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Abstract
Introduction Comprehensive lipoprotein profiling using proton nuclear magnetic resonance (NMR) spectroscopy of serum 
represents an alternative to the homeostatic model assessment of insulin resistance (HOMA-IR). Both adiposity and physi-
cal (in)activity associate to insulin resistance, but quantification of the influence of these two lifestyle related factors on the 
association pattern of HOMA-IR to lipoproteins suffers from lack of appropriate methods to handle multicollinear covariates.
Objectives We aimed at (i) developing an approach for assessment and adjustment of the influence of multicollinear and 
even linear dependent covariates on regression models, and (ii) to use this approach to examine the influence of adiposity 
and physical activity on the association pattern between HOMA-IR and the lipoprotein profile.
Methods For 841 children, lipoprotein profiles were obtained from serum proton NMR and physical activity (PA) intensity 
profiles from accelerometry. Adiposity was measured as body mass index, the ratio of waist circumference to height, and 
skinfold thickness. Target projections were used to assess and isolate the influence of adiposity and PA on the association 
pattern of HOMA-IR to the lipoproteins.
Results Adiposity explained just over 50% of the association pattern of HOMA-IR to the lipoproteins with strongest influ-
ence on high-density lipoprotein features. The influence of PA was mainly attributed to a strong inverse association between 
adiposity and moderate and high-intensity physical activity.
Conclusion The presented covariate projection approach to obtain net association patterns, made it possible to quantify 
and interpret the influence of adiposity and physical (in)activity on the association pattern of HOMA-IR to the lipoprotein 
features.

Keywords Insulin resistance · HOMA · Lipoprotein subclasses · Adiposity · Physical activity · Covariate projections

1 Introduction

The homeostatic model assessment of insulin resistance 
(HOMA-IR) (Matthews et al., 1985; Muniyappa et al., 2007) 
is derived from fasting insulin and glucose. This measure 
can be obtained from frozen blood samples and is therefore 
commonly used for assessing insulin resistance (IR) in epi-
demiological studies. Many lipoprotein subclasses correlate 
to IR (Garvey et al., 2003; Goff et al., 2005). Comprehensive 
lipoprotein profiles can be derived from high-throughput 
proton nuclear magnetic resonance (NMR) spectroscopy 
of blood samples. Thus, Shalaurova et al. (2014) derived 
a lipoprotein IR index from the associations of HOMA-IR 
to the concentrations of large very-low density lipoproteins 
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(VLDL), small low-density lipoproteins (LDL) and large 
high-density lipoprotein (HDL) particles, and the average 
size of VLDL, LDL, and HDL particles. Their lipoprotein 
IR index was based on a cohort of almost 5000 nondiabetic 
subjects and independently validated in a cohort consisting 
of insulin sensitive, insulin resistant and untreated diabetic 
subjects using the glucose disposal rates (GDRs) (Muni-
yappa et al., 2007).

Adiposity associates with both lipoproteins and IR and is 
therefore a covariate influencing this association. For exam-
ple, Okuma et al. (2013) observed an inverse association 
of visceral obesity and HOMA-IR with an HDL subclass 
pattern of very large, large, and intermediate HDL parti-
cles in Japanese schoolchildren. Physical activity (PA) also 
associates both with lipoproteins and IR (Krekoukiaa et al., 
2007; Phillips et al., 2018). Association patterns between PA 
descriptors and lipoprotein profiles from exercise interven-
tions studies (Kraus et al., 2002; Sarzynski et al., 2015) and 
observational studies of associations between measures of 
leisure-time PA and lipoproteins (Bell et al., 2018; Kujala 
et al., 2013) display the same overall picture: A positive 
association of PA to concentration of HDL, large HDL and 
large LDL particles, average size of HDL and LDL par-
ticles, and, an inverse association of PA to concentration 
of lipoprotein triglycerides (TG), VLDL, large VLDL and 
small LDL particles, and the average size of VLDL parti-
cles. Thus, lifestyle factors, as reflected in adiposity and PA, 
influence on the associations between lipoproteins and IR.

