
EFFICIENT TECHNIQUES AND TOOLS FOR
SOFTWARE TESTING BASED ON TRACES

AND COVERAGE ANALYSIS

Doctoral Dissertation by

Faustin AHISHAKIYE

Thesis submitted for
the degree of Philosophiae Doctor (PhD)

in
Computer Science:

Software Engineering, Sensor Networks and Engineering Computing

Department of Computer Science,
Electrical Engineering and Mathematical Sciences

Faculty of Engineering and Science

Western Norway University of Applied Sciences

June 1, 2022

©Faustin AHISHAKIYE, 2022

The material in this report is covered by copyright law.

Series of dissertation submitted to
the Faculty of Engineering and Science,
Western Norway University of Applied Sciences.

ISBN: 978-82-93677-91-8
ISSN: 2535-8146

Author: Faustin AHISHAKIYE
Title: Efficient Techniques and Tools for Software Testing based on
Traces and Coverage Analysis

Printed production:
Molvik Grafisk / Western Norway University of Applied Science

Bergen, Norway, 2022

TO MY WIFE, ALICE TUYISENGE,
TO MY SON, JAYDEN AHISON UHIRIWE,

TO MY FAMILY,

for endlessly loving, caring, supporting, and encouraging me.

PREFACE

The author of this thesis has been employed as a Ph.D. research fellow at the Department
of Computer Science, Electrical Engineering and Mathematical Science in the Faculty of
Engineering and Science at Western Norway University of Applied Sciences, Norway (HVL).

The author has been enrolled into the PhD programme in the software engineering
group of the Computer Science: Software Engineering, Sensor Networks and
Engineering Computing with specialization in Software Engineering under supervision
of Prof. Volker Stolz and Prof. Lars Michael Kristensen.

The research presented in this thesis has been accomplished in cooperation with
the Institute for Software Engineering and Programming Languages at University of
Lübeck, Germany through the European Horizon 2020 project COEMS1.

This thesis is organized in two parts. Part I presents an overview and introduction
to the research field of efficient techniques and tools for software testing based on
traces and coverage analysis. It gives details on Modified Condition Decision Coverage
(MC/DC) and its application on design level models. We describe our approaches
for data races detection and test cases generation satisfying MC/DC. In addition, it
provides a discussion of the research methodology used, a summary of the results
obtained, the state-of-the-art in the form of related work, and a discussion of the
research contributions and possible extensions of our work in the form of future work.
Part II consists of a collection of published and peer-reviewed research articles and
submitted papers.

Paper A Faustin Ahishakiye, Svetlana Jakšić, Felix Dino Lange, Volker Stolz, Malte
Schmitz, Daniel Thoma: Non-intrusive MC/DC measurement based on traces.
In Proceedings of the 13th International Symposium on Theoretical Aspects
of Software Engineering (TASE 2019), Guilin, China, pages 86-92, Jul. 2019,
https://doi.org/10.1109/TASE.2019.00-15.

Paper B Faustin Ahishakiye, José Ignacio Requeno Jarabo, Violet Ka I Pun, Volker Stolz:
Hardware-Assisted Online Data Race Detection, In Proceedings of the Formal
Methods in Outer Space. LNCS, volume 13065, Springer, Cham, Rhodes,
Greece, October 2021, https://doi.org/10.1007/978-3-030-87348-6_6.

Paper C Faustin Ahishakiye, José Ignacio Requeno Jarabo, Lars Michael Kristensen,
Volker Stolz: MC/DC Test Cases Generation based on BDDs, In Proceedings
of the Symposium on Dependable Software Engineering Theories, Tools and
Applications, (SETTA 2021), LNCS, volume 13071, Beĳing, China, November
2021, https://doi.org/10.1007/978-3-030-91265-9_10

Paper D Faustin Ahishakiye, José Ignacio Requeno Jarabo, Volker Stolz, Lars Michael
Kristensen: Coverage Visualization and Analysis of Net Inscriptions in Coloured
Petri Net Models. Journal of Innovations in Systems and Software Engineering
(ISSE), March, 2022 (Submitted, under review).

1https://www.coems.eu/

https://doi.org/10.1109/TASE.2019.00-15
https://doi.org/10.1007/978-3-030-87348-6_6
https://doi.org/10.1007/978-3-030-91265-9_10
https://www.coems.eu/

ACKNOWLEDGMENTS

The completion of this research work and the whole doctoral life have been supported
by several individuals in various ways. Therefore, I would like to give my wholehearted
thanks to all.

First and foremost, I would like to express my heartfelt gratitude to my supervisors
Prof. Volker Stolz and Prof. Lars Michael Kristensen for directing and supervising
this research. I am very grateful for their expert guidance, encouragement, visionary
ideas, and responsibility towards me as a student. I appreciate their priceless supports,
precious comments, constructive discussions, constant patience and great kindness.

I am very grateful to my main supervisor Prof. Volker for taking care of me from
day one in Bergen and guiding my research work since the writing of my research
proposal to the completion of this thesis. I cannot find words to thank him enough
for his guidance and support during the whole PhD period. Without his excellent
guidance, pushing, and encouragement when I needed to improve my research work,
this dissertation would not have been possible. He helped me to learn the basics
of software testing, runtime verification, and programming skills. I appreciate that
whenever I got stuck during my research activities, I was welcomed into his office to
ask questions and I always got satisfactory support. I want to thank Volker also for
introducing me to the COEMS project, BECHONG project and AURORA project. I
got the opportunity to participate and to present my work in those projects and I also
learned a lot from other researchers. I thank him for introducing me to the world of
researchers through various conferences and meetings that I attended. I appreciate
that in most of the trips, he made sure that I have all the necessities to travel and from
all these trips, I got strong connections that were valuable to my research work. In
addition, we had great discussions on different scientific work we published and I
learned a lot from him on how to disseminate my research work. I am grateful for his
useful inputs, format, careful reading and constructive comments on this dissertation.
Moreover, I had chance to get feedback from him on the courses that I was teaching and
the courses that were apart of my course work. For the social life, I am very thankful for
his kindness in different cheering events we had together and I thank him for various
personal advises he gave me and wonderful caring to my family. I learned a lot of
lessons from him that will always guide me in the future.

I would like to give my special thanks to my co-supervisor, Prof. Lars whose
guidance has been very valuable to the success of this dissertation. He introduced the
knowledge of modeling with Coloured Petri Nets (CPNs) and I got an opportunity
to apply the coverage analysis to CPNs models which resulted in good publications.
I appreciate all the constructive reviews and suggestions he gave me that helped me
to learn and understand different concepts in my research work. I thank him for
being there at every phase of my doctoral study, for his encouragements and careful
reading as well as precious comments on this dissertation. I appreciate our discussions
in different meetings and his various advises that helped to improve my work. I
enjoyed our conversations during lunch and coffee breaks or at HVL events and parties.
Collaborating with him was an enriching opportunity.

My sincere gratitude goes to Dr. José Ignacio Requeno Jarabo for his full support
and guidance. I consider him as my "unofficial co-supervisor" since his arrival in
Bergen and to the completion of this thesis. I learned a lot from him especially when
we worked together on coverage analysis for CPNs models, test cases generation
satisfying MC/DC and online data races detection. It was a blessing to know him and
an opportunity to me to improve my research work. I thank him for the productive
meetings and discussions about my project and other scientific work. I always got help
from him whenever I needed a support. From him, I learned how to overcome different
challenges and how to implement different solutions practically. In addition, I thank
him for the proof of reading and useful comments on this dissertation. I appreciate
the time we spent together in Bergen, and I enjoyed different lunches, dinners and
parties we had together. I am really thankful for his flexibility and kindness as well as
his encouragements to me. I always appreciate that he was always caring on how my
family is doing, and it was our pleasure to host him to our family.

Special thanks to Dr. Svetlana Jakšić for her guidance and discussions on my
research work. Before she left HVL, she was my co-supervisor and she helped me
to have a good start and to shape my research proposal. We had several productive
meetings and discussions that enriched my understanding on software testing and
her suggestions were always brilliant. I am grateful for introducing me to data races
detection based on lock instrumentation and TeSSla specification language. Thanks a
lot for the work we carried out together especially for our published papers on MC/DC
measurements and coverage analysis of CPN models. I cannot forget that we always
traveled together when attending COEMS project meetings and I am very thankful
to her feedback and comments on my presentations. I also want to mention that
Svetlana and Volker were always by my side both academically and socially and I will
always remember your kindness! I am grateful to Dr. Dan Li who also provided useful
opinions, advice, and encouragements on my research work. I still remember the lovely
barbecue we had the four of us together, it was a warm welcome and I enjoyed the time
with you.

I want also to thank Associate Professor Violet Ka I Pun for her support and
encouragements for my research work. She taught me many basics of Linux system
and we collaborated on different projects including the COEMS project, hardware
assisted online data race detection, and we taught together the Database and Unix
System Administration course. I learned a lot from different discussions, meetings and
conferences we had together. Again, I want to thank Violet and Volker together for
inviting me and my family to their home several times. We had great times together
and thanks a lot for that friendly welcome.

I also want to give my special thanks to Felix Dino Lange for our strong collaboration
on MC/DC measurement based on traces through the COEMS project. We had good
discussions during my research trip to Lübeck and his research stay in Bergen. For our
non-intrusive MC/DC measurement paper, Dino contributed in various ways both
for the implementation and paper writing. I equally want to thank Dr. Malte Schmitz
and Dr. Daniel Thoma whose contribution has been very valuable to the success of
MC/DC measurement paper.

I would like to thank Prof. Martin Leuker and COEMS project team members for
introducing to me the knowledge of continuous observation of embedded systems and

run time verification in general. I gained and learned a lot from different experienced
researchers from the COEMS project. My special thanks to Associate Professor
Guillaume Hiet for their warm welcome to Rennes. We had great discussions and nice
presentations during our research trip to Rennes.

In regards to the teaching duties, I express my gratitude to Associate Prof.
Bjarte Kileng whom we taught together the course of "Database and Unix System
Administration". I equally thank Maksim Melnik Storetvedt and Haakon André Reme-
Ness who as well participated in the same course, for their immense contribution and
knowledge sharing. In addition, I thank Bjarte for helping me to learn and understand
the distributed systems and big data management as well as providing to me a working
environment with a small cluster to improve my knowledge. My gratitude goes to Prof.
Yngve Lamo, Dr. Slobodan Drazic and Qasim Ali whom we taught together the course
of Discrete Mathematics. It was wonderful to work with them as a team.

I gratefully acknowledge the Western Norway University of Applied Sciences (HVL)
and COEMS project as funding sources that made my Ph.D. work possible. I was
honored to have a research fellow position at HVL and I am thankful to everyone who
made it happen. I am especially thankful to the staffs at the department of Computer
Science, Electrical Engineering and Mathematical Sciences for their friendly support.
In particular, I want to first mention Kristin Fanebust Hetland, Håvard Helstrup,
and Pål Ellingsen. They always kindly provided me with help and made sure that
I was doing well if I met any problem at work. I was also very welcomed by them
whenever I dropped by their offices. Thanks a lot for taking care of all administrative
concerns. I am truly thankful for the time and effort they used to support my work
in the department. Here, I again want to thank Volker together with Lars who both
helped and contributed to the Norwegian abstract of the thesis. Special thanks to the
PhD programme committee that I was a member of for two years, as a representative
of other PhD students. I am proud that I have been apart of the team where I learned a
lot from my seniors and thanks a lot for the work we carried out together. I thank Prof.
Antoine Tambue for Various advises he provided to me.

I would like to thank Prof. Yngve Lamo and Ass. Prof. Joao Lourenco who were
my mid-term evaluators for giving me many ideas and suggestions about my research
directions that helped me to solve technical problems. I would also like to thank Prof.
Adrian Rutle who gave me the bed for my first day in Bergen and who was always nice
and friendly to me.

I am grateful to Reidun Johanne Benes Lyslo Lohiniva for helping my family about
the visa application process and other related issues. I also thank Kristian August
Mowinckel and the IT staffs for providing support to whenever it was needed. I am
thankful to the HVL library for useful resources both in terms of books and seminars
that helped me to carry out my research activities. Special thanks to Dr. Rui Wang and
Dr. Alejandro Rodriguez Tena for their discussion on CPN models and providing their
models to for coverage analysis.

I also want to give my thanks to all other former and new Ph.D. fellows colleagues
for both the great working and social environment. To Dr. Fernando, Ass. Prof. Rabbi,
Espen, Simon and Andreas, thanks a lot for helping me a lot about different information
as my seniors at the beginning of my work at HVL. To Alejandro, Justus, Ole, it was
good to travel together in different conferences. To Frikk it was always fun to try some

of your electronics circuits and to chat with you about Norwegian culture, and all
other interesting things. To Suresh, Angela, Patrick, Amin, Samaneh, Rizwan, Håkon,
Fatemeh, Salah, Maksim, Anton, Mahmood, Michele, Tim and Gerard, I appreciate
the time we spent together as colleagues and friends. To Diana, Eunice, Theogene,
Esther, John’s family and Joseph’s family, it was always great to have some dinners and
discussions together. To Qasim, thank you for inviting my family to your home for
dinner; that was great with nice food. Also, to Daudel, Tsafag, Gizem, Haja, Remco,
Rahul, Mojtaba, Nguyen, Keila, Lena, Laurenz, Vegard, Hunter, Johannes, Daniel, and
all other Ph.D. researchers, thanks to you, there were countless funny and interesting
topics we have discussed during lunch and coffee breaks or at HVL events and parties.

In addition, I want to express my deep gratitude to Rwandan community and our
friends in Bergen who always were close to my family and we appreciate all the time
we spent together. I would like to give special thanks to the Embassy of Rwanda in
Sweden for all support and good service provided to us whenever it was needed. I
would like to thank all Seventh Day Adventist (SDA) church members in Bergen for
their hospitality and love. I enjoyed the good time we had with you. Special thanks to
all my fiends who always gave me their encouragement in various ways.

My gratitude goes to the fellow colleagues from my former University of Rwanda
especially from the School of Engineering, Department of Electrical and Electronics
Engineering (EEE), your support will always be remembered. Special thanks to Dr.
Kizito Nkurikiyeyezu for his encouragement and good advises to me.

I express my eternal gratitude to my mother who raised me with love, my sisters
and brother far away for their blessings, love and support. My gratitude goes to my
parents in law, sisters in law, and brother in law who were always there whenever I
needed them. Special thanks to Epaphrodite NIZEYIMANA for helping me in different
back home activities that I couldn’t manage to do remotely. I thank him for being there
whenever I needed him and for visiting me in Norway. It was such a huge joy and
pleasure to host him.

I would also like to thank my son Jayden Ahison UHIRIWE for his love and
happiness he brought to our family. Whatever the challenges, stresses and difficult
moment we encountered, with him I was feeling relieved and it was always fun to be
out with him. He is such lovely and cute boy and I love him.

Last and most of all, I am grateful to my patient wife Alice Tuyisenge who always
loved, supported, motivated, and encouraged me in this endeavor. Your full care is
countless and priceless. It would require a separate book to write about your faithful
support during all stages of this Ph.D. I am proud that I have chose you as my wife!

ABSTRACT

To ensure ultra-high dependability and ultra-low defect rates, certification standards
such as DO-178C requires safety-critical software with the highest safety level (Level A)
in avionics systems to conform to the modified condition decision coverage (MC/DC)
criterion. MC/DC is a strong coverage criterion that subsumes existing coverage
criteria and it requires a small number of test inputs compared to the combinatorially
exhaustive multiple condition coverage (MCC). MC/DC has also proven to reveal
many program defects. However, both MC/DC measurement and generating test cases
satisfying MC/DC remain a challenging task. In addition, related properties such as
data races detection can be monitored using some methods used to check MC/DC, as
good concurrency coverage increases a likelihood of catching concurrent-related bugs.
To address the above challenges, existing strategies rely on intrusive instrumentation
which is not recommended for safety critical software since it consumes valuable
resources and can alter the behaviour of the system under test (SUT) if it remains in
the released code.

To overcome the above challenges, this thesis introduces novel paradigms and
tools for software testing based on traces and coverage analysis. Our aim is to analyse
the MC/DC without instrumentation and to monitor data races with a lightweight
instrumentation. In addition, we explore the applicability of MC/DC criterion on
the design level models. Furthermore, we investigate new techniques for test cases
generation satisfying MC/DC with the aim to increase the coverage.

The scientific contribution of this thesis is fourfold:
First, we propose an approach for measuring MC/DC without instrumentation.

This has resulted in a tooling for MC/DC measurement and analysis based on the
trace of an executing program. A static analysis is used to find conditional jumps in
object code that correspond to conditions in the source code. With that information the
assignments of the conditions during the execution of the code can be reconstructed by
analyzing the trace. MC/DC is then evaluated and the covered/uncovered conditionals
in the program can be identified. This approach is evaluated on C programs.

Secondly, we provide a non-intrusive tooling for data races detection using the
continuous observation of embedded multicore systems (COEMS) technology through
continuous online monitoring with lightweight instrumentation on a novel FPGA-based
external platform for embedded multicore systems. It is used in combination with
formal specifications in the high-level temporal stream-based specification language
(TeSSLa), in which we encode a lockset-based algorithm to indicate potential race
conditions. We show how to instantiate a TeSSLa template that is based on the Eraser
algorithm, and present a corresponding light-weight instrumentation mechanism that
emits the required observations to the FPGA with low overhead.

Thirdly, we investigated the applicability of MC/DC criterion on design level
models, where specifically, we conducted a coverage analysis to Coloured Petri Nets
(CPNs) models. We implement a library for CPN Tools and a post-processing tool for
MC/DC coverage analysis of net inscriptions on a set of model executions and evaluate
our approach on eleven larger publicly available CPN models.

In the fourth contribution, we propose a new and alternative strategy for test case
generation satisfying MC/DC. We have implemented an algorithm for MC/DC test
cases based on binary decision diagrams (BDDs) and evaluated on Traffic Alert and
Collision Avoidance System (TCAS II) benchmarks. A performance evaluation with
respect to the state-of-the art in the form of related work has been conducted.

SAMMENDRAG

For å sikre høy pålitelighet og lav feilrate krever sertifiseringsstandarder som DO-178C
at sikkerhetskritisk programvare som oppfyller det høyeste sikkerhetsnivå (nivå A)
innen flykontrollsystemer tilfredsstiller det modifiserte betingelses-beslutningsdekning
(MC/DC) kriterium. MC/DC er et sterkt dekningskriterium som inkluderer
eksisterende dekningskriterier og krever et lite antall test input sammenlignet med
kombinatoriske utfyllende fler-betingelses dekning (MCC).

MC/DC har vist seg å kunne detektere mange programvare feil. Samtidig er
MC/DC målinger og generering av testtilfeller som oppfyller MC/DC fortsatt en
utfordring. I tillegg kan relaterte egenskaper som detektering av data-inkonsistens
overvåkes ved å bruke metoder for å sjekke MC/DC. Årsaken til dette er at god
samtidighetsdekning øker sannsynligheten for å oppfange feil i programvare relatert
til samtidighet.

For å adressere disse utfordringer bygger eksisterende strategier på instrumentering
som ikke er anbefalt for sikkerhetskritisk programvare siden dette forbruker ressurser
og kan endre oppførselen av systemer som er under test (SUT) når dette forblir
i koden som settes i produksjon. For å eliminere disse utfordringer introduserer
denne avhandlingen nye paradigmer og verktøy for programvaretesting basert på
spor og dekningsanalyse. Målet vårt er å analysere MC/DC uten instrumentering
og overvåke data-inkonsistens med lettvekt-instrumentering. I tillegg undersøker vi
bruken av MC/DC kriterier på design-nivå modeller. Videre ser vi på nye teknikker
for test-tilfeller generering som oppfyller MC/DC med mål om å øke dekning.

Det vitenskapelig bidra av denne avhandling er innen fire områder:
Først foreslår vi en tilnærming for å måle MC/DC uten instrumentering. Dette har

resultert i verktøy for MC/DC måling og analyse basert på spor fra et program som
kjøres. Statisk analyse brukes til å identifisere betingede-hop i objekt-koden som svarer
til betingelser i kildekoden. Basert på denne informasjon kan tildelinger til betingelser
under utførselen av koden rekonstrueres ved å analysere sporet. MC/DC evalueres
og dekkede/ikke-dekkede betingelser i programmet kan identifiseres. Tilnærmingen
evalueres på C programmer.

Dernest utvikler vi et ikke-intrusivt verktøy for data-inkonsistens deteksjon ved
å bruke teknologi for kontinuerlig observasjon av innebygde fler-kjerne system
(COEMS). Dette realiseres via kontinuerlig overvåking med lettvekts-instrumentering
på en ny FGPA-basert ekstern plattform for innbygde fler-kjerne system. Dette
brukes i kombinasjon med formell spesifikasjon i det høy-nivå strøm-basert temporal
spesifikasjonsspråket TeSSLa, der vi innkoder en låsemengde-baserte algoritme for å
indikere potensielle data-inkonsistenser. Vi viser hvordan TesSSLa maler kan brukes
basert på Eraser-algoritmen, og presenterer en korresponderende mekaniske for
lettvekts-instrumenterings som gir de observasjoner som kreves til en FPGA med liten
reduksjon i ytelse.

Som det tredje bidrag undersøker vi bruken av MC/DC på design-nivå modeller,
der vi spesifikt utfører dekningsanalyse på Fargede Petri Net (CPN) modeller. Vi
har implementert et bibliotek for CPN verktøyet og et etter-prosesseringsverktøy for

MC/DC dekningsanalyse av net-inskripsjoner på en mengde av modellutførsler og
evaluerer vår tilnærming på elleve større offentlig tilgjengelig CPN modeller.

Som det fjerde bidrag forslår vi en ny og alternativ strategi for generering av
testtilfeller som oppfyller MC/DC. Vi har implementert en algoritme for MC/DC
testfilfelle-generering basert på binære beslutningsdiagrammer (BDDs) og utført
evaluering på en samling av trafikale alarm og kollisjonssystemer. En ytelsesevaluering
med hensyn til relatert arbeid har vært gjennomført.

Contents

Preface i

Acknowledgments iii

Abstract vii

Sammendrag ix

I OVERVIEW 1

1 Introduction 3

1.1 Software Testing . 5
1.2 Research Questions . 11
1.3 Research Methodology . 13
1.4 Goals and Contributions . 14
1.5 Thesis Outline . 15
1.6 Supplementary Material . 16

2 Background 19

2.1 Coverage Analysis . 19
2.2 Modified Condition Decision Coverage (MC/DC) 23
2.3 Concurrent Programs . 29
2.4 Data Race Detection . 34
2.5 Source of Traces and Tracing Mechanisms 35
2.6 Coloured Petri Nets (CPNs) Models . 39
2.7 Binary Decision Diagrams (BDDs) . 41

3 MC/DC Analysis and Measurement 47

3.1 Non-intrusive MC/DC Measurement Based on the Traces 47
3.2 Related Work on MC/DC Measurement 50

4 Data Race Monitoring in Concurrent Programs 53

4.1 Hardware-assisted Data Race Detection 53
4.2 Related Work on Data Race Detection 56

5 Coverage Analysis on Design Level Models 59

5.1 MC/DC Measurement of Net Inscriptions in CPN Models 59
5.2 Related Work on MC/DC Analysis in CPN Models 63

6 Generating Test Cases Satisfying MC/DC 65

6.1 Approach for MC/DC Test Cases Generation based on BDDs 65
6.2 Related Work on MC/DC Test Case Generation 68

7 Conclusions and Future Work 71

7.1 Revisiting of Research Questions . 71
7.2 Summary of our Contributions . 72
7.3 Limitations and Future Work . 74

Bibliography 89

II ARTICLES 91

Paper A: Non-intrusive MC/DC measurement based on traces 93

Paper B: Hardware-Assisted Online Data Race Detection 103

Paper C: MC/DC Test Cases Generation based on BDDs 125

Paper D: Coverage Visualization and Analysis of Net Inscriptions in Coloured

Petri Net Models 147

Part I

OVERVIEW

Computers themselves, and
software yet to be developed,
will revolutionize the way we learn.

—Steve Jobs [30]
CHAPTER 1

INTRODUCTION

Today’s life is dependent on software based systems in multiple domains such as
medicine, aviation, automation, communication and other safety critical systems.
Typical examples have shown that software failures in most critical systems have led to
the loss of lives and tremendous damage. A therapy planning software misinterpreted
the holes drawn by doctors for specifying the placement of metal shields to protect
healthy tissue from radiation and eight patients died and 20 received overdoses [119].
The Boeing Maneuvering Characteristics Augmentation System (MCAS) has proven
susceptible to erroneous activation, as in the cases of Lion Air Flight 610 and Ethiopian
Airlines Flight 302 and this led to not survivable accidents [65]. Thus, it is important
to ensure that software validation, software verification and software testing are well
implemented as an integral part of the software development life-cycle. Software
validation aims at building the right product with respect to the user requirements,
whereas software verification checks whether one is building the product right with
respect to the specifications. Software testing checks the actual software system rather
than a model, on sampling executions according to some coverage criteria. Coverage
defines the extent to which a given verification or/and testing activity has satisfied its
objectives.

During the software testing process, there are two types of analysis: static
analysis and dynamic analysis [106]. Static analysis checks a program without
executing it whereas dynamic analysis executes the program and makes analysis
during the execution or after run time. These techniques yield good performance for
sequential programs with the introduction of testing criteria and the implementation
of supporting tools. Concurrent programs are attracting attention due to their
performance in implementing parallel executions. However, the challenges and
complexity increase when testing concurrent programs due to features such as
communication, synchronization, nondeterminism, and concurrency defects. During
execution, computations in a concurrent program can involve a high number of
interactions among processes and the number of possible execution paths in the
program can be extremely large. Therefore, some of the coverage criteria defined for
structured testing of sequential programs need to be extended with other properties to
be applicable for concurrent program testing.

In order to produce fail-safe and low risk systems, certification standards, for
example the DO-178C [124] in the domain of avionic software systems, are used
by certification authorities, like the Federal Aviation Administration (FAA) and the

Introduction

European Aviation Safety Agency (EASA), to approve safety-critical software and
ensure that the software used in the systems follows certain software engineering
standards. DO-178C requires that structural coverage analysis is performed during
the verification process mainly as a completion criterion for the testing effort and to
identify design faults as well as finding dead code. Safety-critical software with the
highest safety level (Level A) in avionics systems is required to conform to the modified
condition decision coverage (MC/DC) criteria [42]. For MC/DC, each condition in a
decision has to show an independent effect on that decision’s outcome by: (1) varying
just that condition while holding fixed all other possible conditions, or (2) varying just
that condition while holding fixed all other possible conditions that could affect the
outcome. MC/DC has attracted much attention both in academia and industry due to
its benefits. Unlike weaker coverage criteria, MC/DC is sensitive to the complexity
of decisions, it requires a small number of test cases, it is sensitive to the program
structure, and it is unique due to the independence effect for each condition.

As part of this thesis, we investigate efficient techniques and tools for software
testing based on traces and coverage analysis. We use MC/DC as coverage criterion
since it subsumes the existing coverage criteria and is recommended for safety critical
software systems [58, 124].

First, we analyse MC/DC measurement non-intrusively based on object code with
traceability to source code using modern processor-based tracing facilities [15, 38, 129].
Our motivation is to measure MC/DC based on object code without instrumentation
and our approach is based on traces [2, 9] recorded using the Intel Processor Trace
(IntelPT) [15, 129], a facility present on modern Intel CPUs.

Secondly, we investigate concurrent programs by analysing the data race
detection using the continuous observation of embedded multicore systems (COEMS)
infrastructure with a lightweight instrumentation. The COEMS infrastructure refers
to a novel observer platform for online monitoring of multicore systems. It offers
a non-intrusive way to gain insights of the system behaviour, which are crucial for
detecting non-deterministic failures caused by, for example, accessing inconsistent data
as a result of race conditions.

The COEMS project1 developed a novel platform for online monitoring of multicore
systems. It offers the possibility to observe the system’s behaviour without affecting it.
This insight enables the detection of non-deterministic failures which are caused for
example by race conditions and access to inconsistent data. To observe system-on-chip
(SoC), the COEMS platform uses the tracing capabilities that are available on many
modern multicore processors. Such capabilities provide highly compressed tracing
information over a separate tracing port. This information allows the COEMS system
to reconstruct the sequence of instructions executed by the processor [125]. The
instruction sequence- and data trace can then be analysed online using TeSSLa [100],
and by a reconfigurable monitoring unit. To cope with the potentially massive amount
of tracing data generated by the processors, the COEMS system is implemented in
hardware using an FPGA-based event processing system.

Thirdly, we explore the applicability of our MC/DC measurement to coverage
analysis on design level models which combine both the modeling and the functional
programming language. We implement our approach to coloured petri-nets (CPNs),

1https://www.coems.eu/

4 Chapter 1

https://www.coems.eu/

1.1 Software Testing

a language for modeling and validation of systems which involve concurrency,
communication, and synchronisation.

Last but not the least, MC/DC measurement both on models and programs requires
test inputs. Therefore, we investigate the MC/DC test cases generation where, we
guide our tooling and models can be guided to improve coverage.

1.1 Software Testing

The demand for high-quality software is increasing both on the industrial level, users
level, and academic level in order to cope with new advancements in technology and
user needs. In addition, the software development industry is becoming more complex
and testing has to be undertaken before the deployment of software as the truly effective
means to assure the quality of a software system. Testing is defined by ANSI/IEEE
1059 standard [77] as the process of analyzing a software item to detect the differences
between existing and required conditions (that is, bugs or defects) and to evaluate the
features of the software artifact. Therefore, software testing is an important means of
assessing software, a program or an application to ensure its quality [115]. Depending
on the level of required software reliability and safety, software testing consumes
considerable effort especially for systems that require higher levels of reliability as
well as for safety critical systems. In this section, we provide background on different
software testing concepts that are used as foundation for coverage measurement, test
cases generation, data race detection and cache simulation.

1.1.1 Testing levels

Every stage of the software life cycle involves testing that is different in nature and has
different objectives for each level of software development. Tests can be derived from
requirements and specifications, design artifacts, or the source code. The following are
the levels of testing with respect to software development activities [115]:

– Unit Testing is done at the lowest level. It tests the basic unit of software, which
is the smallest testable piece of software, and is often called “unit”, “module”,
or “component” interchangeably. It checks whether the individual modules of
the source code are working properly. That is testing each and every unit of the
application separately.

– Integration Testing is performed when two or more tested units are combined into
a larger structure. It assesses software with respect to subsystem design. The
test is often done on both the interfaces between the components and the larger
structure being constructed, if its quality property cannot be assessed from its
components.

– System Testing tends to affirm the end-to-end quality of the entire system. System
test is often based on the functional/requirement specification of the system.
Non-functional quality attributes, such as reliability, security, and maintainability,
are also checked.

Chapter 1 5

Introduction

– Acceptance Testing assesses software with respect to customers’requirements to
ensure that all objectives components are correctly included in a customer package.
It is done when the completed system is handed over from the developers to the
users. The purpose of acceptance testing is to provide confidence that the system
is working as intended rather than to find errors. That is to determine whether or
not a system satisfies its acceptance criteria.

The correspondence between testing levels and design phases of software development [13,
122] is shown in Fig. 1.1. The four phases of definition (requirements analysis,
requirements specification, preliminary design and detailed design) correspond directly
to the four levels of testing. The requirements analysis phase captures the user’s needs.
The requirements specification phase defines what components are required to implement
the software system that meet the previously identified requirements. The preliminary
design phase specifies the structure and behavior of subsystems, each of which is
intended to satisfy some function in the overall architecture. The detailed design phase
determines the structure and behavior of individual units. The coding phase produces
the actual code of the software under development.

Fig. 1.1: Testing levels and design phases in "V-model" [122]

1.1.2 Software testing terminologies, artifacts and limitations
Below we discuss the related software testing terms and artifacts that will be used
throughout this thesis as defined by the IEEE Standard Glossary of Software Engineering
Terminology and the International Software Testing Qualifications Board (ISTQB) [77,
110]. The glossary explains an error as a mistake a human being can make, which
produces a defect (fault, bug) in the program code, or in a document. If a defect in
code is executed, the system may fail to do what it should do (or do something else
it shouldn’t), causing a failure. A software failure is an external, incorrect behaviour
with respect to the requirements or other description of the expected behavior. Defects
in software, systems or documents may result in failures, but not all defects do so.
Another useful term in software testing is debugging which refers to the process in

6 Chapter 1

1.1 Software Testing

which developers identify, diagnose, and fix errors found. That is the process of finding
a fault given a failure.

In addition, it is important to clarify the distinction between validation and
verification [13, 77]. Validation is the process to check that the completed end product
(software, a system or components) complies with the intended usage or the specified
user requirements. Verification is the process of determining whether the products
of each software life cycle phase comply with previous life cycle phase requirements
and products, satisfy the specifications, and establish the proper basis for initiating the
next life cycle phase activities.

During the testing activities, tests normally include more than just input values to
the software system under test. There are actually multiple software artifacts. A test
case specifies actual input values known as test inputs and expected results. The latter is
know as a test oracle, which is the source to compare an expected result with the actual
result of the system under test. A finite set of test case to be executed in a specific test
run is called a test-suite. Test cases can be written manually or generated automatically.
In order to limit the size of a test, test selection criteria are used to guide the generation of
test cases or to select test cases. To perform testing, a test-suite can be executed using
a test script which provide the sequence of instructions for the execution of a test. In
structural testing of a software or a program it is necessary to define a test condition
which refers to testable aspect of a component or system identified as a basis for testing.
Another important artifact to note is the concurrency testing which intend to evaluate if
a component or software system involving concurrency behaves as specified.

Although software testing is an important part of the whole software development
life cycle, it possesses some limitations.The most important limitation is that software
testing can only reveal the presence of failures, but not their absence [53]. The problem
of finding all bugs in a program is undecidable and a test is called effective if an error
is detected. Software testing does not provide prediction of the proper functioning
of the product under all conditions, but it may prove to be helpful in delivering the
information with respect to incorrect or improper functioning of the product under
specific conditions. The earlier the prevention measures are taken, the better. Software
testing does not help in finding root causes which resulted in injection of defects in
the first place. Identifying the root causes of failures helps in preventing injection
of defects for future purposes. Testing cannot detect any errors in requirements and
ambiguous requirements lead the complete testing process to inadequate testing.

1.1.3 Static analysis and dynamic analysis
To evaluate the software product, there are three main techniques that are used: static
analysis, dynamic analysis and formal analysis [77, 106]. The later is not discussed in
detail inhere because it is not directly a part of software testing but rather is based on
mathematical proofs. In the context of software testing, static analysis and dynamic
analysis are used for software quality assurance activities. They differ on whether the
actual execution of software under test is needed or not.

– Static analysis checks a software product without executing it. It focuses on
determining or estimating software quality without reference to actual executions.
For example, static analysis can be applied for code inspection, specification

Chapter 1 7

Introduction

reviews, structure analysis, symbolic analysis, and model checking. Static analysis
may be applied in all phases of development, and to all documented deliverables.

– Dynamic analysis executes the program and makes analysis during run time or
after the execution to determine the validity of some of its attributes. It deals
with specific methods for ascertaining and/or approximating software quality
through actual executions. That is for example with real data and under real
(or simulated) circumstances. Its techniques include synthesis of inputs, the
use of structurally dictated testing procedures, and the automation of testing
environment generation.

1.1.4 Testing approaches

There are three basic types of software testing approaches: white-box, black-box, and
gray-box testing.

– White-box testing [13, 24, 122, 165]: also called glass-box, clear-box or structural
testing. It is based on the application’s internal code structure, and an internal
perspective of the system as well as programming skills, are used. It analyzes the
program structure to generate test cases. This testing is usually done at the unit
level.

– Black-box testing [13, 122, 165]: also known as behavioral, specification-based, input-
output or functional testing. It validates whether the functions specified in the
system requirement specifications were correctly implemented or not. That is
it evaluates the functionality of the software under test without looking at the
internal code structure. Test cases are delivered from external descriptions of the
software, including specifications, requirements, and design.

– Grey-box testing [165]: is the combination of both white-box and black-box testing.
It extends the logical coverage criteria of white box method and intends to find
possible paths from the design model which describes the expected behavior of
an operation. Then it generates test cases which can satisfy the path conditions
by black box method.

1.1.5 Model based software testing

From the software testing perspective, it is important to be concerned with the
quantitative and qualitative analysis of the extent to which all the instances of the
model have been covered. One part of this thesis investigates the applicability of
MC/DC on design level model where we considered specifically the coverage analysis
of net inscriptions in Coloured Petri Net models (CPNs).

Model based testing (MBT) [123] is a software testing technique which relies on the
construction of an abstracted model of the system under test (SUT) and its environment
such that the run time behavior of the SUT is checked against predictions made by a
model. The system’s behavior can be described in terms of input sequences, actions,
conditions, output and flow of data from input to output. The basic idea of MBT is

8 Chapter 1

1.1 Software Testing

that test cases are generated automatically from a model and are executed manually or
automatically on the SUT. In other words, it eliminates creating test cases manually.

The advantages of MBT are that it allows tests to be linked directly to the SUT
requirements, which renders readability, understandability, and maintainability of
tests easier. It helps ensure a repeatable and scientific basis for testing. Furthermore,
MBT has been shown to provide good coverage of all the behaviors of the SUT [109]
and to reduce the effort and cost for testing [108].

As shown in Fig. 1.2, the process of MBT proceeds as follows [109]:

Step 1: Based on the requirements or existing specification, a test model of the SUT is
built. The model needs to reside at a certain level of abstraction and it encodes
the intended behaviour of the SUT in a simpler way such that it can be modified,
validated and maintained.

Step 2: Test selection criteria are defined and testing strategies and techniques may be
used to guide the automatic test cases generation. These criteria can relate to a
given functionality of the system (requirements coverage), to the structure of the
model (structure coverage) or to stochastic characterizations.

Step 3: Test selection criteria are then transformed into test case specifications which
formalize the notion of the criteria to be used and render them operational. These
specifications describe the desired test cases such that an automatic test case
generator is capable of deriving a test suite.

Step 4: A test suite is generated. It enumerates all the test cases satisfying the test
case specifications. However, there may exist many test cases that satisfy the

Fig. 1.2: The process of model based testing [108, 109]

Chapter 1 9

Introduction

specification and the test case generators that tend to pick a smaller set randomly
that cover a large number of specifications.

Step 5: The generated test cases are then executed either manually or automatically.
Running a test case includes two stages.

Step 5.1: The model and SUT reside at different levels of abstraction, and they must
be bridged by an adapter. The adapter enables the concretisation of the test
inputs into the SUT and collects the test outputs of the SUT.

Step 5.2: Finally the test adapter compares the test outputs against the expected
outputs which results into the so called verdict which is also known as test
oracles output.

A test adapter is a concept and not necessarily a separate software component.
It may be integrated within a test script or can be implemented as a separate
software component. Therefore, a test script is some executable code that executes
a test case, abstracts the output of the SUT, and then builds the verdict.

1.1.6 Software safety-levels

Safety-critical software is defined as: “software whose use in a system can result in
unacceptable risk [59]. It includes software whose operation or failure to operate can
lead to a hazardous state, software intended to recover from hazardous states, and
software intended to mitigate the severity of an accident. Software in the context of
safety critical systems such as avionics are classified in safety-levels, depending on the
severity of a defect [132].

– Level A-Catastrophic: represents the level where failure conditions result in
multiple fatalities: death, permanent total disability, loss exceeding one million
US dollars, severe environmental damage violating law or regulation. Level A
software is the most rigorous and applies to software functionality that could
cause or contribute to a catastrophic aircraft-level event.

– Level B-Hazardous/ Severe major: consists of software whose anomalous behaviour,
would contribute to failure conditions resulting in a hazardous/severe-major
event for the aircraft such as permanent partial disability, injuries or illness.

– Level C-Major : refers to failure conditions that would reduce the capability of
the airplane or the ability of the crew to cope with adverse operating conditions
to the extent that there would be a significant reduction in safety margins or
functional capabilities.

– Level D-Minor: are failure conditions that would not significantly reduce airplane
safety and involve crew actions that are within their capabilities. It may include a
slight reduction in safety margins or functional capabilities, a slight increase in
crew workload (such as routine flight plan changes), or some physical discomfort
to passengers or cabin crew.

10 Chapter 1

1.2 Research Questions

– Level E-No effect: are failures conditions that would have no effect on safety (that is,
failure conditions that would not affect the operational capability of the airplane
or increase crew workload).

During the testing of software of level E and level D, there are no required coverage
criteria, rules or guidelines that have to be satisfied although they are not prohibited. For
level A , level B and level C, different types of coverage criteria are strictly recommended.
For example one item (coverage criteria, rules or guidelines) may be advisory for level
C but mandatory for levels A and B.

1.1.7 Testing coverage
Test coverage is defined as a technique which determines whether our test cases
are actually covering the application code and how much code is exercised when
we run those test cases. Coverage is the measure of the degree to which testing
activities have been exercised by a test suite expressed as a percentage. To measure
coverage it is necessary to formulated coverage criterion to be satisfied. Coverage
criteria define adequacy measures to qualify if a test objective is satisfied or reached
when executing test cases on a system under test [51, 167]. Several testing coverage
criteria have been proposed in the literature, including statement coverage, branch
coverage/decision coverage (BC/DC), path coverage, condition coverage (CC), condition/decision
coverage (C/DC), multiple condition coverage (MCC) and modified condition/decision coverage
(MC/DC) [42, 58, 62, 94, 99, 124, 167]. We provide more details on these types of
coverage in Section 2.1.

Certification authorities use the DO-178C as a certification standards to approve
commercial software-based aerospace systems, which assures a certain quality of
software. The software safety-level is assessed by examining the effects of a failure in
the system as discussed in the previous subsection. Depending on the software safety-
level different coverage criteria have to be fulfilled during software testing. Software
level C (major effect) requires statement coverage and software level B (hazardous
effect) requires decision coverage. Software level A (catastrophic effect) requires modified
condition/decision coverage (MC/DC). Depending to which type of coverage, the coverage
is measured in terms of ratio of covered entities (covered conditions, executed number
of line, covered branch, ...) and total number of entities. The lower the percentage the
higher the effort required to accomplish the testing activities.

1.2 Research Questions

This section presents our research questions and briefly provides an overview of how
we address them in the PhD thesis.

RQ1: Can we check modified condition decision coverage (MC/DC) without instrumentation?

Usually MC/DC is measured by instrumenting the source code to gather information
about the execution and assignment of conditions and decisions. Because it is required
by the DO-178C that the structural coverage analysis has to be performed on the code
that is released, the instrumentation has to be left inside the code. This is problematic

Chapter 1 11

Introduction

because instrumentation consumes valuable resources. In case the instrumentation
is removed from the released code, it is required to show that the behaviour of the
program did not change. Therefore, MC/DC needs to be analyzed on object code level.
Additionally, it is necessary to perform an object code to source code analysis to show
that every line from the object code is traceable directly to the source code in order for
compliance to DO-178C. If parts of the object code cannot be traced back to the source
code, then additional analysis must be provided [38].

