sunny day of ambient temperature 14 ◦C would result in temperatures in excess of 160 ◦C
in an unengaged air intake, self-heating and transition to flaming combustion was identified as the
most likely cause of the fire. Flames from the burning polymer filters resulted in heat exchanger
collapse and subsequent hot oil release, significantly increasing the intensity and duration of the fire.
Due to firewater damages, the plant was out of operation for more than 1.5 years. Better sharing of
lessons learned may help prevent similar incidents in the future.

Keywords: polyester air filter; pterygota; self-heating; hot oil; industry fire; air intake fire

1. Introduction

Fires at industry facilities such as liquefied natural gas (LNG) plants represent a high
risk to both personnel and equipment. If high-pressure natural gas, heavier hydrocarbons
separated from the natural gas or the produced LNG becomes involved in the fire, the
consequences may become severe. Severe fires and explosions in the oil and gas industry
generally involve the loss of containment of oil or gas igniting when reaching an ignition
source or hot products spontaneously igniting in contact with air, e.g., at oil refineries. The
North Sea Piper Alpha platform disaster in July 1988 [1], the Texas City Refinery explosion
in March 2005 [2], and the 2013 Qingdao oil pipeline leak explosion in November 2013 [3],
killing, respectively, 167, 15 and 62 persons, may stand out as extreme examples of possible
fire and explosion incidents associated with hydrocarbon capture, processing, and transport.
Oil and gas production facilities are therefore equipped with deluge systems and fire
monitors for cooling exposed piping and equipment to prevent the escalation of an initial
fire. Foam may also be added to the firewater for improved active fire protection efficiency.

In such processing plants, there are, however, other products that may ignite and
result in large fires, e.g., lubrication oils, turbine oils, possible hot oil for heat transfer,
polymer-based air intake filters, etc.
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The aim of the study is to present the investigations regarding the cause of a severe
fire that took place in an air intake of an LNG plant in the Arctic region of Norway, close
to the town of Hammerfest. The fire took place on 28 September 2020 and resulted in a
1.5-year shutdown of the plant, mainly due to fire water damages. Section 2 introduces the
facility and the fire incident. Section 3 describes the materials and the methods used for
analyzing the fire cause. Section 4 presents the results obtained, while Section 5 discusses
the results and offers a comparison with similar previous incidents. The motivation for
publishing the study is to present the risks identified with overheating polymer-based air
filters and help preventing similar incidents in the future.

2. The Facility and the Fire Incident
2.1. The Facility

The LNG plant is located at Melkøya island in the Arctic areas of Norway, at 70.7◦ N,
3.8 km northwest of the Hammerfest town center, as seen in Figure 1. It employs about
500 people including external consultants, ship handling personnel, etc. It is by far the
most important processing plant in the northern regions of Norway and is very important
for the Hammerfest municipality.
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Figure 1. The LNG plant at Melkøya island, 3.8 km from the Hammerfest town center. (Aerial photo
from www.norgeibilder.no, accessed on 2 February 2022).

At the plant, the well stream from the Snøhvit offshore field is separated into con-
densate, liquid petroleum gas (LPG), and methane, which is compressed and cooled to
LNG at −163 ◦C. The well stream CO2 content is separated, compressed, and stored in the
sediments offshore. The annual production capacity is 4.6 × 106 tons LNG, 0.34 × 106 tons
LPG and 0.83 × 106 tons of condensate [4]. It is a high-technology plant, with the lowest en-
ergy input per kg LNG produced among existing LNG plants world-wide. The production
plant is self-supplied with electricity by five gas turbine generators (GTGs). It may partly
operate on power from shore to reduce the release of gas turbine exhaust gases (CO2). Due
to its size, and the amount of flammable gas and liquid handled, the LNG plant is one of
eight Seveso directive oil and gas plants in Norway. It started production in 2007.