While the influence of adiposity and PA on the associa-
tion pattern between HOMA-IR and the lipoprotein profile 
has been qualitative inferred, quantitative assessment is 
limited. This is partly due to the difficulties posed by the 
inverse relationship of PA and adiposity to the lipoprotein 
profile (Rajalahti et al., 2021a), which imply that physical 
inactivity correlates to adiposity, and, accordingly, that it 
is difficult to separate their influence on the association 
pattern of IR with the lipoproteins. But quantification has 
also been hampered by the lack of methods to handle lin-
early dependent high-resolution PA descriptors derived 
from accelerometric measurements (Aadland et al., 2019). 
Recently, we developed a strategy to assess the independent 
and joint influence of multicollinear descriptors of adipos-
ity and PA on the association pattern of aerobic fitness to 
lipoproteins. We decomposed the multivariate PA and adi-
posity descriptors by principal component analysis (PCA) 
(Bro & Smilde, 2014) and projected both the outcome and 
the explanatory variables on the principal component score 
vectors to obtain net association patterns (Rajalahti, 2021a, 
2021b). A drawback of this approach is that interpretation 
is complicated by the need for many principal components 
to present a covariate descriptor. An alternative approach 
would be to regress the outcome on the multicollinear PA 
and adiposity descriptors using partial least squares (PLS) 

(Wold et al., 1984) followed by target projection (Kvalheim 
& Karstang, 1989; Rajalahti & Kvalheim, 2011) to obtain 
single predictive score vectors for PA and adiposity and pro-
ject on the target score vectors. This approach facilitates the 
interpretation of the influence of covariates. In this paper, we 
aim at developing this approach to obtain “net” association 
patterns to assess quantitively the influence of adiposity and 
PA on the association pattern between HOMA-IR and the 
lipoprotein profile.

2  Assessment and adjustment for covariates 
to obtain net associations

We provide a general approach to investigate how the asso-
ciation pattern between an outcome variable y and a set of 
explanatory variables, {x1, x2, …, xM} is influenced by and 
can be adjusted for covariates, {z1, z2, …, zM}. Such covari-
ates can be, but are not limited to, confounders affecting 
the association of the outcome to the explanatory variables.

The term net association pattern is used to imply the pat-
tern obtained after removal of some or all covariates. The 
vector y contains the measurements for y and the matrices X 
and Z, the corresponding measurements for the x-variables 
and z-variables, respectively.

For ordinary multiple linear regression (MLR) analysis, 
explanatory variables (including covariates) are mutually 
adjusted by their inclusion in a joint statistical model, given 
that this model allows for interpretation of the explanatory 
variables´ independent associations with the outcome. How-
ever, this procedure is not suited for multicollinear descrip-
tors, where associations are not independent, but collinear. 
To handle this situation, adjustment for covariates can be 
accomplished by calculating a regression model between 
the outcome and the covariates:

The outcome is adjusted for the covariates by using the 
residuals ey in further analysis (Aadland et al., 2019).

Alternatively, the explanatory variables can be adjusted 
for the covariates. For each explanatory variable xi, one 
calculates

and the residuals ex,i are used as explanatory variables in 
subsequent analyses.

Traditionally, MLR is used to calculate the regression 
vectors from Eqs. (1a) and (1b) needed to adjust either the 
outcome, the explanatory variables or both for covariates. If 
the covariates possess linear dependency, the calculation of 
a Moore–Penrose inverse (Rao & Mitra, 1971) represents a 

(1a)� = ��Z,y + �y

(1b)�i = ��Z,xi + �x,i{i = 1, 2, … ,M}
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solution to relate the covariates to the outcome or the explan-
atory variables:

Superscript—implies the Moore–Penrose inverse, i.e. 
Z− = (ZTZ)−1ZT. As shown by Rajalahti et  al., (2021a, 
2021b), PCA can be used for handling the situation posed 
by linear dependent covariates but other projection meth-
ods such as partial least (PLS) are available. We will now 
explore some of the possibilities.