RQ1 aims at developing non-intrusive MC/DC measurement tooling based on
traces. MC/DC needs to be checked on the object code level by analyzing program
traces and investigate how conditionals in source code are reconstructed during the
execution. This can be achieved by recording and decoding the trace of an executing
program using Intel processor tracing (IntelPT) technology [15]. Then we can analyse
the trace to see if the jumps corresponding to conditionals in the source code have been
taken during the execution, and reconstruct how the conditions have been evaluated
and the outcome of an entire decision. Finally, the above information is filled in a table
and MC/DC is calculated as the ratio of covered conditions to the total number of
conditions in each decision.

RQ2: How can we monitor data races with low overhead instrumentation?

Just as high coverage (at least in theory) provides good chances of catching bugs
in sequential programs, high concurrency coverage should increase the probability
of catching concurrent-related bugs. Our aim is to monitor data races which are
problematic in multi-threaded programs. A data race occurs whenever two or more
threads access same memory location concurrently without using any synchronization
mechanism and at least one of the accesses is a write. However, dynamic data race
detection techniques usually involve invasive instrumentation.

In relation to RQ1, high coverage measured via the traces analysis can show the
uncovered part of the program. The question is whether the non-intrusive method
used in RQ1 can also be used to check data races. In case avoiding the instrumentation
is challenging, can data races be checked with lightweight instrumentation? We
use continues observation of embedded systems (COEMS) technology as a solution
through continuous online monitoring with low-impact instrumentation on FPGA-
based external platform for embedded multicore systems. Based on RQ2, we expect
to be able to identify potential data races (if they exist) from the program under
observation.

RQ3: Does MC/DC have applicability on the design level models?

Coverage analysis is important for programs and models in relation to fault detection.
Low coverage indicates that the software product has not been extensively tested [94,
132]. We investigate how the MC/DC criterion can be applied to design level models.
Our intention in RQ3 is to conduct a coverage analysis of Net inscriptions in Coloured
Petri Nets (CPNs) models. CPNs combine both Petri nets and a high-level programming
language. Petri nets provide a formal foundation for modelling concurrency and
synchronization constructs for defining colour sets and declaring variables concept of
multisets and associated functions and operators. The high-level programming language

12 Chapter 1

1.3 Research Methodology

in CPN model provides the primitives for modeling data manipulation by creating
compact and parameterizeble models for concurrent systems using standard meta-
language (SML). In a CPN model, the net inscriptions (e.g., arc expressions and guards)
are specified using SML. The simulation and state space exploration for validating
CPN models traditionally focuses on behavioural properties related to net structure,
i.e., places and transitions. This means that the net inscriptions are only implicitly
validated, and the extent to which these inscriptions have been covered is not made
explicit.

Hence, we focus on how MC/DC (normally used for programming languages) can
be applied for coverage analysis on the design level models such as CPN models. This
provides an evidence that each condition contained in guards and arcs contributed as
intended or not. In line with RQ1, it is possible to record the trace of net inscriptions
evaluation in a CPN model and conduct a coverage analysis. In RQ3, we intend to
collect MC/DC and branch coverage (BC) statistics in publicly available CPN models
and conduct performance analysis on how well are SML conditions are covered in the
existing CPN models under-test.

RQ4: How can test cases satisfying MC/DC be efficiently generated?

For analyzing coverage, it is required to have some test cases to be able to evaluate the
behavior of a given program or model. One of the advantages of MC/DC [42] is that
for a decision with n conditions, it may be satisfied with a low number of test cases:
between a lower-bound of n+ 1 and upper-bound of 2n test cases, compared to MCC
which requires 2n test cases. MCC aims on trying all possible combinations which is
exhaustive and requires tremendous resources [73], as well as becoming impracticable
for a high number of conditions [74, 89]. While MC/DC is recommended for high
level safety assurance, finding a test set equal or closer to n+ 1with MC/DC assurance
is a non-trivial task [67, 90]. Therefore, it is important to investigate new strategies
for generating good test suites both in terms of number of test cases and coverage
adequacy [66, 157] and with reasonable resources. In RQ4, we investigate a novel and
alternative approach to test case generation satisfying MC/DC.

1.3 Research Methodology

Our research methodology is presented in Figure 1.3 which shows associated activities
underlying our research on efficient techniques and tools for software testing based on
traces and coverage analysis. The research methodology focuses on four main areas:
theoretical foundations and approaches, software testing tools and techniques, test
cases and testing scripts, and SUT case studies and experiments.

Theoretical foundations and approaches in our research methodology consist of
conducting a literature review in the form of related work. That state of art helped us
to develop and propose our approaches for efficient techniques and tools for software
testing based on traces and coverage analysis, which can be used as the theoretical
foundations.

Then, based on theoretical foundations, we implement software testing tools and
techniques for MC/DC coverage analysis and data race detection. Our tools are

Chapter 1 13

Introduction

Fig. 1.3: Research method and underlying activities.

non-intrusive in the sense that they are either without instrumentation or with a light
weight instrumentation.

We apply our approaches and techniques for coverage analysis and data race
detection on case studies including models, benchmarks and other real examples. In
this context, we investigated the applicability of MC/DC on the design level and how
to monitor data races with low overhead of instrumentation.

As testing and coverage analysis require test cases and test scripts, we proposed and
implemented the test cases selection/generation method that helps to test the systems
under test from the case studies. Our test cases refer to the sample data that allow
to check the actual behavior of the system under test based on the MC/DC criterion.
The test scripts are the test drivers that help us to verify that both our tooling and
methods work as expected. Moreover, we conduct a performance evaluation from
the experiments of the case studies against the theoretical approaches proposed. We
compare our proposed heuristics and provide recommendation to the heuristic that
perform better than others. We provide open access to our tooling and guidance on
how to use them.

1.4 Goals and Contributions

The contribution of this thesis is fourfold:

1. We provide an approach of how MC/DC can be measured non-intrusively by
analyzing program traces. Our approach is based on the idea that every condition
in the source code is translated into a conditional jump on the object code level
and we can reconstruct how the conditions have been evaluated and the outcome
of the decision from the trace. We first record the trace of an executing program
and then analyze it offline. Program traces contain information about jumps
taken during the execution and make it possible to reconstruct the evaluation of

14 Chapter 1

1.5 Thesis Outline

each condition without instrumentation. We provide a non-intrusive MC/DC
measuring tool and measured MC/DC for C programs [2, 9].

2. We present a non-intrusive approach to monitoring applications for data races
detection on embedded system-on-chips (SoCs) using the COEMS platform [49].
This work eliminate the overhead of dynamic checking by offloading it to external
hardware2. The platform offers control-flow reconstruction from processor-traces
and data-traces through explicit instrumentation [125].
This approach for data races detection is not directly related MC/DC analysis
but it serves as a starting point of addressing data races in concurrent programs
such that we could in the future explore how MC/DC information can be used
for the analysis of concurrent programs.

3. We investigated the applicability of MC/DC measurement on the design level
models where we considered specifically CPN models as case study. Our
contribution to coverage analysis of net inscriptions in CPN models includes: 1)
implementation of a CPN Tools library and annotation mechanism that intercept
evaluation of Boolean conditions in guards and arcs in SML decisions in CPN
models, and record how they were evaluated; 2) a post-processing tool that
computes the conditions’ truth assignment and checks whether or not particular
decisions are MC/DC-covered or branch covered in the recorded executions
of the model; 3) we provide visualization of coverage information in the CPN
graphical user interface (GUI) such that it is easy to explore which part of the
models is not covered; 4) we collect coverage data using our library from eleven
publicly available CPN models and report whether they are MC/DC and BC
covered; and 5) we visualize the coverage information in the CPN model such
that the covered and uncovered transitions and arcs are revealed [10].

4. We propose a novel heuristics-based approach for generating test cases for a
Boolean decision that satisfy the MC/DC criterion based on reduced ordered
binary decision diagrams (roBDDs). For a decision of n conditions, we generate
n pairs that contain between n + 1 to 2n test cases altogether. We propose
and compare heuristics with different preferences with respect to three-valued
truth-values and the length of paths in the roBDD. We present an algorithm which
is implemented in Python with the PyEDA library [56]. Our algorithm is tested
on the Traffic Alert and Collision Avoidance System (TCAS II) benchmarks [156]
which are widely used in the literature [71, 74, 86, 87, 161].

1.5 Thesis Outline

This dissertation is structured into two main parts. Part I presents a general introduction
to software testing together with the research directions, research methodology,
obtained results and contributions of this thesis. Part II consists of a collection of three
published and peer-reviewed articles [2, 4, 7], and one submitted international journal
paper [5].

2The EU Horizon 2020 project: ”COEMS–Continuous Observation of Embedded Multicore Systems”,
https://www.coems.eu.

Chapter 1 15

https://www.coems.eu

Introduction

Part I contains of seven chapters and after the introduction, the remaining chapters
are structured as follows:

Chapter 2: Background. This chapter presents a detailed background on coverage
analysis and Modified Condition Decision Coverage (MC/DC) as the main criterion
used for coverage analysis. It describes different techniques and theoretical foundations
that were used for MC/DC measurement and MC/DC test case selection. It provides an
overview on concurrent programs and data race detection. Furthermore, this chapter
gives a background on different techniques that are used to explore the applicability of
MC/DC to our case studies including programs and models.

Chapter 3: MC/DC Analysis and Measurement. This chapter describes how
MC/DC can be measured non-intrusively by analyzing traces. It summarizes our
findings presented in papers [2, 9], and puts our work into a state-of-the-art context
through the discussion of related work.

Chapter 4: Data Race Monitoring in Concurrent Programs This chapter
details the COEMS framework for hardware-assisted data race detection in concurrent
programs. It illustrates the feasibility of our approach for data race detection in a
Linux pthreads-based case study. It briefly summarizes our experimental results and
gathers the related work and future work.

Chapter 5: Coverage Analysis on the Design Level Models This chapter discusses
the application of our MC/DC measurement approach and techniques on design level
models. We considered specifically the coverage analysis on net inscriptions in CPN
models and obtained results are presented in our papers [5, 10] in Part II.

Chapter 6: Generating Test Cases Satisfying MC/DC. This chapter describes
our approach and algorithm for generating test cases satisfying MC/DC based on
binary decision diagrams (BDDs). It explains the implementation of our algorithm
and summarizes the results together with related work. The detailed description is
presented in the paper [4] in Part II.

Chapter 7: Conclusion and Future Work. This chapter provides the concluding
remarks and discusses the future outlook of this thesis. It discusses the limitations
of our approaches and proposes a way forward to addresses those limitations and
challenges as well as the possible extensions of our work.

1.6 Supplementary Material

In addition to the papers [2, 4, 5, 7] presented in Part II of this thesis, one full paper,
three conferences and workshop short papers and one pre-print have been published
presenting initial research results:

16 Chapter 1

1.6 Supplementary Material

[10] F. Ahishakiye, J. I. R. Jarabo, V. Stolz, L. M. Kristensen: Coverage Analysis of
Net Inscriptions in Coloured Petri Net Models. In Proceedings of the International
Conference on Verification and Evaluation of Computer and Communication
Systems(VECoS), volume 12519 of Lecture Notes in Computer Science(LNCS),
pages 68-83, Springer International Publishing, 2020, https://doi.org/10.1007/
978-3-030-65955-4_6.

[9] F. Ahishakiye, F.D. Lange: Non-intrusive MC/DC measurement based on
traces. In: Proceedings of the PhD Symposium at iFM’18 on Formal Methods:
Algorithms, Tools and Applications (PhD-iFM’18), Maynooth, Ireland (Sept 2018),
https://ifm2018.cs.nuim.ie/PhDSymposium.

[12] F. Ahishakiye, V. Stolz, L. M. Kristensen: Generating Test-cases Satisfying
MC/DC from BDDs, The 31st Nordic Workshop on Programming Theory-
NWPT’2019, https://doi.org/10.23658/taltech.nwpt/2019

[11] F. Ahishakiye, V. Stolz, L. M. Kristensen: Coverage Analysis of SML
Expressions in CPN Models, In Proc. of the PhD Symposium at iFM’19 on
Formal Methods: Algorithms, Tools and Applications (PhD-iFM’19), Bergen,
Norway, 2-6, Dec. 2019. https://ifm2019.hvl.no/phd-symposium/.

[3] F. Ahishakiye, J. I. R. Jarabo, V. Stolz, L. M. Kristensen: Coverage Analysis
of Net Inscriptions in Coloured Petri Net Models (2020), pages 1-20, https:
//arxiv.org/abs/2005.09806v1

All the tools developed and implemented for the publications included in this thesis
are available for academic evaluation on the COEMS website3, Github4,5 and the open
repository [8].

3https://www.coems.eu/mc-dc/
4https://github.com/selabhvl/cpnmcdctesting
5https://github.com/selabhvl/py-mcdc/

Chapter 1 17

https://doi.org/10.1007/978-3-030-65955-4_6
https://doi.org/10.1007/978-3-030-65955-4_6
https://ifm2018.cs.nuim.ie/PhDSymposium
https://doi.org/10.23658/taltech.nwpt/2019
https://ifm2019.hvl.no/phd-symposium/
https://arxiv.org/abs/2005.09806v1
https://arxiv.org/abs/2005.09806v1
https://www.coems.eu/mc-dc/
https://github.com/selabhvl/cpnmcdctesting
https://github.com/selabhvl/py-mcdc/

CHAPTER 2
BACKGROUND

In this chapter we provide a detailed background on coverage analysis and the MC/DC
criterion that was used for coverage analysis and the main techniques that were directly
involved in our research. These include program tracing, data race detection, Coloured
Petri nets (CPNs) models, and Binary decision diagrams (BDDs).

We present the state-of-the art on MC/DC and its different variants. In addition, we
give an overview on MC/DC with short-circuiting logic and three-valued truth values
as well as the background on MC/DC measurement on the object code level. Then,
we look into concurrent programs specifically on data race detection as the property
that we are concerned with. Next, we envisage different tracing facilities and source of
traces which include the program traces and model traces. In this context, we provide
an overview on CPN models as the case study considered for coverage analysis. We
are using BDDs as a technique for generating test cases satisfying MC/DC criterion.

2.1 Coverage Analysis

While testing is meant to provide quality assurance for software products, there is still
a need for better support to determine the effectiveness of the tests. Without coverage
analysis, inadequate testing of software is likely to remain a major problem. Coverage
analysis has been envisaged as a criterion for when to stop software testing activities
for both sequential and concurrent programs [57, 94, 124]

There are two main measures of test coverage: requirements coverage and structural
coverage [94]. Requirements coverage considers how well requirement- and specification-
based test cases verified the implementation, and establishes a relationship between
requirements and test cases. Structural coverage determines how much of the program
or code structure was executed by the requirements-based test cases, and establishes
traceability between the code structure and the test cases. Normally, requirements
coverage analysis precedes structural coverage analysis. However, requirements may
not have a complete specification of all behaviours present in the executable code. In
addition, requirements may not be specified at a sufficient level of granularity to assure
full testing of all functional behaviours of the code. Hence, requirements-based testing
alone cannot confirm that the code does not include bugs.

Different structure testing coverage criteria have been proposed in the literature.
It includes statement coverage, branch coverage/decision coverage (BC/DC), path coverage,
condition coverage (CC), condition/decision coverage (C/DC), multiple condition coverage

Background

(MCC) and modified condition/decision coverage (MC/DC) [42, 58, 62, 94, 99, 124, 167].
Statement coverage is a white box testing approach which checks if each statement in

the source code is executed at least once [94, 105, 167]. It is calculated as the number of
executed statements over the total number of statements in the source code. Statement
coverage is considered inadequate because it is insensitive to some control structures.
That is, if there is no test case that causes a conditional statement to evaluate as false,
statement coverage rates the code fully covered, but the code may fail, if a condition
ever evaluates false [48]. In addition, it does not report whether loops reach their
termination condition, as it only checks that the loop body was executed.

Branch coverage is a coverage criterion intended to ensure that each decision from
every branch is executed at least once [105, 167]. It allows to validate all the branches
in the code and in addition it ensures that no branch lead to any abnormality of the
program’s operation. Both statement- and branch coverage are completely insensitive
to the logical operators (∨/|| and ∧/&&).

Path Coverage which is also called predicate coverage checks whether each of the
possible paths in each function entry to the exit have been followed [48]. It considers a
sequence of branches or statements and evaluate combinations of branch decisions with
other branch decisions which may not have been tested based on statement or branch
coverage [105]. Path coverage requires very thorough testing and it is difficult to achieve
100% path coverage as the number of paths are exponential to the number of branches
and that many paths are impossible to exercise due to data dependencies [48, 99].

The coverage criteria taking logical expressions into consideration have been defined
and proposed [94, 105, 163]. A logical expression is a list of Boolean expressions all of
which are required to evaluate to true or false. We refer to such Boolean expressions as
decisions. They can be presented in a form of conditionals in if-then-else expressions,
where a decision determines whether the then- or the else-branch will be taken. The
following are the definitions for a condition and a decision [58].
Definition 1 (Condition). A condition is a Boolean expression containing no Boolean
operators except for the unary operator NOT.
Definition 2 (Decision). A decision is a Boolean expression composed of conditions and zero
or more Boolean operators (OR, AND, or XOR). It is denoted by D(c1, c2, ci, · · · , cn), where
ci, 1 ⩽ i ⩽ n are Boolean conditions.

A Boolean expression is a predicate (which refers as well to a decision) that returns
a Boolean value. We denote the truth values true and false by 1 and 0, respectively.

As an example, we may have a Boolean expression in the if-then-else expression
containing a decision of the formD = ((x ⩾ 6)AND(y < 9))OR(¬(x ⩾ 6)AND(z < 3)).
It can be abstracted using literals represented by lowercase letters such as a, b and
c where a literal can be positive or negative (a or ¬a). The resulting decision is D
= (a∧b)∨(¬a∧c), where conditions a, b, and c represent (x ⩾ 6), (y < 9) and (z < 3).

Condition coverage (CC) checks individual outcomes for each logical condition. CC
offers better sensitivity to the control flow than decision coverage. The following is the
definition of condition coverage [13, 94, 163]
Definition 3 (Condition Coverage). Each condition in a decision takes on each possible
outcome at least once true and once false.

20 Chapter 2

2.1 Coverage Analysis

Decision coverage (DC) requires each decision to be evaluated once true and once
false [13, 94, 163]. It is commonly equated with branch or path coverage.

Definition 4 (Decision Coverage). Every point of entry and exit in the program has been
invoked at least once and every decision in the program has taken on all possible outcomes at
least once.

Definition 5 (Condition/Decision Coverage (C/DC) [163]). Every condition in a decision
has taken on all possible outcomes at least once, and every decision in the program has taken on
all possible outcomes at least once.

Multiple condition coverage (MCC) is an exhaustive testing of all possible combinations
of conditions’ inputs.

Definition 6 (Multiple condition coverage [163]). All possible combinations of the outcomes
of the conditions within each decision have been executed at least once.

Condition coverage (CC), Decision coverage (DC), Condition/Decision coverage)(C/DC)
and Multiple condition coverage (MCC) have different limitations that need to be
addressed. CC and DC are considered inadequate due to ignorance of the independence
effect of conditions on the decision outcome. MCC requires 2n tests for a decision
with n inputs. This results in exponential growth in the number of test cases, and is
therefore time-consuming and impractical for many test cases.

DC has another disadvantage that it ignores branches within Boolean expressions
which occur due to short-circuit operators [48]. Short-circuit means that the right
operand of the and-operator (&&/∧) is not evaluated if the left operand is false, and
the right operand of the or-operator (||/∨) is not evaluated if the left operand is true.
Consider an example in Listing 2.1, the decision is evaluated to true when condition1
and condition2 are true whereas function1 is short-circuited in that case. When
condition1 is false, the decision evaluates to false, condition2 is not evaluated and there
is no call to function1.

1 if (condition1 && (condition2 || function1()))
2 statement1;
3 else
4 statement2;

Listing 2.1: Illustration of short-circuit evaluation

To address the limitations of the structure coverage criteria discussed above, modified
condition/decision coverage (MC/DC) was proposed [42, 58]. In safety critical systems
such as in the avionics industry, software certification requires a vendor to demonstrate
that the test-suite provides MC/DC coverage of the source code. The MC/DC coverage
criterion has been chosen as the coverage criterion for the highest safety level software
because it is sensitive to the complexity of the decision structure [42]. Compared to
even stronger criteria like multiple condition coverage (MCC), that requires every
possible combination of all conditions, MC/DC may be satisfied with only n+ 1 test
cases for a decision with n conditions [13, 41, 94]. In addition, MC/DC coverage
criterion is suggested as a good candidate for model-based development (MBD) using
tools such as Simulink and SCADE [75]. Therefore, our model coverage analysis is

Chapter 2 21

Background

based on MC/DC as a coverage criterion subsuming the other coverage criteria. The
following MC/DC coverage definition is based on DO-178C [132]:

Definition 7 (Modified condition/decision coverage). A program is MC/DC covered and
satisfies the MC/DC criterion if the following holds:

– every point of entry and exit in the program has been invoked at least once,

– every condition in a decision in the program has taken all possible outcomes at least once,

– every decision in the program has taken all possible outcomes at least once,

– each condition in a decision has shown to independently affect that decision’s outcome by:
(1) varying just that condition while holding fixed all other possible conditions, or (2)
varying just that condition while holding fixed all other possible conditions that could
affect the outcome.

MC/DC is also known as Restricted Active Clause Coverage (RACC), General
Active Clause Coverage (GACC) or Correlated Active Clause Coverage (CACC) [13]. To
demonstrate MC/DC, a structural coverage analysis tool should monitor statements,
entry and exit points, decision and branching statements as well as Boolean
conditions [94]. However, the first item in the definition of MC/DC, is traditionally
added to all control-flow criteria and is not directly connected with the main elements
of MC/DC definition [152]. The most challenging and most interesting part is showing
the independence effect of conditions [42, 58, 132]. By showing the independent effect
of each condition, MC/DC demonstrates that each condition of the decision has a
defined purpose.

The term decision is also used as the term branch point and the CAST-10 [37] position
paper clarifies the meaning of decision in the context of the DO-178C [124]. It explicitly
states that MC/DC should apply to all decisions, not just those within a branch point.
That means that in addition to the decision within a branch point all Boolean operations
that appear (i.e. in assignment statements) have to be considered. This avoid cheating
MC/DC criterion.

As an example , the following decision:

1 if (A && (B || C)) then ...

can transformed as:

1 D = B || C
2 E = A && D
3 if E then ...

To show MC/DC for the first decision in the if-statement at least four test cases are
required whereas the second decision in he if-statement can be covered by just assigning
E to both True and False if a decision would be equal to a branch point. Therefore for
MC/DC analysis, all logic structures need to be taken into account, not just the branch
points and logical structure, that cannot be detected or are hardware-based, have to be
evaluated externally.

22 Chapter 2

2.2 Modified Condition Decision Coverage (MC/DC)

2.2 Modified Condition Decision Coverage (MC/DC)

Certification standards for safety assurance such as DO-178C [124] in the domain of
avionic software systems require software with the highest safety level (Level A) to
satisfy MC/DC [42]. This criterion requires each condition to show an independent
affect on the decision’s outcome as defined in Definition 7 by DO-178C [124] and CAST-
10 [37]. By showing the independence effect of each condition, MC/DC demonstrates
that each condition of the decision has a defined purpose. The most challenging
part in the Definition 7 of MC/DC is showing this independence effect: item (2)
in the definition has been introduced in DO-178C to clarify that so-called Masked
MC/DC is allowed [36, 124]. Masked MC/DC means that it is sufficient to show the
independence effect of a condition by holding fixed only those conditions that could
actually influence the outcome. MC/DC was developed to ease the testing of complex
Boolean expressions in safety-critical applications such as traffic collision avoidance
systems in aircrafts, patient monitoring systems in hospitals and nuclear power control
systems [42]. MC/DC subsumes the existing logical coverage criteria such as condition
coverage (CC), decision coverage (DC), and multiple condition coverage (MCC). Unlike
other types of structural coverage, MC/DC can be applied to any representation
(graphical or textual, mathematical or not) where logic is expressed.

There are three main forms of MC/DC according to [41], Unique-Cause (UC)
MC/DC, Masking MC/DC and Unique-Cause + Masking MC/DC. UC-MC/DC is
the original MC/DC which requires strictly an independence effect of each condition
where only one condition changes at a time and cannot be achieved for a decision with
coupled condition. Masking MC/DC is designed to handle coupled conditions and
dealing with conditions whose changes do not affect the outcome when checking the
independence of their peer condition. Coupled conditions are defined as follow:

Definition 8. (Coupled conditions). Two or more conditions are said to be coupled if changing
one condition can cause the other condition(s) to change (see Table 2.1a, b and ¬b are coupled
conditions). Conditions are said to be strongly coupled if changing one always changes the
others. At the contrary, they are said to be weakly coupled if changing one sometimes (but not
always) changes the others.

2.2.1 Unique cause MC/DC (UC-MC/DC)
Unique-Cause (UC) MC/DC is defined by DO-178C [124] as the original MC/DC with
the same original interpretation of "independent effect" requirement for each condition
in a decision. A condition is toggled once true and false showing the independence
effect of that condition on the outcome while holding all other possible conditions
fixed. It requires a strict selection of UC pairs for every condition in the decision and it
cannot be satisfied if a decision contains strongly coupled conditions.

In the context of selecting UC-MC/DC independence pairs, two variant definitions
of UC-MC/DC were identified [42, 97, 121, 163].

1. Weak UC-MC/DC: This variant consists of selecting one MC/DC independence
pair for any occurrence of a condition. It is explicitly required that one pair is
selected for any occurrence of a condition in the form of the black box approach

Chapter 2 23

Background

tc a b c D MC/DC pairs
1 0 0 0 0
2 0 0 1 0 a(2,6)
3 0 1 0 0 a(3,7)
4 0 1 1 0
5 1 0 0 0 a(4,8)
6 1 0 1 1 c(5,6)
7 1 1 0 1 b(5,7)
8 1 1 1 1

(a) MCC & All UC-MC/DC pairs

π a b c D MC/DC pairs
1 0 0 1 0
2 1 0 0 0 a(1,3)
3 1 0 1 1 c(2,3)
4 1 1 0 1 b(2,4)

(b) Weak UC-MC/DC pairs

tc a1 b a2 c D pairs
1 0 1 1 0 0 a1(1,5)
2 1 0 0 1 0
3 1 0 1 1 1 a2(2,3)
4 1 0 1 0 0 c(3,4)
5 1 1 1 0 1 b(4,5)

(c) Strong UC-MC/DC pairs

Table 2.1: MCC & MC/DC pairs for D = (a∧ b)∨ (a∧ c)

of module testing [163]. For example, the decision D = (a ∧ b) ∨ (a ∧ c) is
considered to have only three conditions, a, b and c, hence, requiring only one
independence pair for each of the conditions.

2. Strong UC-MC/DC: In this case one MC/DC independence pair is selected for
every occurrence of a condition. According to [58], if a condition appears more
than once in a decision, each occurrence is a distinct condition. For instance the
decisionD = (a∧ b)∨ (a∧ c), contains four conditions where the occurrence of
condition a in the first and third position are treated as different conditions. The
expression would be written as D = (a1 ∧ b)∨ (a2 ∧ c).

Example 1. The truth table representing all eight possible test cases (combinations) for
MCC for the decision D = (a ∧ b) ∨ (a ∧ c) is given in Table 2.1. In this table, the
MC/DC column lists conditions (here a,b, and c) together with a pair of test cases that
demonstrate the independence effect of the particular condition. For an example, the
MC/DC pair a(2, 6) specifies that from test cases 2 and 6we can observe that changing
the truth value of a while keeping the values of b and c, we can affect the outcome
of the decision. Comparing MCC to MC/DC in terms of the number of test cases,
there are seven possible MC/DC test cases (test cases 1 through 7) that are part of an
MC/DC pair, where condition a is represented by 3 pairs of test cases showing the
independence effect of condition a, and one pair of test cases for conditions a and b.
However, all seven test cases provided in Table 2.1a are not necessary to ensure MC/DC
coverage. For weak UC-MC/DC, only four test cases (1,2,3, and 4), i.e., n+ 1 test cases
for a decision with three conditions are required to achieve MC/DC coverage as shown
in Table 2.1b. For Strong UC-MC/DC, we have five test cases represented in Table 2.1c
because the two occurrence of condition a are treated as two distinct conditions.

Definition 9 (Independence effect of a condition, independence pair, ⊕c). Given two
test cases tc, tc ′ for a decision D, we call tc independent from tc ′ on condition c, iff i)
D(tc) = ¬D(tc ′) (they evaluate to opposite truth values), and ii) tc⊕ctc

′, where ⊕c means
they differ exactly only in the input position corresponding to condition c. We then say that tc
and tc ′ form an independence pair (for some condition c), written uc(tc, tc ′).

24 Chapter 2

2.2 Modified Condition Decision Coverage (MC/DC)

For example, test cases 2 and 6 in Table 2.1a form an MC/DC pair and they show
an independence effect of condition a in the decision. Similarly for the rest of the
conditions. Note that it is possible for a condition to have more than one MC/DC pair
which is the case for condition a in Table 2.1a. In our context, we can reformulate the
general definition of MC/DC from Definition 7 for our purposes [4]:

Definition 10 (MC/DC-cover). Given a decision D and set of test cases ψ, we say that ψ
MC/DC-coversD, iff ∀c ∈ D, ∃tc, tc ′ ∈ ψ : tc⊕c tc

′ ∧ uc(tc, tc ′) (tc is independent from
tc ′ for every condition c).

In other words, a set is an MC/DC-cover for a decision D, if for every condition,
there exists a pair of test cases in that set which shows the independence effect of that
condition by evaluating to opposing truth values.

2.2.2 Unique cause MC/DC + masking MC/DC (UCM-MC/DC)
This Unique cause MC/DC + Masking MC/DC (UCM-MC/DC) extends UC-MC/DC
so that masking is allowed for only strongly coupled conditions. For this type of MC/DC,
the uncoupled conditions are required to show UC-MC/DC. This means that except for
the condition under-test all other possible uncoupled conditions must be fixed excluding
these that are strongly coupled [42]. Similar to the original MC/DC, there are two
possible ways of selecting independent pairs that satisfy UCM-MC/DC [34, 41, 92, 141]:

1. Weak UCM-MC/DC: For any occurrence of an uncoupled condition, one UC pair
is selected, and one masking pair for any occurrence of each strongly coupled
condition.

2. Strong UCM-MC/DC: It consists of selecting one UC pair for every occurrence
of an uncoupled condition, and one masking pair for every occurrence of the
strongly coupled condition.

The main difference between weak UCM-MC/DC and strong UCM-MC/DC is the
resulting number of test cases where the later consider every occurrence of a strongly
coupled condition as a new condition and hence resulting in a higher number of test
cases.

2.2.3 Masking MC/DC
As its name implies, Masking MC/DC allows masking in all cases not only for strongly
coupled conditions. It is the weakest form of MC/DC. A condition is considered
masked, if varying that condition cannot affect the outcome of a decision [34, 41, 141].

For example, it is sufficient to show the independence effect of a inD = a∨ (b∧ c)

by holding the sub-expression b ∧ c fixed to False even if the values of b and c

are changing [41]. The position paper CAST-6 [36] the Certification Authorities
Software Team (CAST) compared UC-MC/DC and Masking MC/DC and concluded
that Masking MC/DC meets the intent of the MC/DC objective and is therefore an
acceptable method for meeting MC/DC with applicants striving to the objectives of
DO-178B, level A. Table 2.2 contains Masking MC/DC pairs with independence effect
of each condition.

Chapter 2 25

Background

TC conditions Decision evaluation
a b c a || (b && c) a b c

1 0 0 0 0 0 0 ?
2 0 0 1 0 0 0 ?
3 0 1 0 0 0 1 0
4 0 1 1 1 ? 1 1
5 1 0 0 1 1 ? ?
6 1 0 1 1 1 ? ?
7 1 1 0 1 1 ? ?
8 1 1 1 1 1 ? ?

(a) Short-circuit evaluation for D = a || (b && c).

TC a b c D Masking MC/DC pairs
1 0 0 ? 0
2 0 1 0 0 c(2,3)
3 ? 1 1 1 b(1,3)
4 1 ? ? 1 a(1,4)

(b) Independent Masking MC/DC pairs

Table 2.2: Short-circuit evaluation and Masking MC/DC pairs for D = a || (b && c)

2.2.4 MC/DC with short-circuit logic and three-valued truth values

The short circuit logic known also as "don’t care" corresponds to a software optimization
which consists of skipping the evaluation of some conditions or Boolean expressions
which do not influence the decision outcome. In most modern programming languages,
Boolean expressions are evaluated in strict order (left to right) and by using short
circuit logic. The left operand can always be evaluated first and the right operand
is only evaluated if its value is needed to determine the result of the decision. For
example, the right operand of the and-operator is not evaluated if the left operand is
False and right operand of the or-operator is not evaluated if the left operand is True.
Some programming languages also provide short circuit control forms.

Short circuit logic also occurs when compiler optimizations are selected which
do not require all of the operands within an expression to be evaluated once the
output has been determined. This is important for programming languages that use
short-circuit evaluation, because certain executions of decisions are not distinguishable,
if the outcome of the decision is determined before every condition has been evaluated.
Short circuit logic, whether by language construct or compiler optimization, is similar
to the masking evaluation discussed in section 2.2.3.

In [94] examples of MC/DC with short circuit logic are presented where short circuit
expressions can be treated in the same manner as conventional and and or gates. In
Table 2.2 we present the short-circuit evaluation for D = a || (b && c) with all possible
inputs and select independent Masking MC/DC pairs. The "don’t care" value "?" means

26 Chapter 2

2.2 Modified Condition Decision Coverage (MC/DC)

that the condition has not been evaluated at all due to short-circuit evaluation. It can be
seen that the test cases 5, 6, 7 and 8 are not distinguishable by looking at the evaluated
conditions because of the ||−operator. Test cases 1 and 2 show the same behavior with
respect to the && − operator. This is because the left-hand operand alone determines
the outcome of the decision, the right-hand operand can be considered as masked
in sense of Masked MC/DC [47]. Binary decision diagrams (BDDs) also are used to
illustrate the short-circuit evaluation in Section 2.7. Figure 2.3b show a reduced ordered
BDD (roBDD) for the decisions D = a || (b && c) with short-circuit evaluation.

Therefore, Masking MC/DC complies with the second part of DO-178C definition 7:
“each condition in a decision has shown to independently affect that decision’s outcome
by ... (2) varying just that condition while holding fixed all other possible conditions
that could affect the outcome.”, because a condition that is not evaluated cannot
affect a decision’s outcome. Table 2.2 presents Masking MC/DC pairs that show the
independence effect of each condition. We define the set of test cases with short-circuit,
as the three valued test cases.

Definition 11 (Two/Three-valued test case). Given a decision D, a test case is a truth
vector tc = (I1, I2, I3, · · · , In) where Ii ∈ {0, 1} (respectively, {0, 1, ?}) are the inputs assigned
to each conditions. ? is known as “don’t care” meaning that a condition does not need to be
evaluated due to short-circuiting. A set of test cases for a given decision is called a test suite.
We denote the projection onto the truth-value at the position corresponding to some condition c
in the test case tc as tc[c].

2.2.5 MC/DC measurement on object code
MC/DC measurement can be performed either at the object code or the source code
level. Achieving MC/DC at the object code level is not necessarily equivalent to
achieving MC/DC at the source code level [41]. MC/DC may be demonstrated at the
object code level [35, 38], however, the analysis must show that coverage at the object
code level is equivalent to coverage at the source code level. That is, it requires coverage
traceability from object code to source code. Therefore, a static analysis of object code
and back to source code needs to be conducted. Then MC/DC can be measured based
on the sequence of jumps performed by the CPU by finding out which conditions in the
source code correspond to which conditional jumps in the object code. This mapping
is necessary in order to establish the correctness of such generated code sequences.

We presents in Listing 2.2 the source code for decision (a || (b == 5 && c > 3))

and its object code representation is shown in 2.3. The translation to object code is
performed using the Clang compiler.

1 int decision(int a, int b, int c){
2 if (a || (b==5 && c>3)){
3 return 1;
4 }
5 else{
6 return 0;
7 }
8 }

Listing 2.2: Source code for decision (a || (b == 5 && c > 3))

Chapter 2 27

Background

It is possible to reconstruct how the conditions were assigned during the execution
based on this mapping and the program trace evaluation. In order to perform a
reconstruction of the condition assignments it is required that every condition on the
source code level translates to one specific conditional jump on the object code level.
Listing 2.3 shows conditional jumps in lines 7, 9, 11 that correspond to the decision in
line 2 of Listing 2.2 and 13 for the decision evaluation. However, this assumption does
not hold if the compiler uses any optimization level that influences conditional jumps
because even for the first optimization level (for example for gcc compiler: the options
-fif-conversion) conditional jumps are translated into branch-less equivalents.

1 0x0000000000400480 <+0>: push %rbp
2 0x0000000000400481 <+1>: mov %rsp,%rbp
3 0x0000000000400484 <+4>: mov %edi,-0x8(%rbp)
4 0x0000000000400487 <+7>: mov %esi,-0xc(%rbp)
5 0x000000000040048a <+10>: mov %edx,-0x10(%rbp)
6 0x000000000040048d <+13>: cmpl $0x0,-0x8(%rbp)
7 0x0000000000400491 <+17>: jne 0x4004ab <decision+43>
8 0x0000000000400497 <+23>: cmpl $0x5,-0xc(%rbp)
9 0x000000000040049b <+27>: jne 0x4004b7 <decision+55>

10 0x00000000004004a1 <+33>: cmpl $0x3,-0x10(%rbp)
11 0x00000000004004a5 <+37>: jle 0x4004b7 <decision+55>
12 0x00000000004004ab <+43>: movl $0x1,-0x4(%rbp)
13 0x00000000004004b2 <+50>: jmpq 0x4004be <decision+62>
14 0x00000000004004b7 <+55>: movl $0x0,-0x4(%rbp)
15 0x00000000004004be <+62>: mov -0x4(%rbp),%eax
16 0x00000000004004c1 <+65>: pop %rbp
17 0x00000000004004c2 <+66>: retq

Listing 2.3: Object code for decision (a||(b == 5&&c > 3))

The binary operators can be omitted in case symbolic conditions are used (as in in
case of condition a), which are commonly used for single Boolean expressions. The
above expression would be the same as (a || (b && c)) which is used in Figure 2.3
and Table 2.2. Note how every condition is translated into a conditional jump and
short-circuit logic is used, if the target of a jump skips the evaluation of other conditions.
For example, if the jump in line 7 is taken, the other conditional jumps in lines 9 and 11
are not evaluated at all.

Depending on the relational operator in the condition (for example: <, <=, and ==),
two different possible conditional jumps can be generated by the compiler because
conditions can be translated to their negation (it is up to the compiler to choose
“jump-if-equal” or “jump-if-not-equal”). If a condition is translated as its negation,
this has implications for the reconstruction of the assignments by analyzing the trace
as a taken jump shows that the condition has been evaluated as false. The possible
combinations for the Intel x86-64 instruction set and its ARM counterpart are shown in
Table 2.3, which have to be taken into account when the reconstruction is performed.

28 Chapter 2

2.3 Concurrent Programs

2.3 Concurrent Programs

Today multi-core/multi-processor hardware is in main stream use with the main
capability of implementing parallelism and concurrency to increase processing speed
and optimize the resource sharing. However, available resources and the processing
speed may not be used efficiently if different program components execute in sequence
on all processors. That is processes are executed in order where a process is started
when the preceding process has finished. There is always only one process per
processor being executed concurrently. Thus, it is necessary to develop concurrent
programs that utilize available resources where multiple processes are executed to
perform a job together [16, 111].

Figure 2.1 compares process execution for sequential versus concurrent programs.
Figure 2.1a shows the sequential processing where one process executes after another
and Figure 2.1b presents the concurrent processing where two or more actions are
executing at the same time. A process is defined as a unit of program execution as seen
by an operating system. A process has its own address space, file handles, and threads.
A unit of control within a process is known as a thread and it will execute a function in
the program whenever it runs. Threads have their own program counter and register
values, but they share the memory space and other resources of the process. Contrary
to a sequential program that has a single thread of control, there are multiple threads of
controls for a concurrent program.

Due to the non-deterministic behavior of concurrent programs, their testing involves
complexity which makes them prone to faults, difficulties in sharing global resources,
management of allocation of resources and difficulties in locating programming errors.
In addition, there are other problems associated with debugging concurrent programs
such as the "probe effect", non-repeatability, and the lack of a synchronized global

Relational Possible Condition Value
Operator: Conditional Jumps: of Detected Jump:

x86-64 ARM

no operator jne bne True

je beq False

== je beq True

jne bne False

< jl blt True

jge bge False

<= jle ble True

jg bgt False

> jg bgt True

jle ble False

>= jge bge True

jl blt False

Table 2.3: Multiple interpretations of jumps in the x86-64 and ARM instructions sets
compiled with clang version 5.0 [17]

Chapter 2 29

Background

clock [111]. Probe effect denotes the behavioral changes in the frequency of run-time
computational errors caused by delays introduced into concurrent programs due to
the insertion or removal of code instrumentation [64]. It refers to the unintended
behavior of the system when attempting to observe its behavior. Even without any
attempt to observe the program behavior, there may be non-repeatable behavior for
some concurrent programs where different executions with the same data yields
different results. Even when the behavior can be observed, it may be difficult to
interpret the results of the observation due to the lack of a synchronized global
clock [111]. Testing concurrent software exhaustively is not practicable because of
the huge interleaving space (the total number of execution orders between processes).
Thus, there is a need of synchronization between processes [57, 64, 104]. Section 2.3
provides a background on the main aspects of concurrent programs such as thread
creation, thread synchronization and communication. We provide an overview on the
detection of concurrent programming errors such as deadlocks, livelocks, starvation,
and data races [28]. In addition, we discuss different methods proposed to deal with
non-deterministic behavior in concurrent programs, such as locking, serialization, and
time stamp.

2.3.1 Thread creation

A thread is defined as a single sequence of executable statements within a program. It
is also known as a thread of execution or a thread of control. Within a single thread,
the sequential flow of execution from one statement to the next can be traced.

Note that the main difference between threads and processes is that threads within
the same process run in a shared memory space, while processes run in separate
memory spaces. Both processes and threads have their own program counter (PC),
register set, and stack space.