www.norgeibilder.no
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At normal speed, each GTG consumes about 100 m3 air/s. The supply air passes
through an upstream filter house with coarse and fine filters to prevent turbine damage by
alien objects. Acceleration of the air through the air intake and pressure reduction through
the coarse and fine filters result in air expansion and adiabatic cooling [4]. For given
combinations of temperatures just around and below the freezing point, and high relative
humidity, ice may form in the filters. This ice may block the filters as well as represent alien
objects that may damage the turbines. Thus, the supply air must be preheated to prevent
ice formation. At the LNG plant, hot oil (Renolin Thermoil 30, Fuchs, Mannheim, Germany)
heated to 260 ◦C in the turbine exhaust heat recovery unit is used as an internal energy
carrier [5]. This hot oil is also used for preheating the GTG supply air a few degrees when
there is risk of supply air ice formation. The heat exchanger comprises horizontal 15 mm
outer diameter metal pipes carrying the hot oil. A principal sketch of the filter house is
shown in Figure 2.
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while the heat exchanger was supplied hot oil at 260 ◦C.

2.2. Sequence of Events

The LNG plant has five gas turbine generators (GTGs) supplying electricity to com-
pressors and production processes. The GTGs were powered by production gas, and an
exhaust gas heat recovery unit was used to heat hot oil for distillation column boilers, air
intake heat exchangers designed to prevent ice damages during production mode, etc. In
order to reduce CO2 emissions, only four GTS were normally engaged, i.e., one GTG was
usually unengaged.

Due to a national grid anomaly, the plant tripped and had been out of operation for
10 days. During the start-up, 28 September 2020, four out of five GTGs were engaged
while GTG 4 was left unengaged. To prevent overheating of the hot oil prior to engaging
boilers, etc., some hot oil at 260 ◦C was supplied to the unengaged GTG4 air intake heat
exchanger to dump excessive heat. In sunny weather, calm conditions, and 14 ◦C ambient
temperature, overheating of the air intake filters (85% glass fiber and 15% polyester) was
identified as the possible cause of a fire observed in GTG number 4, as seen in Figure 3.

This highly visible fire, in a plant with major accident potential, happened just 8 weeks
after the Beirut fire and ammonium nitrate explosion disaster 4 August 2020 [6]. Thus, in
the view of spectators and journalists, the fire at the LNG plant caught significant local
and national attention since it was very visible from one of the largest towns in the Arctic
regions of Norway.
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Figure 3. The air intake hot oil fire. (Photo: Bjarne Halvorsen, reproduced with permission).

The production area was evacuated, blowdown was initiated, and fire water monitors
were engaged, as seen in Figure 3. Later, tugboats and an offshore supply vessel with
firefighting (FiFi) capacity were engaged to put out the fire. It should be noted that the
fire was contained to the involved air intake and did not spread to production-related
hydrocarbon-containing pipes or process equipment. The fire damage, as such, was quite
limited [4]. Large amounts of seawater from the fire extinguishing did, however, damage
other auxiliary systems such as electrical equipment and cables [5]. Thus, the plant was shut
down for a lengthy repair and maintenance period, and out of service for more than 1.5-year
including delays due to the COVID-19 pandemic prior to the startup on 17 May 2022.

At first, there were no clues as to what could have ignited an unengaged air intake,
i.e., at a GTG not in operation on the day of the fire. It turned out, however, that the air
intake heat exchanger had been supplied with hot oil at 260 ◦C several hours before the
fire took place. It was therefore decided to test virgin and used filters and check whether
self-heating at elevated temperatures could have been the cause of the fire.

3. Materials and Methods

The coarse and fine filters were made of polyester (15%) and glass fiber (85%). The
filters were of the types Hi-FLO XLT and Cam-GT-98klasse F9, respectively, from Cam-
fil Inc [7]; see Figure 4. Samples were collected from virgin filters and from used fil-
ters in one of the undamaged air intake filter houses, for both small-scale and filter
cassette-scale analyses.

First, small test samples were cut from virgin and used filters and ignited by a lighter
for the preliminary evaluation of ignition properties, mechanisms of combustion, etc.