By using a general projection algorithm (Kvalheim, 1987; 
Rajalahti & Kvalheim, 2011), it is possible to eliminate 
the influence of covariates on both the outcome y and the 
explanatory variables X simultaneously. For didactic rea-
sons, we first consider the trivial case for a single covariate 
z. Collect the column-centred vectors z and y for the covari-
ate and the outcome, respectively, and the column-centred 
matrix X in the augmented matrix Xaug = [z y X].

A covariate projection (CP) to assess and adjust for a 
single covariate consists of four steps:

 i. define the CP through a weight vector wCP with all ele-
ments equal to zero except the element corresponding 
to the position of the covariate in Xaug, i.e., the first 
element of wCP which is given the value one.

 ii. calculate the CP score vector tCP = XaugwCP. For the 
case of a single covariate tCP = z.

 iii. calculate the CP loading vector pCP
T = tCP

TXaug/
(tCP

TtCP)
 iv. obtain the adjusted augmented residual matrix as 

Eaug = Xaug – tCPpCP
T

The column in the residual matrix Eaug corresponding to 
the outcome variable is ey = y − y(zTy)/(zTz) which is exactly 
the residuals of y obtained by regressing the outcome on the 
covariate. Similarly, the residual vectors of the x-variables 
after CP on the covariate are ex,i = xi − xi(zTxi)/(zTz) for 
i = 1,2, …,M. The column in Eaug representing the residu-
als of the covariate after CP, is a column vector where all 
elements are zero, ez = z − z(zTz)/(zTz) = 0. Thus, for a sin-
gle covariate, the residual matrix Eaug contains the adjusted 
(“net”) outcome and explanatory variables and a column of 
zeros for the covariate.

Generalization to several covariates not being linearly 
dependent, is straightforward: Add one column for each covar-
iate to obtain the matrix [Z y X]. After CP for the first covari-
ate, repeat the CP procedure on the resulting residual matrices 
Eaug. This procedure continues for the updated residual matrix 
resulting from repeating steps i–iv in the algorithm above until 
every covariate has been used in the CP algorithm. After this 

(2a)�Z,y = �−�

(2b)�Z,X = �−�

procedure, the elements in Eaug are zero for all the covariates 
and contain adjusted outcome and explanatory variables from 
which we can calculate net association patterns between out-
come and explanatory variables by regression.

Removal of the subspace spanned by the covariates from 
either the outcome variable or the explanatory variables lead to 
the same regression model in the subsequent regression of the 
outcome on the explanatory variables. However, as discussed 
below, it is better to adjust both outcome and explanatory 
variables jointly using the projection algorithm. This allows 
interpretation and visualization of the influence of covariates 
within a “global” joint model composed of two orthogonal 
parts: One part describing the variance pattern of the outcome 
and the explanatory variables shared with the covariates, and 
another part describing the net association pattern between the 
adjusted outcome and explanatory variables.

In case of linear dependent covariates, we cannot use the 
CP algorithm directly but proceed via the calculation of a 
latent variable model representing the covariates. Recently, we 
decomposed strongly multicollinear and even linear dependent 
covariates using PCA and used the orthogonal principal score 
vectors in the CP algorithm to isolate the influence of these 
covariates (Rajalahti et al., 2021a, 2021b). Another possibility 
is to model the relation between the outcome and the covari-
ates by PLS and then use the PLS score vectors in the CP 
algorithm. The drawback for both PCA and PLS is that many 
latent variables are usually needed to describe a multivariate 
covariate. The physical activity descriptor in our application 
represents an example of this situation. This makes interpre-
tation and visualization difficult. To circumvent the problem, 
we therefore propose to post-process the validated PLS model 
between an outcome and a multivariate covariate using target 
projection (Kvalheim & Karstang, 1989; Rajalahti & Kval-
heim, 2011). By this procedure a single predictive target com-
ponent is obtained that contains the predictive information in 
the PLS model. The general projection algorithm provides 
the target component for the multivariate covariate a by using 
the normalized regression vector bZa,y as weight vector, i.e., 
wTP,a = bZa,y/‖bZa,y‖. The target scores maximally correlate to 
the predicted outcome. Thus, tTP = ZawTP = ZabZa,y/‖bZa,y‖. By 
projecting Za on the target score vector, the target loadings 
pTP,a = Za