It is possible to implement multithreaded programs where multiple threads can run
concurrently by alternating them. To create threads, our illustration is based on C
programs as shown in Listing 2.4. The first step is to include the file "pthread.h." and
then a thread is created and started using the function pthread_create(). Each thread
takes four parameters: the pointer to the thread ID with a specific object of type
pthread_t associated with it, the attributes of a thread, the function that the thread starts
to execute, and the argument that the function takes.

(a) Sequential processes

(b) Concurrent processes

Fig. 2.1: Comparison of processes for sequential versus concurrent programs
30 Chapter 2

2.3 Concurrent Programs

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <unistd.h>
4 #include <inttypes.h>
5 pthread_mutex_t m,l; //two locks
6 int x=0, y=0; //global variable
7

8 void* f(void *arg) { //The function that the thread starts to execute.
9 for (int i = 0; i < 25; i++) {

10 pthread_mutex_lock(&m);//acquire the lock m
11 x++;
12 pthread_mutex_unlock(&m);//release the lock m
13 }
14 return NULL;
15 }
16 void* g(void *arg) { //The function that the thread starts to execute.
17 for (int i = 0; i < 25; i++) {
18 x++;
19 }
20 return NULL;
21 }
22 void* f(void *arg) { //The function that the thread starts to execute.
23 for (int i = 0; i < 25; i++) {
24 pthread_mutex_lock(&l);//acquire the lock l
25 y++;
26 pthread_mutex_unlock(&l);//release the lock l
27 }
28 return NULL;
29 }
30

31 int main() { //Entry point of program
32 pthread_t p1; //First thread ID
33 pthread_t p2; //Second thread ID
34 pthread_mutex_init(&m, NULL);
35 pthread_create(&p1, NULL, f, NULL);// Create thread for function f
36 pthread_create(&p2, NULL, g, NULL);// Create thread for function g
37 pthread_join(p1, NULL); //wait for peer thread
38 pthread_join(p2, NULL); //wait for peer thread
39 printf("x= %d\n", x);
40 return 0;
41 }

Listing 2.4: Threads creation and locking

Listing 2.4 shows two threads which execute the functions f and g and contains
two locks m and l. Using pthread_join(), a thread can be made wait for another thread
where its ID is passed as an argument. In addition, the value which will be returned
by exiting a thread can be passed as an argument. As the local variables are destroyed
when a thread exits, only references to global or dynamic variables should be returned.

Chapter 2 31

Background

2.3.2 Communication between threads
Communication between threads refers to control mechanisms where threads are able
to correctly transmit data among them. Threads frequently have to interact with each
other to accomplish a work together and forming a dependency between them. With
such dependency, a dependent thread will typically have some knowledge about the
states of the partner thread. Normally, a thread requires that another thread is in a
specific state before proceeding with an operation. A thread is said to be "causally
dependent" on another thread, if it is affected by its state changes (such as by reading
memory that it has written).

In concurrent programs, there exist two main methods of communication between
threads [16]:

– Shared memory: All the threads have access to the same memory but they are
working on different chunks of data. However, some threads can use the results
from others. Thus, threads cooperate with each other to perform a given task
together by by communicating via shared memory. For example one thread can
write into a variable which is read by another thread.

– Message passing: one thread sends a message that is received by another thread.
With this means of communication, a queue is used to store the message until it
is processed. Communication channels provide a one way path from a sending
to a receiving process and channels are FIFO queues of pending messages.

Critical section. A critical section in concurrent programs refers to a region of the
program where a shared resource is accessed [16]. This part of the program needs
to be protected so that conflicting access is avoided. In other words, if the region is
executed by more than one process (or thread) at a time, it yields wrong results and
this is referred to us as mutual exclusion. We will discuss later the possible solutions to
the critical section problem [54, 93].

For example in the Listing 2.4, the global x (line 7) can be accessed by both function
f (line 12) and function g (line 21). The access can be either a write or read to x. If p1
executing function f needs to read the right value of x, executing p1 and p2 at the same
time may give wrong results for x, especially when there is no protection of the global
variable (see for example in function g where access on x is not protected). To avoid
the conflict, the variable x need to be protected. First, p1 gets the access to the critical
section. Once p1 finishes writing the value, p2 gets the access to the critical section
and variable x can be read and be written. To prevent conflicting access to the shared
variable, it is necessary to control which variables are modified inside and outside
the critical section. The shared variables need also to be synchronized to maintain
consistency of data variables. It is assumed that a process that enters its critical section
will eventually exit, where for instance it can terminate outside the critical section [16].

A race condition. In concurrent programs a race condition occurs when more than
one process are accessing the same memory at the same time and at least one of
them writes to that memory location [21]. If several processes access and perform
the manipulations over the same data concurrently, then the outcome depends on

32 Chapter 2

2.3 Concurrent Programs

the particular order in which the access takes place. A race condition occurs inside a
critical section when the result of multiple thread executions differs according to the
order in which the threads execute.

The outcome of the data race is determined by the interleaving which is also depends
to different factors such as processor load, network traffic, non-determinism in the
communication protocol and timing of events [136].

It is in general impossible to determine in advance the outcome of race conditions
as concurrent programs are not predictable with respect to its interleaving space.
Changing one of the factors mentioned above, for example, the processor load, is
enough in order to get a different outcome of such a race. Moreover, a different outcome
of a race condition may give different behavior. The non-deterministic behavior of
concurrent software tends to make them more difficult to understand, write and debug,
compared to sequential software [111].

2.3.3 Thread synchronization
To avoid data races in concurrent programs, there is a need to control execution
order (interleaving) of instructions of concurrent tasks. Synchronization refers to the
interaction between processes that controls the order in which the processes execute [16].
Different threads compete for time on the same processor or may execute in parallel on
separate processors. Therefore, thread synchronization ensures timing relationships
among threads. There are two basic types of threads synchronization in concurrent
programs: mutual exclusive and condition synchronization.

– Mutual exclusive synchronization ensures that only one process enter the critical
section at a time for the resource. One of the requirements for the mutual exclusive
is that a process must not be delayed to access to a critical section when there is
no other process using it and a process remains inside its critical section for a
finite amount of time only. The other thread waits until the current thread has
reached a certain point in its code.

– Condition synchronization: ensures that the state of a program satisfies a particular
condition, therefore a process is delayed until a condition is true.

An example of these types of synchronization is the communication between producer
and consumer processes [16]. Their communication can be implemented using shared
memory buffer. The producer writes to the buffer while the consumer reads from the
buffer. It is required to have mutual exclusion between the two processes to avoid that
the producer and consumer access the buffer at the same time. Therefore, the partially
written message is not read before it is ready to be read. In addition, the condition
synchronization will ensure that the message is not read by the consumer before it has
been written by the producer.

To ensure concurrent program control and data synchronization, other synchronization
primitives that are defined includes:

• Semaphores: They were first introduced by Dĳkstra [54] to define the critical section
problem. They allow certain patterns of data synchronization in which a fixed
number of threads are permitted to be inside the critical region simultaneously.

Chapter 2 33

Background

• Locks and barriers: One of the ways to implement mutual exclusion is to use locks
to protect critical sections. Exclusive locks are used to control threads accesses to
the same location. Listing 2.4 shows the usage of pthread_mutex_lock to control
access to global variable x (line 10-12). There will be no conflicting access to x as
long as the first thread is holding the lock. We observe the incorrect locking in
Listing 2.4 from line 16-21, where the thread p2 accesses x without any lock used.
Hence this will result in a data race.

• Compare and swap: This an an atomic instruction that compares the contents of a
memory location with a given value and, only if they are the same, modifies the
contents of that memory location to a new given value.

2.4 Data Race Detection

As we introduced in Section 2.3, a data race in a multi-threaded program may rise
when two or more threads access the same memory location concurrently, and at least
one of the accesses is a write while the threads are not using any synchronization
mechanism to control their accesses to that memory [21, 135, 137].

There are two techniques to detect data races: static data race detection and dynamic
data race detection. Sometimes a combination of both approaches can used as a hybrid
technique. Static data race detection techniques perform a compile-time analysis of the
code. While static techniques can warn about all possible bugs in all possible executions,
they may result in an excessive number of false alarms (false negatives) that hide the
real data races due to over-approximations of the behaviour of the program. Dynamic
data race techniques analyze programs at run-time and use a tracing mechanism to
detect whether a particular execution of a program actually exhibited data races. They
detect only those apparent data races that occur during execution and they locally
consider only one specific execution path of the program each time. Dynamic data
races are hard to detect because they depend on the particular order in which the
accesses take place. That is, dynamic bugs may be related to interaction of two different
processes, and their manifestation may change over time where re-running the program
may not always produce the same results.

There are two main methods for dynamic data race detection: trace based post-mortem
and on-the-fly.

Post-mortem methods: After the execution terminates, the traced information is
analyzed.If there are possible data-races found, a warning is raised.

On-the-fly methods: They report data races as they occur during an execution of a
program. These methods contain three different analyses: lockset analysis, happens-before
analysis, and hybrid analysis

– Lockset-based approaches [72, 135] detect data races based on the set of locks
protecting shared-variable accesses. That is checking violations of a locking
discipline. The limitation of lockset-based approaches is that they often report
many false data races (false positive), because the related shared variables are not

34 Chapter 2

2.5 Source of Traces and Tracing Mechanisms

actually concurrently accessed.One of the most frequently used lockset-based
approaches is proposed and implemented in Eraser [135]. The proposed lockset
algorithm is based on the assumption that access to a shared variable is always
protected by a set of locks and any thread accessing the variable must hold a lock.

It is necessary that the lockset algorithm knows about relevant events with respect
to locking and memory accesses. For example it needs to know which thread is
taking which lock and which thread is reading from or writing to a given memory
location. To address this, Jakšić et al. [80] proposed a basic version of the lockset
algorithm where for each shared variable:

1. the accesses to the shared variable is first identified;
2. on each access to the variable, the set of locks held by the thread accessing

the variable is identified;
3. the set of locks guarding the variable with the set of all locks is initialized;
4. on each access to the variable, the set of locks guarding the variable is

updated by intersecting it with the set of locks held by the thread which is
accessing the variable.

They present a stream-based dynamic data race detection based on the TeSSLa
specification language [100] with the help of a dynamic data structure monitoring
platform that records lock operations and memory accesses. The proposed lockset
algorithm is able to detect the error in the example presented in Listing 2.4 in
a single run, regardless of the final value of x. In [7], we extend this approach
for detecting data races using the COEMS technology through continuous online
monitoring with low-impact instrumentation on a FPGA-based external platform
for embedded multicore systems. The summary of our findings about this
approach is provided in Chapter 4 and detailed results are in Part II.

– Happens-before analysis [40, 72] reports data races between a current access and
maintains previous accesses by comparing their happens-before relation based on
the usage of a logical time stamp, such as vector clocks. For example, when two
conflicting memory accesses a1 and a2 are on the same memory location, and
neither a1 happens before a2 nor a2 happens before a1, a data race may occur.
An advantage of happens-before analysis is its precision, since it does not report
false positives and can be applied to all synchronization primitives. However,
it involves complexity to be efficiently implemented due to the performance
overhead.

– Hybrid analysis [72] reduces the main drawback of pure lockset analysis and
provide a high performance than pure happens-before analysis.

2.5 Source of Traces and Tracing Mechanisms

In this section we provide an overview on the sources of traces and tracing facilities that
are used in this thesis. Our coverage analysis is conducted without instrumentation
but rather it is based on traces. In other cases such as data race detection and model
tracing we use a lightweight instrumentation. There exists many tracing facilities and

Chapter 2 35

Background

sources of tracing, however, we put much emphasis on the main tracing mechanisms
used in this thesis.

2.5.1 Source of traces
Traces can come from a model or a program as a record of its behavior during the
execution.

The model-based traces refer to the behavior of the model from a system’s design
during its execution, allowing to combine model-driven engineering with dynamic
analysis. Specifically, we obtain traces from CPN models that are collected during the
state space exploration and simulation in the form of logs. For more detail on CPN
models we refer the reader to Section 2.6. Within CPN Tools, there is no coverage
analysis of the SML expressions in a CPN model. This means that to record coverage
data for a CPN model under test, it is necessary to instrument the Boolean expressions
such that the truth-values of individual conditions are logged in addition to the overall
outcome of the decision. Our approach to instrumentation makes use of side-effects by
outputting intermediate results of conditions and decisions, which we then process to
obtain the coverage verdict. No modifications to the net structure of the CPN model
are necessary. Furthermore, the instrumentation has little impact on model execution
so that it does not delay the simulation and state space exploration (SSE).

Program tracing is an important mechanism for developers for gathering useful
information for debugging, monitoring and performance analysis of an executing
program. It enables post-analysis of a software execution through the minimal recorded
information necessary to reconstruct complete program control-flow [68]. The program
trace consists of a sequence of addresses of instructions executed, and different types
of data referenced while a program runs. These include the program flow information
such as branch targets, branch taken/not taken indications and program-induced mode
related information such as state transitions.

To enable a trace tool to reconstruct the instruction execution sequence and jumps
executed by the processors efficiently, there exists tracing facilities and technologies
for different processors such as: 1) the Intel Processor Trace (PT) used by Intel to trace
program execution [15, 68], and 2) the ARM CoreSight used by ARM processors for
debugging and tracing multicore SoCs [17].

2.5.2 Intel processor tracing (IntelPT) facility
Intel Processor Tracing (Intel PT) is an extension of the Intel Architecture that traces
program execution with low overhead [15]. Intel CPUs have an older mechanism
called Branch Trace Store (BTS). However, the BTS is estimated to incur a significant
performance slow-down in a range of factor of twenty to forty [68]. Intel PT can be
used by modern Intel CPUs such as Intel Broadwell (5th generation), Skylake (6th
generation Core, Xeon v5), and Goldmont (Apollo Lake, Denverton) CPU. Intel PT
was introduced to provide an accurate and detailed trace with triggering and filtering
capabilities [147]. Intel PT works by capturing information about software execution
on each hardware thread using dedicated hardware facilities so that after execution
completes, software can do processing of the captured trace data and reconstruct the
exact program flow.

36 Chapter 2

2.5 Source of Traces and Tracing Mechanisms

Intel PT uses an extremely compact format that makes it possible to overcome the
small bandwidth and limited buffer space by only storing information about taken and
not taken branches, indirect branches, function returns and interrupts. Based on these,
the complete program execution flow can be reconstructed.

The traces contain instructions executed by the processor, but there are no data
values. For example, for the C-level instruction x = y + z, as the trace essentially only
consists of instruction pointers, we can only reconstruct the assembly instructions for
loading the values, summation and storing the result in memory, and maybe even map
them onto the source-code, but we have no information about the actual values of x, y
and z or their location in memory during execution.

To record and decode Intel PT, perf record1 and perf script are used on Linux,
respectively with additional options that limit the amount of trace data captured to the
specified interest of the users. In addition to the perf record tool, three tools can be used
to deal with the recorded trace: perf script, perf report and perf inject [95].

– perf script2 decodes the trace and reads the recorded data file and display the
trace output. There exists several variants of perf script allowing one to obtain a
detailed trace of the workload that was recorded.

– perf report reads the recorded data file and displays the resulting information. Its
main role is to display the information recorded through perf record.

– perf inject reads a perf-record event stream and repipes it to stdout. It allows also
to inject other events into the event stream at any point.

More details on how to use perf tools are given on its manual pages [15, 95].
For example, to trace a C program called readers-Writers.c, perf tool is used on the
executable of the compiled program (let say"bin/readers-Writers.out").

perf record -e intel_pt -o pt_ls/rdWr.perf bin/readers-Writers.out

which will create a directory named pt_ls and add in there the rdWr.perf file.
The recorded trace can be displayed with perf report (e.g. "perf report -i

pt_ls/rdWr.perf"). It can be decoded and converted to a text file using the following
command:

perf script --itrace=i0ns --ns -F ip -i rdWr.perf >decoded-rdWr.txt

Where the option "itrace=i0ns" defines "instructions" events and in this case it
allows to see every possible instructions-per-cycle (IPC) value. The decoded trace is
a sequences of instruction addresses and it contains no data as shown in the Listing
2.5. Further analysis can be done over the decoded trace and the reconstruction with
respect to the defined watch-points as well as traceability to source code can be done.

1https://perf.wiki.kernel.org
2https://man7.org/linux/man-pages/man1/perf-script.1.html

Chapter 2 37

https://perf.wiki.kernel.org
https://man7.org/linux/man-pages/man1/perf-script.1.html

Background

1 400990
2 400992
3 400995
4 400996
5 400999
6 40099d
7 40099e
8 40099f
9 ...

Listing 2.5: Decoded perf trace
A limitation of Intel PT is that it produces huge amounts of trace data (hundreds

of megabytes per second per core [68]) which takes a long time to decode. Another
limitation is the performance impact of tracing, something that will vary depending on
the use-case and architecture.

2.5.3 ARM core sight tracing facility

To debug and trace software that runs on ARM-based SoCs for multicore processors, a
set of ARM CoreSight technology [17] tools is used. To observe or modify the state of
parts of the design different features may be used. For instance, the tracing feature
is used to continuously collect the system information for later off-line analysis. It
involves a separate trace generation component, and in case of multicores, a component
for generating trace information can be assigned to each core.

The basic ARM CoreSight tracing functionality consists of different components such
as Embedded Trace Macrocell (ETM), Program Trace Macrocell (PTM), System trace
Macrocell (STM), Embedded Trace Buffer (ETB), Instrumentation Trace Macrocell (ITM),
Trace Port Interface Unit (TPIU), Trace Memory Controller, configured as Embedded
Trace Router (TMC-ETR), Trace Memory Controller, configured as Embedded Trace
FIFO (TMC-ETF), and Cross Trigger Interface (CTI) [19].

The Program Flow Trace (PFT) is used to acquire trace data of the operations
executed by the ARM processors. As presented in [103], the “PFT identifies concerned
instructions in the program, and events as waypoints. A waypoint is a point where
instruction execution by the processor might involve a change in the program flow.”
The PFT waypoints include: all indirect branches, conditional and unconditional direct
branches, all exceptions, any instruction that changes the instruction set state or security state
of the processor, and synchronization primitives. A trace macrocell that implements the
PFT architecture is called a Program Trace Macrocell (PTM). The PTM trace module
provides instruction tracing of ARM processors including the current ARM processor
(Cortex M, R and A) [103]. The main features of PTM include trace generation, and
triggering/filtering facilities that can be used to control tracing.

The tracer modules (PTM/ETM) of the Coresight framework3 can be used in two
ways [17–19]: 1) using the perf framework’s Performance Monitoring Unit (PMU)
abstraction (the perf command line tools); 2)interacting directly with the Coresight

3https://01.org/linuxgraphics/gfx-docs/drm/trace/coresight/coresight.html#
acronyms-and-classification

38 Chapter 2

https://01.org/linuxgraphics/gfx-docs/drm/trace/coresight/coresight.html#acronyms-and-classification
https://01.org/linuxgraphics/gfx-docs/drm/trace/coresight/coresight.html#acronyms-and-classification

2.6 Coloured Petri Nets (CPNs) Models

devices using the sysFS interface (on Linux). The perf command line tools are used as
described in the previous Subsection 2.5.2. Using the sysFS interface requires different
commands to control the trace capture functionality on ARM-based processors.

Similarly to Intel PT, there is a problem in capturing traces in the sense that few
seconds of operation yield trillions of cycles of execution. Therefore, to make sense of
this volume of information would be extremely difficult. In addition, current cores can
potentially perform one or more 64-bit cache accesses per cycle, and consequently, to
record both the data address and data values can require a large bandwidth. Therefore,
it makes more sense to only record data addresses, and PFT only traces execution at
waypoints in order to filter events with a certain reconstructed addresses.

2.6 Coloured Petri Nets (CPNs) Models

Coverage analysis is normally conducted on programming language. To convey
the same analysis on a model, it is necessary to consider models which have a
given programming language for defining conditionals and functions, declaring
variables, and writing inscriptions in the model. We considered Coloured Petri Nets
(CPNs) models [83] and used CPN Tools [23, 82] for coverage analysis. CPNs is a
graphical language for modeling and validating concurrent systems where concurrency,
communication, and synchronization plays a major role. The main advantage of CPNs
model is to combines Petri Nets [131] and the functional programming language CPN
Meta-Language(ML) which is based on Standard ML [149]. Petri Nets provides the
foundation of the graphical notation and the primitives for modeling concurrency
and communication while Standard ML is used for modeling data. A CPN model
of a system represents both the states of the system and the transitions causing state
changes of the system.

CPN models are constructed and analysed using CPN Tools which has been widely
used for modeling and verifying models of complex distributed systems. CPNs has been
widely used in different areas such as model-based testing [102, 153], data networks [25],
distributed algorithms [130], communication protocols [26, 133], coverage analysis [101],
test cases generation [154] and embedded systems [1].

The structure of a CPN model consists of places (in the form of ellipses or circles),
transitions (drawn as rectangular boxes), a number of directed arcs connecting places
and transitions. In addition it contains nets inscriptions (text) written in Standard
ML and can be located next to the places, transitions, and arcs. It is possible also to
write auxiliary text in the net or in an associated function. The CPN model may be
organised into a set of modules and sub-modules. A module of a CPN model can
have substitution transitions (drawn as rectangular boxes with double lines). The
substitution transition is called a sub-module [84] and hierarchically sub-modules are
associated to a module in a CPN model. The name of the sub-module is indicated in a
name-tag next to its associated substitution transitions.

One of the sub-modules contained in the Paxos CPN model is the initial Proposer
which is shown in Figure 2.2 and it is associated to the InitProposer substitution transition.
It initializes Proposers to obtain a new leader, and receive a client request for consensus.
Then, the value of the current round number of the leader and the value of the received
client request will be presented on the port places as tokens, respectively [154].

Chapter 2 39

Background

fun InitRndNumbers () = List.tabulate (n,(fn i => (List.nth(allIDs,i),i+1,"")));

InitRndNumbers()

new Round Number is initialized as 8080,
which is the same with one of IDs

Initialized
Proposer

ReplicaIDxRndxValue

InitProposer ()

New
Leader

In
ReplicaIDxLeaderID

Leader
Round

Out

Rnd

Leader
ID

Out

LeaderID

0

RequestIn

ReplicaIDxValue

Request
Value

In/Out
Value

""

Obtain
Leader
Round

[id' = id andalso id = lid,value <>""]

Store
Leader

ID

[id <> lid]

P_HIGH

Store
Request

[id = id']

(id, rnd, value)

rnd + n

(id', lid)

(id, lid)

lid lid'

(id,rnd,value')

(id',value)

(id',rnd,value)

value

value'

if id' = id
then (id,rnd+n,value)
else (id, rnd,value)

In

Out

Out

In

In/Out

Fig. 2.2: Initial Proposer sub-module for Paxos CPN model

When considering CPN models under test, we do not generally know the
requirements underlying the construction of the model. Furthermore, we cannot
assume the explicit presence of test cases as they will only be given implicitly via the
behaviour of the model and its initial marking (state). In the terminology of coverage
analysis, we will therefore be concerned with structural coverage analysis of guard-
and arc expressions. For these expressions, the test cases will arise as the transition
bindings (occurrence modes) in which these expressions happens to be evaluated
during a simulation or a state space exploration of the model.

A guard expression is a list of Boolean expressions all of which are required to
evaluate to true in a given transition binding for the transition to be enabled. We refer
to such Boolean expressions as decisions. Similarly, an if-then-else expression on an arc
will have a decision determining whether the then- or the else-branch will be taken.
Decision are in turn constructed from conditions and Boolean operators according to the
definitions 1 and 2. For example, in Figure 2.2 we have decisions both in guards and
arcs marked in blue and we are interested in their coverage based on MC/DC criterion.

Two main techniques can be used for the dynamic analysis of CPNs and CPN
Tools. It is possible to explore behaviors of the modeled system using simulation-based
analysis or verify the behavioral properties using state space exploration (SSE) methods
and model checking. Simulation-based analysis with CPNs and CPN Tools aims at
debugging and investigating the system design. The simulation of a CPN model can
be done in two ways using CPN Tools: 1) An interactive simulation where a CPN
model is executed step by step (similar to single-step debugging) and this allows to
run single instances of the different parts of the model; 2)An automatic simulation
where a CPN model is run once in the same way as a program execution. Through the
state-space exploration methods the system model properties such as boundedness,
reachability, liveness, and fairness can be verified. This allows to investigate verification
questions related to the behaviors of the system model. The SSE can be performed
fully automatically and it computes all reachable states and states changes (caused by
firing transitions) of the CPN model and represent them as a directed graph. In the
resulting directed graph, the nodes represent states and the arcs represent occurring

40 Chapter 2

2.7 Binary Decision Diagrams (BDDs)

transitions. This means that the main focus is on structural elements such as places,
tokens, markings (states), transitions and transition bindings. Arc expressions and
guards are only implicitly considered via the evaluation of these net inscriptions taking
place as part of the computation of transition enabling and occurrence during model
execution. This means that design errors in net inscriptions may not be detected as
we do not obtain explicit information on for instance whether both branches of an
if-then-else expression on an arc have been covered. In general, CPN models may suffer
from the state space explosion problem, especially if the CPN model is too complex.

2.7 Binary Decision Diagrams (BDDs)

Binary Decision Diagram (BDD) is a representation of a Boolean function defined over
binary values 0 (false) and 1 (true) [31]. BDDs are often substantially more compact
than traditional normal forms such as disjunctive and conjunctive normal forms
(DNF/CNF) and they can be manipulated very efficiently. BDDs are widely used in
different application areas such as symbolic simulation, verification of combinational
logic, and verification of finite-state concurrent systems. BDDs find their primary usage
in CAD applications for digital hardware [112]. Combining a huge number of chips had
led to a combinatorial explosion problems which makes it even harder to represent and
manipulate functional behaviors of these chips within a computer. BDDs have provided
a better connection in the context of compactness of the data structures and efficient
algorithms to solve this problem. This has led to more performance improvements and
breakthroughs in many CAD projects. More applications of BDDs include symbolic
model checking [44, 112], verification of combinational logic [76, 128], verification of
finite-state concurrent systems [43, 45], sequential machine equivalence [76, 81], test
pattern generation [114], graph reachability [52], timing verification [76], symbolic
simulation [76] and logic synthesis and optimization [143]. BDDs also have application
in other domains such as combinatorics and manipulating classes of combined Boolean
algebraic expressions.

The structure of a BDD can be explained first from a binary decision tree (BDT)
which is a rooted directed acyclic graph, with two types of nodes, terminal nodes
and non-terminal nodes. Each terminal node is labeled by either 0 or 1, and every
non-terminal node is labeled by a variable name var(v) and has two successors: a
0-successor and a 1-successor. A BDT is build based on a Boolean function consisting
of Boolean variables concatenated by Boolean operators. It is equivalent to a decision
or simply a formula made by variables combined in a disjunctive and/or conjunctive
normal form.
Example 2. Consider an example of the BDT and BDD for the decisionD = a || (b&& c)
in Figure 2.3. The a, b, and c represent Boolean variables (conditions), which can be
assigned 0 or 1. A dashed line represents false (0) input while a solid line represents
true(1) input. The corresponding BDT is shown in Figure 2.3a which represents all
possible combinations. One can decide whether a particular truth assignment to the
variables makes the formula true or not by traversing the tree from the root node to the
terminal node. For example, if a string "100" is assigned to the above variables, then
f(1,0,0) will lead to a leaf vertex labeled 1. This is shown in Figure 2.3b and it makes a
BDD to be more compact compared to BDT.

Chapter 2 41

Background

BDTs are essentially the same size as truth tables and they both do not provide
a concise representation for Boolean function. For n variables, 2nx(n + 1) bits need
to be stored in the memory and each entry of truth table need to be visited [44]. In
addition, BDTs contain a lot of redundancy, isomorphic sub-trees can be merged to
yield a concise representation called a BDD [31].

To obtain a canonical representation, two restrictions are placed on BDDs: 1)
Variables must appear in the same order along each path from the root to a terminal
node. That is a total ordering on the variables is required so that if any node u
has a non-terminal successor v, then var(u) < var(v). Different variable ordering
methods have been explored and since they are not discussed herein in details, we
refer the reader to the ones which give good results including depth-first heuristic
ordering algorithm [63] (related variables are close together in the ordering) and dynamic
reordering technique [134] (where the OBDD package internally reorders the variables
periodically in order to reduce the total number of vertices in use). If we use the
ordering a < b < c, for the function f(a,b,c), we obtain the BDD in Figure 2.3b (a). 2)
There should be no isomorphic sub-trees and redundant nodes in the diagram. This
is achieved by applying three transformation rules repeatedly without altering the
function represented by the diagram:

• Remove duplicate terminals: As shown in Figure 2.3b all duplicated terminals nodes
are eliminated and a single 0-terminal node and a single 1-terminal node remain.
All the arcs to the eliminated nodes are redirected to the two remaining terminal
nodes.

• Remove redundant tests: If both outgoing edges of a node point to the same node,
remove one edge and keep one incoming arc to that node.

• Remove duplicate non-terminals (isomorphic subtrees): For any two non-terminals
with the same label, with the same assignment and same successor, eliminate
one of them and redirect all the incoming arcs to the other node.

(a) Binary decision tree (BDT)

01

c

01

b

0

1

a

1

0

(b) BDD

Fig. 2.3: BDT and BDD for the decisions D = a || (b && c)

42 Chapter 2

2.7 Binary Decision Diagrams (BDDs)

The above rules are applied repeatedly until the size of the diagram can no longer
be reduced. Different algorithms can be used to obtain a canonical form of a BDT. The
obtained graph is called a Reduced Ordered Binary Decision Diagram (roBDD). Note that
in the rest of this paper, the term BDD refers to roBDD.

2.7.1 BDD algorithms

Today there is a number of algorithms [31] for providing BDDs with efficient graph
representation. These algorithms include reduce, apply, restrict, compose and satisfy
(which consists of satisfy-One, satisfy-All and satisfy-Count).

The Reduce algorithm transforms an arbitrary function graph into a reduced graph
representing the same function. This is the algorithm used in Figure 2.3. Another
generic form of manipulating BDDs using the Reduce algorithm can be found in [113].

The Apply algorithm is another procedure for BDDs and is used to implement
operations on Boolean functions such as ∧,∨,⊕ and complementary (f ⊕ 1). It
takes as input two graphs representing functions f1 and f2 and a binary operator
< op > and produces a reduced graph representing the function f1 < op > f2. Given
two roBDDs representing f1 and f2 , apply(< op >, f1, f2) is defined as [f1 < op >

f2](x1, ..., xn)=f1(x1, ..., xn) < op > f2(x1, ..., xn). If the result contains other redundant
nodes, it can usually be reduced to make it into an BDD using reduce algorithm.

The Restrict algorithm finds a BDD for a Boolean function f(x1, x2, ..., xn) with
a restriction to one of the variables to 0 or 1 wich results in f(x1, x2, ..., 1, ..., xn) or
f(x1, x2, ..., 0, ..., xn). Calling restrict (0, x, f) for each node n labelled with x, incoming
edges are redirected to low(n) and n is removed. Then we call reduce on the resulting
BDD. The call restrict (1, x, f) proceeds similarly, only we now redirect incoming edges
to hi(n).

The Compose algorithm constructs a graph for the function obtained by composing
two functions. For example f (x1,x2,x5) composed with g(x3, x4) at position of x2 results
in the function f (x1, g(x3, x4), x5). Composition can also be expressed in terms of
restriction and Boolean operations, according to Shannon expansion [31].

The Satisfy algorithm consists of satisfying a set of elements Sf for a function f(x1, x2,
..., xn). Sf can include the number of elements, a listing of the elements, or for instance
just a single element denoting in fact the set of all truth assignments for variables {x1,
x2, ..., xn}. In other words, we consider operations to examine the set of satisfying
truth assignments of a node u. The procedure includes satisfy-one, satisfy-count and
satisfy-all [14].

Satisfy-one is normally called with the root of the graph and an array x initialized
to some arbitrary pattern of 0’s and 1’s. It returns the value false if the function is
unsatisfiable (Sf = ø), and the value true if it is satisfiable.

Satisfy-count determines the number of valid truth assignments. Satisfy-all returns
all satisfying truth-assignments. For example if, the variables are assumed to be
ordered as : x1, x2, ..., xn, then satisfy-all finds all paths from a node u to the terminal 1.
It is an exhaustive search of the graph which prints out the element corresponding to
the current path every time we reach a terminal vertex with value 1.

Chapter 2 43

Background

2.7.2 BDD libraries
Different BDD libraries/packages [55, 56, 142] can be used to manipulate BDDs and
provide interfaces to programming languages such as C, C++ and Python. Our analysis
for test cases generation based on BDDs uses the Pyeda library [56] and implemented in
Python [4]. PyEDA is a Python library primarily used for electronic design automation
(EDA). PyEDA provides both a high level interface to the representation of Boolean
functions, and fast C extensions for fundamental algorithms where performance is
essential. There are several ways to represent a Boolean function with PyEDA and
different data structures have different tradeoffs. PyEDA’s API for logic expressions,
truth tables, and binary decision diagrams is a mature implementation. The PyEDA’s
repository4 contains detailed instructions for its installation and its documentation5

provides guidance of how to use PyEDA [56].
Different commands are used via an interactive terminal for manipulating Boolean

functions, creating and transforming logic expressions, truth tables, and binary
decision diagrams. Conditions are the literals elements defined as symbolic variables
and different algebraic operators such as Not, Or, And, Xor, Equal, Implies, and ITE
(if-then-else) can be used for writing the functions. Different function’s basic properties
such simplification, satisfiability, and equivalence can be explored as shown in Listing 2.6.

1 >>> from pyeda.inter import *
2 >>> a, b, c = map(exprvar, ’abc’)
3 >>> F = a | (b & c)
4 >>> F.simplify()
5 Or(a, And(b, c))
6 >>> F.satisfy_one()
7 {c: 1, b: 1, a: 0}
8 >>> list(F.satisfy_all())
9 [{c: 1, b: 1, a: 0}, {a: 1}]

Listing 2.6: Function properties from PyEDA

1 >>> from pyeda.inter import *
2 >>> from graphviz import Source
3 >>> a, b, c= map(bddvar, ’abc’)
4 >>> F = a | (b & c)
5 >>> gv = Source(F.to_dot())
6 >>> gv.render(’BDDfigure.pdf’, view=True)

Listing 2.7: BDD construction using PyEDA

To construct and visualize a BDD, the graph structure is converted to DOT format
for consumption by Graphviz6. For example, Figure 2.3b is obtained from the Graphviz
output on the majority function in three variables as shown in Listing 2.7.

As far as MC/DC test case generation is concerned, the BDD representation gives us
an advantage in building fresh pairs: by exploring the tree from the root, the ordered
labels tell us when we can preempt a search because the condition of interest does not

4https://github.com/cjdrake/pyeda.git
5http://pyeda.rtfd.org
6https://graphviz.org/

44 Chapter 2

https://github.com/cjdrake/pyeda.git
 http://pyeda.rtfd.org
https://graphviz.org/

2.7 Binary Decision Diagrams (BDDs)

exist in the remaining subtree, and we can continue our search in a sibling. Compared
to an exploration of the corresponding truth-table, this effectively allows us to skip
over irrelevant rows.

Chapter 2 45

CHAPTER 3
MC/DC ANALYSIS AND MEASUREMENT

This chapter summarizes our approach for MC/DC analysis and measurement based
on the program traces recorded using IntelPT. Our coverage analysis is without
instrumentation since the instrumentation is intrusive and it is not recommended for
testing and coverage analysis of safety critical systems [124]. Compared to the overhead
of intrusive software instrumentation which has to be removed before release, with
our low overhead approach, we measure coverage directly on the release code based
on the object code level which also complies with the position of CAST-17 [38]. In this
chapter, we present an overview on the static analysis, tracing, MC/DC measurement
and state-of-the art through the related work to our approach of MC/DC measurement
based on the traces. The details of our findings are presented in our paper [2] included
in Part II of this thesis.

3.1 Non-intrusive MC/DC Measurement Based on the Traces

Figure 3.1 shows an overview of our approach and the implementation of MC/DC
measurement. We start with the static analysis of the source code in order to detect
the decisions and their conditions. In addition, we extract all information about their
corresponding conditional jumps performed by the CPU from the object code. This

Processor

In
te
lP
T

Po
rt

CCompiler

Static Analysis

Binary

Object Code,
Debug Symbols

Source
Code

Compressed
Trace Data

Watchpoints,
Relational Operators,

Jump Instructions

Reconstruction of Condition
Assignment

Data Storage

Trace

MC/DC table Coverage Evaluation

MC/DC

Reconstruct
Program Trace

Trace

Fig. 3.1: Overview of the implementation.

MC/DC Analysis and Measurement

mapping is necessary in order to demonstrate the MC/DC traceability from object
code to source code [35, 38, 41]. We record and decode traces using the Intel PT facility.
Then we combine this information and the program trace provided by Intel PT in order
to reconstruct the conditions assignments. The resulting information is filled in a table
where each row captures a single decision with the truth values of all conditions in a
fixed order and the outcome. We conduct a coverage evaluation and measure MC/DC
by checking the independence effect of each condition.

3.1.1 Static analysis of source code and object code
As defined in Section 2.1, decisions in the source code refer to all logic structures not
only the control statements that result in branch points. These include:

– If statements
– Loops such as while-, do- and for-statements
– Switch-statements and
– Assignment statements containing Boolean expressions.

The main purpose of static analysis is to find these decisions and conditions in the
source code and map them to their conditional jumps in the object code. This can be
achieved by accessing the Abstract Syntax Tree (AST) provided by Clang [148], which
contains information about the statements, their location in the source code, and how
the statements are assembled.

1 -IfStmt <line:2:3, line:7:3> has_else
2 |-BinaryOperator <line:2:7, col:24> ’int’ ’||’
3 | |-ImplicitCastExpr <col:7> ’int’ <LValueToRValue>
4 | | -DeclRefExpr <col:7> ’int’ lvalue ParmVar 0x55be4094a400 ’a’ ’int’
5 |-ParenExpr <col:12, col:24> ’int’
6 | -BinaryOperator <col:13, col:23> ’int’ ’&&’
7 | |-BinaryOperator <col:13, col:16> ’int’ ’==’
8 | | |-ImplicitCastExpr <col:13> ’int’ <LValueToRValue>
9 | | | -DeclRefExpr <col:13>’int’ lvalue ParmVar 0x55be4094a480 ’b’ ’int’

10 | | -IntegerLiteral <col:16> ’int’ 5
11 | -BinaryOperator <col:21, col:23> ’int’ ’>’
12 | |-ImplicitCastExpr <col:21> ’int’ <LValueToRValue>
13 | | -DeclRefExpr <col:21>’int’ lvalue ParmVar 0x55be4094a500 ’c’ ’int’

14 | -IntegerLiteral <col:23> ’int’ 3
15 |-CompoundStmt <col:26, line:4:3>
16 | -ReturnStmt <line:3:4, col:11>
17 | -IntegerLiteral <col:11> ’int’ 1
18 ‘-CompoundStmt <line:5:7, line:7:3>
19 -ReturnStmt <line:6:4, col:11>
20 -IntegerLiteral <col:11> ’int’ 0

Listing 3.1: Abstract Syntax Tree generated with Clang-14.0 for Listing 2.2

48 Chapter 3

3.1 Non-intrusive MC/DC Measurement Based on the Traces

One of the ways to access the AST is to use the LibTooling which is a C++ interface.
LibTooling can be used along side with the AST-matcher [148] and simplifies the
specification of patterns that the AST is supposed to match.

For example the if-statement ("if (a || (b==5 && c>3))") in Listing 2.2 results
in the "IfStmt" parent node in Listing 3.1 representing the AST, and condition names,
binary operators and their locations (line and column number) are in its child-nodes.
The binary operators help in the reconstruction of the assignments based on the
executed program jumps. Based on LibTooling and the AST-matcher [148], our tooling
detects all the decisions in the form of traditional branch points (while-, if- and
for-statements).

In our object code analysis we use debug-symbols provided by the compiler to
map the conditions detected from source code to conditional jumps in the object code.
We use clang because this compiler provides rich debug symbols containing line and
column information with the compiler option : "-g -XClang -dwarf-column-info".
Combined with the detected decisions from the LLVM tool, we then can detect all
conditional jumps that are needed for measuring MC/DC based on traces. Because
the outcome of the decision during the execution has to be reconstructed as well, it
is necessary to find the then-statement which is the statement executed in case of a
decision being evaluated as true. This statement is also mapped using debug-symbols
to its corresponding instruction in the object code. Table 3.1 shows the interpretation
of detected jumps with respect to Listing 2.3 with the if-statement ("if (a || (b==5
&& c>3))"). The result are the decisions, conditions and then-statements in the source
code and their translation in the object code. Each row represents which condition
being considered, the corresponding relational operator and the jump instruction as
well as its interpretation.

3.1.2 Program traces and MC/DC evaluation

As shown in Figure 3.1 the trace can be gathered through the trace port of the processor
that is executing the program and can be saved in a data storage after the reconstruction
process. We use IntelPT through perf [158] to record and decode the trace. With
perf, the Linux-kernel provides an easy-to-use implementation of the recording and
reconstruction of Intel PT traces. However, it contains a bottleneck, because the
trace data has to be stored in some form of storage space. The data rate of the trace
information is high (it fills up the hard drive quickly) that even very high speed storage
can only record a few seconds of program execution. The reconstructed traces become
quiet large even for short execution times. To reduce the size, we filter the trace against

Condition: Relational
Operator:

Jumps
Instruction:

Jump
Interpretation:

a none jne True

b == 5 == jne False

c > 3 > jle False

Table 3.1: Interpretation of detected jumps from Listing 2.3: ("if (a ||(b==5&&c>3)")

Chapter 3 49

MC/DC Analysis and Measurement

the watch-points and only store those parts of the trace that are relevant for measuring
MC/DC.

After the assignments of the conditions are reconstructed from the trace, the
MC/DC table can be filled and MC/DC can be measured iteratively. The tool chain
of detecting all decisions, mapping conditions to conditional jumps, running and
tracing the program and measuring MC/DC based on the trace can be accessed via a
graphical user interface (GUI) or through the command line [2]. MC/DC is evaluated
by calculating the ratio of the number of conditions with independence effect and the
total number of conditions in decision. That is, we report the percentage of covered
conditions to the total number of conditions. The uncovered condition are reported
such that the developer can investigate the reason why they are not covered and
possibly add additional test cases that may cover them.

In summary, we measure MC/DC based on program traces without any
instrumentation. We show the possibility of measuring coverage directly on the
release code as recommended for safety critical systems [124], by only using debug
symbols that are not altering the behavior of the code and therefore are not considered
intrusive. Our approach is tested on C programs and complies with the position of
CAST-17, that provides certification authorities’ concerns and position regarding the
analysis of structural coverage at the object code level [38]. More about our finding for
non-intrusive MC/DC measurement based on the traces can be found in [2] attached
in Part II.