Then, small-scale, i.e., 10 cm × 10 cm, test samples were prepared for testing possible
self-heating at elevated temperatures in a muffle furnace (Laboratory Chamber Furnace,
Thermconcept GmbH, Bremen, Germany). In these self-heating tests, the test samples were
stacked to 8 cm height. Thermocouples (Type K, 1.0 mm thick steel mantel) were used to
record the local air exposure (muffle furnace) temperature, with thinner thermocouples
(Type K, 0.5 mm mantel) used to record temperatures in the filter material. Measures were
taken to minimize the tendency of the muffle furnace to exceed the set-point temperature.
Thus, it was possible to detect a temperature increase in the center of the filter material if
any significant self-heating was about to take place. The duration of the tests was several
hours. If significant self-heating did take place, the test was aborted shortly after.
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Based on the results of the small-scale testing, it was decided to also test complete filter
cassettes (60 cm by 60 cm and 50 cm bag depth) at elevated temperatures, which required a
much larger test volume. A 2 m3 test chamber was therefore built for this purpose, as seen
in Figure 5.
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4. Results
4.1. Initial Ignition Test Results

At first, there were no clues as to what could have ignited an unengaged gas turbine
air intake. The air intake heat exchanger was, however, engaged, i.e., supplied with hot
oil at 260 ◦C, for several hours before the fire took place. The upstream coarse bag filters,
only 40 cm from the hot oil air supply heat exchanger, had been heat exposed due to
the heated air accumulating under the air supply weather hoods. To familiarize with
the combustion properties of the coarse filter material, simple ignition tests, as shown in
Figure 6a,b, were undertaken.
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Figure 6. Initial Ignition Tests: (a) Flaming combustion of filter test specimen; (b) ignition test
demonstrating glowing glass fibers.

It was quite apparent that the filter material could sustain flaming combustion, as
seen in Figure 6a. When exposed to prolonged heating, as shown in Figure 6b, glowing
was observed due to the hot, but still rigid, glass fiber structure. This glowing could not
have been caused by the polyester, which would melt and shrink away from a heat source.
Materials with this melt and shrink behavior are known to not be involved in smoldering
combustion [8]. The glowing of rigid structures is one of the prerequisites associated with
the self-heating and smoldering of materials such as hay or organic oil-filled rags [8]. In,
e.g., cellulosic materials, the char that forms when the material is pyrolyzed represents
this solid structure. Regarding the filters, there was a possibility that the glass fiber played
the same role as a stiff material, thus preventing the polyester from shrinking away from
the heated zone. It was therefore decided to perform small-scale self-heating tests to
reveal any potential thermal runaway reactions that could eventually lead to a transition to
flaming combustion.

4.2. Small Scale Self-Heating Tests

The test specimens of new and used coarse (bag) filters (10 cm by 10 cm stacked to
8 cm height) were heated in the muffle furnace, as shown in Figure 7 (virgin filters). One
thermocouple (type K, 0.5 mm stainless steel mantel) was placed in the center of the test
specimen filter stack, and one thermocouple was placed at the same elevation 10 mm from
the edge of the stack.

The reason for placing the thermocouple 10 mm from the edge was to determine
whether the self-heating was initiated at the surface of the test specimen stack due to
the adjacent muffle furnace heating coils or at the center of the stack. It should also be
mentioned that a fine-mesh steel screen was placed between the heating coils at each side
of the muffle furnace to reduce the direct heat radiation from the heating coils to the test
specimen during temperature ramp-up to the respective holding temperatures.