TtTP,a /(tTP,a
TtTP,a) are obtained and the target model 

for the multivariate covariate can be formulated:

The standardized score vector tTP,a is subsequently used 
in the CP algorithm to adjust outcome and explanatory 
variables for the multivariate covariate a. This simplifies 

(3a)�a = �TP,a�
T
TP,a

+ �TP,a

(3b)� = �TP,a
‖‖
‖
�Za,y

‖‖
‖
+ �Za,y
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interpretation compared to using many principal or PLS 
components for describing linear dependent covariates.

Note that although all covariates can be incorporated in 
a single PLS model and thus be assessed and adjusted for 
jointly by a single target projection model, we partition the 
covariates into groups and use the CP algorithm stepwise 
to be able to separate the influence of the different groups 
of covariates on the association pattern. Thus, the multi-
variate physical activity and adiposity covariates as well as 
the univariate covariates age and sex are treated separately 
in the CP algorithm in the application in this work. This 
approach enables interpretation of the association patterns of 
the outcome to the covariates together with the net (residual) 
variance in the explanatory variables and the outcome in a 
variance plot (Rajalahti et al., 2021a).

We include covariates, outcome, explanatory variables 
and target score vectors representing multivariate covariates 
in the variance plot for visualization and interpretation of the 
partition of variance for all variables. The decomposition 
can be written as:

The matrix TZ contains standardized target score vec-
tors for the multivariate covariates, while E[Tz,Z,y,X] contains 
the net values of [TZZyX] after adjusting for the covariates. 
The net values for the outcome, ynet, and the explanatory 
variables, Xnet, in this matrix can subsequently be used to 
obtain the net associations pattern between outcome and 
explanatory variables by PLS regression followed by post-
processing to obtain a single target component displaying 
the predictive association pattern:

From Eqs. (5a) and (5b), selectivity ratios (SRs) 
(Rajalahti et al., 2009) can be calculated quantifying the 
predictive information in the x-variables. SR for a varia-
ble is defined as the ratio of explained variance (by the TP 
model) to residual variance:

The SRs can be used for interpretation and visualization 
in an SR plot. Such plots display the overall predictive asso-
ciation patterns between outcome and explanatory variables 
and rank the explanatory variables according to predictive 
importance. As shown in the result section, SR plots can 
be built from models during various stages of adjustment 
to provide quantitative information about the influence of 
covariates on the association pattern.

(4)[�Z���] =
∑

�CP,a�
T
CP,a

+ �[Tz,Z,y,X]

(5a)�net = �TP,net�
T
TP,net

+ �TP,net

(5b)�net = �TP,net
‖‖�net‖‖ + �y,net

(6)SRi =
‖‖�TP,netpi, TP,net‖‖

2
∕‖‖�i,TP,net‖‖

2
{i = 1, 2, … ,M}

3  Materials and methods

3.1  Population

We used baseline data for children participating in the Active 
Smarter Kids study in this work (Resaland et al., 2015). 
1129 5th graders (94% of those invited) from 57 schools 
in Western Norway participated in the study. Of these, 841 
were included in the present work. The inclusion criterion 
was that the children had complete and valid data for all 
the variables described below, i.e., the lipoprotein profile, 
insulin, glucose, the physical activity intensity spectrum, 
and three measures of adiposity.

3.2  Blood samples

Overnight fastening serum samples were obtained and stored 
at − 80 °C according to a standard protocol (Lin et al., 2016) 
and shipped on dry ice to the laboratories for the blood 
analyses.