3.2 Related Work on MC/DC Measurement

The applicability of MC/DC to software testing for safety-critical systems have been
introduced by Chilenski in [42]. Different comparisons for code coverage metrics have
been investigated in the context of structure based metrics [118], data-flow metrics
[45], decision coverage and MC/DC [91], comparison of multiple condition coverage
(MCC) and MC/DC with short-circuit evaluation [89]. MC/DC and object branch
coverage (OBC) criteria were compared in [32]. Even though the above papers give
a basic foundation for MC/DC, none of them analyses MC/DC based on program
traces. They are concerned with explaining and defining MC/DC, and the approach of
measuring MC/DC without instrumentation is not explored.

A non-intrusive online monitoring for multi-core systems based on the embedded
trace (ET) of the system under test is proposed in [50]. ET is a promising technology
to observe the system under test and it allows to record a set of real-time streams
of software execution data emitted by a processor non-intrusively. ET provides the
means to investigate the system behavior for monitoring software in execution [126].
Online reconstruction and analysis of debug trace data are based on FPGA and TeSSLa
[49]. The tracing approach used in these papers attracts our attention, and in our
investigation for MC/DC measurement, our analysis is based on the traces.

Different testing tools for measuring coverage were developed for both industrial
use and academic purpose. For instance, a survey conducted in [162] describes and
compares 17 tools primarily focusing on, but not restricted to, coverage measurement.
These tools are focusing on weaker coverage criteria for C, C++ and Java programs.
Most of them are used only for code coverage, but some, such as Agitar, Dynamic,
JCover, Jtest and Semantic Designs, provide debugging assistance as well.

50 Chapter 3

3.2 Related Work on MC/DC Measurement

Testing tools which focus on MC/DC measurement include: Vector-CAST/MCDC [151]
which measures MC/DC coverage for C/C++. The tool supports both unique cause
and masking MC/DC analysis. Beside reporting and documenting the results, the tool
supports automatic test case generation to efficiently support the development of a
full set of MC/DC test cases. Parasoft C++test [150] is a C/C++ testing tool that is
capable of measuring MC/DC. MC/DC is measured as a percentage of the number
covered conditions over the total number of conditions in all decisions. Testwell CTC++
tool [146] measures line, statement, function, decision, multiple condition, MC/DC and
condition coverage for C, C++, Java, and C# on target and on host. The generated report
is showing coverage percentage. CodeCover [46] is an open-source, white-box testing
tool developed at the University of Stuttgart. It implements the Ludewig term coverage
and they claim that it is similar to MC/DC (subsumes MC/DC). RapiCover [127]
analyzes code coverage including MC/DC with low instrumentation overheads. The
tool supports MC/DC analysis of decisions with up to 30 conditions. All these tools
measure MC/DC intrusively by instrumenting the source code.

In [166], SmartUnit tool which supports statement, branch, boundary value and
MC/DC coverage is described. They aim at the unit coverage-based testing and
automatically generating MC/DC coverage test cases in an industrial environment.
nditions and the total conditions in the source code. The commercial Lauterbach
tool [98] uses a dedicated hardware-interface to transfer tracing data from the system-
under-test into the developer’s machine for analysis. They support a variety of trace
sources, among others also Intel PT, and use it to measure MC/DC.

Another alternative, non-intrusive approach is running the system-under-test
within an emulator. The QEMU emulator has been used to this end within the Adacore
community [29], and in the RTEMS operating system [60]. Through the emulator it is
easy to observe the execution of a program on the object code level, very much like
through Intel PT. The obvious threat to validity is of course how closely the emulator
setup can reflect the real system, especially when considering certification.

Lauterbach offers the t32cast command line tool for MC/DC coverage in TRACE32
based on a real- time trace recording, which analyzes the C/C++ source code [98]. Here,
the user must ensure that the selected compiler translates each condition in the source
code into a conditional jump at the object code level, e.g. by disabling optimizations.
We provide a novel non-intrusive approach for MC/DC measurement based on traces
recorded with IntelPT. Our tool does not require instrumentation and recompilation of
software under-test. Similarly to Lauterbach, optimization needs to be off. To the best
of our knowledge there are no other developed tool analyzing MC/DC coverage based
on the trace generated with IntelPT with full source code to object code traceability.

Chapter 3 51

CHAPTER 4
DATA RACE MONITORING IN CONCURRENT
PROGRAMS

In this chapter, we summarize our approach for data race detection in concurrent
programs. This is not directly related to MC/DC analysis, but we inherit our motivation
through analyzing coverage without instrumentation, and our aim is to monitor data
races with lower overhead instrumentation. This is in the context of COEMS project
where we had to investigate different methods for data race detection in multi-core
embedded systems. We summarize our hardware-assisted data race detection as
presented in [7] and included in Part II of this thesis. Additionally, we discuss the
state-of-the art on data race detection in the form of related work.

4.1 Hardware-assisted Data Race Detection

Referring to the definition of data races in Chapter 2, Section 2.3, a data race may occur
when there is a conflicting access on a shared resource and one of the operations is a
read/write or write/write. In a read/write race, one thread reads data, which is then
subsequently overwritten by another thread, leading the first thread to proceed under
the assumption that it has the current value. In a write/write race, another thread
overwrites a previously written value, leading to a similar problem. We present our
approach on how to detect data races using the COEMS tracing technology through
continuous online monitoring with low-impact instrumentation on a novel FPGA-based
external platform for embedded multi-core systems.

4.1.1 Overview on data race detection in COEMS

We have developed a non-intrusive approach to monitoring applications on embedded
system-on-chips (SoCs) for data races using the COEMS platform [49] which aims to
eliminate the overhead of dynamic checking by offloading it to external hardware1.
The platform offers control-flow reconstruction from processor-traces (here: the Arm
CoreSight control-flow trace), and data-traces through explicit instrumentation [125].
Race checking is executed on an FPGA on a separate hardware-platform to minimize
impact on the system under observation.

1The EU Horizon 2020 project “COEMS–Continuous Observation of Embedded Multicore Systems”,
https://www.coems.eu

https://www.coems.eu

Data Race Monitoring in Concurrent Programs

epu-outputTeSSLa-
interpreter

LLVM lock-
instrumenta5on

mkDR epu-compiler cedar_config

main.c
				…
				void	f()	{
						…
						lock(&m);
						x++;
						…
			}
			…

main.bc
				…
				call	@lock(@m)
				load	@x
				add	…
				store	@x
				….

main.bc
				…
				call	@lock(@m)
				ITM(…	line	…)
				ITM(lock,	@m)
				ITM(…	line	…)
				ITM(read,	@x)				
				load	@x
				add	…
				ITM	(…line…)
				ITM(write,	@x)
				store	@x
				…

epu_cfg.txthw.tessla

sw.tessla

cc
a.out

trace.txt

FPGA IR

EPU EPU…

CoreSight

enclustra

A
U
R
O
R
A

USB

USB

Fig. 4.1: Lock instrumentation and race monitoring using the COEMS technology

The COEMS FPGA requires a compiled monitor-configuration. As this configuration
needs to be generated for a specific binary under test, we present our approach where
we instantiate a template that monitors a fixed number of memory locations for
consistent access through a fixed number of locks. Although these numbers need to be
determined before starting the monitoring, the flexibility of TeSSLa allows us to also
deal with an unbounded number of threads, and limited monitoring of dynamically
allocated memory and locks. Additionally, our instrumentation supports recording
traces in files, and offline analysis of execution traces with the TeSSLa interpreter only.
This aids in quick prototyping of new specifications on vanilla developer machines
without replicating a full setup of SoC and COEMS hardware.

4.1.2 Data race detection workflow with COEMS tools.

The COEMS infrastructure is used for online monitoring of multicore systems
behaviours crucial for detecting non-deterministic failures. The infrastructure consists
of COEMS FPGA enclosure, the Arm-based Enclustra SoC that serves as the SUT,
and the AURORA interface connecting both. As soon as the program starts running
on the Enclustra board, control flow messages are generated via the Arm CoreSight
module and transmitted, together with user-specified data trace messages from any
instrumentation, through the AURORA interface to the COEMS trace box. Figure 4.1
summarizes the key steps for instrumenting and monitoring data race conditions using
the COEMS technology.

The workflow of instrumentation and data race monitoring is as follow:

1. Using the COEMS lock instrumentation tool [8], we instrument the SUT during
compilation so that the executable emits information to the COEMS trace box
at runtime. We insert calls to instrumentation (i) after taking a lock, (ii) before
releasing a lock, and (iii) on shared memory accesses with the help of LLVM.

54 Chapter 4

4.1 Hardware-assisted Data Race Detection

Then, we compile and link the instrumented LLVM intermediate code (.bc) into a
binary file (a.out).

2. We copy the binary to the system under observation (enclustra) where we will
later run it. The mkDR-script instantiates a TeSSLa specification template with
the memory addresses and mutexes to be observed, based on the names of global
variables.

3. The instantiated specification is then split into two halves, as its size exceeds the
currently available number of eight EPUs on the prototype hardware. The first
half hw.tessla filters the high event rate stream of observations on the FPGA. It
is translated by the epu-compiler into a configuration file (epu_cfg.txt), and then
uploaded to the FPGA by cedar_config. The second half sw.tessla receives the
output of the first stage, and does the final processing on a stream that now has a
lower event rate in the TeSSLa interpreter.

4. Then, we run the binary file, which will automatically start sending trace data
to the FPGA. The epu-output tool decodes the FPGA output into a TeSSLa event
stream. Note that the behaviour of the application is independent of whether the
COEMS FPGA is actually connected or not. If not, trace data is silently discarded,
but does not affect the timing of the application.

5. Finally, we analyse this trace with the second part of the TeSSLa specification
(sw.tessla) with the TeSSLa interpreter, which will emit race warnings if necessary.

Our data race specification uses mostly data trace events, since we require the
addresses of memory and locks, except for a control flow event when pthread_create is
called and to signal termination of program under test. COEMS supports also offline
(software-based) analysis of execution traces where the user only needs the TeSSLa
interpreter and the COEMS lock instrumentation tool. In this case, the software TeSSLa
interpreter will run the entire TeSSLa specification for detecting data races on a locally
generated software trace-file without compiling the TeSSLa specification for the EPUs.

The lockset-based algorithm in TeSSLa tracks which set of locks is held at every
memory access by the current thread and update the current value if necessary. The set
of all memory locations and all lock identifiers need to be known before we configure
the FPGA. For each pair of memory location X and lock identifier L, we create a boolean
stream protecting_X_with_L that is initialised to true. If all these streams for a given X carry
false, we know that no common lock is protecting the current access, and we emit a
race warning on the error_X stream for that memory location.

As detailed in [7], we have shown how to use the COEMS technology for online
monitoring of multicore systems, and contextualized it to check for potential data
races in applications that use locks for synchronisation. Through the COEMS platform,
developers can observe the control-flow in a digital twin of their SUT on an embedded
systems without affecting the behaviour. Additional instrumentation of the application
can send more detailed data at negligible cost.

We provided an outline on how the lockset-based Eraser algorithm can be encoded
in the TeSSLa-specification language for a given application. This specification is then
compiled onto the external COEMS FPGA and uses the data- and control flow trace

Chapter 4 55

Data Race Monitoring in Concurrent Programs

emitted from the system under test to observe a specified set of locks and memory
locations. As the full specification exceeds the capabilities (in terms of size) of the
available prototype, we combine a hardware- and a software stage to report on potential
races.

Our use of the high-level stream-based temporal specification language, TeSSLa [100],
means that the reconfiguration of the monitor is substantially faster than synthesising
VHDL (few seconds vs. dozens of minutes), and allows end-users to customize the race
checker specification to their needs without being FPGA-experts. This is not possible
with other specification-based approaches that directly aim to use the integrated FPGA
of a SoC. These approaches do not offer the quick reconfiguration possible with the
COEMS platform but require full time-consuming reconfiguration, and do not support
the use of control-flow tracing due to the limited capacity of the SoC.

Our proposed approach is more flexible than a dedicated race checker implemented
on the FPGA: to the best of our knowledge, such a general solution does not exist,
though it is of course in principle possible. Our hardware-based approach can be
used in safety-critical systems such as the aerospace and railway-domains where
certification is necessary. In these domains, using a software inline race-checker such
as ThreadSanitizer [137] is not possible as the tooling for instrumentation and online
race-checking is not certified for those systems, if it even exists.

4.2 Related Work on Data Race Detection

From the literature review, data races have been approached from two sides: static
analyses that checks the code before it runs, and dynamic analyses which looks at
individual executions of a program. Both techniques in general rely on the availability
of the source code, and in the case of dynamic analysis, the possibility of recompilation
with additional instrumentation.

As dynamic analysis for data race detection needs to record historic behaviour
during execution, they often interfere in terms of computation time and memory
consumption. For example, the popular dynamic ThreadSanitizer integrated with the
LLVM compiler toolchain slows down executions by a factor of 10 to 100, depending
on the workload [137, 164]. This is one reason why dynamic analysers are traditionally
only employed during development and testing, but not included on the production
system [155].

The COEMS project developed a hardware-based solution, in which a field-progra-
mmable gate array (FPGA) checks the execution trace in parallel to the running system
with minimal interference. The hardware is adapted for analysing events described
in the stream-based specification language TeSSLa [100]. Using an intermediate
specification language that is executable on the FPGA, one can avoid the time-consuming
re-synthesisation of the FPGA when changing specifications.

We have ported the gist of the Eraser algorithm [135] to the subset of the TeSSLa
language that is supported on the hardware. An alternative approach already used
the TeSSLa-interpreter, but was not suitable for compilation onto an FPGA due to the
dynamic data structures (sets and maps) that only the interpreter offers [80]. We adapt
the software-based analysis, which relies on dynamic data structures such as sets and
maps in the TeSSLa interpreter, to the hardware-specific implementation of the COEMS

56 Chapter 4

4.2 Related Work on Data Race Detection

trace box and we allow monitoring of dynamically allocated memory and locks.
For dynamic race detection, the Eraser algorithm is limited but it can be used for

checking locking discipline [135] using sets and assuming that the number of used
memory locations and locks is statically known. We can statically derive the necessary
streams and such static encoding is also possible for the modern FastTrack-algorithm
by Flanagan and Freund [61]. The FastTrack-algorithm uses lightweight vector clocks
and the happens-before relation which can be used to avoid false positives. However,
our approach requires focusing on a fixed number of memory locations and locks, but
can deal with an arbitrary number of threads. An observation-based race checker that
tracks memory accesses and lock operations can also be implemented through the
help of virtualisation. Gem5 [27, 78] is such a framework. Virtualisation means on the
one hand that observation cannot be done on a deployed system in the field but only
in the lab and with a limited number of supported peripherals. On the other hand,
control-flow events can easily be explicitly generated, no expensive reconstruction is
necessary. However, given the high event rate of observations on memory accesses, we
expect a similar performance impact like the one reported for ThreadSanitizer.

Another prominent example where a high-level specification is synthesised into an
FPGA is RTLola [22]. This differs from our approach in the following: the specification
language puts a stronger emphasis on periodic data than we do with our discrete
TeSSLa events. Furthermore, RTLola is synthesized via VHDL onto the FPGA, and
hence has a high turn-around time for reconfiguration. Communication between
the system-under-test and the verification logic is left open to the user and requires
knowledge of VHDL, though of course in principle data events can then be emitted
through instrumentation. In contrast to our solution, an RTLola specification cannot
benefit from control-flow tracing, since control-flow reconstruction is not available as
specification and hence cannot be compiled onto the FPGA. Furthermore, it would
exceed the capacity of current SoCs both in terms of space and execution speed [125].
We leave performance evaluation of RTLola execution for race checking purposes on
the FPGA to future work, but note that providing an API for the instrumentation to the
monitor requires VHLD-knowledge.

A similar direct approach via hardware-synthesis has been taken for Signal Temporal
Logic (STL) [79]. It would certainly be feasible to encode a race checker in STL, but
that would not be playing to STL’s strength in terms of timing properties (which
are not relevant for race checking) and observing signals on a wire (as opposed to a
programmable interface to send values from the instrumented code to the monitor).

The R2U2 [116] monitoring system for unmanned aerial vehicles provides a generic
observation component on an SoC. Again, events must be explicitly emitted, and no
control-flow reconstruction is available. Similar to our approach, and unlike in RTLola,
this component is generic and is parametrised by compiled specifications. R2U2 uses
Metric Temporal Logic specifications (MTL), which are very suitable to describe, e.g.
timing properties. While it is certainly possible to specify our race checker in MTL, we
leave it to future experimental evaluation to determine how many instances of the race
pattern (in terms of memory location/protecting lock) would be feasible, and how the
communication bus would uphold under varying event rates.

Chapter 4 57

A theory has only the alternative
of being wrong right or wrong.
A model has a third possibility:
it may be right but irrelevant

—Manfred Eigen [107]

CHAPTER 5
COVERAGE ANALYSIS ON DESIGN LEVEL
MODELS

To evaluate our approach for MC/DC measurement, we explore its applicability on
software design level models. We focus on models that contain inscriptions with
conditionals such that we can check if they contributed as expected to the outcome of
each decision.

We considered coloured Petri Nets (CPNs) models as they have the inscriptions (e.g.,
arc expressions and guards) specified using Standard ML (SML) which may contain
conditions. Traditionally these conditions are not evaluated against any coverage
criterion during the simulation and state space exploration (SSE). Simulation and SSE
are only used for validating CPN models for checking the behavioral properties related
to net structure, i.e., places and transitions. There is no coverage information shown in
the SSE report generated by CPN Tools. Therefore, we apply our coverage analysis
based MC/DC criterion and check how the conditions contained in CPN models are
covered [5, 10].

5.1 MC/DC Measurement of Net Inscriptions in CPN Models

Coverage analysis is important for programs in relation to reveal faults in the program.
Coverage analysis can be useful as well for models as a means to show if some parts
of the models (net structure parts and net inscriptions) were not exercised. We apply
MC/DC and BC on CPN models as a potential candidate that contains conditionals and
was widely used in coverage analysis [101]. In CPN models [83] and CPN Tools [23, 82],
the inscriptions (e.g., arc expressions and guards) are specified using Standard ML
(SML). The application of simulation and state space exploration (SSE) for validating
CPN models traditionally focuses on behavioural properties related to net structure,
such as places, transitions and bindings. This means that the net inscriptions are
only implicitly validated, and the extent to which these have been covered is not
made explicit. Our goal is to establish a link between coverage analysis known from
programming languages and net inscriptions of CPN models where we apply MC/DC
which generalizes branch coverage of SML decisions.

Coverage analysis for software can be provided through dedicated instrumentation
of the software under test, either by the compiler, or additional tooling, such as binary
instrumentation. Transferring this to a CPN model under test, our aim is to combine
the execution of a CPN model (by simulation or SSE) with coverage analysis of SML

Coverage Analysis on Design Level Models

guard and arc expressions. To record coverage data for a CPN model under test,
it is necessary to instrument the Boolean expressions such that the truth-values of
individual conditions are logged in addition to the overall outcome of the decision.
Our approach to instrumentation makes use of side-effects by outputting intermediate
results of conditions and decisions, which we then process to obtain the coverage verdict.
No modifications to the net structure of the CPN model are necessary. Furthermore,
the instrumentation has little impact on model execution so that it does not delay the
simulation and SSE.

5.1.1 CPN models under test

We apply MC/DC measurement of net inscriptions to eleven larger public-available
CPN models. These models include: a model of the Paxos distributed-consensus
algorithm [154], a model of the MQTT publish-subscribe protocol [133], three
models for distributed constraint satisfaction problem (DisCSP): weak-commitment
search (WCS), asynchronous backtracking (ABT) and synchronous backtracking (SBT)
algorithms [120], a complex model of the runtime environment of an actor-based model
(CPNABS) [70], a reactor control system for a nuclear power plant (RCS-NPP) model
and Niki T34 Syringe driver model [33]. In addition, we have tested four CPN models
for test case generation from natural language requirements (NatCPN) [138]: nuclear
power plant (NPP) model, turn indicator system (TIS) model, priority command (PC)
model and vending machine (VM) model. All models come with initial markings that
allow state space generation, in the case of MQTT, T34PIM and DisCSP are complete,
and are incomplete in the case of Paxos, NatCPN and CPNABS.

To choose the above CPN models we considered three main criteria: 1) the CPN
models are freely public-available ; 2) the model contains at least one non-trivial
decision (decision composed with more than one condition); 3) the model is correct in
the sense that both simulation and state space exploration are feasible.

5.1.2 Experimental setup and results

Figure 5.1 gives an overview of our experimental setup. Initially, we have the original
CPN model under test that is to be evaluated for coverage analysis. The first step
is to instrument the original CPN model under test by transforming guard and arc
expressions into a form that prints how conditions were evaluated and the overall
outcome of the decision [10]. Our instrumentation is almost 99% automated and does
not affect the functionality of the original CPN model.

Second, we run the SSE on the instrumented model. Next, we reconfigure the initial
markings with any additional initial configurations if they are obvious from the model.
As the side effect of SSE, we run the MC/DC generation which gives as output a log
file containing the information of evaluations of conditions in arc expressions and
guards and the decision outcome. Then, we run the MC/DC analyser that determines
whether each decision is MC/DC-covered or not.

Furthermore, we visualize the coverage information in the CPN models taking as
input on the original CPN model and the output of how conditions and decisions are
MC/DC evaluated. This result in a coloured CPN model where the covered parts are

60 Chapter 5

5.1 MC/DC Measurement of Net Inscriptions in CPN Models

CPN Model

Under Test
Instrumented

 CPN Model

Instrumentation

SSE

MC/DC &
BC Trace Analysis

R
ec

on
fi

gu
ra

ti
on

Coverage Report Coverage Visualization in CPN

Coverage Visualization
O

ri
gi

na
l C

PN
 M

od
el

 M
ap

pi
ng

Fig. 5.1: Experimental setup for Coverage analysis for CPN models

annotated in green and the uncovered parts presented in red. Figure 5.2 shows a CPN
model structure presented in Figure 2.2 after coverage analysis where covered and
uncovered parts are highlighted. Table 5.1 presents the summary of the percentage
of how much the tested CPN models are MC/DC and BC covered. For each model,
we consider the number of executed decisions (second column) in arcs and guards.
Column "Model decisions" refers to the number of decisions that have been instrumented
in the model. The number of decisions observed in the model and in the log-file may
deviate in case some of the decisions are never executed, in which case they will not
appear in the log file. We indicate them in brackets if during our exploration we did
not visit, and hence log, each decision at least once. In the case of DisCSP, there are

fun InitRndNumbers () = List.tabulate (n,(fn i => (List.nth(allIDs,i),i+1,"")));

new Round Number is initialized as 8080,
which is the same with one of IDs

InitRndNumbers()

Initialized
Proposer

ReplicaIDxRndxValue

InitProposer ()

New
Leader

In
ReplicaIDxLeaderID

Leader
Round

Out
Rnd

Leader
ID

Out

LeaderID

0

Request

In

ReplicaIDxValue

Request
Value

In/Out
Value

""

Obtain
Leader
Round

[EXPR("OLR", AND(AND(AP("1",id' = id), AP("2", id = lid)),AP("3",value <>"")))]

Store
Leader

ID

[EXPR("SLID", AP("1",id <> lid))]

P_HIGH

Store
Request

[EXPR("SR", AP("1",id = id'))]

(id, rnd, value)

rnd + n

(id', lid)

(id, lid)

lid lid'

(id,rnd,value')
(id',value)

(id',rnd,value)

value

value'

if EXPR("Arc5InitPRO", AP("1", id' = id))
then (id,rnd+n,value) else (id, rnd,value)

In

Out

Out

In/Out

In

Fig. 5.2: Coverage visualization in CPN model
Chapter 5 61

Coverage Analysis on Design Level Models

Table 5.1: MC/DC coverage results for example CPN models

CPN
Model

Executed
decisions

Model
decisions

Non-
trivial

decisions

MC/DC
(%)

BC
(%)

Simulation
status

Paxos 2,281,466 27 11 37.03 40.74 incomplete
MQTT-timeout 3,654 18 14 11.11 22.22 incomplete
MQTT-notimeout 1,828,751 23 19 21.73 65.22 complete
CPNABS 1,386,642 32 13 59.37 88.88 incomplete
DisCSP WCS 140,680 9(2) 5 57.14 57.14 complete
DisCSP SBT 7,686 7 3 57.14 57.14 complete
DisCSP ABT 604,055 7 5 57.14 57.14 complete
NPP 194,481 13 13 53.84 92.3 incomplete
PC 8,677,800 10 9 90 90 incomplete
TIS 10,789,149 19 19 52.94 73.68 incomplete
VM 4,444 8 7 25 50 incomplete
T34PIM 3,644,768 23 8 69.56 82.6 complete

two guard decisions which were never executed.
The column "Non-trivial decisions" gives the number of the decisions (out of all

decisions) that have at least two conditions in the model, as they are the interesting
ones while checking independence effect. If a decision has only one condition, it is
not possible to differentiate MC/DC from BC. Columns "MC/DC(%)" and "BC(%)"
present the coverage percentage for the CPN models under test. The percentage is
calculated as the number of covered conditions over the total number of conditions in
case of MC/DC and the ratio of covered decisions/branches and the total number of
decisions/branches. MC/DC is covered if all the conditions show the independence
effect on the outcome. BC is covered if all the branches are taken at least once. This
makes MC/DC a stronger coverage criterion compared to BC, and this can be seen from
Table 5.1 (columns 5 and 6) where BC have a higher percentage in coverage compared
to MC/DC. More detailed results are presented in our paper [5] included in Part II.

Our instrumentation does not have a significant impact on the execution time of
the model. Considering the time taken for the full SSE of the finite state models,
for instance DisCSP model, both without and with instrumentation, it takes 212.346
seconds versus 214.922 seconds, respectively. It is around 1% of overhead which is the
cost for the instrumentation.

It is interesting to observe the quality differences of the coverage results for the
tested models. Some of the tested models have less than half of their decisions covered.
This should attract the attention of developers and they should assess whether they
have tested their models enough, as these results indicate that there is something that
might be considered doubtful and require to revisit their test-suite. Two factors affect
the coverage percentage results presented for these models:

1. The tested models had no clear test suites; they might be lacking test cases to
cover the remaining conditions. Depending on the purpose of each model, some
of the test cases may not be relevant for the model or the model may not even
have been intended for testing. This could be solved by using test case generation

62 Chapter 5

5.2 Related Work on MC/DC Analysis in CPN Models

for uncovered decisions.

2. The models might be erroneous in the sense that some parts (conditions) in the
model are never or only partially executed due to a modelling issue, e.g. if the
model evolved and a condition no longer serves any purpose or is subsumed
by other conditions. For example in the DisCSP model, there are two decisions
which were never executed, and we cannot tell if this was intentionally or not
without knowing the goal of the developers.

A main result of our analysis of the example models is that none of the models
(including those for which the state space could be fully explored) have full MC/DC
or BC. This confirms our hypothesis that code coverage of net inscriptions of CPN
models can be of interest to developers, such as revealing not taken branches of the
if-then-else arc expressions, never executed guard decisions, conditions that do not
independently affect the outcome and some model design errors. Our results show that
even for full SSE, we may still find expressions that are not MC/DC covered. Assuming
that the model is correct, improving coverage then requires improving the test suite.
This confirms the relevance and added value of performing coverage analysis of net
inscriptions of CPN models over the dead places/transitions report provided as part
of the state space generation. A natural next step in a model development process
would be for the developers to revisit the decisions that are not MC/DC covered and
understand the underlying reason.

5.2 Related Work on MC/DC Analysis in CPN Models

Coverage analysis has attracted attention in both academic and industrial research.
Especially the MC/DC criterion is highly recommended and commonly used in safety
critical systems, including avionic systems [124]. However, there is a limited number
of research addressing model-based coverage analysis. Ghosh [144] expresses test
adequacy criteria in terms of model coverage and explicitly lists condition coverage and
full predicate coverage criterion for OCL predicates on UML interaction diagrams, which
are semantically related to CPNs in that they express (possible) interactions. Test cases
were not automatically generated. In [160], the authors present an automated test
generation technique, MISTA (Model-based Integration and System Test Automation)
for integrated functional and security testing of software systems using high-level Petri
nets as finite state test models. None of the above works addressed structural coverage
analysis such as MC/DC or BC on CPN models.

Simulink [139] supports recording and visualising various coverage criteria
including MC/DC from simulations via the Simulink Design Verifier. It also has
two options for creating test cases to account for the missing coverage in the design.
Test coverage criteria for autonomous mobile systems based on CPNs ware presented
by Lill et al. in [102]. Their model-based testing approach is based on the use of CPNs
to provide a compact and scalable representation of behavioural multiplicity to be
covered by an appropriate selection of representative test scenarios fulfilling net-based
coverage criteria. Simão et al. [140] provide definitions of structural coverage criteria
family for CPNs, named CPN Coverage Criteria Family. These coverage criteria are

Chapter 5 63

Coverage Analysis on Design Level Models

based on checking if all-markings, all-transitions, all-bindings, and all-paths are tested
at least once. Our work is different from the above presented work in that we are
analysing the coverage of net inscriptions (conditionals in SML decisions) in CPN
models based on structure coverage criteria defined by certification standards, such as
DO-178C [132].

64 Chapter 5

CHAPTER 6
GENERATING TEST CASES SATISFYING MC/DC

Test cases generation is an integral part of software testing and deals with providing
verdicts that are used to test the behavior of the program. However, software
testing techniques that achieve coverage effectiveness and provide test cases are
cost intensive [145]. Different strategies are used for test cases generation and they
differ in the criteria intended to satisfy, types of inputs (programs/models versus
single decisions), and/or method of searching (exhaustive versus greedy). This chapter
investigate specifically the generation of test cases supporting the MC/DC criterion.
This chapter summarizes the article [4] which is in Part II of this thesis. We present
our new and alternative method for MC/DC test cases generation based on binary
decisions diagrams (BDDs), and we discuss the state of the art. In addition, we provide
future directions for improving and extending our work.

6.1 Approach for MC/DC Test Cases Generation based on BDDs

Test cases are necessary for coverage analysis in order to examine the behavior of the
system under test on a given sample set of tests. In addition, they are used to check if a
given coverage criterion is satisfied. For MC/DC criterion, test case generation is a non
trivial task [67, 90], due to the independence effect requirement while a user also need
to comply with a considerable minimal number of test cases.

The main problems for generating test cases that show full MC/DC coverage
include:

1. How to select an MC/DC cover test set with a size equal or closer to the lower
bound (n+ 1) within reasonable effort and reasonable resources.

2. How to generate test cases that support all different forms of MC/DC (UC-MC/DC
and Masking MC/DC).

3. It is not always possible to explore all combinations of inputs to conditions in a
decision since it is exhaustive and impracticable for a high number of conditions
[73, 74, 89]. It is necessary to investigate how to generate a set of solutions that
gives a user a possibility to select interesting MC/DC pairs with respect to the
specific purpose of MC/DC measurements.

The problem of test cases generation fulfilling MC/DC is NP complete and NP
hard [74, 88]. NP complete means that there is no single existing approach that can

Generating Test Cases Satisfying MC/DC

generate optimal set of test cases without requiring exponential time and space, whereas
NP hard means that there is no known efficient procedure for determining the test cases.
We provide a novel and alternative approach to test case generation satisfying MC/DC
based on reduced-ordered binary decision diagrams (roBDDs).

6.1.1 Terminologies and properties

In our approach for MC/DC test cases generation [4], we extract the pairs of paths
with independence effect in our three valued logic from BDDs. Given an roBDD for
some decision D over Boolean variables x0, . . . , x1. We denote a path from the root of
the BDD to a terminal with π, and write π[x] = 1 if the path takes the true-branch in
the node labelled with condition x (0/false respectively), and π[x] =? if the path does
not pass through a node labelled with condition x. That is, although paths through the
roBDD can be of different lengths, for uniformity we always represent them as a vector
with n elements.

From roBDD, we produce a set of three-valued test cases. Therefore, we extend
general results from the standard two-valued Boolean logic (cfr. Definition 9) to a
three-valued logic.

Definition 12 (Three-valued independence pair, ⊕3
c). Given two three-valued test cases

tc, tc ′ for a decisionD, we write uc3(tc, tc ′) iff i)D(tc) = ¬D(tc ′) (they evaluate to opposite
concrete truth values), and ii) tc⊕3

ctc
′, where ⊕3

c means at least one of the inputs for some
condition c is a concrete truth value, and for every other condition the three-valued inputs
coincide or one of them is “?”.

Example 3. Let D(X, Y, Z) = X ∧ ((¬Y ∧ ¬Z) ∨ (Y ∨ Z)). Consider tc = (0??) with
D(tc) = 0 and tc ′ = (11?) with D(tc ′) = 1 respectively, hence uc3(tc, tc ′). Observe
that hence also e.g. uc3(011, 11?) and uc(011, 111).

Each three-valued independence pair can be instantiated to some two-valued
independence pair by suitable substitution of unknown values to fulfill the original
definition of MC/DC.

Definition 13 (merge(tc, tc ′)). Given test cases tc, tc ′, we obtain
σ = merge(tc, tc ′), where ∀c ∈ C, (σ[c] = tc[c]∧ tc ′[c] = ?)∨ (σ[c] = tc ′[c]∧ tc[c] = ?).

In other words, merge substitutes some ? in a pair of paths, such that all conditions
have equal values. The result is undefined if they disagree in one position where one
has true and the other false. This can be understood as unifying both test cases with
each other, taking ? as free variables.

We consider path that can be used for more than one condition. Therefore we define
a reuse factor for each path in the ROBDD.

Definition 14 (Reuse factor α(π,ψ), α=3
(π,ψ)). Given the set of MC/DC pairs of paths

(π⊥, π⊤) ∈ ψ with D(π⊥) = 0 and D(π⊤) = 1, the reuse factor α(π,ψ) represents the
number of pairs in ψ that use π. It is calculated as α(π,ψ) := |{(π, (π⊥, π⊤)) | π = π⊥ ∨ π =

π⊤, (π⊥, π⊤) ∈ ψ}|.

66 Chapter 6

6.1 Approach for MC/DC Test Cases Generation based on BDDs

We refine existing test cases such that we keep only one test case when two cases
overlap. Then, suitable test cases that we might want to add to our set are identified.
Therefore, for every uncovered condition our algorithm adds a new test case together
with a complementary one (if such test case does not exist in our set) such that the pair
shows the independence effect of the condition.

6.1.2 Proposed methods and algorithm for test case generation

We present an algorithm in [4] that takes as input the roBDD representing a Boolean
expression and constructs a set of MC/DC pairs. For a decision of n conditions, we
generate n pairs that contain between n+ 1 to 2n test cases altogether. We select paths
based on their length in roBDDs and reuse factor (α()). The reuse factor refers to the
number of pairs that use a given path.

We propose and compare heuristics with different preferences with respect to
three-valued truth-values (1, 0 and ?) and the length of paths in the roBDD. All of them
maximize the reuse factor (α()) together with a second criteria, namely: the longest
paths in BDD (HLPN, HLPB), the longest paths which may merge (HLMMN,HLMMB),
and the longest paths with better size (HLPBS). Each type of heuristic implements two
different flavors which sort the BDD paths depending on the interpretation of the reuse
factor as a natural number (HLPN, HLMMN) or as a boolean value (HLPB, HLMMB)
(e.g., α(p,ψ) < α(q,ψ)).

6.1.3 MC/DC independence pairs selection

In a BDD, a pair (tc, tc ′) of test cases showing the independence of some condition
ci has a vivid graphical interpretation on the BDD. It corresponds to a pair of paths
(π⊥, π⊤) such that:

1. the tests evaluate the opposite truth values (i.e., D(tc) = ¬D(tc ′));

2. tc ≦ π⊥, tc ′ ≦ π⊤ (order wlog., the test cases may contain more input than strictly
necessary).

3. both reach some node vci
using the same path through BDD(D)

(i.e., π⊥[j] = π⊤[j] for 0 ⩽ j < i);
4. their paths from vci

exit on either edge (i.e, π⊥[i] = ¬π⊤[i]);

5. after vci
, both test cases take compatible choices along the paths for the remaining

conditions, so that the independence property holds
(i.e., π⊥[j] =3 π

⊤[j] for i < j < n).

In particular, this means that the two paths cannot cross (after the condition-node
vci

), since this would immediately indicate an incompatible choice.
In short, our approach is divided in two stages: during the first phase, it initializes

the MC/DC test suite with paths that are extracted from the BDD through any of our
predefined heuristics, which intend to maximize the reuse factor in order to reduce the
differences among test cases. Secondly, the selected BDD paths are specialized so that
the wildcards take a concrete value while preserving the independence effect.

Chapter 6 67

Generating Test Cases Satisfying MC/DC

Our algorithm is implemented in Python using the PyEDA library [56]. We
test our algorithm on the Traffic Alert and Collision Avoidance System (TCAS II)
benchmarks [156] which are widely used in the literature [71, 74, 86, 87, 161]. Our
results present MC/DC solutions of size n + 1 by performing few permutations of
conditions in a decision for all tested decisions. Other possible solutions which show
full MC/DC coverage are presented in [4]. In general, our solutions have a size ranging
from n+ 1 to 2n, with a high percentage of size n+ 1 or n+ 2 solutions, where even
the latter, although not optimal, may be acceptable to a user. We proposed different
heuristics and compared their properties.

6.2 Related Work on MC/DC Test Case Generation

Automatic test data generation approaches were proposed in [20, 69, 159] and are
based on greedy or meta-heuristic search strategy. They use search algorithms to
extract test paths from the control flow graph of a program, then invoke an SMT solver
to generate test data [69] and afterwards reduce the test-suite with a greedy algorithm.
The drawback for this approach is that often infeasible paths are selected, resulting in
significant wasted computational effort. In our work, we did not investigate test data
generation here, only boolean inputs to a single decision.

Yang et al. [161] presented the results in terms of size of the test suite and optimal
solutions for MC/DC using SAT based approach in comparison to greedy approach for
different Boolean expressions. Kitamura et al. [96] and Yang et al. [161] use a SAT solver
to construct minimal MC/DC test suites. That is, the MC/DC criterion is encoded in a
single query, and the solver produces a suitable assignment for test case inputs if it
exists, or times out. In contrast to the exhaustive nature of SAT queries which may lead
to timeouts, our approach delivers a single answer in much less time, but may require
repetition to find an optimal solution.

The results from SAT solver do not satisfy UC-MC/DC in some cases, and generated
test cases are only for Masking MC/DC. There are also some conditions which are
reported as infeasible, while the MC/DC pairs for those conditions can be found. For
example in [96], decisions 6 and 8 of the TCAS II benchmarks have test suites with 3
and 4 test cases for 8 and 9 conditions respectively which cannot satisfy MC/DC.

A study of enhanced MC/DC coverage criterion for software testing based on
n-cube graphs and gray code is presented in [39]. It is an exhaustive approach that
takes input as a Boolean expression, builds the n-cube graph, and deduces test cases
from all vertices of the graph. Their test cases selection is based on the weight of each
test case in a similar way as we calculate the reuse factor of a path. The main difference
is that they have to construct the n-cube graph which have the same effect as exhaustive
traversal of a truth table, and the resulting size of the test suite is not minimal.

Gay et al. [66, 67], developed a technique to automatically generate test cases using
model checkers for masking MC/DC. Using the JKind model checker, they produce
a list of all test inputs and then select the desired test cases while preserving the
coverage effectiveness. Their test suite reduction algorithm used to reduced the original
test-suite does not guarantee to find the smallest set. They tested their approach on
different real-world avionics systems where they achieved an average MC/DC coverage
of 67.67%.

68 Chapter 6

6.2 Related Work on MC/DC Test Case Generation

Comar et al. [47] discussed MC/DC coverage in terms of BDD coverage. They
examine the set of distinct paths through the BDD that have been taken based on the
control flow graph. Based on BDDs they investigated the formalization and comparison
of MC/DC to object branch coverage, but the test cases selection is not within the scope
of their work. We extend the formalization and definitions of MC/DC in terms of
BDDs in the context of test cases selection.

The roBDDs have been used in [71, 87] for test cases generation, where they highlight
the properties and benefits of roBDDs. However, MC/DC was not considered as
coverage criterion. Similar to our approach, their greedy approach incrementally
selects a pair of paths where only one condition changes for every condition.

Chapter 6 69

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

This chapter provides the concluding remarks and summarizes our contributions. In
addition, we discuss the limitations and challenges of our approaches and propose a
way forward to addresses those limitations. Moreover, the future outlook of this thesis
and possible extensions of our work are presented.

7.1 Revisiting of Research Questions

We investigated four research questions with respect to efficient techniques and tools for
software testing based on traces and coverage analysis. The first two research questions
focused on MC/DC measurement and data race detection without instrumentation and
with lightweight instrumentation, respectively. The third research question explored
the applicability of MC/DC on design level models. In the fourth research question,
we investigated how to generate test cases satisfying MC/DC criterion.

RQ1: Can we check modified condition decision coverage (MC/DC) without instrumentation?
RQ2: How can we monitor data races with low overhead instrumentation?
RQ3: Does MC/DC have applicability on the design level models?
RQ4: How can test cases satisfying MC/DC be efficiently generated?

Below, we provide a summary of how we addressed these research questions.
To address RQ1, we developed and described a non-intrusive MC/DC measurement

tool based on traces without software instrumentation [2, 9]. We measured MC/DC on
the object code level by analyzing program traces and investigate how conditionals in
the source code are reconstructed during the execution. This was achieved by finding
out which conditions in the source code correspond to which conditional jumps in the
object code and whether the conditional jump was taken or not. From this information
we filled in a table on how the conditions were reconstructed which allowed us to
evaluate MC/DC. Our trace based approach of measuring MC/DC complies with the
position of CAST-17 [38] and the structure coverage analysis on the object code level
where our short-circuit evaluation is equivalent to Masking MC/DC, which is accepted
in avionic industry by the DO-178C [124].

In RQ2 we presented a non-intrusive approach to monitoring applications on
embedded system-on-chips (SoCs) for data race detection. We used the COEMS
platform [49] which aims to eliminate the overhead of dynamic checking by offloading

Conclusions and Future Work

it to external hardware. We considered potential data races in applications that use
locks for synchronisation. Our results show that developers can observe the control-
flow in a digital twin of their application under test on an embedded systems using
the COEMS platform, without affecting the behaviour of the system under test. Our
hardware-based approach can be used in safety-critical systems such as the aerospace
and railway-domains where certification is necessary.

RQ3 explored the applicability of MC/DC on design level models [5, 10]. In our
case studies we considered coverage analysis of net inscriptions in CPN models. We
integrate the coverage analysis and visualization of coverage information in CPN
models. Our results show that coverage analysis is a useful feature not only for
programs but also for models. The reflection from coverage results from the publicly
available CPN models considered revealed that some parts of the model were not
covered and some of the models yield a low coverage [5, 10]. Therefore, developers
(authors of the models) need to consider the reason why some parts are not covered.