In the muffle furnace, new filters showed only a minor tendency to self-heat for set-
point temperatures at, e.g., 200 ◦C to 205 ◦C, as shown in Figure 8a,b, with heating rates
of 1 K/minute and 10 K/minute, respectively. It should be noted that these temperatures
are well below the polyester melting point, which is typically in the range of 250 ◦C to
265 ◦C. The initiation of the self-heating process was slow, i.e., hours, at these set-point
temperatures, and self-heating of the center of the test specimen stack was on the order
of 5 K to 20 K, with no evidence of a runaway reaction. However, used filters at a similar
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temperature resulted in a spontaneous runway reaction. At a set-point temperature of
195 ◦C, the runaway reaction increased the temperature to above 600 ◦C, as seen in Figure 9b
while a set-point temperature of, e.g., 180 ◦C, resulted in 55 ◦C self-heating, as seen in
Figure 9a. That test was probably on the verge of a thermal runaway reaction.
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The temperature versus time development for the center thermocouple in Figure 8a,b,
i.e., the new filters, was as expected by thermal conduction/thermal diffusion. For the
used filters, Figure 9a,b, there was, however, a tendency for the center temperature, and
partly also the temperature recorded 1 cm from the edge of the test specimen, to lag the
oven temperature while below 100 ◦C. Plotting the time derivative of the temperature as a
function of the recorded temperature, i.e., dTi/dt versus Ti, for the temperatures presented
in Figure 9a, reveals a minimum at about 56 ◦C, as can be seen in Figure 10.
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During years of operation, the used filter had collected airborne biomass such as plant
leaves and pollen as well as winged creatures such as flies and mosquitos, and possibly
feathers from birds, etc. Such biomass would be expected to be hygroscopic. A very likely
reason for the used filters lagging some behind the oven temperature may simply be the
heat required to dry any accumulated biomass. This may be a hint to why the used filters
experienced a runaway reaction at lower temperatures than virgin, i.e., clean, filters.

Given sufficient oxygen supply, the volumetric heat production is generally governed
by the Arrhenius equation [8]:

.
QC ∝ A × exp

(
− EA

R × T

)
(1)

where A (1/s) is the pre-exponential parameter, EA (J/mol) is the activation energy, R
(8.314 J/K·mol) is the universal gas constant, and T (K) is the absolute temperature. The
heat loss may be expressed as a linear function of the excess temperature:

.
QL ∝ ASh (T − TS) (2)

where TS (K) is the absolute temperature of the muffle furnace, i.e., the “local ambient
temperature”, AS (m2) is the test specimen area and h (W/mK) is the convective heat
transfer coefficient.

If the heat production overcomes the heat losses, then a runaway reaction starts;
otherwise, the heat loss controls the test specimen temperature. This is schematically
presented in Figure 11 for a small and a large sample placed at holding temperatures TS1
and TS2. At set-point temperature TS1, changing the sample size from small to large reduces
the runaway temperature from Ta to Tb, or, for the small test specimen, increasing the
set-point temperature from TS1 and TS2 reduces the runaway temperature from Tb to Tc.
The large test specimen at setpoint TS2 is on the verge of giving a runaway reaction.
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Figure 11. Principle heat production (Equation (1), red line) and heat loss (Equation (2), blue
lines) as a function of temperature for a small (solid blue line) and a big (dashed blue line) test
specimen, respectively.

If the set-point temperature had been slightly higher than TS2 in Figure 11, a runaway
reaction would, at least theoretically, be expected. An experiment was therefore conducted
with set-point temperature at 205 ◦C to further investigate this phenomenon, as seen in
Figure 12. When the test specimen center temperature reached about 200 ◦C, an immediate
runaway reaction was experienced, increasing the temperatures to above 600 ◦C. Whether
this resulted in flaming combustion was, however, not known as the muffle oven was not
equipped with a window for visual inspection during testing.
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Figure 12. Temperatures recorded in used filters, 10 K/minute heating rate and setpoint 205 ◦C,
resulting in an early runaway reaction.

The small-scale tests revealed information about a significantly reduced temperature
for a runaway combustion reaction for the used filters versus the new filters. They also
revealed clues that accumulated biomass could explain the differences from the behavior of
the virgin filters. Further, the results indicated that the runaway reactions were temperature
and time dependent.
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Based on the theoretical considerations and expressions in Equations (1) and (2), as
principally analyzed in Figure 11 and practically demonstrated in Figure 12, it was clear
that testing large volumes at higher temperatures would likely give a lower set-point
temperature for potential self-heating runaway reactions than observed in the small-scale
tests. It was therefore decided to pursue tests involving full-scale filter cassettes, i.e., about
60 cm × 60 cm × 55 cm (depth). It was also decided that these tests should allow for visual
inspection since it was important to investigate whether any self-heating would result in
a slow or rapid transition to flaming combustion. Any transition to flaming combustion
was assumed to represent a fire strong enough to result in hot oil heat exchanger loss of
containment and thus involve the hot oil in the fire, as indicated in Figure 3.