3.3  HOMA‑IR

The Endocrine Laboratory of the VU University Medical 
Center (VUmc; Amsterdam, the Netherlands) measured 
insulin and glucose. HOMA-IR was calculated as fasten-
ing serum insulin times fasting serum glucose divided by 
22.5 (Matthews et al., 1985). The product of fasting plasma 
insulin of 5 μU/ml and normal fasting plasma glucose of 
4.5 mmol/l is 22.5. This value represents an individual with 
“normal” insulin sensitivity and a HOMA-IR score equal to 
1 (Muniyappa et al., 2007).

3.4  Lipoproteins

The serum lipoprotein profile was predicted from proton 
NMR spectra as described by Rajalahti et al. (2021a, 2021b). 
The profile is characterized by 26 measures: Concentrations 
of total cholesterol (TC), total triglyceride (TG), chylomi-
crons (CM), very low density lipoproteins (VLDL), low den-
sity lipoproteins (LDL), high density lipoproteins (HDL), 
two subclasses of CM (CM-1 and CM-2), five subclasses 
of VLDL (VLDL-L1, VLDL-L2, VLDL-L3, VLDL-M, 
VLDL-S), four subclasses of LDL (LDL-L, LDL-M, LDL-
S, LDL-VS), six subclasses of HDL (HDL-VL1, HDL-VL2, 
HDL-L, HDL-M, HDL-S and HDL-VS), and the average 
particle size of VLDL, LDL and HDL subclasses. The 
abbreviations VL, L, M, S and VS imply very large, large, 
medium, small, and very small particles. TG and cholesterol 
lipoprotein features were separately and independently cal-
culated from in-house developed and validated PLS models 
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with reference values from liquid chromatography (Oka-
zaki et al., 2005) for all subclasses, and then combined to 
obtain features representing the total concentration for each 
subclass of lipoproteins. Fractions of TG and cholesterol 
subclasses were used to calculate average particle size for 
VLDL, LDL and HDL.

3.5  Adiposity measures

We used three measures of adiposity: Body mass index 
(BMI) calculated as mass divided by the squared height (kg/
m2), waist circumference to height (WC/H), and skinfold 
thicknesses (sum of biceps, triceps, subscapular, and suprail-
iac thicknesses). Details of measurements can be found in 
Rajalahti et al., (2021a, 2021b).

3.6  Physical activity data

PA was measured using the ActiGraph GT3X + accelerom-
eter (Pensacola, FL, USA) (John & Freedson, 2012) worn 
at the right hip over seven consecutive days, except during 
water activities (swimming, showering) or while sleeping. 
We derived a PA descriptor of time (minute/day) spent in 
23 intensity intervals from the measurements on the verti-
cal axis to obtain a PA intensity spectrum (Aadland et al., 
2019). The intensity intervals used for the PA descrip-
tor were 0–99, 100–249, 250–499, 500–999, 1000–1499, 
1500–1999, 2000–2499, 2500–2999, 3000–3499, 
3500–3999, 4000–4499, 4500–4999, 5000–5499, 
5500–5999, 6000–6499, 6500–6999, 7000–7499, 
7500–7999, 8000–8499, 8500–8999, 9000–9499, 
9500–9999 and ≥ 10,000 counts per minute (cpm).

3.7  Pretreatment of data

The repeated Monte-Carlo resampling method used to vali-
date the number of PLS components with predictive infor-
mation produces more stable models if the variables are 
approximately normally distributed (Kvalheim et al., 2018). 
All variables, except age and sex, were thus log-transformed. 
After log transformation, normal probability plots showed 
that only TG, CM, VLDL and a few CM and VLDL sub-
classes deviated from normal distribution. The data are listed 
as Suppl. Mat. 1.

Prior to further statistical analysis, the data were mean-
centered and standardized to unit variance. Also TP score 
vectors were standardized.

3.8  Procedure for deriving “net” data

It is well-known that age and sex influence the lipoproteins 
(Rajalahti et al., 2016). Therefore, all the variables were 
adjusted for these two confounders using the CP algorithm. 