In RQ4, we investigated a novel and alternative approach to test case generation
satisfying MC/DC based on BDDs [4]. We proposed and compared different heuristics-
based methods and provided an algorithm for selecting MC/DC pairs given a Boolean
expression. Our approach was evaluated on the TCAS II Benchmark and the results
showed that we frequently find solutions which are equal or close to the minimal number
of test cases (n+1 for a decision with n conditions) without expensive back-tracking.

7.2 Summary of our Contributions

This thesis provides contributions to the theoretical foundations, contributions to
MC/DC measurement tools, contributions to data race detection, MC/DC application
on case studies, and contributions to the test case generation. We build a theory
foundation for testing approaches; MC/DC measurement and data race detection
based on the state of the art in the form of related work. It encompasses approaches
that helped us to develop efficient software testing tools and techniques, test cases and
testing scripts, and their evaluation on SUT case studies and through experiments. We
proposed an algorithm and heuristics for test cases generation satisfying MC/DC. We
formulate definitions and theorems as well as their proofs of correctness.

7.2.1 Contributions to MC/DC measurement tools and techniques
We presented an approach and a tool that show the feasibility of measuring MC/DC
without instrumentation based on program traces as an alternative to state-of-the-art
solutions like software instrumentation. The tool is able to detect decisions and
conditions in C source code and to find their corresponding conditional jumps in the
object code. MC/DC can be measured by reconstructing condition assignments based
on Intel PT traces.

Our approach of measuring MC/DC based on traces complies with the position of
CAST-17, that provides certification authorities’ concerns and position regarding the
analysis of structural coverage at the object code level [38]. With the mapping between
conditions and conditional jumps, we provide traceability between source and object
code via the reconstruction of condition assignments on the source code level, we can

72 Chapter 7

7.2 Summary of our Contributions

provide the same level of assurance as measuring coverage directly on source code
level via software instrumentation. The main contribution of our work as detailed in [2]
is the novel concept of how to measure MC/DC based on existing trace-technologies.
In addition, we provide tooling for MC/DC analysis and measurement which is freely
available 1 for the research purposes.

7.2.2 Contributions to data race detection

The main contribution of our work to data race detection is the non-intrusive approach
to monitoring applications on embedded system-on-chips (SoCs) for data races using
the COEMS platform [49]. The platform has a main purpose of eliminating the overhead
of dynamic checking by offloading it to external hardware2. Additionally, the platform
offers control-flow reconstruction from Arm CoreSight processor-traces and data-traces
through explicit instrumentation [125]. Race checking is executed on an FPGA on a
separate hardware-platform to minimize impact on the system under observation.

Our hardware-based approach finds a wide use in safety-critical systems such as
the aerospace and railway-domains where certification is necessary. In these domains,
using a software inline race-checker such as ThreadSanitizer [137] is not possible as the
tooling for instrumentation and online race-checking is not certified for those systems.
In contrast to software-based approaches, our instrumentation for the application under
test has low complexity and gives predictable performance overhead independent of
whether or not race checking is enabled. This is especially important for software
development in these safety-critical domains, as again for certification purposes, it is
not permissible to, e.g., deploy a separate version for debugging or trouble-shooting
on demand in the field. Any debugging and trace support must be already integrated
in the final product.

Moreover, we have illustrated our approach with a case study, where we simulate a
set of bankers sending random amounts of money from one bank account to another
[85]. The bankers lock the source and target bank accounts before committing a
transaction, so that transfers are protected against data races and deadlocks. We
introduce a special case where one banker forgets one lock operation and hence, data
may get corrupted. The complete example, including source code, execution traces
and TeSSLa reports, is available at [6].

7.2.3 Contributions to MC/DC applicability on design model

The application of simulation and state space exploration for validating CPN models
traditionally focuses on behavioural properties related to net structure, i.e., places and
transitions. We developed tooling and techniques to analyse the extent to which the
Boolean expressions in CPN model have been covered is by analyzing the coverage of
the net inscriptions that were only implicitly validated.

There are five main contributions with respect to coverage analysis of net inscriptions
in CPN models: 1) We developed an automatic lightweight instrumentation mechanism

1https://www.coems.eu/mc-dc/
2The EU Horizon 2020 project “COEMS–Continuous Observation of Embedded Multicore Systems”,

https://www.coems.eu.

Chapter 7 73

https://www.coems.eu/mc-dc/
https://www.coems.eu

Conclusions and Future Work

that rewrite the guards and arc expressions in a form that allows to identify conditions
and decisions without modifications of the net structure of the CPN model 2) we
provide a library and annotation mechanism that intercept evaluation of Boolean
conditions in guards and arcs in SML decisions in CPN models, and record how they
were evaluated; 3) we compute the conditions’ truth assignment and check whether or
not particular decisions are MC/DC-covered in the recorded executions of the model;
4) we collect coverage data using our library from publicly available CPN models
and report whether they are MC/DC and BC covered; 5) we visualize the coverage
information in CPN model such that the covered and uncovered (coloured in green
and red respectively) transitions and arcs are revealed.

7.2.4 Contributions to the test cases generation

We presented a novel and alternative approach to test cases generation satisfying
MC/DC based on reduced-ordered binary decision diagrams (roBDDs) which are a
concise representation of Boolean expressions.

We proposed an algorithm that takes as input the roBDD representing a Boolean
expression and constructs a set of MC/DC pairs. For a decision of n conditions, we
generate n pairs that contain between n+ 1 to 2n test cases altogether. We select paths
based on their length in roBDDs and reuse factor (α(), cfr Definition 14). The reuse
factor refers to the number of pairs that use a given path.

We proposed and compared our heuristics with different preferences with respect
to three-valued truth-values (1, 0 and ?) and the length of paths in the roBDD. Our
algorithm is implemented in Python and the PyEDA library [56]. We test our algorithm
on the Traffic Alert and Collision Avoidance System (TCAS II) benchmarks [156] which
are widely used in the literature [71, 74, 86, 87, 161].

7.3 Limitations and Future Work

The approaches and techniques proposed in this thesis provide several directions
for future work in the context of MC/DC measurement and its applicability on real
industrial examples and other type of models. New methods for test cases generation
and data race detection can be envisaged as future outlook.

There are some limitations and challenges encountered in this thesis that are
presented next along with possible future research directions. In this section, we
discuss future work based on our research methods and activities, by outlining research
directions for future work. Measuring MC/DC based on jumps has some general
limitations. If the compiler uses any optimization level, it is likely that conditions are
not directly translated to conditional jumps. It is possible that conditional moves, jump
tables or indirect branches are used. Program traces deliver no information on how
these instructions are evaluated and therefore none of these structure can be used
to reconstruct conditions by analyzing the trace. This limitation is less severe in the
domain of avionic, because other requirements, for example source code to object code
traceability in DO-178C, make it already hard for developers to use high optimization
levels [35]. It is necessary to conduct further investigations into this issue in the future.

74 Chapter 7

7.3 Limitations and Future Work

Another limitation of our approach to measuring MC/DC based on traces is that the
trace data becomes excessively large for longer executions. We used an offline tracing
approach where available storage effectively limits the size of traces. In future work,
we want to apply our approach to online trace reconstruction which would enable us
to observe much longer execution times because only the very events that are used for
coverage measurement are reconstructed.

We also want to support other architectures and instead of Intel PT, use tracing
technologies such as ARM CoreSight and NEXUS for PowerPC since these processor
architectures are widely used in the avionics and automotive industry, which would
benefit the most from this new approach of MC/DC measurement.

In addition, measuring MC/DC on bigger industrial programs, for example from git
repositories, and other models is another possible direction for the future. This would
serve as a ground proof for the expected MC/DC for these programs and models since
none exist to the best of our knowledge.

The data race analysis uses the LLVM compiler framework, and currently works
with threads using pthread_mutex_lock/unlock operations for protecting the shared
variables. For other ways of synchronization, e.g., through compare-and-swap
instructions, or baremetal execution, we do not provide instrumentation and a template
yet, but they can easily be adapted from our code.

A practical limitation of the data trace is the currently restricted value-range of the
trace messages to 16 bits, which complicates e.g. the use of pointers in the trace. As
currently we need multiple messages per event to transmit additional data such as
debugging information (the current line number) and the thread identifier, we need
to serialize use of the trace bus. This additional locking that is introduced through
the instrumentation affects the performance of the application under test, whereas
transmitting a single datum in principle has negligible execution overhead.

Our unoptimised performance measurements already put us in a competitive
range with other approaches such as ThreadSanitizer, and we have the advantage that
COEMS-based tracing can remain enabled in production. Future developments of the
COEMS platform beyond its current prototype will make splitting the specification
and post-processing in the interpreter superfluous: 18 (instead of the currently 8)
available EPUs will already allow for setups without dynamic values to be handled
completely in hardware. In the meantime, we are improving the instrumentation to
produce effect summaries for basic blocks of code instead of instrumenting single
instructions, which should decrease the overhead especially for tight loops. We are
also preparing additional concurrency patterns that monitor actual deadlocks and
so-called lock-order-reversal.

Our general approach to coverage analysis provides several possible directions
forward which would help developers get a better understanding of their models:
While generating the full state space is certainly the preferred approach, this is not
feasible if the state space is inherently infinite or too large. Simulation of particular
executions could then be guided by results from the coverage and try to achieve
higher coverage in parts of the model that have not been explored yet. However,
while selecting particular transitions to follow in a simulation is straight-forward,
manipulating the data space for bindings used in guards is a much harder problem
and closely related to test case generation (recall the CPNs also rely on suitable initial

Chapter 7 75

Conclusions and Future Work

states, which are currently given by developers). Making use of feedback between the
state of the simulation and the state of the coverage would, however, require much
tighter integration of the tools. A related direction is to consider visualizing coverage
information in the graphical user interface accompanied with a set of test cases that can
be used to cover the uncovered part: CPN Tools already supports a broad palette of
visual options that could be used, e.g., to indicate successful coverage of guards through
colour, or the frequency that transitions have been taken through their thickness [153].
However, the related challenge would be that the suggested set of test cases may not be
interesting with respect to the user defined intention of the CPN models under test.

As for the measured coverage results, it would be interesting to discuss with the
original developers of the tested models, and check if the coverage results are within
their expectations. While low coverage could indicate design flaws, our testing may not
have exercised the same state space as the original developers did: they may have used
their model in various configurations, whereof the state of the model just represents a
snapshot, or we did not discover all possible configurations in the model.

The main limitation of our approach to MC/DC test cases generation based on
BDDs is that BDDs are sensitive to conditions ordering, such that different orders yield
different BDDs and their size in the worst case grows to 22n nodes [117]. As the number
of nodes increases, there are many paths to select MC/DC pairs from. We presented
evidence that to find an optimal or “good enough” solutions, instead of a search with
backtracking, it is sufficient to try a few different permutations.

Another challenge which is not directly related to our approach but to MC/DC is
the coupled and masked conditions where it is difficult to get a full MC/DC coverage
with masked condition. Further methods which are not based on BDDs can also be
envisaged.

For the future work, it is interesting to extend our algorithm so that it can support data
input coverage where conditions are not abstracted, which requires taking constraints
into consideration. One can also attempt to integrate our test case generation algorithm
into our MC/DC measurement tool and model [2, 10]. Although the experimental
data shows that we always find an optimal solution, it remains open question if this is
a general property of our approach.

Both the MC/DC measurement on the design model level and industrial examples
requires having a test suite which in some models and programs may not even have
been intended for testing. As part of future work, it is interesting to generate test-cases
specifically with the aim to increase coverage.

76 Chapter 7

BIBLIOGRAPHY

[1] M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of Embedded Control
Systems, volume 267. Springer, 2005. 2.6

[2] F. Ahishakiye, S. Jakšić, V. Stolz, F. D. Lange, M. Schmitz, and D. Thoma. Non-
Intrusive MC/DC Measurement based on Traces. In D. Méry and S. Qin, editors,
Intl. Symp. on Theoretical Aspects of Software Engineering, pages 86–92. IEEE, 2019.
1, 1, 1.5, 1.5, 1.6, 3, 3.1.2, 7.1, 7.2.1, 7.3

[3] F. Ahishakiye, J. I. R. Jarabo, L. M. Kristensen, and V. Stolz. Coverage Analysis of
Net Inscriptions in Coloured Petri Net Models, 2020. 1.6

[4] F. Ahishakiye, J. I. R. Jarabo, L. M. Kristensen, and V. Stolz. MC/DC Test Cases
Generation based on BDDs. In Symposium on Dependable Software Engineering
Theories, Tools and Applications (SETTA 2021), volume 13071 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2021. 1.5, 1.5, 1.6, 2.2.1, 2.7.2, 6, 6.1.1, 6.1.2,
6.1.3, 7.1

[5] F. Ahishakiye, J. I. R. Jarabo, L. M. Kristensen, and V. Stolz. Coverage Visualization
and Analysis of Net Inscriptions in CPN Models. Innovations in Systems and
Software Engineering (ISSE) NASA Journal (Under review), pages 1–22, Mars 2022.
1.5, 1.5, 1.6, 5, 5.1.2, 7.1

[6] F. Ahishakiye, J. I. R. Jarabo, K. I. Pun, and V. Stolz. Open Data for Banker
Example. https://doi.org/10.5281/zenodo.4381982, December 2020. 7.2.2

[7] F. Ahishakiye, J. I. R. Jarabo, V. K. I. Pun, and V. Stolz. Hardware-Assisted Online
Data Race Detection, volume 13065 of Lecture Notes in Computer Science, pages
108–126. Springer International Publishing, Cham, 2021. 1.5, 1.6, 2.4, 4, 4.1.2

[8] F. Ahishakiye, J. I. R. Jarabo, and V. Stolz. Lock instrumentation tool. https:
//github.com/selabhvl/coems-racechecker, 2020. 1.6, 1

[9] F. Ahishakiye and F. D. Lange. Non-intrusive MC/DC Measurement based
on Traces. In Proceedings of the PhD Symposium at iFM’18 on Formal Methods:
Algorithms, Tools and Applications (PhD-iFM’18), pages 15–17, Maynooth, Ireland,
Sept 2018. 1, 1, 1.5, 1.6, 7.1

[10] F. Ahishakiye, J. I. Requeno Jarabo, L. M. Kristensen, and V. Stolz. Coverage
Analysis of Net Inscriptions in Coloured Petri Net Models. In B. Ben Hedia,
Y.-F. Chen, G. Liu, and Z. Yu, editors, International Conference on Verification and
Evaluation of Computer and Communication Systems (VECoS), volume 12519 of
Lecture Notes in Computer Science, pages 68–83, Cham, 2020. Springer. 3, 1.5, 1.6, 5,
5.1.2, 7.1, 7.3

https://doi.org/10.5281/zenodo.4381982
https://github.com/selabhvl/coems-racechecker
https://github.com/selabhvl/coems-racechecker

BIBLIOGRAPHY

[11] F. Ahishakiye, V. Stolz, and L. M. Kristensen. Coverage Analysis of the Standard
ML Expressions in a CPN model. In Proceedings of the PhD Symposium at iFM’19
on Formal Methods: Algorithms, Tools and Applications (PhD-iFM’2019), Bergen,
Norway, December 2019. 1.6

[12] F. Ahishakiye, V. Stolz, and L. M. Kristensen. Generating Test-cases Satisfying
MC/DC from BDDs. In The 31st Nordic Workshop on Programming Theory
(NWPT’19), pages 12–14, Tallinn, Estonia, November 2019. 1.6

[13] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, USA, 1 edition, 2008. 1.1.1, 1.1.2, 1.1.4, 2.1, 2.1, 2.1, 2.1

[14] H. R. Andersen. An Introduction to Binary Decision Diagrams. In Lecture Notes,
1997. 2.7.1

[15] K. Andi. Cheat sheet for Intel Processor Trace with Linux perf and gdb, 1 June
2019. http://halobates.de/blog/p/410. 1, 1.2, 2.5.1, 2.5.2

[16] G. R. Andrew. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, University of Arizona, 1 edition, 2000. 2.3, 2.3.2, 2.3.2, 2.3.3

[17] ARM Limited. ARM IHI 0029B: CoreSightTM Architecture Specification v2.0, issue
D, 2013. 2.3, 2.5.1, 2.5.3

[18] ArmDeveloper. CoreSight Access Tool (CSAT) User Guide User Guide Version
2.6.0, 2013. https://developer.arm.com/documentation/epm051792/latest/.
2.5.3

[19] ArmDeveloper. Arm® DS-5 Arm DSTREAM System and Interface Design
Reference Guide Version 5.29, 2015. https://developer.arm.com/documentation/
100956/latest/. 2.5.3

[20] Z. Awedikian, K. Ayari, and G. Antoniol. MC/DC automatic test input data
generation. In Annual Conference on Genetic and Evolutionary Computation Conference
(GECCO), pages 1657–1664. ACM, 2009. 6.2

[21] V. Balasundaram and K. Kennedy. Compile-Time Detection of Race Conditions
in a Parallel Program. In Proceedings of the 3rd International Conference on
Supercomputing, ICS ’89, pages 175–185, New York, NY, USA, 1989. Association
for Computing Machinery. 2.3.2, 2.4

[22] J. Baumeister, B. Finkbeiner, M. Schwenger, and H. Torfah. FPGA stream-
monitoring of real-time properties. ACM Trans. Embed. Comput. Syst., 18(5s), Oct.
2019. 4.2

[23] M. Beaudouin-Lafon, W. E. Mackay, M. Jensen, P. Andersen, P. Janecek, M. Lassen,
K. Lund, K. Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, and
K. Jensen. CPN Tools: A Tool for Editing and Simulating Coloured Petri Nets
ETAPS Tool Demonstration Related to TACAS. In Proc. of Tools and Algorithms for
the Construction and Analysis of Systems, pages 574–577, Berlin, Heidelberg, 2001.
Springer. 2.6, 5.1

78 Bibliography

http://halobates.de/blog/p/410
https://developer.arm.com/documentation/epm051792/latest/
https://developer.arm.com/documentation/100956/latest/
https://developer.arm.com/documentation/100956/latest/

BIBLIOGRAPHY

[24] B. Beizer. Black Box Testing: Techniques for Functional Testing of Software and Systems.
Inc. John Wiley and Sons, Hoboken, NJ, 1995. 1.1.4

[25] J. Billington and M. Diaz. Application of Petri Nets to Communication Networks:
Advances in Petri nets. Number 1605. Springer Science & Business Media, 1999.
2.6

[26] J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to
Protocol Verification. In Advanced Course on Petri Nets, pages 210–290. Springer,
2003. 2.6

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The Gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, Aug. 2011. 4.2

[28] E. Bodden and K. Havelund. Aspect-Oriented Race Detection in Java. IEEE Trans.
Software Eng., 36(4):509–527, 2010. 2.3

[29] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, and T. Quinot. Object
and source coverage for critical applications with the COUVERTURE open
analysis framework. In Proc. of Embedded Real Time Software and Systems Conference
(ERTS), 2010. 3.2

[30] Q. Brainy. Steve Jobs Quotes. https://www.brainyquote.com/quotes/steve_
jobs_416899?src=t_software. I

[31] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Comput., 35(8):677–691, August 1986. 2.7, 2.7, 2.7.1

[32] T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. Heimdahl. Toward
rigorous object-code coverage criteria. Technical report, Technical Report,
University of Minnesota, MN, USA, June 2017. 3.2

[33] Caesarea Medical Electronics. Niki T34 syringe pump instruction manual, June
2008. 5.1.1

[34] A. Cavalcanti, S. King, and C. O’Halloran. A Scientific Investigation of MC/DC
Testing. 01 2007. 2.2.2, 2.2.3

[35] Certification Authorities Software Team. Guidelines for approving source code
to object code traceability. Technical report, Technical Report: Position Paper
CAST-12, 2002. 2.2.5, 3.1, 7.3

[36] Certification Authorities Software Team (CAST). Rationale for Accepting Masking
MC/DC in Certification Projects. Technical report, Position Paper CAST-6, 2001.
2.2, 2.2.3

[37] Certification Authorities Software Team (CAST). What is a “Decision” in
Application of Modified Condition/Decision Coverage (MC/DC) and Decision
Coverage (DC)? Technical report, Position Paper CAST-10, 2002. 2.1, 2.2

Bibliography 79

https://www.brainyquote.com/quotes/steve_jobs_416899?src=t_software
https://www.brainyquote.com/quotes/steve_jobs_416899?src=t_software

BIBLIOGRAPHY

[38] Certification Authorities Software Team (CAST). Structural Coverage of Object
Code. Technical Report: Position Paper CAST-17, 2003. 1, 1.2, 2.2.5, 3, 3.1, 3.1.2, 7.1,
7.2.1

[39] J. R. Chang and C. Y. Huang. A study of enhanced MC/DC coverage criterion
for software testing. In Annual International Computer Software and Applications
Conference (COMPSAC), pages 457–464, 2007. 6.2

[40] Q.-L. Chen, J.-J. Bai, Z.-M. Jiang, J. Lawall, and S.-M. Hu. Detecting data races
caused by inconsistent lock protection in device drivers. In 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 366–376, 2019. 2.4

[41] J. J. Chilenski. An Investigation of Three Forms of the Modified Condition
Decision Coverage (MC/DC) criterion. Technical report, Office of Aviation
Research, 2001. 2.1, 2.2, 2.2.2, 2.2.3, 2.2.5, 3.1

[42] J. J. Chilenski and S. P. Miller. Applicability of Modified Condition/Decision
Coverage to Software Testing. Software Engineering Journal, 9(5):193–200, 1994. 1,
1.1.7, 1.2, 2.1, 2.1, 2.1, 2.2, 2.2.1, 2.2.2, 3.2

[43] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, A Decade
of Concurrency Reflections and Perspectives, pages 124–175, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg. 2.7

[44] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999. 2.7, 2.7

[45] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A comparison of data
flow path selection criteria. In Proceedings of the 8th International Conference on
Software Engineering, ICSE ’85, pages 244–251, Los Alamitos, CA, USA, 1985. IEEE
Computer Society Press. 2.7, 3.2

[46] CodeCover. An open-source glass-box testing tool. available at http://codecover.
org/. 3.2

[47] C. Comar, J. Guitton, O. Hainque, and T. Quinot. Formalization and comparison
of MC/DC and object branch coverage criteria. In European Congress Embedded
Real Time Software and Systems (ERTS), pages 1–10, 2011. 2.2.4, 6.2

[48] S. Cornett. Code Coverage Analysis, 1996-2014. available at https://www.
bullseye.com/coverage.html, Accessed 16 August 2021. 2.1, 2.1

[49] N. Decker, B. Dreyer, P. Gottschling, C. Hochberger, A. Lange, M. Leucker,
T. Scheffel, S. Wegener, and A. Weiss. Online analysis of debug trace data for
embedded systems. In J. Madsen and A. K. Coskun, editors, Design, Automation
& Test in Europe Conference & Exhibition, DATE 2018, pages 851–856. IEEE, 2018. 2,
3.2, 4.1.1, 7.1, 7.2.2

80 Bibliography

http://codecover.org/
http://codecover.org/
https://www.bullseye.com/coverage.html
https://www.bullseye.com/coverage.html

BIBLIOGRAPHY

[50] N. Decker, P. Gottschling, C. Hochberger, M. Leucker, T. Scheffel, M. Schmitz, and
A. Weiss. Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core
Systems. In S. Cavalheiro and J. Fiadeiro, editors, Formal Methods: Foundations
and Applications, pages 179–196, Cham, 2017. Springer International Publishing.
3.2

[51] X. Devroey, G. Perrouin, A. Legay, M. Cordy, P.-Y. Schobbens, and P. Heymans.
Coverage Criteria for Behavioural Testing of Software Product Lines. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change, pages 336–350, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg. 1.1.7

[52] T. V. Dĳk, A. Laarman, and J. van de Pol. Multi-Core BDD Operations for Symbolic
Reachability. Electronic Notes in Theoretical Computer Science, 296:127–143, 2013.
2.7

[53] E. W. Dĳkstra. Notes on Structured Programming. April 1970. 1.1.2

[54] E. W. Dĳkstra. Solution of a Problem in Concurrent Programming Control, pages
289–294. Berlin, Heidelberg, 2001. 2.3.2, 2.3.3

[55] Doxygen. BuDDy: A BDD package. available at http://buddy.sourceforge.net/
manual/main.html. 2.7.2

[56] C. R. Drake. PyEDA: Data structures and algorithms for electronic design
automation. In Python in Science Conference (SciPy), 2015. 4, 2.7.2, 6.1.3, 7.2.4

[57] M. Factor, E. Farchi, Y. Lichtenstein, and Y. Malka. Testing concurrent programs:
a formal evaluation of coverage criteria. In Proceedings of the Seventh Israeli
Conference on Computer Systems and Software Engineering, pages 119–126, 1996. 2.1,
2.3

[58] FCAS Team. What is a” decision” in application of modified condition/decision
coverage (C/DC) and decision coverage (DC). Technical Report position paper, 2002.
1, 1.1.7, 2.1, 2.1, 2.1, 2

[59] Federal Aviation Administration. Software approval guidelines, 2011. 1.1.6

[60] H. Felbinger, J. Sherrill, G. Bloom, and F. Wotawa. Test suite coverage
measurement and reporting for testing an operating system without
instrumentation. In 17th Real-Time Linux Workshop, Oct. 2015. 3.2

[61] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race
detection. In M. Hind and A. Diwan, editors, Proc. 2009 ACM SIGPLAN Conf.
on Programming Language Design and Implementation, PLDI 2009, pages 121–133.
ACM, 2009. 4.2

[62] P. Frankl and E. Weyuker. An applicable family of data flow testing criteria. IEEE
Transactions on Software Engineering, 14(10):1483–1498, 1988. 1.1.7, 2.1

Bibliography 81

http://buddy.sourceforge.net/manual/main.html
http://buddy.sourceforge.net/manual/main.html

BIBLIOGRAPHY

[63] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvement of Boolean
comparison method based on Binary Decision Diagrams. In [1988] IEEE
International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical
Papers, pages 2–5, Nov 1988. 2.7

[64] J. Gait. A Probe Effect in Concurrent Programs. Softw. Pract. Exper., 16(3):225–233,
Mar. 1986. 2.3

[65] D. Gates and M. Baker. The inside story of MCAS: How Boeing’s 737 MAX
system gained power and lost safeguards, 9 July 2019. 1

[66] G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. E. Heimdahl. The effect of
program and model structure on the effectiveness of MC/DC test adequacy
coverage. ACM Transactions on Software Engineering and Methodology, 25(3), July
2016. 1.2, 6.2

[67] G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl. The risks of coverage-
directed test case generation. IEEE Transactions on Software Engineering, 41(8):803–
819, 2015. 1.2, 6.1, 6.2

[68] X. Ge, W. Cui, and T. Jaeger. GRIFFIN: Guarding Control Flows Using Intel
Processor Trace. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’17,
page 585–598, New York, NY, USA, 2017. Association for Computing Machinery.
2.5.1, 2.5.2, 2.5.2

[69] K. Ghani and J. A. Clark. Automatic Test Data Generation for Multiple Condition
and MCDC Coverage. In Proc. of the Fourth International Conference on Software
Engineering Advances, ICSEA ’09, page 152–157, USA, 2009. IEEE Comp. Society.
6.2

[70] A. Gkolfi, C. C. Din, E. B. Johnsen, L. M. Kristensen, M. Steffen, and I. C. Yu.
Translating active objects into Colored Petri Nets for communication analysis.
Science of Computer Programming, 181:1–26, 2019. 5.1.1

[71] H. Gong, J. Li, and R. Li. CTFTP: A test case generation strategy for general
Boolean expressions based on ordered binary label-driven Petri nets. IEEE Access,
8:174516–174529, 2020. 4, 6.1.3, 6.2, 7.2.4

[72] O.-K. Ha. Case study of dynamic detectors for data races. IERI Procedia, 4:174–180,
2013. 2.4, 2.4

[73] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and B. Baudry. Test
them all, is it worth it? Assessing configuration sampling on the JHipster Web
development stack. Empirical Software Engineering, 24(2):674 –717, 2019. 1.2, 3

[74] S. Hallé, E. La Chance, and S. Gaboury. Graph methods for generating test cases
with universal and existential constraints. In International Conference on Testing
Software and Systems (ICTSS), pages 55–70. Springer, 2015. 1.2, 4, 3, 6.1, 6.1.3, 7.2.4

82 Bibliography

BIBLIOGRAPHY

[75] M. P. E. Heimdahl, M. W. Whalen, A. Rajan, and M. Staats. On MC/DC and
Implementation Structure: An empirical study. In Proc. of IEEE/AIAA 27th Digital
Avionics Systems Conference, pages 5.B.3–1–5.B.3–13, 2008. 2.1

[76] A. J. Hu. Formal hardware verification with BDDs: an introduction. In IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM),
volume 2, pages 677–682. IEEE, 1997. 2.7

[77] IEEE Standards. IEEE Guide for Software Verification and Validation Plans. IEEE
Std 1059-1993, pages 1–87, 1994. 1.1, 1.1.2, 1.1.3

[78] J. Jahic, M. Jung, T. Kuhn, C. Kestel, and N. Wehn. A framework for non-
intrusive trace-driven simulation of manycore architectures with dynamic tracing
configuration. In C. Colombo and M. Leucker, editors, Runtime Verification, pages
458–468. Springer, 2018. 4.2

[79] S. Jaksic, E. Bartocci, R. Grosu, R. Kloibhofer, T. Nguyen, and D. Nickovic. From
signal temporal logic to FPGA monitors. In 13. ACM/IEEE Intl. Conf. on Formal
Methods and Models for Codesign, MEMOCODE 2015, pages 218–227. IEEE, 2015.
4.2

[80] S. Jakšic, D. Li, Ka I Pun, and V. Stolz. Stream-based dynamic data race detection.
In 31st Norsk Informatikkonferanse, NIK 2018. Bibsys Open Journal Systems, Norway,
2018. 2.4, 4.2

[81] G. Janssen. Application of BDD’s in formal verification. In Proc. 22nd International
School and Conference on CAD, pages 49–53, Gurzuff, Yalta, Ukraine, 1995. 2.7

[82] K. Jensen, S. Christensen, L. M. Kristensen, and W. Michael. CPN Tools, 2010.
2.6, 5.1

[83] K. Jensen and L. M. Kristensen. Colored Petri Nets: A graphical language for
formal modeling and validation of concurrent systems. Commun. ACM, 58:61–70,
2015. 2.6, 5.1

[84] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9, 06 2007. 2.6

[85] N. Joe. Concurrent programming, with examples. https://begriffs.com/posts/
2020-03-23-concurrent-programming.html, March 2020. 7.2.2

[86] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization for
Modified Condition/Decision Coverage. IEEE Transactions on Software Engineering,
29(3):195–209, 2003. 4, 6.1.3, 7.2.4

[87] A. Kalaee and V. Rafe. An optimal solution for test case generation using ROBDD
graph and PSO algorithm. Quality and Reliability Engineering International,
32(7):2263–2279, 2016. 4, 6.1.3, 6.2, 7.2.4

Bibliography 83

https://begriffs.com/posts/2020-03-23-concurrent-programming.html
https://begriffs.com/posts/2020-03-23-concurrent-programming.html

BIBLIOGRAPHY

[88] Z. Z. Kamal, R. A. A. Abdul, and H. Mohd. On test case generation satisfying
the MC/DC criterion. International Journal of Advances in Soft Computing and its
Applications, 5(3):104–115, 2013. 6.1

[89] S. Kandl and S. Chandrashekar. Reasonability of MC/DC for safety-relevant
software implemented in programming languages with short-circuit evaluation.
Computing, 97(30):261–279, Mar 2015. 1.2, 3.2, 3

[90] S. Kangoye, A. Todoskoff, and M. Barreau. Practical methods for automatic
MC/DC test case generation of Boolean expressions. In IEEE AUTOTESTCON,
pages 203–212. IEEE, 2015. 1.2, 6.1

[91] K. Kapoor and J. Bowen. Experimental evaluation of the variation in effectiveness
for DC, FPC and MC/DC test criteria. In 2003 International Symposium on Empirical
Software Engineering, 2003. ISESE 2003. Proceedings., pages 185–194, Sept 2003. 3.2

[92] K. Kapoor and J. P. Bowen. A Formal Analysis of MCDC and RCDC Test Criteria:
Research Articles. Softw. Test. Verif. Reliab., 15(1):21–40, mar 2005. 2.2.2

[93] H. P. Katseff. A New Solution to the Critical Section Problem. In Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page 86–88,
New York, NY, USA, 1978. Association for Computing Machinery. 2.3.2

[94] H. Kelly J., V. Dan S., C. John J., and R. Leanna K. A Practical Tutorial on Modified
Condition/Decision Coverage. Technical report, NASA, 2001. 1.1.7, 1.2, 2.1, 2.1,
2.1, 2.1, 2.1, 2.2.4

[95] M. Kerrisk. perf-intel-pt(1) — Linux manual page, June 2021. available at
https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html. 2.5.2

[96] T. Kitamura, Q. Maissonneuve, E.-H. Choi, C. Artho, and A. Gargantini. Optimal
test suite generation for Modified Condition Decision Coverage using SAT solving.
In Computer Safety, Reliability, and Security, pages 123–138. Springer, 2018. 6.2

[97] M. F. Lau and Y. T. Yu. An Extended Fault Class Hierarchy for Specification-Based
Testing. ACM Trans. Softw. Eng. Methodol., 14(3):247–276, jul 2005. 2.2.1

[98] Lauterbach. Trace-based MC/DC Coverage, March, 2018.
https://www.lauterbach.com. 3.2

[99] J. Lawrence, S. Clarke, M. Burnett, and G. Rothermel. How well do professional
developers test with code coverage visualizations? an empirical study. In 2005
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05),
pages 53–60, 2005. 1.1.7, 2.1

[100] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm. TeSSLa:
Runtime verification of non-synchronized real-time streams. In ACM Symposium
on Applied Computing (SAC), pages 1925–1933. ACM, 2018. 1, 2.4, 4.1.2, 4.2

84 Bibliography

https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html

BIBLIOGRAPHY

[101] R. Lill and F. Saglietti. Test coverage criteria for autonomous mobile systems
based on Coloured Petri Nets. In Proc. of 9th FORMS/FORMAT 2012 - Symp. on
Formal Methods for Automation and Safety in Railway and Automotive Systems, pages
155–162, TU, Braunschweig, Germany, 2012. 2.6, 5.1

[102] R. Lill and F. Saglietti. Model-based Testing of Cooperating Robotic Systems
using Coloured Petri Nets. In Proc. of SAFECOMP 2013 - Workshop DECS
(ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems) of the
32nd International Conference on Computer Safety, Reliability and Security, Toulouse,
France, Sep 2013. 2.6, 5.2

[103] A. Ltd. CoreSightTM Program Flow TraceTM PFTv1.0 and PFTv1.1, 2015. 2.5.3

[104] S. Lu, W. Jiang, and Y. Zhou. A Study of Interleaving Coverage Criteria. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-
FSE ’07, page 533–536, New York, NY, USA, 2007. Association for Computing
Machinery. 2.3

[105] S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas. PathExpander: Architectural
Support for Increasing the Path Coverage of Dynamic Bug Detection. In 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
pages 38–52, 2006. 2.1

[106] M. A. A. Mamun and A. Khanam. Concurrent Software Testing : A Systematic
Review and an Evaluation of Static Analysis Tools. Master’s thesis, School of
Computing, 2009. 1, 1.1.3

[107] E. Manfred. Model Quotes. https://todayinsci.com/QuotationsCategories/M_
Cat/Model-Quotations.htm. 4.2

[108] U. Mark and L. Bruno. Practical Model-Based Testing: A Tools Approach. Jul 2010.
1.1.5, 1.2

[109] U. Mark, A. Pretschner, and L. Bruno. A taxonomy of model-based testing. 2006.
1.1.5, 1.2

[110] H. Matthias and B. Armin. Standard Glossary of Terms Used in Software Testing,
2020. 1.1.2

[111] C. E. McDowell and D. P. Helmbold. Debugging Concurrent Programs. ACM
Comput. Surv., 21(4):593–622, Dec. 1989. 2.3, 2.3, 2.3.2

[112] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.
Springer-Verlag, Berlin, Heidelberg, 1st edition, 1998. 2.7

[113] H. Michael and R. Mark. Logic in Computer Science: Modelling and Reasoning about
Systems, volume 18. Cambridge University Press, 2nd edition, 2008. 2.7.1

Bibliography 85

https://todayinsci.com/QuotationsCategories/M_Cat/Model-Quotations.htm
https://todayinsci.com/QuotationsCategories/M_Cat/Model-Quotations.htm

BIBLIOGRAPHY

[114] M. Micheal and S. Tragoudas. ATPG for path delay faults without path
enumeration. In Proceedings of the IEEE 2001. 2nd International Symposium on
Quality Electronic Design, pages 384–389, March 2001. 2.7

[115] E. Miller. Introduction to software testing technology. Tutorial: Software Testing &
Validation Techniques, Second Edition, IEEE Catalog No. EHO, pages 180–0, 1981.
1.1, 1.1.1

[116] P. Moosbrugger, K. Y. Rozier, and J. Schumann. R2U2: monitoring and diagnosis
of security threats for unmanned aerial systems. Formal Methods in System Design,
51(1):31–61, 2017. 4.2

[117] J. Newton and D. Verna. A Theoretical and Numerical Analysis of the Worst-
Case Size of Reduced Ordered Binary Decision Diagrams. ACM Transactions on
Computational Logic, 20(1), Jan. 2019. 7.3

[118] S. C. Ntafos. A comparison of some structural testing strategies. IEEE Transactio
on Software Engineering, 14(6):868–874, 1988. 3.2

[119] P. Ortiz López, M. Akashi, J.-M. Cosset, P. Gourmelon, S. Vatnitsky, J. Mettler, F.A.,
and M. Konchalovsky. Investigation of an Accidental Exposure of Radiotherapy
Patients in Panama, 2001. 1

[120] C. Pascal and D. Panescu. A Colored Petri Net model for DisCSP algorithms.
Concurr. Comput. Pract. Exp., 29(18):1–23, 2017. 5.1.1

[121] T. K. Paul and M. F. Lau. A Systematic Literature Review on Modified Condition
and Decision Coverage. In Proceedings of the 29th Annual ACM Symposium
on Applied Computing, SAC ’14, page 1301–1308, New York, NY, USA, 2014.
Association for Computing Machinery. 2.2.1

[122] J. Paul C. Software Testing A Craftsman’s Approach. Software Paradigms. Auerbach
Publication, 2002, Michigan, 2002. 1.1.1, 1.1, 1.1.4

[123] J. Paul C. The Craft of Model-based Testing. CRC Press. CRC Press, 2017. 1.1.5

[124] F. Pothon. DO-178C/ED-12C versus DO-178B/ED-12B: Changes and
Improvements. Technical report, AdaCore, 2012. 1, 1.1.7, 2.1, 2.1, 2.2, 2.2.1,
3, 3.1.2, 5.2, 7.1

[125] T. Preußer and A. Weiss. The CEDARtools platform - massive external memory
with high bandwidth and low latency under fine-granular random access patterns.
In I. Sourdis, C. Bouganis, C. Álvarez, L. A. T. Díaz, P. Valero-Lara, and X. Martorell,
editors, 29th Intl. Conf. on Field Programmable Logic and Applications, FPL 2019,
pages 426–427. IEEE, 2019. 1, 2, 4.1.1, 4.2, 7.2.2

[126] T. B. Preußer, S. Gautham, A. D. Rajagopala, C. R. Elks, and A. Weiss. Everything
You Always Wanted to Know About Embedded Trace. Computer, 55(2):34–43,
2022. 3.2

86 Bibliography

BIBLIOGRAPHY

[127] Rapita Systems. RapiCover: Low-overhead coverage analysis for critical software.
available at https://www.rapitasystems.com/products/rapicover. 3.2

[128] S. Reda and A. M. Salem. Combinational equivalence checking using Boolean
satisfiability and binary decision diagrams. In Design, Automation and Test in
Europe. Conference and Exhibition (DATE), pages 122–126. IEEE, 2001. 2.7

[129] J. Reinders. Processor Tracing, Jly, 2019. 1

[130] W. Reisig. Elements of distributed algorithms: modeling and analysis with Petri nets.
Springer Science & Business Media, 1998. 2.6

[131] W. Reisig. Petri nets: an introduction, volume 4. Springer Science & Business
Media, 2012. 2.6

[132] L. Rierson. Developing safety-critical software: a practical guide for aviation software
and DO-178C compliance. CRC Press, 2013. 1.1.6, 1.2, 2.1, 2.1, 5.2

[133] A. Rodríguez, L. M. Kristensen, and A. Rutle. Formal Modelling and Incremental
Verification of the MQTT IoT Protocol. In Proc. of Trans. Petri Nets and Other Models
of Concurrency, volume 11790 of Lecture Notes in Computer Science, pages 126–145,
Berlin, Heidelberg, 2019. 2.6, 5.1.1

[134] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams.
In Proceedings of the 1993 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’93, pages 42–47, Los Alamitos, CA, USA, 1993. IEEE Computer
Society Press. 2.7

[135] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997. 2.4, 2.4, 4.2

[136] W. Schutz. A test strategy for the distributed real-time system MARS.
COMPEURO’90: Proceedings of the 1990 IEEE International Conference on Computer
Systems and Software Engineering@m_Systems Engineering Aspects of Complex
Computerized Systems, pages 20–27, 1990. 2.3.2

[137] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov. Dynamic
race detection with LLVM compiler - compile-time instrumentation for
ThreadSanitizer. In S. Khurshid and K. Sen, editors, 2nd Intl. Conf. on Runtime
Verification, RV 2011, volume 7186 of Lecture Notes in Computer Science, pages
110–114. Springer, 2011. 2.4, 4.1.2, 4.2, 7.2.2

[138] B. C. F. Silva, G. Carvalho, and A. Sampaio. Test Case Generation from Natural
Language Requirements Using CPN Simulation. In SBMF, 2015. 5.1.1

[139] Simulink. Types of Model Coverage. Accessed 06 March 2020. 5.2

[140] A. Simão, S. Do, S. Souza, and J. Maldonado. A family of coverage testing
criteria for Coloured Petri Nets. In Proc. of 17th Brazilian Symposium on Software
Engineering (SBES’2003), pages 209–224, 2003. 5.2

Bibliography 87

https://www.rapitasystems.com/products/rapicover

BIBLIOGRAPHY

[141] R. K. Singh, P. Chandra, and Y. Singh. An Evaluation of Boolean Expression
Testing Techniques. SIGSOFT Softw. Eng. Notes, 31(5):1–6, sep 2006. 2.2.2, 2.2.3