4.3. Filter Cassette Self-Heating Tests

For materials with potential for self-heating, the volume-to-surface ratio is, as indi-
cated in Figure 12, important. It was therefore decided to test entire filter cassettes in a
volume sufficiently large to contain the filter cassette including a 20 cm margin to the walls.
An approximately 2 m3 thermally insulated test cabinet, where the temperature could
be gradually increased and then stabilized for several hours holding time, was therefore
made for the purpose. To observe the runaway reaction, and possibly identify a transi-
tion to flaming combustion, the test cabinet had to be equipped with a window, as seen
in Figure 13.
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played a role in self-heating of the filters and that this most likely led to the fire at the LNG 

Figure 13. Used filter bag cassette tested at 200 ◦C. Photo taken 4–5 s after a rapid transition to
flaming combustion.

The set-point temperature of the first test was 200 ◦C. During the heating, the filter
cassette tipped over and covered the thermocouple used for the temperature regulation.
The thermocouple used to record the local ambient temperature had to be used as a
control thermocouple. Therefore, no full data were monitored for this test. However,
even before the temperature had stabilized, smoke was released: 2–3 s after a conspicuous
increase in smoke production, two local smoke plumes at opposite sides of the filter cassette
simultaneously ignited. The flaming combustion spread over the filter, which was fully
engaged in flaming combustion 4–5 s after the transition to flaming combustion, as seen
in Figure 13.

Both used and virgin filters were tested. As with the small-scale tests, the used filters
experienced self-heating at lower temperatures than the new filters. This is evident when
comparing used and new coarse filters tested at 170 ◦C, i.e., Figure 14a,b.



Energies 2022, 15, 7719 11 of 16

To further investigate possible self-heating of used filter cassettes at lower tempera-
tures, a test with set-point temperature at 150 ◦C was undertaken; see Figure 15. Self-heating
to 14–15 ◦C above the local ambient temperature was observed, with an increasing trend
after a 7–8-h incubation period. Unfortunately, that test had to be terminated due to the
late hours for a test requiring supervision.
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Figure 15. Used coarse filter bag cassette tested at 150 ◦C.

A clue to why used coarse filters self-ignited at lower temperatures than new filters is
shown in Figure 16. The used filters contained accumulated pterygota. Investigating the
fraction of pterygote and other hygroscopic, e.g., plant-based materials, was not undertaken
as part of the present study. Based on the time delay in the temperature increase, along
with evidence as presented in Figure 16, it is suggested that accumulated biomass played a
role in self-heating of the filters and that this most likely led to the fire at the LNG plant.
However, catching and containing such biomass is indeed an important part of the mission
of such filters.
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Figure 16. Representative pterygota from a used coarse filter bag.

In general, flaming combustion was observed for all coarse filter tests at temperatures
at and above 160 ◦C. The transition from increasing smoke production to fully engaged
flaming combustion was rapid, i.e., within a 2–5 s, for all the observed ignitions. Temper-
atures as low as 150 ◦C initiated significant self-heating in used coarse filters. Thus, the
possibility for a runaway reaction, including transition to flaming combustion, cannot be
excluded at 150 ◦C and was confirmed for temperatures at and above 160 ◦C.

CFD modelling using the Fire Dynamics Simulator (FDS) [9,10] confirmed that tem-
peratures sufficient for initiating used filter bag self-heating was likely on a calm and sunny
day with ambient temperature 14 ◦C. This strengthens the assumption that an unengaged
air intake filter heated by the engaged heat exchanger resulted in used filter self-heating,
and transition to flaming combustion. When flaming combustion took place, the heat
exchanger pipes could not survive, i.e., broke and released 260 ◦C hot oil, changing this to
an oil fire, evidenced by the thick black smoke plume as seen in, e.g., Figure 3.

5. Discussion

The present study was undertaken to investigate the possible ignition mechanism of
the 28 September 2020 fire at the Hammerfest LNG plant. The involved gas turbine air
intake was not engaged, while the anti-ice formation heat exchanger was supplied with hot
oil at 260 ◦C. The question was whether the filter heating on a 14 ◦C, calm and sunny day
could lead to further self-heating and subsequent transition to flaming combustion.