With the purpose of revealing the influence of adiposity and 
PA or both on the associations of lipoproteins (explanatory 
variables) to HOMA-IR (outcome), additional projections 
were performed for these covariates. The three adipos-
ity measures were strongly multicollinear, while the PA 
variables were linear dependent. Therefore, projections for 
PA and adiposity to obtain net HOMA-IR and lipoprotein 
variables were performed by using the target component 
score vectors in the covariate projection procedure. Sepa-
rate PLS models between HOMA-IR and the adiposity 
and PA descriptors were built for an increasing number of 
components using repeated Monte Carlo resampling with 
1000 repetitions leaving out 50% of the data for predictions. 
The number of predictive PLS components was selected by 
locating the minimum of the root-median-squared-error-of-
prediction for the PLS models and additionally requiring that 
the median prediction error for the model should be signifi-
cantly lower than for the model with one PLS component 
less (Kvalheim et al., 2018). Target projections for the vali-
dated PLS models showed that the target scores explained 
42.6% and 79.2% of the total variance in PA and adiposity 
variables, respectively, and 11.4 and 27.7% in HOMA-IR 
for PA and adiposity, respectively. The standardized target 
scores were subsequently used in the projection algorithm 
to assess and adjust for the influence of adiposity and PA 
individually and jointly on the net associations. As shown 
above, target projection embraces all the predictive informa-
tion in the validated PLS regression models.

3.9  Modelling and visualization of “net” association 
patterns

We calculated the net association patterns of HOMA-IR to 
the lipoprotein features in three steps:

1. PLS regression with 1000 repetitions of Monte Carlo 
resampling to establish predictive models of HOMA-IR 
to the lipoproteins using the same model selection pro-
cedure as above for relating HOMA-IR to the covariates 
adiposity and PA.

2. Target projection to quantify and detach the influence 
of adiposity or PA or both on the association pattern of 
HOMA-IR to the lipoproteins.

3. Transformation of these patterns into selectivity ratios 
(Rajalahti et al., 2009) to interpret the influence of PA 
and adiposity on the association pattern of HOMA-IR 
to the lipoproteins.



 O. M. Kvalheim et al.

1 3

72 Page 6 of 10

4  Results and discussion

Table  1 summarizes features of the regression models 
calculated for the association between HOMA-IR and 
lipoproteins.

Data adjusted for (a) age and sex, (b) age, sex, and adipos-
ity, (c) age, sex, and PA, and (d) age, sex, adiposity, and PA.

Since the age variation is narrow and prepubertal boys 
and girls have similar lipoprotein profiles (Rajalahti et al., 
2016), the confounders age and sex have only small effects 
on the variances in HOMA-IR and lipoproteins (Table 1, 
first row) and thus on the net association pattern between 
HOMA-IR and lipoproteins. The corresponding SR plot of 
the model obtained after adjustment for these confound-
ers (Fig. 1a) displays a strong positive association pattern 

Table 1  Remaining variance 
and explained variances of 
HOMA-IR and lipoproteins 
after adjustments

a Percent remaining variance of total variance in HOMA-IR and lipoproteins (LP) after adjustments
b Percent explained variance in lipoproteins (LP) and HOMA-IR of their original total variance before 
adjustments