[142] N. Sinha. The BDD Library. available at https://www.cs.cmu.edu/~modelcheck/
bdd.html. 2.7.2

[143] S. K. Sinha and S. L. Tripathi. BDD Based Logic Synthesis and Optimization for
Low Power Comparator Circuit. In International Conference on Intelligent Circuits
and Systems (ICICS), pages 37–41, Berlin, Heidelberg, 2018". IEEE Computer
Society. 2.7

[144] Sudipto Ghosh, R. France, C. Braganza, Nilesh Kawane, A. Andrews, and Orest
Pilskalns. Test adequacy assessment for UML design model testing. In Proc. of
14th Intl. Symp. on Software Reliability Engineering, ISSRE’03., pages 332–343, 2003.
5.2

[145] G. Tassey. The economic impacts of inadequate infrastructure for software testing,
2002. 6

[146] Testwell. Testwell CTC++: Test Coverage Analyzer for C/C++. available at
http://www.testwell.fi/ctcdesc.html. 3.2

[147] J. Thalheim, P. Bhatotia, and C. Fetzer. INSPECTOR: Data Provenance Using Intel
Processor Trace (PT). In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS), pages 25–34, June 2016. 2.5.2

[148] The Clang Team. Matching the Clang AST. Website, 2017.
https://clang.llvm.org/docs/LibASTMatchers.html. 3.1.1, 3.1.1

[149] M. Tofte. Standard ML language. Scholarpedia, 4(2):7515, 2009. 2.6

[150] A. Trujillo and A. Stuchlik. Reviewing Coverage Information. Parasoft
C++test documentation. available at https://docs.parasoft.com/display/
CPPDESKE1033/Reviewing+Coverage+Information. 3.2

[151] Vector Software. VectorCAST/MCDC. available at https://www.vectorcast.
com/software-testing-products/embedded-mcdc-unit-testing. 3.2

[152] S. Vilkomir and J. Bowen. Reinforced Condition/Decision Coverage (RC/DC): A
New Criterion for Software Testing. In Proc. of ZB 2002:Formal Specification and
Development in Z and B., volume 2272 of Lecture Notes in Computer Science, pages
291–308. Springer, 2002. 2.1

[153] R. Wang, C. Artho, L. M. Kristensen, and V. Stolz. Visualization and abstractions
for execution paths in model-based software testing. In W. Ahrendt and S. L. T.
Tarifa, editors, Proc. of Integrated Formal Methods - 15th International Conference
(IFM 2019), volume 11918 of Lecture Notes in Computer Science, pages 474–492,
2019. 2.6, 7.3

88 Bibliography

https://www.cs.cmu.edu/~modelcheck/bdd.html
https://www.cs.cmu.edu/~modelcheck/bdd.html
http://www.testwell.fi/ctcdesc.html
https://docs.parasoft.com/display/CPPDESKE1033/Reviewing+Coverage+Information
https://docs.parasoft.com/display/CPPDESKE1033/Reviewing+Coverage+Information
https://www.vectorcast.com/software-testing-products/embedded-mcdc-unit-testing
https://www.vectorcast.com/software-testing-products/embedded-mcdc-unit-testing

BIBLIOGRAPHY

[154] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Automated test case generation
for the Paxos single-decree protocol using a Coloured Petri Net model. J. Logical
and Algebraic Methods in Programming, 104:254–273, 2019. 2.6, 5.1.1

[155] C. Watterson and D. Heffernan. Runtime verification and monitoring of
embedded systems. IET software, 1(5):172–179, 2007. 4.2

[156] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from a
Boolean specification. IEEE Transactions on Software Engineering, 20(5):353–363,
1994. 4, 6.1.3, 7.2.4

[157] E. J. Weyuker, S. N. Weiss, and D. Hamlet. Comparison of Program Testing
Strategies. In Symposium on Testing, Analysis, and Verification (TAV), pages 1–10.
ACM, 1991. 1.2

[158] C. William. Determining whether an application has poor cache performance,
2014. 3.1.2

[159] T. Wu, J. Yan, and J. Zhang. Automatic test data generation for unit testing to
achieve MC/DC criterion. In International Conference on Software Security and
Reliability (SERE), pages 118–126. IEEE Computer Society, 2014. 6.2

[160] D. Xu, W. Xu, M. Kent, L. Thomas, and L. Wang. An automated test generation
technique for software quality assurance. IEEE Reliab., 64(1):247–268, 2015. 5.2

[161] L. Yang, J. Yan, and J. Zhang. Generating minimal test set satisfying MC/DC
criterion via SAT based approach. In Annual ACM Symposium on Applied Computing
(SAC), pages 1899–1906. ACM, 2018. 4, 6.1.3, 6.2, 7.2.4

[162] Q. Yang, J. J. Li, and D. Weiss. A Survey of Coverage Based Testing Tools. In
Proceedings of the 2006 International Workshop on Automation of Software Test, AST
’06, pages 99–103, New York, NY, USA, 2006. ACM. 3.2

[163] Y. T. Yu and M. F. Lau. A comparison of MC/DC, MUMCUT and several
other coverage criteria for logical decisions. Journal of Systems and Software,
79(5):577–590, 2006. Quality Software. 2.1, 2.1, 2.1, 5, 6, 2.2.1, 1

[164] Z. Yu, Z. Yang, X. Su, and P. Ma. Evaluation and comparison of ten data race
detection techniques. International Journal of High Performance Computing and
Networking, 10(4-5):279–288, 2017. 4.2

[165] J. Zander, I. K. Schieferdecker, and P. J. Mosterman. Model-Based Testing for
Embedded Systems. CRC Press. CRC Press, 2017. 1.1.4

[166] C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, and G. Pu. Smartunit:
Empirical Evaluations for Automated Unit Testing of Embedded Software in
Industry. In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP ’18, pages 296–305, New York, NY,
USA, 2018. ACM. 3.2

[167] H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit Test Coverage and Adequacy.
ACM Comput. Surv., 29(4):366–427, Dec. 1997. 1.1.7, 2.1

Bibliography 89

Part II

ARTICLES

PAPER A
NON-INTRUSIVE MC/DC MEASUREMENT BASED
ON TRACES

Faustin Ahishakiye, Svetlana Jakšić, Felix Dino Lange, Volker Stolz, Malte Schmitz,
Daniel Thoma

In Proceedings of the 13th International Symposium on Theoretical Aspects of Software
Engineering (TASE), IEEE, Guilin, China, pages 86-92, Jul. 2019, https://doi.org/10.
1109/TASE.2019.00-15.

https://doi.org/10.1109/TASE.2019.00-15
https://doi.org/10.1109/TASE.2019.00-15

Non-intrusive MC/DC Measurement
based on Traces

Faustin Ahishakiye, Svetlana Jakšić, Volker Stolz
Department of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
Bergen, Norway

firstname.lastname@hvl.no

Felix D. Lange, Malte Schmitz, Daniel Thoma
Institute for Software Engineering

and Programming Languages
University of Lübeck

Lübeck, Germany
lastname@isp.uni-luebeck.de

Abstract—We present a novel, non-intrusive approach to
MC/DC coverage measurement using modern processor-based
tracing facilities. Our approach does not require recompilation
or instrumentation of the software under test.

Instead, we use the Intel Processor Trace (Intel PT) facility
present on modern Intel CPUs. Our tooling consists of the
following parts: a frontend that detects so-called decisions
(Boolean expressions) that are used in conditionals in C source
code, a mapping from conditional jumps in the object code back
to those decisions, and an analysis that computes satisfaction
of the MC/DC coverage relation on those decisions from an
execution trace. This analysis takes as input a stream of
instruction addresses decoded from Intel PT trace data, which
was recorded while running the software under test. We describe
our architecture and discuss limitations and future work.

Keywords-Code coverage, MC/DC, Software testing, Software
verification

I. INTRODUCTION AND MOTIVATION

In order to prevent disastrous events, certification standards,
for example the DO-178C [1] in the domain of avionic
software systems, are used by certification authorities, like
the Federal Aviation Administration (FAA) and the European
Aviation Safety Agency (EASA), to approve safety-critical
software and ensure that the software used in the systems
follows certain software engineering standards. DO-178C
requires that structural coverage analysis is performed during
the verification process mainly as a completion criterion for
the testing effort and to identify design faults as well as finding
dead code.

Software with the highest safety level (Level A) in avionics
systems is required to show modified condition decision
coverage (MC/DC) [2]. Unlike weaker coverage criteria,
MC/DC is sensitive to the complexity of decisions, because
every condition in each decision has to show its independent
effect on the decision’s outcome.

Usually MC/DC is measured by instrumenting the source
code (see III) in order to observe information about
taken paths, executed statements and evaluated conditions.
Instrumentation is intrusive (it may change characteristics like
memory consumption, affect the cache and scheduling) and it

This work was supported in part by the European Horizon 2020 project
COEMS under number 732016 and the BMBF project ARAMiS II with
funding ID 01 IS 16025.

is necessary for certification purposes to show that the behavior
of the code does not change after the coverage is measured and
the instrumentation is removed. Alternatively it is possible to
leave the instrumentation in the release code but that consumes
resources which are especially valuable in embedded systems,
which are widely used in the domain of safety-critical systems.

We present an approach how MC/DC can be measured non-
intrusively by analyzing program traces. Our novel approach
is based on the idea that every condition in the source code is
translated into a conditional jump on the object code level. We
first record the trace of an executing program and then analyze
it offline [3]. Program traces contain information about taken
jumps during the execution and make it possible to reconstruct
the evaluation of each condition without instrumentation.

The rest of this paper is organized as follows: Section II
introduces coverage criteria of safety-critical software. An
overview of state-of-the-art solutions is given in Section III.
Section IV describes Intel Processor Tracing (Intel PT) and
trace reconstruction. Section V explains the idea and the
implementation of our tool. Section VI presents the experiment
setup. Finally, we provide related work (Section VII) and
concluding remarks and future work in Section VIII.

II. MC/DC IN CONTEXT OF SAFETY-CRITICALLY
SOFTWARE

Depending on the software safety-level, which is assessed
by examining the effects of a failure in the system,
different coverage criteria have to be fulfilled during software
verification:

Software level C (major effect) requires statement coverage
and software level B (hazardous effect) requires decision
coverage [4]. Statement coverage is a relatively weak criterion,
because it only requires that every statement has been executed
but it is insensitive to control flow. Decision coverage is a fairly
stronger criterion because it makes sure that every possible
outcome of each decision (e.g. the Boolean expression in an if-
then-else) has been executed at least once, and therefore there
is no unexpected behavior caused by an unexpected outcome
of a decision.

Software Level A (catastrophic effect) requires modified
condition/decision coverage (MC/DC). The coverage criterion
has been chosen as the coverage criterion for the highest

Paper A 95

safety level software because it is sensitive to the complexity
of the structure of each decision [2] – a decision is made
up of one or more conditions. Compared to even stronger
criteria like multiple condition coverage (MCC), that requires
every possible combination of all conditions which leads to
an exponential growth of the minimum numbers of test cases,
MC/DC may be satisfied with only n + 1 test cases for a
decision with n conditions. The following definition has been
provided in the DO-178C [4]:

Definition 1 (Modified condition/decision coverage):

• Every point of entry and exit in the program has been
invoked at least once,

• every condition in a decision in the program has taken
all possible outcomes at least once,

• every decision in the program has taken all possible
outcomes at least once, and

• each condition in a decision has shown to independently
affect that decision’s outcome by: (1) varying just
that condition while holding fixed all other possible
conditions, or (2) varying just that condition while
holding fixed all other possible conditions that could
affect the outcome.

Additionally, the terms Condition and Decision are defined as:
Definition 2 (Condition): A Boolean expression containing

no Boolean operators except for the unary operator (NOT).
Definition 3 (Decision): A Boolean expression composed

of conditions and zero or more Boolean operators. If a
condition appears more than once in a decision, each
occurrence is a distinct condition.
For example, in Figure 1a the if-statement contains a decision
a<5||(b==5&&c>5). This decision is composed of three
conditions a<5, b==5 and c>5.

By showing the independent effect of each condition,
MC/DC assures that condition’s defined purpose. The most
challenging and most discussed part in the definition of
MC/DC is showing this independent effect: item (2) in the
definition has been introduced in the DO-178C to clarify
that the so called Masked MC/DC is allowed [1], [5].
Masked MC/DC means that it is sufficient to show the
independent effect of a condition by holding fixed only those
conditions that could influence the outcome. This is important
for programming languages that use short-circuit evaluation,
because certain executions of decisions are not distinguishable,
if the outcome of the decision is determined before every
condition has been evaluated.

III. STATE-OF-THE-ART

Today there is a number of testing tools for measuring
coverage developed for both industrial use and academic
purpose. For instance, a survey conducted in [6] described and
compared 17 tools primarily focusing on, but not restricted to,
coverage measurement. These tools are focusing on weaker
coverage criteria for C, C++ and Java programs. Most of
them are used only for code coverage, but some, such as

Agitar, Dynamic, JCover, Jtest and Semantic Designs, provide
debugging assistance as well.

Currently, there are not so many testing tools which focus
on MC/DC measurement. VectorCAST/MCDC [7] is a well
established tool for measuring MC/DC coverage for C/C++.
The tool supports both unique cause and masking MC/DC
analysis. Beside reporting and documenting the results, the
tool supports automatic test case generation to quicken the
development of a full set of MC/DC test cases. Parasoft
C++test [8] is a C/C++ testing tool that is capable of measuring
MC/DC. MC/DC is evaluated by calculating the ratio of
the number of conditions with independence effect and the
total number of conditions in all decisions. Testwell CTC++
tool [9] measures line, statement, function, decision, multiple
condition, MC/DC and condition coverage for C, C++, Java,
and C# on target and on host. The generated report is
showing coverage percentage. CodeCover [10] is an open-
source, white-box testing tool developed at the University of
Stuttgart. It implements the Ludewig term coverage and they
claim that it is similar to MC/DC (subsumes MC/DC).

RapiCover [11] analyzes code coverage including MC/DC
on-host and on-target. They visualize coverage by folder, file,
function and test case, and filter results to highlight missing
coverage. All these tools measure MC/DC intrusively by
instrumenting the source code..

In [12], SmartUnit tool which supports statement, branch,
boundary value and MC/DC coverage is described. They aim
at the unit coverage-based testing and automatically generating
MC/DC coverage test cases in industry environment. The
percentage of MC/DC coverage is calculated as the ratio of
covered conditions and the total conditions in the source code.
The commercial Lauterbach tool [13] (see Sec. VII) uses a
dedicated hardware-interface to transfer tracing data from the
system-under-test into the developer’s machine for analysis.
They support a variety of trace sources, among others also
Intel PT, and use it to measure MC/DC in a similar manner
as we describe below.

Another alternative, non-intrusive approach is running the
system-under-test within an emulator. The QEMU emulator
has been used to this end within the Adacore community
[14], and in the RTEMS operating system [15]. Through the
emulator it is easy to observe the execution of a program on
the object code level, very much like through Intel PT that we
will present below. The obvious threat to validity is of course
how closely the emulator setup can reflect the real system,
especially when considering certification.

In the following we propose a novel approach how to
measure MC/DC without instrumentation and a tool that
implements this approach on a live system without the need
for additional hardware.

IV. TRACE-BASED APPROACH

The main idea of our trace-based approach is that each
condition in the source code is translated into a single
conditional jump in the object code. If we can accurately
trace execution, we will be able to reconstruct the evaluation

96 Paper A

of conditions along the execution paths. On modern Intel
processors, through the IntelPT framework, we are able to
unobtrusively record the execution traces of applications.
Through operating system support, tracing can be easily
enabled for a single application. We first describe the general
mode of operation of IntelPT, and continue then with our
analysis of the recorded traces.

A. Intel Processor Tracing (Intel PT)

Program tracing is an important mechanism for developers
in the context of gathering useful information for debugging,
monitoring and performance analysis of a program executions.

Intel Processor Tracing (Intel PT) is an extension of the
Intel Architecture that traces program execution with low
overhead [16]. It can be used by modern Intel CPUs such
as Intel Broadwell (5th generation) CPU or better. Intel PT
was introduced to provide an accurate and detailed trace
with triggering and filtering capabilities [17]. Intel PT works
by capturing information about software execution on each
hardware thread using dedicated hardware facilities so that
after execution completes software can do processing of the
captured trace data and reconstruct the exact program flow.

Intel PT uses an extremely compact format that makes it
possible to overcome the small bandwidth and limited buffer
space by basically only storing information about taken and
not taken branches, indirect branches, function returns and
interrupts. Based on these the complete program execution
flow can be reconstructed. With Intel PT, it is easy to extract
and report a much deeper view on loop behavior, from entry
and exit down to specific back-edges and loop trip-counts.
The traces contain instructions executed by the processor,
but there are no data values. For example, for the C-level
instruction x = y + z, as the trace essentially only consists
of instruction pointers, we can only reconstruct the assembly
instructions for loading the values, summation and storing the
result in memory, and maybe even map them onto the source-
code, but we have no information about the actual values of
x, y and z or their location in memory during execution.

IntelPT has some drawbacks related to trace file size and
speed since the trace bandwidth can exceed 10 Gbits/s. That
means that the program trace data and the decoded trace
become huge, fast. Recording program executions of more
than a few milliseconds requires large and fast writable
storage, so that information can be stored quickly enough for
offline- or parallel processing, without losing events due to
full buffers.

B. Trace Analysis

By analyzing program traces it is possible to see if the
jumps corresponding to conditionals in the source code have
been taken during the execution and to reconstruct how the
conditions have been evaluated. If the statement following the
conditional jump in the trace equals the target of this jump,
the jump has been taken.

Which conditional jumps occur in the object code depends
on the condition in the source code. Because the compiler

Nr. A B C A ∨ (B ∧ C)

1 false false ? false
2 false true false false
3 false true true true
4 true ? ? true

TABLE I: Short-circuit evaluation for A ∨ (B ∧ C)

1 if (a<5 || (b==5 && c>5)){
2 return 1;
3 }

(a) C code with decision containing three conditions.

1 400494: cmpl $0x5,-0x8(%rbp)
2 400498: jl 4004b2
3 40049e: cmpl $0x5,-0xc(%rbp)
4 4004a2: jne 4004be
5 4004a8: cmpl $0x5,-0x10(%rbp)
6 4004ac: jle 4004be
7 4004b2: movl $0x1,-0x4(%rbp)

(b) Object code with three conditional jumps.

Fig. 1: C code and corresponding Object code compiled with
clang version 5.0 on default parameters.

sometimes uses the negation of the operator, there are two
assembly instruction possible for each relational operator.

From tracing execution in the object code, we can then
reconstruct the outcome of an entire decision by analyzing the
trace. If the decision statement is followed by the instructions
corresponding to the then-branch, the decision has been
evaluated as True, otherwise False. Figures 1a and 1b show
a decision as part of a C program with three conditions, and
the corresponding assembly code (with compiler optimizations
disabled). The comparisons (<,> and ==) are translated by
the compiler into small sequences of assembly instructions.
Typically these consist of a compare operator (cmpl) and a
conditional jump (jl, jne). This structure makes it possible
to map a conditional jump to each condition.

C. Short Circuit Evaluation

In C (as in most modern programming languages) short-
circuit evaluation is used to evaluate Boolean expressions. That
means that the expression is evaluated from left to right and if
the left-hand operand of a conjunction is false or, respectively,
if the left-hand operand of a disjunction is true, the right-hand
operand is not further evaluated. As mentioned in Section II,
Masked MC/DC is accepted by the DO-178C. Because short-
circuit evaluation skips exactly those conditions that cannot
influence the outcome of a decision, it is possible to measure
Masked MC/DC based on traces.

D. Condition Reconstruction

The decoded program trace contains information about each
executed instruction and therefore whether each jump has been
taken or not. This makes it possible to look at each execution
of a decision and to note which jumps have been taken. A
table can be generated where each row contains one evaluation
of a decision and each column contains the assignment of
each condition during that evaluation. The last column shows

Paper A 97

Relational Possible Condition Value
Operator: Conditional Jumps: of Detected Jump:

x86-64 ARM

no operator jne bne True
je beq False

== je beq True
jne bne False

< jl blt True
jge bge False

<= jle ble True
jg bgt False

> jg bgt True
jle ble False

>= jge bge True
jl blt False

TABLE II: Multiple interpretations of jumps in the x86-64 and
ARM instructions sets compiled with clang version 5.0

the outcome of the decision during the execution. The table
has n rows and m + 1 columns for a decision that has
been executed n times and has m conditions. Table I shows
the table for the decision A ∨ (B ∧ C) with some example
observations/outcomes that satisfy MC/DC (see explanation
below).

Because of short-circuit evaluation not all conditions are
generally evaluated during one execution and can therefore
not be reconstructed by analyzing the trace. In the table these
entries are filled as “?”.

Depending on the relational operator in the condition (<,
<=, ==, etc.) two different possible conditional jumps can be
generated by the compiler because conditions can be translated
to their negation (it is up to the compiler to choose “jump-
if-equal” or “jump-if-not-equal”). If a condition is translated
as its negation, this has implications for the reconstruction of
the assignments by analyzing the trace as a taken jump shows
that the condition has been evaluated as false. The possible
combinations for the Intel x86-64 instruction set and its ARM
counterpart are shown in Table II, which have to be taken into
account when the reconstruction is performed. We call the
addresses of instructions relevant to our analysis watch-points
(i.e., conditional jumps and their targets).

E. MC/DC Measurement

After we have recorded all reconstructed condition values
in a table per decision, MC/DC can be measured as follows.
All rows with a different outcome are compared. If they
contain a different entry for exactly one condition, these two
assignments show the independent effect for this condition.
Two entries for a condition are considered different if one
contains a true and another one contains false. If one of them
contains the unknown reconstruction “?”, the independent
effect of this condition cannot be shown based on these cases.

For the example in Table I with short-circuit evaluation,
the independent effect of condition A can only be shown
by ignoring the other two conditions, because they cannot
influence the outcome, if A is true. So executions number
1 and 4 show the independent effect of condition A. The

Processor

In
te
lP
T

Po
rt

CCompiler

Static Analysis

Binary

Object Code,
Debug Symbols

Source
Code

Compressed
Trace Data

Watchpoints,
Relational Operators,

Jump Instructions

Reconstruction of Condition
Assignment

Data Storage

Trace

MC/DC table Coverage Evaluation

MC/DC

Reconstruct
Program Trace

Trace

Fig. 2: Overview of the implementation.

independent effect of B can only be shown, if A is false and
therefore B is actually evaluated. The outcome of the decision
and value of B changes in this example in executions number
1 and 3. Likewise, the independent effect of condition C can
be shown with executions number 2 and 3, because the value
of condition C and the outcome are changing.

This corresponds as Masked MC/DC and hence complies
with the definition of MC/DC in the DO-178C.

We define the measured coverage as the ratio of all decisions
satisfying MC/DC and the number of all decisions in the
source code.

V. IMPLEMENTATION

An overview of the implementation is provided in Figure 2.
The source code is analyzed by our tool in order to
detect decisions and their conditions. Additionally, we extract
information about their corresponding conditional jumps from
the object code. With this information and the program trace
provided by Intel PT it is possible to reconstruct the condition
assignments and measure MC/DC.

A. Decision Detection with LLVM

In the first step, decisions in the source code have to be
found. In order to find decisions in the source code we use the
Abstract Syntax Tree (AST) representation provided by LLVM.
With LibTooling and the AST-matcher [18] we have built a tool
that detects all if-, for- and while-statements in the source
code and we gather corresponding information such as line
and column numbers and then-statements. We focus on finding
traditional branch points (if-, while-, for-statements), but we
are aware that certification authorities require other structures,
for example assignments containing Boolean expressions, to
be covered as well [19].

B. Mapping with Debug Symbols

After the decisions and their conditions in the source code
have been detected, debug-symbols are used to map the
conditions to conditional jumps in the object code.

The direct mapping is possible by utilizing debug symbols
provided by the compiler. We use clang 5.0 because
this compiler provides rich debug symbols containing line
and column information with the compiler option -g
-XClang -dwarf-column-info. Combined with the

98 Paper A

detected decisions from the LLVM-tool we then can detect
all conditional jumps that are needed for measuring MC/DC
based on traces.

Because the outcome of the decision during the execution
has to be reconstructed as well, it is necessary to find the then-
statement which is the statement executed in case of a decision
being evaluated as true. This statement is also mapped using
debug-symbols to its corresponding instruction in the object
code.

The result are the decisions, conditions and then-statements
in the source code and their translation in the object code.

C. Program Trace Generation

We use Intel Processor Trace (Intel PT) to generate a trace
of the execution of a program. The technology is widely
available, which makes it suitable for this proof-of-concept
tool. With perf 1 the Linux-kernel provides an easy-to-use
implementation of the recording and reconstruction of Intel
PT traces. The reconstructed traces become quiet large even
for short execution times. To reduce the size, we filter the trace
against the watch-points and only store those parts of the trace
that are relevant for measuring MC/DC.

Fig. 3: Screenshot of the GUI.

D. Graphical User Interface

The tool chain of detecting all decisions, mapping
conditions to conditional jumps, running and tracing the
program and measuring MC/DC based on the trace can be
used via a graphical user interface (GUI, see Figure 3) or
through the command line as described in Section VI. Via
the GUI, we show the detected decisions and the measured
coverage in the source code, allowing the user to directly see
which conditions are not covered. This should help developers
in finding new test cases that cover the missing combinations.

A typical workflow with our tool is the following:
1) Choose Binary opens a file dialog and the binary can be

selected.
2) Add Source File opens a file dialog and source files can

be added for which MC/DC should be measured.
3) The source files are listed and can be viewed by clicking

on them.
4) Detect Decisions detects the decisions in the selected

source code and maps the conditions to their
corresponding conditional jumps.

1https://perf.wiki.kernel.org

Static analysis

.c

.c
.c

Run 1

Run 2

System
under Test

t01

t02
t03

t04
t05

t06
t…

t..
tn-1

tn

Test-suite

Record, decode & evaluate

Select a test case

traces w
ith Intel PT

Decisions/conditions
detection

t01 t02 t03 t04 t05 t06 t07 t08 t09 t10 t11 t12 t13 t14 t15 t16
0

20

40

60

80

100

MC/DC Results

Covered Decisions (%) Covered Conditions (%)

Fig. 4: MC/DC measurement experiment setup.

5) Trace Binary with Intel PT calls Linux’ perf and saves
the trace in the file chosen in Choose Trace File.

6) Evaluate MC/DC analyzes the recorded trace and
measures MC/DC of the detected decisions. The result
is shown directly in the source code.

7) Show Assignments opens a new window containing an
overview of all detected decisions, conditions and their
reconstructed values.

The tool is available for academic evaluation purposes2. On
the website you can find an example application and a trace
recorded with Intel PT, which can be analyzed with the tool.

VI. EXPERIMENTAL SETUP

Our experimental setup for MC/DC coverage measurement
consists of two examples as C code, together with their unit
tests. The function in the first unit has four decisions (if-
statements), containing in total eleven conditions. The second
unit contains one decision (also an if-statement) with three
conditions. The entire test suite contains 16 test cases. Our
tooling allows us to execute the entire test suite and measure
coverage, or to just run and measure a single test case. The test
suite contains twelve test cases for the first unit where MC/DC
coverage is achieved with eleven test cases. Note that this is
not directly related to the number of n+1 test cases before, as
the decisions in subsequent if-statements are not independent.
The second unit has four test cases, and all four test cases need
to be executed to achieve MC/DC coverage. In addition to the
use of our tool via GUI as described in Section V, in this
section we set up our experiment for MC/DC measurement
via the command line on a Linux OS. After the compilation
of the program under test, we conduct the experiment in the
following steps as shown in Figure 4:

First, we conduct a static analysis in order to find out which
conditions in the source code correspond to which conditional
jumps in the object code. The static analysis results in a JSON
file with all information related to decisions and conditions and
their location (line and column), as well as their mapping to
the object code. That is, conditions are mapped to addresses
and conditional jumps in the object code. This mapping is
necessary because MC/DC is a criterion that is defined on

2https://www.coems.eu/mc-dc/

Paper A 99

the source code level and there are no equivalent metrics
defined on the object code level. In other words, we ignore
conditional jumps in the object code that do not directly come
from conditionals in the source code. With this information,
it is possible to reconstruct the assignment of the conditions
during an execution by analyzing the performed jumps and
inferring if a condition has been evaluated as true or false. If
the program address following a jump instruction in the trace
equals the target address that is recorded in the conditional
jump instruction, that jump has been performed, otherwise it
has not. We use this information to reconstruct the assignment
of the condition.

Secondly, we created a wrapper that allows to easily run
one particular test from the command line. For each particular
test, we record and decode the trace using Intel PT, and
we incrementally evaluate the trace with respect to previous
results, measure MC/DC and query the MC/DC results. We
track the percentage of MC/DC coverage that is achieved
through the incremental runs. The tool iterates randomly
through the test cases, selecting one at a time and it stops once
100% MC/DC coverage is achieved, otherwise it continues
picking other test cases, i.e., we run a test case at most once.

Finally, the tool reports the MC/DC result with the set of
test cases that have been executed. From the recorded data,
it is easy to plot curves as to which test case contributes to
decision or condition coverage. Note that we are not replacing
the unit tests, but rather see this as a way to minimize testing
overhead: in practice, one would suggest a run of all unit
tests without measuring MC/DC, and having occasional runs
with tracing enabled that verify that a known set of test cases
achieves a predetermined threshold of MC/DC coverage.

VII. RELATED WORK

The interesting discussion on the applicability of MC/DC
to software testing for safety-critical systems have been
introduced by Chilenski in [2]. Different comparisons for
code coverage metrics have been investigated in the context
of structure based metrics [20], data-flow metrics [21],
decision coverage and MC/DC [22], comparison of multiple
condition coverage (MCC) and MC/DC with short-circuit
evaluation [23]. MC/DC and object branch coverage (OBC)
criteria were compared in [24] and [25]. Even though
aforementioned research gives the foundation, none provides
a deep MC/DC analysis based on the trace of the program-
under-test.

A non-intrusive online monitoring for multi-core systems
based on the embedded trace of the system under test
is proposed in [26]. Online reconstruction and analysis of
debug trace data are based on FPGA and TeSSLa [27]. This
combination could be used to implement coverage-calculation
on the FPGA, instead of doing it on the host or offline, as in
our setting here.

Lauterbach offers the t32cast command line tool for
MC/DC measurement based on a real-time trace recording,
which can analyze the C/C++ source code [13]. The user must
ensure that the selected compiler translates each condition

in the source code into a conditional jump at the object
code level, e.g. by disabling optimizations. In contrast to our
approach, which uses features present in most modern Intel
processors, the trace data are transferred through a dedicated
hardware-connection to a monitor.

VIII. CONCLUSION

We present a tool that shows the feasibility of measuring
MC/DC without instrumentation based on program traces. The
tool is able to detect decisions and conditions in C source code
and to find their corresponding conditional jumps in the object
code. MC/DC can be measured by reconstructing condition
assignments based on Intel PT traces.

The advantage of our approach is that there is no need for
intrusive software instrumentation. Traditionally, the coverage
of the instrumented code is measured, and the instrumentation
has to be removed before release, but with our approach it is
possible to measure coverage directly on the release code by
only using debug symbols that are not altering the behavior
of the code and therefore are not considered intrusive.

Our approach of measuring MC/DC based on traces
complies with the position of CAST-17, that provides
certification authorities’ concerns and position regarding the
analysis of structural coverage at the object code level [28].
With the mapping between conditions and conditional jumps
we provide traceability between source and object code and
the reconstruction of condition assignments on the source code
level, we can provide the same level of assurance as measuring
directly on source code level via software instrumentation.

However there are some limitations. It is necessary to
disable optimizations during the compilation because even
on low optimization levels conditions are usually not directly
translated into conditional jumps but into conditional moves,
jump tables or indirect branches [29]. Because regular program
traces contain no information how these instructions are
evaluated, they cannot be used to reconstruct the evaluation
of conditions. This limitation is less severe in the domain of
avionic, because other requirements, for example source code
to object code traceability in DO-178C, make it already hard
for developers to use high optimization levels [30]. Also it is
necessary to have a modern compiler like clang version ≥ 5.0
because the DWARF debug symbols need to have column and
line information.

Another problem of our approach is that the trace data
becomes excessively large for longer executions. Here, we
used an offline tracing approach [3], where available storage
effectively limits the size of traces. In future work, we want to
apply this approach to online trace reconstruction which would
enable us to observe much longer execution times because only
the very events that are used for coverage measurement are
reconstructed. We also want to support other architectures and
instead of Intel PT, use tracing technologies such as ARM
CoreSight and NEXUS for PowerPC since these processor
architectures are widely used in avionics and automotive
industry, which would benefit the most from this new approach
of MC/DC measurement.

100 Paper A

REFERENCES

[1] F. Pothon, “DO-178C/ED-12C versus DO-178B/ED-12B: Changes and
Improvements,” AdaCore, Tech. Rep., 2012, available at https://www.
adacore.com/books/do-178c-vs-do-178b.

[2] J. J. Chilenski and S. P. Miller, “Applicability of modified
condition/decision coverage to software testing,” Software Engineering
Journal, vol. 9, no. 5, pp. 193–200, 1994.

[3] F. D. Lange, “Modified Condition/Decision Coverage based on jumps,”
2018, master’s thesis, available at http://www.isp.uni-luebeck.de/thesis/
modified-conditiondecision-coverage-based-jumps.

[4] L. Rierson, Developing Safety-Critical Software: A Practical Guide for
Aviation Software and DO-178C Compliance. CRC Press, 2013.

[5] Certification Authorities Software Team (CAST), “Rationale for
Accepting Masking MC/DC in Certification Projects,” Technical Report:
Position Paper CAST-6, 2001.

[6] Q. Yang, J. J. Li, and D. Weiss, “A Survey of Coverage Based Testing
Tools,” in Proc. of the 2006 Intl. Workshop on Automation of Software
Test, ser. AST ’06. New York, NY, USA: ACM, 2006, pp. 99–103.

[7] Vector Software, “Vectorcast/mcdc,” available at https://www.vectorcast.
com/software-testing-products/embedded-mcdc-unit-testing.

[8] A. Trujillo and A. Stuchlik, “Reviewing coverage information,” Parasoft
C++test documentation, available at https://docs.parasoft.com/display/
CPPDESKE1033/Reviewing+Coverage+Information.

[9] Testwell, “Testwell CTC++: Test Coverage Analyzer for C/C++,”
available at http://www.testwell.fi/ctcdesc.html.

[10] CodeCover, “CodeCover: an open-source glass-box testing tool,”
available at http://codecover.org/.

[11] Rapita Systems, “RapiCover: Low-overhead coverage analysis for
critical software,” available at https://www.rapitasystems.com/products/
rapicover.

[12] C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, and
G. Pu, “Smartunit: Empirical evaluations for automated unit testing of
embedded software in industry,” in Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice,
ser. ICSE-SEIP ’18. New York, NY, USA: ACM, 2018, pp. 296–305.
[Online]. Available: http://doi.acm.org/10.1145/3183519.3183554

[13] Lauterbach, “Trace-based MCDC Coverage,” 2018, available at https:
//www.lauterbach.com/new2018 cov mcdc.pdf.

[14] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, and
T. Quinot, “Object and source coverage for critical applications
with the COUVERTURE open analysis framework,” in Proc. of
Embedded Real Time Software and Systems Conference (ERTS), 2010.
[Online]. Available: http://www.open-do.org/wp-content/uploads/2010/
06/couverture ertss2010.pdf

[15] H. Felbinger, J. Sherrill, G. Bloom, and F. Wotawa, “Test suite
coverage measurement and reporting for testing an operating system
without instrumentation,” in 17th Real-Time Linux Workshop, 10 2015.
[Online]. Available: https://gedare.github.io/pdf/FelShe15A.pdf

[16] A. Kleen, “Cheat sheet for Intel Processor Trace with Linux perf and
gdb,” April 2017, available at http://halobates.de/blog/p/410.

[17] J. Thalheim, P. Bhatotia, and C. Fetzer, “INSPECTOR: Data Provenance
Using Intel Processor Trace (PT),” in 2016 IEEE 36th Intl. Conf. on
Distributed Computing Systems (ICDCS), June 2016, pp. 25–34.

[18] The Clang Team, “Matching the Clang AST,” Clang documentation,
available at https://clang.llvm.org/docs/LibASTMatchers.html.

[19] Certification Authorities Software Team (CAST), “What is a “Decision”
in Application of Modified Condition/Decision Coverage (MC/DC) and
Decision Coverage (DC)?” Technical Report: Position Paper CAST-10,
2002.

[20] S. C. Ntafos, “A comparison of some structural testing strategies,” IEEE
Transaction on Software Engineering, vol. 14, no. 6, pp. 868–874, 1988.

[21] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A
Comparison of Data Flow Path Selection Criteria,” in Proc. of the 8th
Intl. Conf. on Software Engineering, ser. ICSE ’85. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1985, pp. 244–251.

[22] K. Kapoor and J. Bowen, “Experimental evaluation of the variation
in effectiveness for DC, FPC and MC/DC test criteria,” in 2003
International Symposium on Empirical Software Engineering, 2003.
ISESE 2003. Proceedings., Sept 2003, pp. 185–194.

[23] S. Kandl and S. Chandrashekar, “Reasonability of MC/DC for safety-
relevant software implemented in programming languages with short-
circuit evaluation,” Computing, vol. 97, no. 30, pp. 261–279, Mar 2015.

[24] C. Comar, J. Guitton, O. Hainque, and T. Quinot, “Formalization and
Comparison of MCDC and Object Branch Coverage Criteria,” in Proc.
of Embedded Real Time Software and Systems Conference (ERTS), 2012.

[25] T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. Heimdahl,
“Toward rigorous object-code coverage criteria,” Technical Report,
University of Minnesota, MN, USA, Tech. Rep., 2017.

[26] N. Decker, P. Gottschling, C. Hochberger, M. Leucker, T. Scheffel,
M. Schmitz, and A. Weiss, “Rapidly Adjustable Non-intrusive Online
Monitoring for Multi-core Systems,” in Formal Methods: Foundations
and Applications, S. Cavalheiro and J. Fiadeiro, Eds. Springer, 2017,
pp. 179–196.

[27] N. Decker, B. Dreyer, P. Gottschling, C. Hochberger, A. Lange,
M. Leucker, T. Scheffel, S. Wegener, and A. Weiss, “Online analysis
of debug trace data for embedded systems,” in Design, Automation Test
in Europe Conference Exhibition (DATE), March 2018, pp. 851–856.

[28] Certification Authorities Software Team (CAST), “Structural Coverage
of Object Code,” Technical Report: Position Paper CAST-17, 2003.

[29] Free Software Foundation, “Options That Control Optimization,” GCC
documentation, available at https://gcc.gnu.org/onlinedocs/gcc-5.4.0/
gcc/Optimize-Options.html.

[30] Certification Authorities Software Team (CAST), “Guidelines for
approving source code to object code traceability, position paper 12,”
Certification Authorities Software Team, Tech. Rep., 2003.

Paper A 101

PAPER B
HARDWARE-ASSISTED ONLINE DATA RACE
DETECTION

Faustin Ahishakiye, José Ignacio Requeno Jarabo, Violet Ka I Pun, Volker Stolz

In Proceedings of the Bartocci E., Falcone Y., Leucker M. (eds) Formal Methods in
Outer Space. LNCS, volume 13065, Springer, Cham, Rhodes, Greece, October 2021,
https://doi.org/10.1007/978-3-030-87348-6_6.

https://doi.org/10.1007/978-3-030-87348-6_6

Hardware-Assisted Online Data Race
Detection

Faustin Ahishakiye1, José Ignacio Requeno Jarabo1,2, Violet Ka I Pun1(B),
and Volker Stolz1(B)

1 Western Norway University of Applied Sciences, Bergen, Norway
{fahi,jirj,vpu,vsto}@hvl.no

2 Complutense University of Madrid, Madrid, Spain
jrequeno@ucm.es

Abstract. Dynamic data race detection techniques usually involve inva-
sive instrumentation that makes it impossible to deploy an executable
with such checking in the field, hence making errors difficult to debug and
reproduce. This paper shows how to detect data races using the COEMS
technology through continuous online monitoring with low-impact instru-
mentation on a novel FPGA -based external platform for embedded mul-
ticore systems. It is used in combination with formal specifications in
the high-level stream-based temporal specification language TeSSLa, in
which we encode a lockset-based algorithm to indicate potential race con-
ditions. We show how to instantiate a TeSSLa template that is based on
the Eraser algorithm, and present a corresponding light-weight instrumen-
tation mechanism that emits necessary observations to the FPGA with
low overhead. We illustrate the feasibility of our approach with experi-
mental results on detection of data races on a sample application.

Keywords: Runtime verification · Data race detection · FPGA ·
Lockset algorithm

1 Introduction

Data races occur in multi-threaded programs when two or more threads access
the same memory location concurrently, with at least one write access, and the
threads are not using any exclusive locks to control their accesses to that location.
They are usually difficult to detect using tests as they depend on the interleaving
and scheduling of tasks at runtime. Static analysis techniques frequently suffer
from false positives due to over-abstraction, although precise results for source
code written in a particular style is certainly feasible. We do not want to discount
this field and recent advances, but focus on dynamic techniques for the present
occasion.

Races and other concurrency issues have featured prominently in area of
Runtime Verification (RV), where precise formal specifications are used at run-
time to monitor, and possibly influence, a running system (as opposed to static
verification). Our guest of honor (see [12] for an extensive account of his work)

c© Springer Nature Switzerland AG 2021
E. Bartocci et al. (Eds.): Havelund Festschrift, LNCS 13065, pp. 108–126, 2021.
https://doi.org/10.1007/978-3-030-87348-6_6

Paper B 105

Hardware-Assisted Online Data Race Detection 109

has been one of the founders of the RV workshop- and conference series, and has
indeed contributed to the study of the dynamic nature of races with a contribu-
tion to the very first workshops [13,14], which has since withstood the test of
time [15]. His exploits—which indicate that he is rather aiming for a marathon
than a sprint in the race to formal verification—did not stop there: Together with
Artho and Biere, he lifted the abstract formal concepts into a practical software
engineering setting, where, although race-free in the original sense of the defini-
tion, they captured patterns that indicate flawed access to data structures [3].
Source-code instrumentation is one of the go-to solutions to inject RV mecha-
nisms into existing software [10]. His further research with Bodden in a similar
direction resulted in the suggestion of a new feature for aspect-orientated pro-
gramming, a technique for manipulating programs on a higher level, that would
facilitate better addressing of concurrency concerns [6].

Although runtime checking only give a limited view on the behaviour of the
concretely executed code, it allows precise reporting of actual occurrences, which
can be used to predict potential erroneous behaviour across different runs [16].
However, this runtime analysis is not enabled in the final product: inline dynamic
data race detection techniques come with invasive instrumentation for each mem-
ory access that makes it prohibitive to deploy an executable with such checking
in the field [22]. This also makes reproducing errors challenging.