Initial ignition tests revealed that the filters showed a solid structure that glowed upon
heating due to the embedded glass fiber matrices. This indicated that smoldering-like
self-heating could be possible. Small scale (10 cm by 10 cm by 8 cm stack height) tests were
conducted in a muffle furnace, and full-scale filter cassette tests were conducted in a heated
2 m2 cabinet with a window for observations. Temperature recordings revealed that in
both small-scale tests and filter-cassette scale tests, used filters self-heated and resulted in
flaming combustion at significantly lower temperature than virgin filters. The used filters
had accumulated biomass. It is likely that accumulated biomass, dominated by pterygota,
added combustible materials to the used filters but also likely added active surfaces for
oxidation and possible self-heating to take place at a lower temperature.

The authors have not been able to identify similar incidents where self-heating has
resulted in ignition of oil fires. Other filter ignitions described in the literature have,
e.g., involved the self-heating of carbon filters [11] or reactive chemicals [12]. The fire
investigated in the present study seems to be a particularly rare event. However, in 2015, an
HVAC air intake fire occurred at the floating production storing and offloading (FPSO) ship
Petrojarl Knarr (Teekay, now Altera Infrastructure Production, Inc.) [13,14]. The air intake
was unengaged, while a high temperature steam heat exchanger was engaged. During
testing at 180 ◦C [15], a filter self-ignited after a 10-h delay. Had this information been
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better shared, the more severe LNG plant fire involving additional hot oil could probably
have been prevented.

In the filter house at the LNG plant, where the most exposed filters were likely heated
to temperatures above 160 ◦C, one of the parameters controlling the nature of any self-
heating process, i.e., heat loss to the surroundings, was compromised. When it comes to
the initiation and developing of smoldering, there are two systems of primary interest, i.e.,
porous solid fuels, e.g., coal, polyurethane foam, tobacco and condensed-phase fuels (solid,
liquid, sludge) embedded in an inert porous matrix, e.g., tar-contaminated soil, engineered
mixtures of organic material and sand [16]. In the present case, the second of these two
systems was the most likely, i.e., the glass fibers represented a stiff inert porous matrix for a
smoldering like self-heating to take place.

In general, flaming combustion for the full-scale filters was observed for all tests
at temperatures above 160 ◦C. The transition from increasing smoke production to fully
engaged flaming combustion was rapid, i.e., within 2–5 s, for all the observed ignitions.
Even at 150 ◦C, 15 ◦C self-heating was observed. This indicates that a runaway reaction
and transition to flaming combustion cannot be excluded at temperatures as low as 150 ◦C.

Transition from smoldering to flaming combustion has been studied extensively in
recent years for, e.g., polyurethane foams [17,18], cotton [19], pine needles and wood pow-
der [20], peat [21], and coal waste dumps [22], and since smoldering results in many deaths
worldwide, much work has addressed preventing materials for initiating smoldering com-
bustion, e.g., [23]. When it comes to the combination of glass fibers and polymers, several
fire-related studies have focused on flaming combustion of glass fiber-reinforced epoxy
resins, e.g., [24–26]. These materials do not, however, behave like the porous filter bags
involved in the fire at the LNG plant when heated. Oxidation reactions and the sponta-
neous ignition of glass wool impregnated with linseed oil was previously studied [27].
This is, however, also quite different from the glass fiber polyester filters tested in the
present case study. It has not been possible to find other studies regarding porous glass
fiber matrixes carrying polymers that display self-heating or smoldering-like combustion
at elevated temperatures.

For the transition to flaming combustion observed in the full-scale filter tests in
the present study, it was not possible to determine the transition mechanisms. Several
studies [17–20] consider the inclination and porosity of tested materials to be important
for transition from smoldering to flaming combustion. In the present study, the filter
cassettes allowed for inclined and vertical surfaces between individual filter bags where
the suddenly fast-developing smoke plumes could be ignited. To study this in more depth
would require a dedicated experimental set-up, which was not within the scope of the
present study.