Variables adjusted for Varadj 
(HOMA-IR)a

Varadj (LP)a R2LPb R2HOMAb SR plot

Age and sex 96.7 98.6 35.9 20.2 Figure 1a
Age, sex, and adiposity 72.2 91.8 28.0 9.8 Figure 1b
Age, sex, and PA 87.4 95.5 32.8 14.4 Figure 1c
Age, sex, adiposity, and PA 70.7 91.0 27.2 8.9 Figure 1d
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Fig. 1  Selectivity ratio plots of regression models using HOMA-IR as outcome and the 26 lipoprotein features as explanatory variables
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between HOMA-IR and the triglyceride rich lipoprotein 
classes of CM and VLDL and the average VLDL particle 
size. Moderate negative associations are observed between 
HOMA-IR and HDL, the HDL subclasses of very large, 
large, and medium size particles, and the average size of 
HDL particles. No associations are observed with the sub-
class VLDL-S and the LDL features. Overall, this pattern 
resembles previous findings for adiposity in children (Resa-
land et al., 2018) and is almost inversely associated with 
the pattern we found for PA (Rajalahti et al., 2021a) and 
aerobic fitness (Rajalahti et al., 2021b). The inverse asso-
ciations of HOMA-IR to large and very large HDL particles 
coincide with the findings of Okuma et al. (2013) in Japa-
nese schoolchildren for the association of visceral obesity 
to HDL subclasses. Furthermore, the inverse association 
between HOMA-IR and HDL echoes the finding of Blackett 
et al. (2005) of obesity-related lowering of HDL cholesterol 
already present in 5–9 years old Cherokee Indian children. 
Our results also mostly comply with the association pattern 
to HOMA-IR and BMI in 61 obese adolescents observed 
by Slyper et al. (2014). The patterns agree for TG, VLDL 
and large VLDL particles and HDL and their subclasses 
but deviate for LDL and VLDL-S particles, the latter which 
are often termed intermediate-density lipoproteins (IDL). 
The discrepancies may be due to differences in age group 
between the two studies since the lipoprotein pattern changes 
during puberty (Dai et al., 2009; Freedman et al., 2004; 
Labarthe et al., 2003; Stozicky et al., 1991). In summary, the 
association pattern found in our cohort of children mainly 
agrees with previous investigations for children, but deviates 
for LDL features observed for adolescents, but this may be 
attributed to the impact of puberty on the lipoprotein profile.

Adjustment by adiposity target scores in the projection 
algorithm reduces the original variance in HOMA-IR and 
lipoprotein features by 24.5% and 6.8%, respectively, with an 
accompanying halving of the variance explained in HOMA-
IR (Table 1, row 2). The corresponding SR plot (Fig. 1b) 
shows that this is due to a strong weakening of the inverse 
associations of HOMA-IR to the HDL features and weak-
ening of the positive associations to the VLDL features and 
total TG.

Adjustment instead by PA target scores reduces the 
variance in HOMA-IR and lipoproteins by 9.3% and 3.1%, 
respectively (Table 1, row 3). This is less than half of what 
was observed for adiposity. The reduction in explained vari-
ance of HOMA-IR is also approx. half of that observed for 
adjustment by adiposity leading to much smaller changes in 
the association pattern (Fig. 1c).

Furthermore, very little additional variance is removed 
from HOMA-IR and the lipoproteins by adjusting for 
both adiposity and PA (Fig. 1d) compared to adjustment 
for only adiposity (Fig. 1b) and the association pattern is 
only marginally affected. Thus, the influence of adiposity 

on the association pattern is much stronger than that for 
PA. The much weaker influence of PA on the association 
pattern after first adjusting for adiposity compared to the 
result observed without adjusting for adiposity suggests a 
strong relation between adiposity and PA. This was veri-
fied by calculating a PLS model between the adiposity 
target component and the PA descriptor consisting of 23 
intensity ranges. The model explained 23.7% of the vari-
ance in adiposity and the SR plot (not shown) revealed an 
increasingly stronger inverse association of adiposity to 
PA intensity peaking around 7500–8000 cpm. Thus, PA 
is indirectly partially adjusted for when we adjust for adi-
posity as also indicated by previous findings in this cohort 
(Rajalahti et al., 2021a).

Other methods for variable importance are available to 
study association patterns and comparative studies have 
been performed (Farrés et al., 2015; Mehmood et al., 2020). 
Variable importance in projection (VIP) is a commonly 
used method to study metabolomics association patterns. 
For comparison, we have included VIP plots correspond-
ing to the SR plots (Supplementary Material 2). The VIP 
plots show the same strong weakening of the associations 
of HOMA-IR to the HDL features as the SR plots accom-
panying adjustment for adiposity target scores. However, 
the weakening in the associations of HOMA-IR to TG and 
the triglyceride-rich lipoproteins visualized in the SR plots 
(Fig. 1b, d) is not observed in the corresponding VIP plots. 
Thus, for TG and the triglyceride-rich lipoproteins, the VIP 
plots do not comply to previous investigations (Slyper et al., 
2014) and our result.