In this article, we take earlier RV attempts for race analysis further and
present a non-intrusive approach to monitoring applications on embedded
system-on-chips (SoCs) for data races using the COEMS platform [8] which
aims to eliminate the overhead of dynamic checking by offloading it to exter-
nal hardware.1, The platform offers control-flow reconstruction from processor-
traces (here: the Arm CoreSight control-flow trace), and data-traces through
explicit instrumentation [26]. Race checking is executed on an FPGA on a sep-
arate hardware-platform to minimize impact on the system under observation.
Our experimental results show that the necessary instrumentation in the target
application incurs the expected fixed, predictable overhead, and is not affected by
the time required for race checking. Our use of the high-level stream-based tem-
poral specification language, TeSSLa [21], means that the reconfiguration of the
monitor is substantially faster than synthesising VHDL (few seconds vs. dozens
of minutes), and allows end-users to customize the race checker specification to
their needs without being FPGA -experts.

This is not possible with other specification-based approaches that directly
aim to use the integrated FPGA of a SoC. These approaches do not offer the
quick reconfiguration possible with the COEMS platform but require full time-
consuming reconfiguration, and do not support the use of control-flow tracing
due to the limited capacity of the SoC.

The approach proposed in this paper is more flexible than a dedicated race
checker implemented on the FPGA : to the best of our knowledge, such a general
solution does not exist, though it is of course in principle possible. It would

1 The EU Horizon 2020 project “COEMS –Continuous Observation of Embedded Mul-
ticore Systems”, https://www.coems.eu.

106 Paper B

110 F. Ahishakiye et al.

not offer the end-user flexibility in terms of fast reconfiguration that we gain
through TeSSLa, and, again due to the space restrictions on SoCs, would not be
able to benefit from control-flow tracing features that are important for future
optimisations and integration with our analyses.

Our hardware-based approach can be used in safety-critical systems such
as the aerospace and railway-domains where certification is necessary. In these
domains, using a software inline race-checker such as ThreadSanitizer [28] is not
possible as the tooling for instrumentation and online race-checking is not certi-
fied for those systems, if it even exists. For example, ThreadSanitizer support for
Arm32 SoCs is not part of the LLVM toolchain [23]. In contrast to software-based
approaches, our instrumentation for the application under test has straightfor-
ward complexity and gives predictable performance overhead independent from
whether or not race checking is enabled. This is especially important for software
development in these safety-critical domains, as again for certification purposes,
it is not permissible to, e.g., deploy a separate version for debugging or trouble-
shooting on demand in the field. Any debugging and trace support must be
already integrated in the final product.

The COEMS FPGA requires a compiled monitor-configuration. As this con-
figuration needs to be generated for a specific binary under test, we present
in this paper our approach where we instantiate a template that monitors a
fixed number of memory locations for consistent access through a fixed num-
ber of locks. Although these numbers need to be determined before starting the
monitoring, the flexibility of TeSSLa allows us to also deal with an unbounded
number of threads, and limited monitoring of dynamically allocated memory and
locks. Additionally, our instrumentation supports recording traces in files, and
offline analysis of execution traces with the TeSSLa interpreter only. This aids
in quick prototyping of new specifications on vanilla developer machines without
replicating a full setup of SoC and COEMS hardware.

The paper is structured as follows. After this introduction, Sect. 2 explains
the related work. Section 3 details the data race detection in the COEMS frame-
work. Section 4 illustrates the feasibility of our approach and presents perfor-
mance data on detecting data race errors in a Linux pthreads-based case study.
Experimental results and software are published in public repositories. Finally,
Sect. 5 gathers the conclusions and future work.

2 Our Approach and Related Work

Traditionally, data races have been approached from two sides: static anal-
yses check the source code and report potential errors. To that end, over-
approximations of program behaviours are used (e.g., in terms of variable
accesses and lock operations), which may lead to uncertainties on whether a
particular behaviour will actually occur during runtime due to general issues on
decidability. This frequently generates too many warnings of potential problems
for developers to be useful. These uncertainties can be minimised if decisions such
as the number of threads to spawn are fixed at compile time. Static analysers
may also have limited support for particular language features.

Paper B 107

Hardware-Assisted Online Data Race Detection 111

In contrast to checking the code before it runs, dynamic analyses look at indi-
vidual executions of a program. Although this can only analyse the behaviour of
the concretely executed code, it can accurately identify the actual occurrences
of defects. These can then be traced back to the buggy code that resulted in the
potentially erroneous behaviour. Both techniques in general rely on the avail-
ability of the source code, and, in the case of dynamic analyses, the possibility
of recompilation with additional instrumentation.

As dynamic analyses for data race detection need to record historic behaviour
during execution, they often interfere in terms of computation time and mem-
ory consumption. For example, the popular dynamic ThreadSanitizer integrated
with the LLVM compiler toolchain slows down executions by a factor of 10 to
100, depending on the workload [28,30]. This is one reason why dynamic anal-
ysers are traditionally only employed during development and testing, but not
included on the production system [29].

The COEMS project developed a hardware-based solution, in which a field-
programmable gate array (FPGA) checks the execution trace in parallel to the
running system with minimal interference. The hardware is adapted for analysing
events described in the stream-based specification language TeSSLa [21]. Using
an intermediate specification language that is executable on the FPGA can avoid
the time-consuming re-synthesisation of the FPGA when changing specifications.

We have ported the gist of the Eraser algorithm [27] to the subset of the
TeSSLa language that is supported on the hardware. An alternative approach
already used the TeSSLa -interpreter, but was not suitable for compilation onto
an FPGA due to the dynamic data structures (sets and maps) that only the
interpreter offers [19].

Firstly, we adapt the software-based analysis, which relied on dynamic data
structures such as sets and maps in the TeSSLa interpreter, to the hardware-
specific implementation of the COEMS trace box (see Sect. 3 for details). As the
complete specification does not fit onto the FPGA, we then split the specification
into two parts: the performance-relevant portion of the TeSSLa specification is
processed on the FPGA (filtering accesses), and the final tracking of which lock
protects which memory is done in the interpreter which receives the intermediate
output from the FPGA. Additionally, we also allow monitoring of dynamically
allocated memory and locks.

The Eraser algorithm is certainly no longer the state of the art in dynamic
race detection (or rather, checking locking discipline), but has the advantage that
it can be captured in a state machine that is instantiated per memory location
and set of locks. Even though it conceptually uses sets, assuming that the number
of used memory locations and locks is statically known, we can statically derive
the necessary streams.

Such a static encoding should be possible also for the more modern FastTrack-
algorithm by Flanagan and Freund [11], which uses lightweight vector clocks
and the happens-before relation to avoid false positives. Their article includes a
detailed description of the necessary data structures, and uses thread-ids as offset
into arrays. Our approach here requires focusing on a fixed number of memory

108 Paper B

112 F. Ahishakiye et al.

locations and locks, but can deal with an arbitrary number of threads. We leave
an encoding into TeSSLa of FastTrack to future work—for a statically decidable
set of threads it should certainly be possible, with the necessary vector-clocks
also being maintained on the FPGA-side.

An observation-based race checker that tracks memory accesses and lock
operations can also be implemented through the help of virtualisation. Gem5 [5,
17] is such a framework. Virtualisation means on the one hand that observation
cannot be done on a deployed system in the field but only in the lab and with a
limited number of supported peripherals. On the other hand, control-flow events
can easily be explicitly generated, no expensive reconstruction is necessary: in full
virtualisation, we can directly match on any assembly instruction, and not only
branches like with the COEMS hardware. In fact, in such a scenario, it would
be straightforward to use Gem5 as event source, where the virtualisation sends
events on to a TeSSLa interpreter checking the trace against our specification.
Gem5 does not directly offer a high-level specification language for monitoring.
Given the high event rate of observations on memory accesses, we expect a
similar performance impact like the one reported for ThreadSanitizer.

Another prominent example where a high-level specification is synthesised
into an FPGA is RTLola [4]. This differs from our approach in the following:
the specification language puts a stronger emphasis on periodic data than we do
with our discrete TeSSLa events. Furthermore, RTLola is synthesized via VHDL
onto the FPGA, and hence has a high turn-around time for reconfiguration.
Communication between the system-under-test and the verification logic is left
open to the user and requires knowledge of VHDL, though of course in principle
data events can then be emitted through instrumentation. In contrast to our
solution, an RTLola specification cannot benefit from control-flow tracing, since
control-flow reconstruction is not available as specification and hence cannot be
compiled onto the FPGA, and furthermore would exceed the capacity of current
SoCs both in terms of space and execution speed [26]. We leave performance
evaluation of RTLola execution for race checking purposes on the FPGA to
future work, but note that providing an API for the instrumentation to the
monitor requires VHLD-knowledge.

A similar direct approach via hardware-synthesis has been taken for Sig-
nal Temporal Logic (STL) [18]. It would certainly be feasible to encode a race
checker in STL, but that would not be playing to STL’s strength in terms of
timing properties (which are not relevant for race checking) and observing sig-
nals on a wire (as opposed to a programmable interface to send values from the
instrumented code to the monitor).

The R2U2 [25] monitoring system for unmanned aerial vehicles provides a
generic observation component on an SoC. Again, events must be explicitly
emitted, and no control-flow reconstruction is available. Similar to our approach,
and unlike in RTLola, this component is generic and is parametrised by compiled
specifications. R2U2 uses Metric Temporal Logic specifications (MTL), which are
very suitable to describe, e.g. timing properties. While it is certainly possible to
specify our race checker in MTL, we leave it to future experimental evaluation

Paper B 109

Hardware-Assisted Online Data Race Detection 113

Fig. 1. COEMS trace box containing FPGA (left) and SoC (right)

how many instances of the race pattern (in terms of memory location/protecting
lock) would be feasible, and how the communication bus would uphold under
varying event rates.

3 Data Race Detection with COEMS

In the following, we first briefly introduce COEMS infrastructure. Then, we
describe the workflow of data race detection with the COEMS tools. After that,
we explain the idea of the lockset-based Eraser algorithm and our translation
into TeSSLa .

3.1 COEMS Infrastructure

The COEMS project provides a novel observer platform for online monitoring
of multicore systems. It offers a non-intrusive way to gain insights of the system
behaviour, which are crucial for detecting non-deterministic failures caused by,
for example, accessing inconsistent data as a result of race conditions.

To observe SoCs, the platform uses the tracing capabilities that are available
on many modern multicore processors. Such capabilities provide highly com-
pressed tracing information over a separate tracing port. This information allows
the COEMS system to reconstruct the sequence of instructions executed by the
processor [26]. The instruction sequence- and data trace can then be analysed
online by a reconfigurable monitoring unit. Figure 1 shows the COEMS FPGA
enclosure, the Arm-based Enclustra SoC that serves as system under test, and
the AURORA interface connecting both.

As soon as the program starts running on the Enclustra board, control flow
messages are generated via the Arm CoreSight module and transmitted, together
with user-specified data trace messages from any instrumentation, through
the AURORA interface to the COEMS trace box. Internally, the Instruction

110 Paper B

114 F. Ahishakiye et al.

Fig. 2. Lock instrumentation and race monitoring using the COEMS technology

Reconstruction (IR) module reconstructs an accurate execution trace of both
cores from the platform-specific compressed format into a stream-based format
suitable for analysing properties defined in the TeSSLa language. The flexibility
of the TeSSLa language allows expressing different kinds of analyses for func-
tional or timing properties in terms of stream events. A TeSSLa specification
is then compiled to a configuration of the Event Processing Units (EPUs) [7]
of the monitoring unit, which are specialised units on the FPGA implementing
low-level TeSSLa stream operations. The events of the TeSSLa streams are effi-
ciently processed by the EPUs in the trace box. To cope with the potentially
massive amount of tracing data generated by the processors, the COEMS sys-
tem is implemented in hardware using an FPGA-based event processing system.
The current COEMS prototype implements eight parallel EPUs.

Compared to existing monitoring approaches, COEMS provides several
advantages, most notably is its non-intrusive method to observe and verify the
actual behaviour of the observed system, i.e., the system behaviour will not be
affected by the monitoring. As no trace data has to be stored, systems can be
monitored autonomously for extended periods of time. Furthermore, the trace
box reports results of a TeSSLa analysis almost immediately as the processing
delay introduced by the trace box is negligible. In contrast to other hardware-
based runtime verification techniques [9,29], changing the specification does not
require circuit synthesis, but only a TeSSLa compilation. Hence, the focus of
observation can be changed during runtime by reconfiguring the EPUs quickly.

3.2 Instrumentation and Data Race Monitoring

The current COEMS framework supports data race detection for pthread pro-
grams that can be recompiled using LLVM. We illustrate the workflow of instru-
mentation and data race monitoring in Fig. 2.

Paper B 111

Hardware-Assisted Online Data Race Detection 115

We first instrument the application under test during compilation, so that
the executable emits information to the COEMS trace box at runtime. We
insert calls to instrumentation (i) after taking a lock, (ii) before releasing a
lock, and (iii) on shared memory accesses with the help of LLVM, which will
send the thread-id and observed action. As an optimisation, we use the LLVM
analysis framework to only instrument memory accesses to potentially shared
memory: through escape-analysis, this can already eliminate instrumentation e.g.
on iteration variables of tight loops. Then, we compile and link the instrumented
LLVM intermediate code (.bc) into a binary file (a.out). The instrumentation
should hence be easy to integrate into existing build-setups.

Secondly, we copy the binary to the system under observation (enclustra)
where we will later run it. The mkDR-script instantiates a TeSSLa specification
template with the memory addresses and mutexes to be observed, based on
the names of global variables. Expert users have the option of more fine-grained
control on the instantiation, e.g., to monitor dynamically allocated memory. The
specification is tailored to each program; thus, it should be regenerated from the
template every time the application is recompiled. The instantiated specification
is then split into two halves, as its size exceeds the currently available number of
eight EPUs on the prototype hardware. The first half hw.tessla filters the high
event rate stream of observations on the FPGA. It is translated by the epu-
compiler into a configuration file (epu cfg.txt), and then uploaded to the FPGA
by cedar config. The second half sw.tessla receives the output of the first stage,
and does the final processing on a stream that now has a lower event rate in the
TeSSLa interpreter.

Then, we run the binary file, which will automatically start sending trace data
to the FPGA. The epu-output tool decodes the FPGA output into a TeSSLa
event stream. Note that the behaviour of the application is independent of
whether the COEMS FPGA is actually connected or not. If not, trace data
is silently discarded, but does not affect the timing of the application.

Finally, we analyse this trace with the second part of the TeSSLa specifica-
tion (sw.tessla) with the TeSSLa interpreter, which will emit race warnings if
necessary. Our data race specification uses mostly data trace events, since we
require the addresses of memory and locks, except for a control flow event when
pthread_create is called and to signal termination of program under test.

In addition to the online (hardware-based) monitoring analysis with the
COEMS trace box, the COEMS framework also supports offline (software-
based) analysis of execution traces in a personal computer. In the case of
software-based analysis, the user only needs the TeSSLa interpreter and the
COEMS lock instrumentation tool. Most of the initial steps in Fig. 2 such as the
LLVM instrumentation or the instantiation of the TeSSLa template are similar
for the software-trace analysis. Instead of compiling the TeSSLa specification
for the EPUs, the software TeSSLa interpreter will now run the entire TeSSLa
specification for detecting data races on a locally generated software trace-file.
Writing the trace data into a file first or piping them into the TeSSLa interpreter
has a higher overhead than transmitting them via the AURORA interface.

112 Paper B

116 F. Ahishakiye et al.

3.3 Lockset-Based Algorithm in TeSSLa

Conceptually, the algorithm tracks which set of locks is held at every memory
access. The current set is intersected with the previous set on a read or write (for
simplicity of presentation, we do not distinguish between read- and write accesses,
although only read/write and write/write-conflicts are relevant). This defines the
alphabet of observations of the algorithm: pairs of reads or writes with a memory
address and thread-identifier, and locking or unlocking operations with lock- and
thread-identifier. The algorithm initialises the lockset for each memory address
with the set containing all locks, and should the intersection ever yield the empty
set, then we can conclude that an inconsistent locking discipline has been used.
This means that one part of the execution uses no or disjoint locks from another
part of the execution when accessing this memory, which hence gives rise to a
potential data race if those executions are assumed to be possible concurrently.

As we do not have dynamic memory available to maintain potentially
unbounded sets in the TeSSLa-specification on the FPGA, we need to find a static
encoding. To achieve this, for each pair of memory location X and lock identifier
(also an address) L, we create a boolean stream protecting_X_with_L that is ini-
tialised to true. The set of all these streams for a given X hence models the lock-
set as a bit-vector. Note that updates are monotone, i.e., once a stream takes the
value false, it can no longer revert to true. If all these streams for a given X carry
false, we know that no common lock is protecting the current access, and we emit a
race warning on the error_X stream for that memory location. This encoding means
that we need to know the set of all memory locations and all lock identifiers before
we configure the FPGA, as we cannot declare new streams dynamically.

On every memory access to X, we check if L is being held by the current
thread and update the current value if necessary. We track this through the
streams holding_L, which carry the identity of the thread currently holding this
lock, if any. Again, updating the value on these streams is trivial upon each
locking or unlocking operation.

Fig. 3. Header of the TeSSLa specification, including all the incoming events from the
instrumented code.

Paper B 113

Hardware-Assisted Online Data Race Detection 117

Fig. 4. TeSSLa fragment, where lines 1–15 are from the hardware stage, while lines 16–
17 are from the software stage.

Figures 3 and 4 show an excerpt of the resulting TeSSLa specification. It has
been created for one dynamic lock and three static locks, and tracks accesses
to memory address 24532. Static locks are stored at memory addresses 24808,
24528 and 24560 (only lock 24808 is shown in Fig. 4), while the memory address
of the dynamic lock is emitted at runtime. The static lock at address 1 is
artificial and is used for the main-thread only. TeSSLa built-in stream oper-
ations are emphasised. As input streams, we receive instrumented events on
mutexlockaddr, mutexunlockaddr, readaddr, writeaddr, threadid, dyn_base and dyn_lock.
The pcreateid event reduces false-positives by signalling to only start observ-
ing memory accesses after additional threads have actually been created. The
annotation @FunctionCall indicates that this is a control flow-event which is trig-
gered by a function call, and not through instrumentation. The symbol name
corresponds to the function pthread_create from Linux’ system library. To aid in
debugging, the instrumentation also emits the current source code line number
with each event.

Currently, due to the limited availability of EPUs on the prototype FPGA,
the specification is actually split into two halves, with the fast address-filtering
done on hardware, and only processing the derived information in the coloured

114 Paper B

118 F. Ahishakiye et al.

lines 16–17 as a post-processing stage in the interpreter. The multiplication and
division are binary left- and right-shifts that reduce the amount of events emitted
from the hardware stage to the software stage by encoding the line number of an
instruction with its event in the unused lower 16 bits, and encoding dynamically
allocated locks (see below).

4 Case Study

In this section, we illustrate our approach with a case study, where we simulate
a set of bankers sending random amounts of money from one bank account
to another [20]. The bankers lock the source and target bank accounts before
committing a transaction, so that transfers are protected against data races
and deadlocks. We introduce a special case where one banker (id 0) forgets one
lock operation and hence, data may get corrupted. Figure 5 shows the core of
the example with locks and memory accesses. The complete example, including
source code, execution traces and TeSSLa reports, is available at [1].

Fig. 5. Example of incorrect locking

TeSSLa Specification. We instantiate the corresponding COEMS data race
template (see [2] for all files used here) using the mkDR-script and the instru-
mented binary, and the names of all mutexes (accts[0].mtx, . . .) and shared
variables (accts[0].balance, . . .) as parameters.

The size of the TeSSLa specification for the Eraser algorithm is proportional
to the number of locks and shared memory addresses to monitor, and indepen-
dent from the number of threads. More precisely, the first half hw.tessla grows
linearly with respect to both variables.

Paper B 115

Hardware-Assisted Online Data Race Detection 119

For each lock L, the TeSSLa specification includes the lock/unlock pairs and
holding_L (plus an additional stream in the case of dynamic locks). For each
memory address X, the TeSSLa specification includes a block of five streams
(i.e., read_X . . . thread_accessing_X). Hence, 3L + 5X streams are generated for
the first half, where L is the number of locks and X the number of memory
addresses. Regarding the second half, the sw.tessla file, the number of streams
grows proportionally to (X+1)*L (i.e., protecting_X_with_L plus error_X).

As the TeSSLa specification is a text file and the size is constrained by
the previous parameters, the instantiation of the TeSSLa template for the data
race checking is done almost instantaneously, and compilation of the largest
specification for the hardware stage into the FPGA completes in around 5 min
(see below for detailed measurements) including uploading the configuration
to the FPGA, hence a big advantage over approaches that need to translate
via VHDL.

Working with Dynamic Allocations. As we have noted above, the addresses
of memory locations and locks need to be available at compile-time of the spec-
ification. This limits our approach to statically declared resources in a program.
However, it fits our application domain in embedded systems for these SoCs,
where development may follow the MISRA guidelines [24], which strongly rec-
ommends against using e.g., malloc. For more flexibility, we have developed an
extension where developers can at runtime send the location of dynamically
allocated memory or locks through additional instrumentation.

Conceptually, we parametrise the specification with a placeholder for the
argument of the comparison operations above. A write to a particular stream
will make the specification use that value in addition to any hard-coded val-
ues. A programmer can use the instrumentation to send the address of a
(potentially dynamically allocated) lock to the monitor using the function
emit_dynamic_lock_event(const short slot,const pthread_mutex_t* addr).

We can encode potentially multiple “slots” into the lower four bits, since these
pointers are suitably aligned (see lines 5–8 in Fig. 4). Similarly, the developer can
register the base address of dynamically allocated storage for monitoring through
emit_dynamic_addr_event(const uintptr_t base). The range of bytes to monitor is
given when instantiating the specification.

Due to the size limitation on the FPGA, we currently can only provide this fil-
ter for a limited number additional memory addresses or locks. As the number of
possible EPUs on the external FPGA increases, these numbers for dynamic allo-
cations should also go up. Note that the number of statically encoded resources
underlies different resource constraints, and we report the general numbers below
in the performance characteristics.

Running the Experiment. The epu-compiler translates the first part
(hw.tessla) into a configuration file (epu cfg.txt), and then uploads it via USB
to the FPGA through cedar config. The compilation time depends on the num-
ber of streams in the TeSSLa specification and, hence, the number of locks and

116 Paper B

120 F. Ahishakiye et al.

Fig. 6. EPU compilation time for hw.tessla

shared memory addresses in the C code. Figure 6 shows the time required for
compiling the TeSSLa specification into the binary configuration format for dif-
ferent scenarios of the bankers example in terms of the number of locks and
memory locations. As this involves allocating streams and their operations to
the available on-board resources of the FPGA, the following outcomes are possi-
ble: (i) successful configuration, (ii) aborted because FPGA-resources have been
exceeded, (iii) timeout. Due to the combinatorial growth of the specification,
we see that compilation times go up towards the timeout that we have cho-
sen (300 s) for growing numbers of locks/memory locations. After that we reach
ranges where it is quickly obvious for the compiler that a configuration cannot be
fit onto the FPGA. As compilation is a resource-allocation problem that involves
constraint-solving, this slope for compilation time is to be expected: the closer a
specification gets to the available resource limits, the harder the constraint-solver
has to try searching for a suitable allocation.

After compilation, uploading a new binary configuration into the FPGA after
compilation is done in between 3 to 7 s.

The second half of the specification, sw.tessla, receives the output of the first
stage, and does the final processing on a stream that now has a lower event rate
in the TeSSLa interpreter. Naturally, the interpreter has some startup-cost that
also scales with the size of the specification due to parsing and type-checking.
Figure 7 shows a similar slope as for the EPU compilation, where startup-time
goes up towards the upper right corner, where we also reach up to 300 s.

Since compilation and start-up of the interpreter can be done in parallel and
hence lead to the envisioned advantage of quick reconfiguration over approaches
going via VHDL.

The COEMS trace box currently supports TeSSLa specifications in the range
of hundreds to a few thousands of streams depending on the complexity in the
logic of the TeSSLa streams. For our race checker this translates into checking

Paper B 117

Hardware-Assisted Online Data Race Detection 121

Fig. 7. TeSSLa interpreter startup time for sw.tessla

between around 40 memory locations with 100 locks and 90 memory locations
with 20 locks.

Fig. 8. Events emitted by the COEMS trace box after processing the hardware half
of the TeSSLa specification

Fig. 9. Race report obtained by processing Fig. 8 including debug information

118 Paper B

122 F. Ahishakiye et al.

Fig. 10. Example of false positive after threads have terminated

When we run our C code with the DATA RACE flag on, the first stage pro-
duces the output stream shown in Fig. 8. This stream contains summaries on
which thread is holding which lock and accessing any of the selected memory
addresses. We then pipe those events into the TeSSLa interpreter with the other
half of the specification.

Fig. 11. Overhead introduced by the instrumentation.

The TeSSLa interpreter correctly reports (Fig. 9) the data race errors on
the error_X_in_line streams, triggered by the accesses in lines 12–15 in Fig. 5
(corresponding to lines 52, 53 and 54 in the source code). These data race errors
are caused by the missing lock of mutex accts[from].mtx by thread id_0. Our
tool also detects a false positive in line 4 in Fig. 10 that happens when the
main() thread accesses the balance in each account once all banker-threads have
terminated. The barrier introduced by pthread_join() cannot be detected by our
lockset-based approach, as it does not actually keep track of the threads in use
by the program.

Performance. We have so far only obtained partial performance measurements,
as currently our instrumentation needs a global lock to serialize transmission
of three events per observation to the FPGA. We transmit the thread-id, the
address of the relevant datum, and the line number in the source code to aid
in debugging. The lock guards against interleaving between the two cores and

Paper B 119

Hardware-Assisted Online Data Race Detection 123

context-switches on the same core. This leads to a penalty factor of about 20
in execution time over the original uninstrumented code. At least 50% of that
overhead can be attributed to the lock, effectively linearising the above example.

Figure 11 shows the overhead in percent of the instrumented version against
the original code. To simulate other workloads with less contention (i.e., larger
regions where no race checking is required), we have introduced a configurable
usleep() instruction between both accesses to the bank accounts. The graph
shows that the high overhead is due to the tight loop accessing the accounts,
and naturally becomes less prominent as contention goes down.

Another factor affecting overhead is that our instrumentation has not yet
been optimised and shares code with the software-tracing for prototyping, which
among other things means that even when doing hardware-tracing, additional
arguments are passed on the stack that the hardware-tracing does not actually
consume. Future improvements in the low level runtime support for data trace
events may also bring better performance by allowing larger payloads in a single
message, which would allow our instrumentation to avoid the explicit global lock.

We have not yet devised a setup that can measure the performance of eval-
uating the specification, apart from considerations based purely on the use of
EPUs and clock rate of the FPGA: our measurements are currently completely
dominated by the USB-interface overhead of polling the output events from the
FPGA, and do not allow to precisely factor out the processing time. Addition-
ally, intermediate output from the FPGA to the interpreter is transferred in a
verbose ASCII-format.

As for memory consumption, our instrumentation does not need to maintain
any data structures, and only passes primitive values such as pointer addresses
that are already computed and presumably available in registers anyway.

5 Conclusion

In this paper, we followed the path initiated by our guest of honor in the direction
of practical approaches for runtime verification. More in detail, we have shown
how to use the COEMS technology, a novel platform for online monitoring of
multicore systems, and contextualized it to check for potential data races in
applications that use locks for synchronisation, one of our guest’s research areas.

Through the COEMS platform, developers can observe the control-flow in
a digital twin of their application under test on an embedded systems without
affecting the behaviour. Additional instrumentation of the application can send
more detailed data at negligible cost.

We presented an outline on how the lockset-based Eraser algorithm can be
encoded in the TeSSLa-specification language for a given application. This spec-
ification is then compiled onto the external COEMS FPGA and uses the data-
and control flow trace emitted from the system under test to observe a specified
set of locks and memory locations. As the full specification exceeds the capabil-
ities (in terms of size) of the available prototype, we combine a hardware- and a
software stage to report on potential races.

120 Paper B

124 F. Ahishakiye et al.

Races may still hide in parts of the code that have not been executed, and
our checker may report false positives, which is also a general limitation of tools
based on the Eraser algorithm. On the positive side, the COEMS hardware
race checker does not negatively affect the performance of the application, so
potential users need to carefully assess this tradeoff and structure their code to
minimize warnings.

The data race analysis uses the LLVM compiler framework, and currently
works with threads using pthread mutex lock/unlock operations for protecting
the shared variables. For other ways of synchronization, e.g., through compare-
and-swap instructions, or baremetal execution, we do not provide instrumenta-
tion and a template yet, but they can easily be adapted from our code.

A practical limitation of the data trace is the currently restricted value-
range of the trace messages to 16 bits, which complicates e.g. the use of pointers
in the trace. As currently we need multiple messages per event to transmit
additional data such as debugging information (the current line number) and
the thread identifier, we need to serialize use of the trace bus. This additional
locking that is introduced through the instrumentation affects the performance
of the application under test, whereas transmitting a single datum in principle
has negligible execution overhead.

Our unoptimised performance measurements already puts us in a competitive
range with other approaches such as ThreadSanitizer, and we have the advantage
that COEMS-based tracing can remain enabled in production. Future develop-
ments of the COEMS platform beyond its current prototype will make splitting
the specification and post-processing in the interpreter superfluous: 18 (instead
of the currently 8) available EPUs will already allow for setups without dynamic
values to be handled completely in hardware. In the meantime, we are improv-
ing the instrumentation to produce effect summaries for basic blocks of code
instead of instrumenting single instructions, which should decrease the overhead
especially for tight loops.

We are also preparing additional concurrency patterns that monitor actual
deadlocks and so-called lock-order-reversal.

References

1. Ahishakiye, F., Jarabo, J.I.R., Pun, K.I., Stolz, V.: Open data for banker example,
December 2020. https://doi.org/10.5281/zenodo.4381982

2. Ahishakiye, F., Jarabo, J.I.R., Stolz, V.: Lock instrumentation tool (2020). https://
github.com/selabhvl/coems-racechecker

3. Artho, C., Havelund, K., Biere, A.: High-level data races. Softw. Test. Verif. Reliab.
13(4), 207–227 (2003). https://doi.org/10.1002/stvr.281

4. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embed. Comput. Syst. 18(5s)
(2019). https://doi.org/10.1145/3358220

5. Binkert, N., et al.: The Gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011). https://doi.org/10.1145/2024716.2024718

6. Bodden, E., Havelund, K.: Aspect-oriented race detection in Java. IEEE Trans.
Software Eng. 36(4), 509–527 (2010). https://doi.org/10.1109/TSE.2010.25

Paper B 121

Hardware-Assisted Online Data Race Detection 125

7. Convent, L., Hungerecker, S., Scheffel, T., Schmitz, M., Thoma, D., Weiss, A.:
Hardware-based runtime verification with embedded tracing units and stream pro-
cessing. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 43–63.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 5

8. Decker, N., et al.: Online analysis of debug trace data for embedded systems. In:
Madsen, J., Coskun, A.K. (eds.) Design, Automation & Test in Europe Conference
& Exhibition, DATE 2018, pp. 851–856. IEEE (2018)

9. Drzevitzky, S., Kastens, U., Platzner, M.: Proof-carrying hardware: towards run-
time verification of reconfigurable modules. In: 2009 International Conference on
Reconfigurable Computing and FPGAs, pp. 189–194. IEEE (2009)

10. Filman, R., Havelund, K.: Source-code instrumentation and quantification of
events. In: Foundations of Aspect-Oriented Languages (FOAL 2002), No. TR 02-
06, April 2002. http://www.cs.ucf.edu/∼leavens/FOAL/papers-2002/TR.pdf

11. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: Hind, M., Diwan, A. (eds.) Proceedings 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009, pp. 121–133.
ACM (2009)

12. Havelund, K., Reger, G., Roşu, G.: Runtime verification past experiences and
future projections. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 532–562. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 25

13. Havelund, K., Rosu, G.: Monitoring Java programs with Java PathExplorer. Elec-
tron. Notes Theor. Comput. Sci. 55(2), 200–217 (2001). https://doi.org/10.1016/
S1571-0661(04)00253-1

14. Havelund, K., Rosu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods Syst. Des. 24(2), 189–215 (2004). https://doi.org/10.1023/
B:FORM.0000017721.39909.4b

15. Havelund, K., Roşu, G.: Runtime Der. In: Colombo, C., Leucker, M. (eds.) RV 2018.
LNCS, vol. 11237, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03769-7 1

16. Hong, S., Kim, M.: A survey of race bug detection techniques for multithreaded
programmes. Softw. Test. Verif. Reliab. 25(3), 191–217 (2015)

17. Jahic, J., Jung, M., Kuhn, T., Kestel, C., Wehn, N.: A framework for non-intrusive
trace-driven simulation of manycore architectures with dynamic tracing configura-
tion. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 458–468.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 28

18. Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Nickovic, D.: From
signal temporal logic to FPGA monitors. In: 13. ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign, MEMOCODE 2015, pp.
218–227. IEEE (2015)

19. Jakšic, S., Li, D., Pun, K.I., Stolz, V.: Stream-based dynamic data race detection.
In: 31st Norsk Informatikkonferanse, NIK 2018. Bibsys Open Journal Systems,
Norway (2018). https://ojs.bibsys.no/index.php/NIK/article/view/511

20. Joe, N.: Concurrent programming, with examples, March 2020. https://begriffs.
com/posts/2020-03-23-concurrent-programming.html

21. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: run-
time verification of non-synchronized real-time streams. In: ACM Symposium on
Applied Computing (SAC), pp. 1925–1933. ACM (2018)

122 Paper B

126 F. Ahishakiye et al.

22. Lucia, B., Ceze, L., Strauss, K., Qadeer, S., Boehm, H.: Conflict exceptions: sim-
plifying concurrent language semantics with precise hardware exceptions for data-
races. In: Seznec, A., Weiser, U.C., Ronen, R. (eds.) 37th International Symposium
on Computer Architecture (ISCA 2010), pp. 210–221. ACM (2010)

23. Matar, H.S., Tasiran, S., Unat, D.: EmbedSanitizer: runtime race detection tool
for 32-bit embedded ARM. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 380–389. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 24

24. MIRA Ltd.: MISRA C:2012 Guidelines for the use of the C language in critical
systems (2013)

25. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. Formal Methods Syst. Design 51(1),
31–61 (2017). https://doi.org/10.1007/s10703-017-0275-x

26. Preußer, T., Weiss, A.: The CEDARtools platform - massive external memory with
high bandwidth and low latency under fine-granular random access patterns. In:
Sourdis, I., Bouganis, C., Álvarez, C., Dı́az, L.A.T., Valero-Lara, P., Martorell, X.
(eds.) 29th International Conference on Field Programmable Logic and Applica-
tions, FPL 2019, pp. 426–427. IEEE (2019)

27. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

28. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic race detec-
tion with LLVM compiler. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 110–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29860-8 9

29. Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded
systems. IET Softw. 1(5), 172–179 (2007)

30. Yu, Z., Yang, Z., Su, X., Ma, P.: Evaluation and comparison of ten data race
detection techniques. Int. J. High Perform. Comput. Network. 10(4–5), 279–288
(2017)

Paper B 123

PAPER C
MC/DC TEST CASES GENERATION BASED ON
BDDS

Faustin Ahishakiye, José Ignacio Requeno Jarabo, Lars Michael Kristensen, Volker Stolz

In Proceedings of the Symposium on Dependable Software Engineering Theories, Tools
and Applications, SETTA 2021, LNCS, volume 13071, Springer, Cham Beĳing, China,
November 2021

MC/DC Test Cases Generation based on BDDs ?

Faustin Ahishakiye1, José Ignacio Requeno Jarabo1,2,
Lars Michael Kristensen1, and Volker Stolz1

1 Western Norway University of Applied Sciences, Bergen, Norway
2 Complutense University of Madrid, Madrid, Spain
{fahi,jirj,lmkr,vsto}@hvl.no, jrequeno@ucm.es

Abstract. We present a greedy approach to test-cases selection for sin-
gle decisions to achieve MC/DC-coverage of their Boolean conditions.
Our heuristics take into account “don’t care” inputs through three-
valued truth values that we obtain through a compact representation
via reduced-ordered binary decision diagrams (roBDDs). In contrast to
an exhaustive, resource-consuming search for an optimal solution, our
approach quickly gives frequently either optimal results, or otherwise
produces “good enough” results (close to the optimal size) with little
complexity. Users obtain different — possibly better — solutions by per-
muting the order of conditions when constructing the BDD, allowing
them to identify the best solutions within a given time budget. We com-
pare variations on metrics that guide the heuristics.

1 Introduction

Software testing techniques that achieve coverage effectiveness and provide test
cases are cost intensive [31]. Certification standards for safety assurance such as
DO-178C [28] in the domain of avionic software systems require software with
the highest safety level (Level A) to show modified condition decision coverage
(MC/DC) [10]. One of the advantages of MC/DC is that for a decision with
n conditions, it may be satisfied with less test cases: between a lower-bound of
n+1 and upper-bound of 2n test cases, compared to multiple condition coverage
(MCC) which requires 2n test cases. MC/DC requires that each condition in a de-
cision shows an independent effect on that decision’s outcome by (1) varying just
that condition while holding fixed all other possible conditions (UC-MC/DC),
or (2) varying just that condition while holding fixed all other possible conditions
that could affect the outcome. This criterion of showing independence effect for
conditions is unique for MC/DC compared to other structure coverage criteria.

While trying all possible combinations is exhaustive and requires tremendous
resources [18], as well as becoming impracticable for a high number of conditions

? This work was supported by the Spanish Ministry of Science and Innovation under
project FAME (grant nr. RTI2018-093608-B-C31), the Comunidad de Madrid under
project FORTE-CM (grant nr. S2018/TCS-4314) co-funded by EIE Funds of the
European Union, the SFI Smart Ocean NFR Project 309612/F40, and the NFR
Project COEMS Training Network 309527.

126 Paper C

2 F. Ahishakiye et al.

[23,19], finding a test set equal or closer to n+ 1 with MC/DC assurance is also
a non-trivial task [24,15]. Therefore, it is important to investigate new strategies
for generating good test suites both in terms of number of test cases [10] and
coverage adequacy [34,14] with little complexity and with reasonable resources.

In this paper, we present a novel and alternative approach to test case gen-
eration satisfying MC/DC based on reduced-ordered binary decision diagrams
(roBDDs) which are a concise representation of Boolean expressions. roBDDs are
widely used in different areas such as computer aided design (CAD) tasks [26],
symbolic model checking [11,26], and verification of combinational logic [20,29].
Due to their reduced form compared to other Boolean expressions representa-
tions such as disjunctive or conjunctive normal form, truth tables and formula
equivalence [35]; roBDDs offer a unique normal form and were also already used
in test cases generation [17,22] for different coverage criteria other than MC/DC.

We present an algorithm that takes as input the roBDD representing a
Boolean expression and constructs a set of MC/DC pairs. For a decision of
n conditions, we generate n pairs that contain between n + 1 to 2n test cases
altogether. We select paths based on their length in roBDDs and reuse factor
(α()). The reuse factor refers to the number of pairs that use a given path.

We propose and compare heuristics with different preferences with respect to
three-valued truth-values (1, 0 and ?) and the length of paths in the roBDD. All
of them maximize the reuse factor (α()) together with a second criteria, namely:
the longest paths in BDD (HLPN , HLPB), the longest paths which may merge
(HLMMN ,HLMMB), and the longest paths with better size (HLPBS). Each type
of heuristic implements two different flavors which sort the BDD paths depending
on the interpretation of the reuse factor as a natural number (HLPN , HLMMN)
or as a boolean value (HLPB , HLMMB)(e.g., α(p, ψ) < α(q, ψ)). Our algorithm
is implemented in Python and the PyEDA library [13]. We test our algorithm
on the Traffic Alert and Collision Avoidance System (TCAS II) benchmarks [33]
which are widely used in the literature [19,21,37,22,17].

BDDs are sensitive to conditions ordering, such that different orders yield
different BDDs and their size in the worst case grows to 22

n

nodes [27]. As the
number of nodes increases there are many paths to select MC/DC pairs from.
We present evidence that to find an optimal or “good enough” solutions, instead
of a search with backtracking, it is sufficient to try a few different permutations.

The rest of this paper is organized as follows: in Section 2 we present our ter-
minology, notations and a background on MC/DC and BDDs. Section 3 describes
our approaches and algorithm for generating test cases satisfying MC/DC based
on BDDs. Section 4 explains the implementation of our algorithm and discuss
the results. In Section 5 we provide the state of the art of the existing related
work. Finally, we present the concluding remarks and future work in Section 6.

2 Background

In this section, we provide the background on MC/DC and BDDs. We present
several basic definitions and terminology which are used throughout this paper.

Paper C 127

2. BACKGROUND 3

Conditionals in source code, as well as logical expressions in software specifica-
tions can be formalized as Boolean expressions. Both BDDs and MC/DC deal
with Boolean expressions.

Definition 1 (Boolean expression). A Boolean expression is defined as an
expression that can be evaluated to either true (T) or false (F) and can contain
connectives: NOT, AND, OR, XOR (exclusive-or), denoted by ¬, ∧, ∨, and ⊕
respectively.

There has been some confusion on what is a condition and decision in the
context of source code and the Certification Authorities Software Team (CAST)
provided suitable definitions [7]: each occurrence of a condition is considered as
a distinct condition, whereas we treat multiple occurrences of a variable as one
condition, where c and ¬c are strongly coupled conditions.

Definition 2 (Condition). A condition denotes a logical indivisible (atomic)
expression containing no Boolean operators except for the unary operator (¬). It
contains a Boolean variable represented by a, b, c,. . ., defined over “0” or “1”.

Definition 3 (Decision). A decision is a Boolean expression composed of con-
ditions and zero or more Boolean operators. It is denoted by D = c1�c2�c3 · · ·�
ci � · · · � cn, where ci, (1 ≤ i ≤ n) are Boolean conditions and � stands for a
binary Boolean operator. A decision is also known as a Boolean function.

Definition 4 (Two/Three-valued test case). Given a decision D, a test
case is a truth vector tc = (I1, I2, I3, · · · , In) where Ii ∈ {0, 1} (respectively,
{0, 1, ?}) are the inputs assigned to each conditions. ? is known as “don’t care”
meaning that a condition does not need to be evaluated due to short-circuiting.
A set of test cases for a given decision is called a test suite. We denote the
projection onto the truth-value at the position corresponding to some condition
c in the test case tc as tc[c].