Since no other ignition sources could be identified, and a similar filter fire took place
at Petrojarl Knarr FPSO five years earlier [13,14], it was most likely that the engaged heat
exchanger resulted in temperatures sufficient for further delayed self-heating of the filters
at the gas turbine generator air intake. After hours of incubation, this likely resulted in a
rapid transition to flaming combustion involving all filters available for combustion. When
exposed to flames, the heat exchanger pipes disintegrated and released hot oil, which turned
the fire into an oil fire with a conspicuous black smoke plume visible from Hammerfest and
vicinity. A photo taken from the public transport fast-ferry catamaran Sørøysundekspressen,
Figure 17, shows the filter house fire and the massive depressurization flaring of the plant
to reduce the risk of fire spread to hydrocarbon containing equipment.

Self-heating has previously resulted in many fires in Norwegian barns when too
humid grass was stored in large volumes. Self-heating has also resulted in accidents in
the oil and gas industry. In 2007, a violent explosion of the content of a large atmospheric
storage tank in a purification plant for coker gasoline took place. In that case, the ignition
was most likely due to a hot surface resulting from the adsorption of volatile organic
compounds on activated filter carbon, causing self-heating and subsequent glowing carbon
bed combustion and gas phase ignition [11]. That incident injured two workers. It appears
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that self-heating as a possible ignition source has not received sufficient focus in Norwegian
oil and gas industries.

There has been much focus on preventing and mitigating fires in hydrocarbon-carrying
pipes and equipment, and research on, e.g., active [28,29] and passive [30,31] fire protection
of these systems. However, in recent years, several incidents in Norway have struck the
utility systems, e.g., a high-voltage room quasi-smoke gas explosion [32] and a major
fire in a steam-powered turbine generator [33] as well as the fire analyzed in the present
study [4,5]. It may be concluded that the utility systems need more risk attention.

Simple measures could often significantly reduce the consequences of the developing
incidents. A temperature alarm being triggered when exceeding the 70 ◦C design tempera-
ture [7] and/or better sharing of knowledge of an air intake filter fire, like the one at, e.g.,
Petrojarl Knarr FPSO [13,14] in the North Sea, could have prevented the fire at Hammerfest
LNG. Sharing incident information may help prevent similar future air intake fires by, e.g.,
understanding possible self-heating mechanisms and the influence of accumulated biomass,
installing warning systems for excessive filter house temperature, improving operation
procedures, etc. Improved emergency training in cooperation with the fire brigades [34,35]
could also have minimized the consequences of the fire. For further underlying causes
of the LNG plant fire ignition mechanism analyzed in the present study, and evaluations
regarding the emergency operation, interested readers are referred to the openly shared
company investigation report [4] and the PSA report [5].
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Better sharing of lessons learned may help preventing future incidents. Sharing
the findings from the present study may help industries using air intake filters with ice
prevention heat exchangers to become more aware of the possible associated fire risk,
allowing for systems warning about possible elevated temperatures, early phase self-
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heating and/or measures to reduce the impact of possible fires to possibly be installed to
manage potential air intake fire risks.

6. Conclusions

The present study shows that glass fibers may represent the rigid structure necessary
for glass fiber–polyester filters to initiate self-heating at elevated temperatures, i.e., like
cellulose-based materials. It was also shown that used filters with accumulated biomass,
i.e., mainly pterygota, tended to self-heat at 20 ◦C lower temperatures than virgin filters. At
160 ◦C, several-hours-delayed self-heating suddenly resulted in increased smoke produc-
tion and a rapid transition to flaming combustion. These findings may explain the ignition
mechanism of a severe fire at an LNG facility in Norway September 2020. In a calm sunny
day of ambient temperature 14 ◦C, an unengaged air intake was supplied hot oil at 260 ◦C
to its heat exchanger, heating the air intake filters to above 160 ◦C. Several hours later, a
sudden transition to flaming combustion occurred. The burning filters damaged the heat
exchanger piping, fueling the fire with hot oil and thus, significantly increasing the fire
severity. Due to firewater damages, the plant was out of operation for more than 1.5 years.
Better sharing of lessons learned may help prevent similar incidents in the future.
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