4.1  Interpretation using variance plot

We have previously shown how variance plots can be used to 
visualize the influence of covariates on outcomes, explana-
tory variables, and each other (Rajalahti et al., 2021a). Fig-
ure 2 shows the variance for multiple covariate projections.

Covariate projections were done in the following order: 
Age, sex, adiposity, and PA. Color code: (i) age (yellow), (ii) 
sex (red), (iii) adiposity (black), and (iv) physical activity 
(blue). Residual variances after projections, which can be 
used for further modelling of net association patterns, are 
shown in grey. Projections for adiposity and PA used the 
target component scores which are also shown.

Due to narrow age range, age shares almost no variance 
with the other variables, while sex shares variance with the 
adiposity target component, skinfold, and PA with a maxi-
mum around 5500–6000 cpm. This is attributed to less PA 
among girls than boys in the analyzed cohort. The adiposity 
target component shares a variance pattern with the lipo-
proteins which was previously observed (Rajalahti et al., 
2021a). The variance pattern shared between adiposity and 
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PA complies with our findings above with increasing asso-
ciation with higher intensity PA. We also observe strong 
associations between adiposity and HOMA-IR whereas 
association of PA to HOMA-IR and lipoproteins are minor 
after adjustment by adiposity.

4.2  Possible impact of residual covariate variance 
on models

The variance plot shows that some adiposity measures and 
PA variables have considerable residual variance when 
using target components for covariate projections. To 
explore the possible impact of residual covariate variance 
in the regression model, we modelled HOMA-IR for the 
net data including the three adiposity measures and 23 

Fig. 2  Variance plot showing the influence of covariates on outcome and explanatory variables
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Fig. 3  Selectivity ratio plot for HOMA-IR with adjusted variables included as explanatory variables



An approach to assess and adjust for the influence of multicollinear covariates on metabolomics…

1 3

Page 9 of 10 72

PA variables together with the lipoproteins as explanatory 
variables. The SR plot (Fig. 3) displays neither significant 
associations to the adiposity measures BMI, WC/H, or 
skinfold nor to the PA variables. Furthermore, the asso-
ciation pattern of HOMA-IR to the lipoproteins is identical 
(Fig. 1d) to with explained variance in HOMA-IR being 
9.0% compared to 8.9% (Table 1) for the corresponding 
model not including the adjusted adiposity and PA vari-
ables. This shows that our approach removes all the pre-
dictive information in the relation between outcome and 
covariates.

SR plot of regression model with HOMA-IR as out-
come and the lipoprotein features, adiposity variables and 
the PA descriptor as explanatory variables. Data were 
adjusted for age, sex, adiposity, and PA prior to modelling.

5  Conclusion

We developed a general approach to quantify and inter-
pret the influence of strongly multicollinear and even 
linear dependent covariates on metabolomics association 
patterns explored by regression modelling. The method 
adjusts outcome and explanatory variables for covariates 
simultaneously and works irrespective of the number of 
covariates and their degree of mutual collinearity. Further-
more, our approach treats covariates as an integrated part 
of the model and thus acknowledges the complementary 
and important information supplied by these variables.

The present application using target projections to 
examine the influence of lifestyle related factors on the 
association pattern between HOMA-IR and a compre-
hensive lipoprotein profile, illustrates how the impact of 
covariates on association patterns can be quantified and 
interpreted. Their variance patterns provided additional 
insight into important aspects of the data and allowed for 
improved interpretation of etiology. Covariates should 
therefore be given a thorough examination in the model-
ling process.

Our modelling procedure incorporates validation and 
visualization tools to assure predictability and facilitate 
interpretation of association patterns.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 022- 01931-6.
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