2.1 Modified condition decision coverage (MC/DC) criterion

We first give the well-known definitions for two-valued truth values, and will
later extend the definitions into the three-valued setting. MC/DC subsumes the
existing logical coverage criteria such as condition coverage (CC): each condition
tested once true and false, decision coverage (DC): a decision is evaluated once
true and once false, and multiple condition coverage (MCC): an exhaustive test-
ing that requires all possible combination of inputs. For MC/DC each condition
has to independently affect the decision’s outcome. According to DO-178C [28]
and CAST-10 [7] the following definition has been provided for MC/DC:

Definition 5 (MC/DC [30]).
A decision is said to be MC/DC covered iff: (i) Every point of entry and
exit in the program has been invoked at least once, (ii) every condition in
a decision in the program has taken all possible outcomes at least once, (iii)
every decision in the program has taken all possible outcomes at least once, (iv)

128 Paper C

4 F. Ahishakiye et al.

each condition in a decision has shown to independently affect that decision’s
outcome by: (1) varying just that condition while holding fixed all other possible
conditions(UC-MC/DC), or (2) varying just that condition while holding
fixed all other possible conditions that could affect the outcome (Masking
MC/DC).

The coverage of program entry and exit in the Definition 5 is not directly con-
nected with the main point of MC/DC [32], as we only consider expressions, not
programs. The most interesting part of the MC/DC definition is showing the
independent effect, which demonstrates that each condition of the decision has a
defined purpose. The item (1) in the definition defines the unique cause MC/DC
which original MC/DC [9]. The item (2) has been introduced in DO-178C to
clarify that so-called Masked MC/DC is allowed [6,28]. Masked MC/DC means
that it is sufficient to show the independence effect of a condition by holding fixed
only those conditions that could actually influence the outcome. In our analysis,
we are interested in generating MC/DC test cases that show an independence
effect of each condition in the decision with acceptable size.

Definition 6 (Independence effect of a condition, independence pair,
⊕c). Given two test cases tc, tc′ for a decision D, we call tc independent from tc′

on condition c, iff i) D(tc) = ¬D(tc′) (they evaluate to opposite truth values),
and ii) tc⊕ctc

′, where ⊕c means they differ exactly only in the input position
corresponding to condition c. We then say that “tc and tc′ form an independence
pair” (for some condition c), written uc(tc, tc′).

We will later see that in our three-valued interpretation, a test case cannot form
an independence pair if it does not contain enough concrete input to evaluate to
either true or false. We now reformulate the general definition of MC/DC from
Def. 5 for our purposes:

Definition 7 (MC/DC-cover). Given a decision D and set of test cases ψ,
we say that ψ MC/DC-covers D, iff ∀c ∈ D, ∃tc, tc′ ∈ ψ : tc ⊕c tc

′ ∧ uc(tc, tc′)
(tc is independent from tc′ for every condition c).

In other words, a set is an MC/DC-cover for a decision D, if for every condition,
there exists a pair of test cases in that set which shows the independence effect
of that condition by evaluating to opposing truth values.

Example 1. Consider a decision D = (a ∧ b) ∨ c. The truth table representing
MCC and all possible MC/DC pairs is given in Table 1(a). Each pair is showing
the independence effect for a condition. The advantage of MC/DC over MCC
can be seen from Table 1(a). MCC requires eight test cases whereas all possible
MC/DC pairs contain seven test cases. Indeed, only the four test cases shown in
Table 1(b) are required to achieve MC/DC [10,9]. However, choosing a set equal
or closer to minimal number of test cases is non-trivial for testers, especially
when there is more than one MC/DC pair for a certain condition, for example,
condition c can be covered by either of three pairs (indicated in parentheses), as
shown in Table 1(a).

Paper C 129

2. BACKGROUND 5

0 1

c

0 1

b

1

0

a

0

1

Fig. 1: roBDD:
D = (a ∧ b) ∨ c

tc a b c D MC/DC pairs

1 0 0 0 0

2 0 0 1 1 c(1,2)

3 0 1 0 0

4 0 1 1 1 c(3,4)

5 1 0 0 0

6 1 0 1 1 c(5,6)

7 1 1 0 1 a(3,7),b(5,7)

8 1 1 1 1

(a) MCC & All MC/DC pairs

π a b c D MC/DC pairs

1 0 ? 0 0

2 1 1 ? 1 a(1,2)

3 1 0 0 0 b(2,3)

4 1 0 1 1 c(3,4)

(b) MC/DC set of paths

tc a b c D MC/DC pairs

1 0 1 0 0

2 1 1 0 1 a(1,2)

3 1 0 0 0 b(2,3)

4 1 0 1 1 c(3,4)

(c) MC/DC set of test cases

Table 1: MCC & MC/DC pairs for D = (a ∧ b) ∨ c .

Chilenski et al. [10,9] investigated that for a decision D with n conditions,
UC-MC/DC can be achieved with a minimal number of n+1 tests while Masking
MC/DC be achieved with a minimal number of d2∗(

√
n)e tests. This is achieved

by choosing MC/DC pairs that overlap where every condition past the first one
(which requires two test cases), only adds a single test case to the existing set.

Lemma 1 (Minimal MC/DC-Covers [9,1]). If a coverage set exists for a
decision D with n conditions, then there also exists a smaller set (possibly with
different test cases) thereof with exactly n + 1 test cases such that it MC/DC-
covers D for UC MC/DC.

2.2 Overview on binary decision diagrams (BDDs)

BDDs are canonical representations of Boolean functions compared to other
Boolean expressions representations such as disjunctive normal form (DNF),
conjunctive normal form (CNF), truth tables and formula equivalence [35]. To
reduce BDDs, conditions in a decision need to be ordered and duplicated termi-
nals and isomorphic sub-trees have to be merged. The resulting graph is known
as reduced ordered BDD (roBDD) and is shown in Figure 1 for the Example 1.

BDDs represent formulas compact in the sense that it takes little memory to
store the representation, the number of nodes in a roBDD is reduced and there
is exactly one optimal and unique graph for each Boolean expression [35].

Definition 8 (Path through an roBDD, π, π[x]). Given an roBDD for some
decision D over Boolean variables x0, . . . , x1. We denote a path from the root
of the BDD to a terminal with π, and write π[x] = 1 if the path takes the true-
branch in the node labelled with condition x (0/false respectively), and π[x] =? if
the path does not pass through a node labelled with condition x. That is, although
paths through the roBDD can be of different lengths, for uniformity we always
represent them as a vector with n elements.

130 Paper C

6 F. Ahishakiye et al.

We also extend the evaluation of a decision wrt. some inputs (D(0 . . . 0))
to BDDs and use D(π) to denote the three-valued truth-value that the path
represents. The obvious correspondence between a test case and a path through
the roBDD is that a test case may provide more truth-values as inputs than
are strictly necessary on this path. For example, an MC/DC pair of paths for
condition a is {(0?0), (11?)} as shown in row 1 & 2 of Table 1(b). The fully
instantiated test cases for this pair are {(010), (110)} (row 1 & 2, Table 1(c)).

3 Approaches and algorithm for test cases generation

Our approach and heuristics for test case generation are based on roBDDs that
guide our search for test case selection. We start with a set of roBDDs paths
from the root and construct sets satisfying MC/DC for all conditions, where
each set contains n MC/DC pairs.

BDDs are sensitive to variable ordering: to deal with the ordering effect,
we collect solutions for a number of permutations on the variable ordering. As
the number of conditions in a decision increases, the number of permutations
(n! for n conditions) increases over-exponentially. Since generating the set of
solutions for all permutation would be infeasible in those cases, we show that
for few permutations we generate some test suites of minimal size, based on the
selection methods defined in Subsection 3.2. In the following, we assume that all
BDDs that occur are roBDDs.

3.1 Theorems and definitions for MC/DC in terms of BDDs

The core of our contribution is as follows: our algorithm produces a set of three-
valued test cases, which we can instantiate to fulfill the original definition of
MC/DC. We first extend general results from the standard two-valued Boolean
logic to a three-valued logic.

Definition 9 (Three-valued independence pair, ⊕3
c). Given two three-

valued test cases tc, tc′ for a decision D, we write uc3(tc, tc′) iff
i) D(tc) = ¬D(tc′) (they evaluate to opposite concrete truth values), and ii)
tc⊕3

ctc
′, where ⊕3

c means at least one of the inputs for some condition c is a
concrete truth value, and for every other condition the three-valued inputs coin-
cide or one of them is “?”.

Example 2. Let D(X,Y, Z) = X ∧ ((¬Y ∧ ¬Z) ∨ (Y ∨ Z)). Consider tc = (0??)
with D(tc) = 0 and tc′ = (11?) with D(tc′) = 1 respectively, hence uc3(tc, tc′).
Observe that hence also e.g. uc3(011, 11?) and uc(011, 111).

We next show that each three-valued independence pair can be instantiated to
some two-valued independence pair by suitable substitution of unknown values.
In the following, for readability, we describe functions from our implementation
through their properties instead of operationally. The first function combines
two compatible test cases into a single one. We need this later in our algorithm

Paper C 131

3. APPROACHES AND ALGORITHM FOR TEST CASES GENERATION 7

to refine existing test cases such that we keep only one test case when two cases
overlap.

Definition 10 (merge(tc, tc′)). Given test cases tc, tc′, we obtain
σ = merge(tc, tc′), where ∀c ∈ C, (σ[c] = tc[c] ∧ tc′[c] = ?) ∨ (σ[c] = tc′[c] ∧
tc[c] = ?).

In other words, merge substitutes some ? in a pair of paths, such that all
conditions have equal values. The result is undefined if they disagree in one
position where one has true and the other false. This can be understood as
unifying both test cases with each other, taking ? as free variables.

Note that we ignore the actual outcome when merging wrt. a decision, but
only ever consider the inputs. As we will also consider test cases that differ in
exactly one position, we define the following variation:

Definition 11 (mergex(tc, tc′)). Given test cases tc, tc′, we obtain
σ = mergex(tc, tc′), where ∀c ∈ C \ {x}, (σ[c] = tc[c] ∧ tc′[c] = ?) ∨ (σ[c] =
tc′[c] ∧ tc[c] = ?) ∧ σ[x] = tc[x] (emphasis added).

Note that this definition is biased to reproduce the truth-value in the desig-
nated position x from the first input, and we will consequently later see it applied
twice, once from left to right argument, and also from right to left argument.

Example 3. We have mergec2((1?0), (11?)) = (110), but mergec2((11?), (1?0)) =
(11?), with c2 the condition that is placed in the last position.

Definition 12 (Specialization 5). Given three-valued test cases p, q, we say
that p 5 q iff ∃p′ : p = merge(p′, q) (“ p specializes q”).

Due to the same format for a test case and for a roBDD path (see Def. 8), both
concepts are interchangeable and 5 can specialize any of them. The relation 5
is a partial order (straightforward).

Theorem 1 (Usefulness of three-valued MC/DC). Given a decision D
and set ϕ of three-valued test-cases that is a three-valued MC/DC cover for D,
i.e., ∀c ∈ D : ∃tc, tc′ ∈ ϕ, tc ⊕3

c tc
′ ∧ uc3(tc, tc′). Then there exists a two-valued

set of test cases ψ ⊆ 2B
|D|

, such that:

(1) ∀tc, tc′ ∈ ϕ : uc3(tc, tc′)⇒ ∃u, u′ ∈ ψ : u⊕c u
′ ∧ u 5 tc ∧ u′ 5 tc′

(each test case pair in ϕ has been specialised)
(2) ∀u, u′ ∈ ψ : D(u) = ¬D(u′) ∧ u⊕c u

′ ⇒ ∃tc, tc′ ∈ ϕ : uc3(tc, tc′)
∧u 5 tc ∧ u′ 5 tc′(ψ is the smallest set that specialises ϕ).

It follows that ψ is an MC/DC-cover for D.

Proof. (1) Because of uc3(tc, tc′), tc or tc′ have a concrete value in c and coincide
for the rest of conditions ci, except for those positions ci where one of the test
cases is ?. Hence, u = mergeci(tc, tc

′) returns a new test case where u 5 tc as
the ? are instantiated (symmetrically, u′ = mergeci(tc

′, tc)), excluding condition

132 Paper C

8 F. Ahishakiye et al.

c. MC/DC imposes that u[c] = ¬u′[c], so the selection of tc and tc’ satisfies
that either a) tc[c] = ¬tc′[c], or b) tc[c] =? or tc′[c] =?. In b), u[c] = tc[c] and
u′[c] = tc′[c]: if any of these values is a ?, then they are properly instantiated so
that u⊕c u

′.
(2) As u⊕c u

′, u and u′ are equal except for condition c. Then, tc and tc′ are
constructed by replacing a finite number of positions in u (similarly, u′) with ?
such that they keep uc3(tc, tc′). Because tc and tc′ are abstractions of u and u′,
u 5 tc ∧ u′ 5 tc′.

Due to the specialization relation, multiple sets of two-valued test cases can
be constructed that satisfy the above property: ϕ may contain a test case tc with
“don’t care” for some condition c, and also “don’t care” for every other partner
tc′ in the pairs it is participating in. Then, this input c can be instantiated
to either truth value. Our algorithm 1, which uses the roBDD to populate ϕ,
guarantees that there will exist at least a pair tc, tc′ such that tc[c] = ¬tc′[c] for
every condition c, if the decision can be MC/DC-covered.

Next, we define the function that identifies suitable test cases that we might
want to add our set ψ. Based on the following criteria, for every uncovered
condition the algorithm adds a new test case together with a complementary
one such that the pair shows the independence effect of the condition.

Definition 13 (Reuse factor α(π, ψ), α=3
(π, ψ)). Given the set of MC/DC

pairs of paths (π⊥, π>) ∈ ψ with D(π⊥) = 0 and D(π>) = 1, the reuse fac-
tor α(π, ψ) represents the number of pairs in ψ that use π. It is calculated as
α(π, ψ) := |{(π, (π⊥, π>)) | π = π⊥ ∨ π = π>, (π⊥, π>) ∈ ψ}|.

Relation to BDDs. A pair (tc, tc′) of test cases showing the independence of
some condition ci has a vivid graphical interpretation on the BDD. It corresponds
to a pair of paths (π⊥, π>) such that:

1. the tests evaluate the opposite truth values (i.e., D(tc) = ¬D(tc′));
2. tc 5 π⊥, tc′ 5 π> (order wlog., the test cases may contain more input than

strictly necessary).
3. both reach some node vci using the same path through BDD(D)

(i.e., π⊥[j] = π>[j] for 0 ≤ j < i);
4. their paths from vci exit on either edge (i.e, π⊥[i] = ¬π>[i]);
5. after vci , both test cases take compatible choices along the paths for the

remaining conditions, so that the independence property holds
(i.e., π⊥[j] =3 π

>[j] for i < j < n).

This means especially that the two paths cannot cross (after the condition-
node vci), since this would immediately indicate an incompatible choice.

Figure 2 represents the overview on the selection of MC/DC pairs from the
roBDD. The roBDD contains the root node labeled by R, non-terminal nodes
labeled with conditions and two terminal nodes (0 and 1). The nodes are con-
nected by solid and dashed edges representing assignments of 1 and 0 to each
condition respectively. Every condition c may be represented multiple times on

Paper C 133

3. APPROACHES AND ALGORITHM FOR TEST CASES GENERATION 9

(a) Pair selection (b) Reuse effect

Fig. 2: Overview on MC/DC pairs selection path from BDD and reuse effect

the BDD (nodes vc). There may exist multiple paths to such a node. For ev-
ery path reaching a (non-terminal) node, we attempt to extend it to construct
pairs that show the independence effect of that condition. It is not guaranteed
that the two complementary paths lead to opposite terminal nodes and our al-
gorithm must explicitly check it step-by-step (modulo “don’t care”-steps). The
figure shows a representative of such pairs, (π⊥, π>): they share the same prefix
for all ordered conditions up to vc. They then proceed in lock-step through the
two branches to the terminals.

Figure 2 (b) illustrates some of the effects that we aim to achieve: as we
search for pairs in the order of the roBDD, we will obtain some pair (shown in
blue) from the heuristics (e.g. based on “longest path”) which differs directly in
the condition R for the root node. The next condition A in the order exists only
in the left subtree, and we prefer a pair for it that reuses one of the previous
path. Here, this can only be the left path for R, and hence we check if for the
path that condition A shares with condition R we can construct a compatible
path to the opposite terminal after leaving the node for A through the opposite
edge (red pair). For condition B, we attempt to construct a pair by reusing the
right branch for condition R (blue), and another one that uses the path that
we used before both for R and A. We either take the only pair that fulfils our
criteria, or again have the heuristics break a potential tie, here resulting in the
green pair for condition B.

Due to the structure of roBDD, the derived test cases correspond to MC/DC
+ short circuit [6,5] where a test case can be composed with a three-valued
assignment (0: false, 1:true, and ?:not evaluated(a condition does not appear
along the path)). Therefore, to find the test cases that satisfy Unique Cause
MC/DC [9], the “don’t care” assignments will be replaced by either 0 or 1
pairwise (by the corresponding value at the same position in the partner path).

3.2 Algorithm and heuristics for test cases generation

Our approach for MC/DC test case generation for a decision D is based on the
three-valued paths that are extracted from the equivalent roBDD. The MC/DC
coverage criteria requires a pair of test cases that shows the independence effect

134 Paper C

10 F. Ahishakiye et al.

for every condition. The presence of “don’t care” values in a BDD path gives us
some flexibility when instantiating it to a test case and finding the complemen-
tary test case that leads to the opposite Boolean evaluation. As the wildcards
may specialize to any Boolean value, we propose a greedy algorithm that tries to
minimize the overall number of test case pairs for a decision D with n conditions
from 2n to a value as close as possible to n+ 1.

To this end, our method is divided in two stages: during the first phase, it
initializes the MC/DC test suite with paths that are extracted from the BDD
through any of our predefined heuristics, which intend to maximize the reuse
factor in order to reduce the differences among test cases. Secondly, the selected
BDD paths are specialized so that the wildcards take a concrete value while
preserving the independence effect. We lift this property to sets of pairs of test
cases with the definition of instantiate which computes the smallest set such
that it guarantees that all members have been merged if possible:

∀(s, s′) ∈ instantiate(S) :
∃(p, p′) ∈ S : uc3(p, p′) ∧ s 5 p ∧ s′ 5 p′ (instantiated from S)
∧ ∀(p, p′) ∀(q, q′) ∈ S : s 5 p ∧ p 5 q ∧ p 5 q′ ⇒ s = p ∧ s′ = p′(least upper bound)
∧ ∃c : mergec(s, s

′) = s ∧mergec(s
′, s) = s′ (fully merged).

This approach takes n = |C| iterations, and each iteration adds a pair consist-
ing of at most two new paths to the set. If S is empty, we can abort as this means
there does not exist any pair showing the independence effect of that condition,
and hence the decision D cannot be covered with the MC/DC-property. Corre-
spondingly, unless we abort, the final set will contain n pairs, consisting of at
most 2n individual paths. By construction, these pairs will provide three-valued
MC/DC-coverage of the decision.

This leaves us two points to address: i) can we avoid constructing the set
of all pairs for a condition, but instead only use a relevant, smaller subset as
input to the heuristics, and ii) can we present evidence that our heuristics have
a high likelihood of picking pairs that not only reuse a path from the already

Algorithm 1: MC/DC Test case generation

Input: An roBDD over conditions C with root r for a formula ϕ
Output: Set ψ of pairs of test cases that MC/DC-cover ϕ with

|C|+ 1 ≤ |⋃{{tc, tc′}|(tc, tc′) ∈ ψ}| ≤ 2|C|.
1 ψ = Ø;
2 forall c ∈ C do

3 Let S := {(π>
vc , π

⊥
vc) | where π>

vc , π
⊥
vc are paths from the root r via some vc

to > and ⊥ respectively, such that [π>
vc]⊕c[π

⊥
vc]}.

4 Abort if S = Ø: no MC/DC cover of ϕ possible.
5 Let (p, q) := H(ψ, S) be the result of applying a given heuristics H, such

that ∃(p′, q′) ∈ S : p = mergec(p
′, q′), q = mergec(q

′, p′).
6 ψ = instantiate(ψ ∪ {p, q})
7 end

Paper C 135

3. APPROACHES AND ALGORITHM FOR TEST CASES GENERATION 11

selected pairs (if possible), but also contributes a fresh path that will be reused
in the future. We address the first point through algorithmic construction, and
evaluate the second through a series of experiments using the TCAS case study.

Algorithmic description. Any approach to a potentially optimal solution must
reuse a test case that has already been selected as a partner in a pair for some
other condition when selecting a pair for some other condition. It is hence clear
that not all pairs for a condition may have to be constructed and evaluated.
Rather, we first attempt to directly derive a pair from the existing set of test
cases (by flipping only the corresponding condition), and only revert to deriving
a new pair of completely fresh paths if such a derived path does not exist.
Depending on the heuristics, identifying a completely fresh pair may entail a
complete enumeration of pairs: it may be looking for the longest path with most
reuse-potential (least number of “don’t care”), which could ultimately be the
last pair a given traversal of the BDD yields.

The representation as a BDD gives us an advantage in building fresh pairs: by
exploring the tree from the root, the ordered labels tell us when we can preempt
a search because the condition of interest does not exist in the remaining subtree,
and we can continue our search in a sibling. Compared to an exploration of the
corresponding truth-table, this effectively allows us to skip over irrelevant rows.
We next formalize the notion of path-length in the roBDD.

Definition 14 (Length of a path/test case, |σ|/|tc|). Given a path σ in the
roBDD for a decision D from the root to a terminal, we denote the length of the
path with |σ|. The length of a test case |tc| is that of the underlying path.

Note that since a test case can have more concrete inputs than are necessary for
the path we have in the BDD, the length of a test case may be lower than the
number of concrete inputs in that test case.

We propose five selection methods for test cases generation. All of them max-
imize the reuse factor (α()) together with a second criteria, namely: the longest
paths in BDD (HLPN , HLPB), the longest paths which may merge (HLMMN ,
HLMMB), and the longest paths with better size (HLPBS). Each type of heuris-
tic implements two different flavors which sort the BDD paths depending on the
interpretation of the reuse factor as a natural number (HLPN , HLMMN) or as
a boolean value (HLPB , HLMMB)(e.g., α(p, ψ) < α(q, ψ)). We compare them
with the random reuser (HRR) method as a baseline, which takes the first new
path that forms a new pair with an existing test.

HLPN/HLMMN : This method chooses pairs of paths satisfying MC/DC based
on the longest paths in BDDs with the highest reused factor. In case multiple
pairs have equal reuse, we choose one where additionally the sum of the lengths
is longest. The longest path or higher reuse factor may be better since it can be
reused by many conditions that appear along the path.

HLPN (ψ, S) := (mergec(p, q),mergec(q, p)) where (p, q) ∈ S
such that either (in order):

136 Paper C

12 F. Ahishakiye et al.

1. α(p, ψ) > 0 ∧ α(q, ψ) > 0 ∧ ∀(p′, q′) ∈ S : α(p′, ψ) > 0 ∧ α(q′, ψ) > 0
⇒ |p|+ |q| ≥ |p′|+ |q′|

(both test cases were already in the set)
2. ∀(p′, q′) ∈ S : α(p, ψ) + α(q, ψ) ≥ α(p′, ψ) + α(q′, ψ) (highest reuse)

∧ (α(p, ψ) + α(q, ψ) = α(p′, ψ) + α(q′, ψ)⇒ |p|+ |q| ≥ |p′|+ |q′|)
(longest path) .

HLPB/HLMMB: The previous heuristic HLPN looks at the reuse of the paths
in a pair: the existing path may have reuse > 0, and may occur in multiple pairs
in the existing set. Its partner path may also be derived from another existing
pair. Since it is not clear that past performance (“high reuse = used in multiple
pairs by someone before”) is an indication for future performance (“does it have
more likelihood to be useful in future pairs?”), we also evaluate a variant that
only prefers that there is some reuse, but not how much:

HLPB(ψ, S) := (mergec(p, q),mergec(q, p)) where (p, q) ∈ S :
α(p, ψ) + α(q, ψ) > 0 (has some reuse)
∧ ∀(p′, q′) ∈ S : α(p′, ψ) + α(q′, ψ) > 0⇒ |p|+ |q| ≥ |p′|+ |q′|(longest path).

The difference between this method and the previous one is that here we
consider the reuse factor as Boolean. That is, we choose a pair with the longest
paths in BDDs and we check if one of the paths is already reused as a part of an
earlier pairs or not. This may give rise to greater non-determinism since more
potential partners are considered equivalent.

Longest paths best size (HLPBS): selects MC/DC pairs where the paths
have together the highest reuse and the sum of the lengths is strictly the longest.

4 Implementation of MC/DC test cases selection

In this section we describe how we evaluate our approach for the heuristics pro-
posed in Section 3. For each heuristic, one run of Alg. 1 derives a set of test
cases for a decision with MC/DC-coverage if it exists. Our heuristics are sensi-
tive to exactly one parameter: the ordering of conditions when constructing the
BDD. Furthermore, there is some inherent non-determinism: a heuristic picks
randomly among equally best-ranked pairs. It is quite common to observe equiv-
alent pairs with identical reuse and identical path-length. Secondary sources of
non-determinism include e.g. iteration over unordered structures like sets which
are implementation-specific to a given Python platform.

To give a proper evaluation, we control these in the following way: every
heuristic is applied for a number of permutations of the order of the conditions
for each decision. For decisions with a low number of conditions, we can hence
even exhaustively evaluate the outcome of the heuristics for all permutations. In
addition, we repeat a run on a given permutation, exploring different random
choices within the equivalent best pairs.

Paper C 137

4. IMPLEMENTATION OF MC/DC TEST CASES SELECTION 13

Fig. 3: Test cases generation framework

Our framework is based on the PyEDA library [13] and implemented in
Python. We test our algorithm on the Traffic Alert and Collision Avoidance
System (TCAS II) benchmark [33,25] which has been frequently used in litera-
ture [19,21,37,22,17]. The benchmark refers to specifications written as Boolean
expressions (decisions) which are logically evaluated to true or false depending
on the truth values assigned to the contained conditions.

Below, we present detailed results for a well-known set of TCAS II decisions
that can be reproduced with the code in our open source repository 3. We do
not report execution times for our experiment, as our implementation is not
optimized in any way beyond obvious algorithmic constructions to minimize
BDD-traversal.

4.1 Experimental setup

Fig. 3 shows our test cases generation framework. Our setup takes as input the
roBDD for a given decision, the number of permutations, and the number of runs
that we perform for each process of test cases generation. The selection method
refers to the different heuristics proposed in Section 3: HLPN , HLPB , HLMMN ,
HLMMB , HLPBS and HRR. The benchmarks refer to the specifications written
as Boolean expressions (decisions) which are logically evaluated to true or false
depending on the truth values assigned to the contained conditions. MC/DC
test specifications are the meaning of what is MC/DC in the context of roBDDs
and three values logic (cfr. Theorem 1 and Def. 9). We consider the reuse factor
in our MC/DC analysis to reuse as much as possible the existing selected TCs
and finally, we produce n MC/DC pairs as output for each decision with the size
of n+m solutions. Our results show that we produce mostly n+ 1 solutions and
the rest of solutions are less than 2n with 100% MC/DC.

3 https://github.com/selabhvl/py-mcdc/

138 Paper C

14 F. Ahishakiye et al.

(a) % of n+1 solutions (b) % of n+2 solutions

Fig. 4: Comparison of % for n+1 and n+2 solutions for different heuristics

4.2 Experimental Results

Figure 4(a) and (b) present our results as the percentage of generated solutions
of sizes n + 1 and n + 2 for TCAS II based on our heuristics and the baseline
RR heuristic. We consider 5040 different orders at most for each decisions (this
exhaustively covers all orders for decisions with up to seven conditions). This
sample size already yields evidence that repeated application of the algorithm
to different orders will discover a (close to) optimal solution reasonably quickly.

For each heuristic we collect all possible sets of MC/DC covering test cases.
MC/DC coverage is calculated as the percentage of the number of covered con-
ditions to the total number of conditions in a decision. In case the MC/DC
coverage percentage is less than 100%, it means that MC/DC is not fulfilled
for that decision. We present results for solutions of size n + 1 (optimal) and
n + 2 for our heuristics as shown in Figure 4. The charts for the heuristics can
be reproduced from our open repository. From the TCAS II benchmark results
in Figure 4 and 5, we highlight the following:

1. Our heuristics find the test suite sets of n + 1 solutions for each decision,
whereas HRR failed to find any minimal solution for D15. Our heuristics
perform better compared to HRR for 18 out of 20 decisions and have equal
results for two decisions in terms of which heuristic has frequently the highest
of n + 1 solutions with 100% MC/DC. This shows that the approach of
permuting order is a viable strategy to eventually obtain an optimal results.

2. HLPB and HLMMB out-perform all others with 10 cases (50%) having the
highest % of n+1 solutions.

3. Comparing theHLPB toHLMMB ,HLPB is 2 cases (10%) higher thanHLMMB .

4. We observed that HLMMN is 2 cases (10%) higher than HLPN .

5. HLPBS has better results in some decisions than HLMMN and HLPN .

6. In three decisions (D2, D5 and D7), HRR has better results than some of
our our heuristics. We attribute this outcome to random chance.

Paper C 139

4. IMPLEMENTATION OF MC/DC TEST CASES SELECTION 15

7. From Figure 4 (b) which represent the n+2 solutions, we can see that for the
decisions in which we did not find the highest percentage of n+1 solutions
now we have a high % of n+2 solutions, which indicates that our test suites
generated are closer to lower bound (n+1) of MC/DC minimal set.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6

Pr
ob
ab
ilit
y	
di
st
rib

ut
io
n

Number	of	tests	(m)	additional	to	minimum	set	n+1

Distribution	of	n+m	solution	permutations:5040,	runs:6,	HLPB

1:6
2:8
3:8
4:8
5:8
6:9
7:9

8:10
9:10
10:8

11:11
12:11
13:12
14:12
15:13
16:13
17:13
18:14
19:14
20:15

(a) Longest Path Boolean(HLPB)

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6

Pr
ob
ab
ilit
y	
di
st
rib

ut
io
n

Number	of	tests	(m)	additional	to	minimum	set	n+1

Distribution	of	n+m	solution	permutations:5040,	runs:6,	HLPN

1:6
2:8
3:8
4:8
5:8
6:9
7:9

8:10
9:10
10:8

11:11
12:11
13:12
14:12
15:13
16:13
17:13
18:14
19:14
20:15

(b) Longest Path Natural(HLPN)

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6

Pr
ob
ab
ilit
y	
di
st
rib

ut
io
n

Number	of	tests	(m)	additional	to	minimum	set	n+1

Distribution	of	n+m	solution	permutations:5040,	runs:6,	HLMMB

1:6
2:8
3:8
4:8
5:8
6:9
7:9

8:10
9:10
10:8

11:11
12:11
13:12
14:12
15:13
16:13
17:13
18:14
19:14
20:15

(c) Longest May Merge Boolean(HLMMB)

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6

Pr
ob
ab
ilit
y	
di
st
rib

ut
io
n

Number	of	tests	(m)	additional	to	minimum	set	n+1

Distribution	of	n+m	solution	permutations:5040,	runs:6,	HLMMN

1:6
2:8
3:8
4:8
5:8
6:9
7:9

8:10
9:10
10:8

11:11
12:11
13:12
14:12
15:13
16:13
17:13
18:14
19:14
20:15

(d) Longest May Merge Natural(HLMMN)

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6

Pr
ob
ab
ilit
y	
di
st
rib

ut
io
n

Number	of	tests	(m)	additional	to	minimum	set	n+1

Distribution	of	n+m	solution	permutations:5040,	runs:6,	HLPBS

1:6
2:8
3:8
4:8
5:8
6:9
7:9

8:10
9:10
10:8

11:11
12:11
13:12
14:12
15:13
16:13
17:13
18:14
19:14
20:15

(e) Longest Path Better Size(HLPBS)

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6

Pr
ob
ab
ilit
y	
di
st
rib

ut
io
n

Number	of	tests	(m)	additional	to	minimum	set	n+1

Distribution	of	n+m	solution	permutations:5040,	runs:6,	HRR

1:6
2:8
3:8
4:8
5:8
6:9
7:9

8:10
9:10
10:8

11:11
12:11
13:12
14:12
15:13
16:13
17:13
18:14
19:14
20:15

(f) Random Reuser(HRR)

Fig. 5: Probability distribution of n+m solutions for 5040 permutations, 6 runs

140 Paper C

16 F. Ahishakiye et al.

In summary, our results show that we produce mostly n+1 solutions and the
rest of solutions are less than 2n with 100% MC/DC adequacy. Figures 5 (a)-(f)
show the probability distribution of n+m TCs generated for 5040 permutations,
6 runs for different heuristics. The x-axis shows the number of test cases (m)
additional to the minimal solution (n+ 1). The labels show the decision number
and the contained conditions as presented in [25]. All the solutions are have
less than 2n test cases, as the maximum observed for m is 6 while the range of
number of conditions is 6 to 14. Figures 5 shows that most solutions are much
closer to the minimal size (to the left) than to the worst case.

Another challenge which is not directly related to our approach but to MC/DC
is the coupled and masked conditions where it is difficult to get a full MC/DC
coverage with masked condition. For example the decision D10 in the TCAS
II benchmark has two conditions (b and h) which are masked. Out of the nine
conditions, hence only seven are retained in the roBDD and we compute our
minimal solution accordingly.

For the complex example D15 in the 20 TCAS II decisions, our algorithm
takes on average 0.7 seconds (incl. time for constructing the BDD) for a single
run on an Intel(R) Core(TM) i7-7700 CPU @3.60GHz Linux machine with 64
GB RAM. From the proposed heuristics, we recommend the longest paths with
reuse as Boolean number(HLPB) as it shows high performance both in terms
of high percentage of n + 1 solutions and short time to compute the solutions
compared to the rest of the heuristics.

5 Related work

Automatic test data generation approaches were proposed in [16,4,36] and are
based on greedy or meta-heuristic search strategy. They use search algorithms
to extract test paths from the control flow graph of a program, then invoke an
SMT solver to generate test data [16] and afterwards reduce the test-suite with a
greedy algorithm. The drawback for this approach is that often infeasible paths
are selected, resulting in significant wasted computational effort. We did not
investigate test data generation here, only boolean inputs to a single decision.

Kitamura et al. [25] and Yang et al. [37] use a SAT solver to construct minimal
MC/DC test suites. That is, the MC/DC criterion is encoded in a single query,
and the solver produces a suitable assignment for test case inputs if it exists, or
times out. In contrast to the exhaustive nature of SAT queries which may lead
to timeouts, our approach delivers a single answer in much less time, but may
require repetition to find an optimal solution.

Some of their results do not satisfy UC-MC/DC in some cases, and generate
test cases only for Masking MC/DC. There are also some conditions which are
reported as infeasible, while the MC/DC pairs for those conditions can be found.
For example in [25], decisions 6 and 8 of the TCAS II benchmarks have test suites
with 3 and 4 test cases for 8 and 9 conditions respectively which cannot satisfy
MC/DC.

A study of enhanced MC/DC coverage criterion for software testing based
on n-cube graphs and gray code is presented in [8]. It is an exhaustive approach

Paper C 141

6. CONCLUSION AND FUTURE WORKS 17

that takes input as a Boolean expression, builds the n-cube graph, and deduces
test cases from all vertices of the graph. Their test cases selection is based on the
weight of each test case in a similar way that we calculate the reuse factor of a
path. The main difference is that they have to construct the n-cube graph which
have the same effect as exhaustive traversal of a truth table and the resulting
size of the test suite is not minimal.

Gay et al. [14,15], developed a technique to automatically generate test cases
using model checkers for masking MC/DC. Using the JKind model checker,
they produce a list of all test inputs and then select the desired test cases while
preserving the coverage effectiveness. Their test suite reduction algorithm used
to reduced the original test-suite does not guarantee to find the smallest set.
They tested their approaches on different real-world avionics systems where they
achieved an average MC/DC coverage of 67.67%.

Comar et al. [12] discussed MC/DC coverage in terms of BDD coverage. They
examine the set of distinct paths through the BDD that have been taken based
on the control flow graph. Based on BDDs they investigated the formalization
and comparison of MC/DC to object branch coverage, but the test cases selection
is out of their scope. We extend the formalization and definitions of MC/DC in
terms of BDDs in the context of test cases selection.

The roBDDs have been used in [22,17] for test cases generation, and highlight
the properties and benefits of roBDDs, however, MC/DC was not considered
as coverage criterion. Like our approach, their greedy approach incrementally
selects a pair of paths where only one condition changes for every condition.

6 Conclusion and Future works
We presented a heuristics-based approach for generating test cases for a Boolean
decision (given as roBDD) that satisfy the MC/DC criterion. We evaluate our
approach on the TCAS II Benchmark and results shows that we frequently find
solutions which are equal or close to the minimal number of test cases without
expensive back-tracking.

Our approach is sensitive to variable ordering in the BDD as each order yields
a different roBDD. We obtained MC/DC solutions of size n + 1 by performing
few permutations of conditions in a decision for all tested decisions. We present
also the other possible solutions which show full MC/DC coverage. In general,
our solutions have a size ranging from n + 1 to 2n, with a high percentage of
size n+ 1 or n+ 2 solutions, where even the latter, although not optimal, may
be acceptable to a user. We proposed different heuristics and compared their
properties. All our heuristics perform better than HRR. HLPB and HLMMB

out-perform all other heuristics with 10 times (50%) having highest percentage
of n+ 1 solutions. We recommend HLPB since it is 10% better than HLMMB .

For the future work we plan to extend our algorithm so that we support
data input coverage where conditions are not abstracted, which requires taking
constraints into consideration. We will also attempt to integrate our test case
generation algorithm into our MC/DC measurement tool and model[2,3]. Al-
though the experimental data shows that we always find an optimal solution, it
remains open if this is a general property of our approach.

142 Paper C

18 F. Ahishakiye et al.

References

1. Adacore. Technical report on OBC/MCDC properties. Technical report, Couver-
ture project, 2010.

2. Faustin Ahishakiye, Svetlana Jakšić, Volker Stolz, Felix D. Lange, Malte Schmitz,
and Daniel Thoma. Non-intrusive MC/DC measurement based on traces. In
International Symposium on Theoretical Aspects of Software Engineering (TASE),
pages 86–92. IEEE, 2019.

3. Faustin Ahishakiye, José I. Requeno Jarabo, Lars Michael Kristensen, and Volker
Stolz. Coverage analysis of net inscriptions in coloured Petri net models. In Interna-
tional Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS), pages 68–83. Springer, 2020.

4. Zeina Awedikian, Kamel Ayari, and Giuliano Antoniol. MC/DC automatic test
input data generation. In Annual Conference on Genetic and Evolutionary Com-
putation Conference (GECCO), pages 1657–1664. ACM, 2009.

5. Matteo Bordin, Cyrille Comar, T. Gingold, Jérôme Guitton, Olivier Hainque, and
Thomas Quinot. Object and source coverage for critical applications with the
COUVERTURE open analysis framework. In European Congress Embedded Real
Time Software and Systems (ERTS), pages 1–9, 2010.

6. Certification Authorities Software Team (CAST). Rationale for accepting masking
MC/DC in certification projects. Technical Report: Position Paper CAST-6, 2001.

7. Certification Authorities Software Team (CAST). What is a “Decision” in appli-
cation of Modified Condition/Decision Coverage (MC/DC) and Decision Coverage
(DC)? Technical Report: Position Paper CAST-10, 2002.

8. Jun-Ru Chang and Chin-Yu Huang. A study of enhanced MC/DC coverage crite-
rion for software testing. In Annual International Computer Software and Appli-
cations Conference (COMPSAC), pages 457–464, 2007.

9. John J. Chilenski. An investigation of three forms of the Modified Condition Deci-
sion Coverage (MC/DC) criterion. Technical report, Office of Aviation Research,
2001.

10. John J. Chilenski and Steven P. Miller. Applicability of Modified Condition/De-
cision Coverage to software testing. Software Engineering Journal, 9(5):193–200,
1994.

11. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

12. Cyrille Comar, Jérôme Guitton, Olivier Hainque, and Thomas Quinot. Formaliza-
tion and comparison of MC/DC and object branch coverage criteria. In European
Congress Embedded Real Time Software and Systems (ERTS), pages 1–10, 2011.

13. Christopher R. Drake. PyEDA: Data structures and algorithms for electronic
design automation. In Python in Science Conference (SciPy), 2015.

14. Gregory Gay, Ajitha Rajan, Matt Staats, Michael Whalen, and Mats P. E. Heim-
dahl. The effect of program and model structure on the effectiveness of MC/DC
test adequacy coverage. ACM Transactions on Software Engineering and Method-
ology, 25(3), July 2016.

15. Gregory Gay, Matt Staats, Michael Whalen, and Mats P. E. Heimdahl. The risks
of coverage-directed test case generation. IEEE Transactions on Software Engi-
neering, 41(8):803–819, 2015.

16. Kamran Ghani and John A. Clark. Automatic test data generation for multiple
condition and MC/DC coverage. In International Conference on Software Engi-
neering Advances (ICSEA), pages 152–157, 2009.

Paper C 143

6. CONCLUSION AND FUTURE WORKS 19

17. Hongfang Gong, Junyi Li, and Renfa Li. CTFTP: A test case generation strategy
for general Boolean expressions based on ordered binary label-driven Petri nets.
IEEE Access, 8:174516–174529, 2020.

18. Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. Test them all, is it worth it? Assessing configuration sampling
on the JHipster Web development stack. Empirical Software Engineering, 24(2):674
–717, 2019.

19. Sylvain Hallé, Edmond La Chance, and Sébastien Gaboury. Graph methods for
generating test cases with universal and existential constraints. In International
Conference on Testing Software and Systems (ICTSS), pages 55–70. Springer, 2015.

20. Alan J. Hu. Formal hardware verification with BDDs: an introduction. In IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), volume 2, pages 677–682. IEEE, 1997.

21. James A. Jones and Mary J. Harrold. Test-suite reduction and prioritization for
Modified Condition/Decision Coverage. IEEE Transactions on Software Engineer-
ing, 29(3):195–209, 2003.

22. Akram Kalaee and Vahid Rafe. An optimal solution for test case generation using
ROBDD graph and PSO algorithm. Quality and Reliability Engineering Interna-
tional, 32(7):2263–2279, 2016.

23. Susanne Kandl and Sandeep Chandrashekar. Reasonability of MC/DC for safety-
relevant software implemented in programming languages with short-circuit eval-
uation. Computing, 97(30):261–279, Mar 2015.

24. Sekou Kangoye, Alexis Todoskoff, and Mihaela Barreau. Practical methods for
automatic MC/DC test case generation of Boolean expressions. In IEEE AU-
TOTESTCON, pages 203–212. IEEE, 2015.

25. Takashi Kitamura, Quentin Maissonneuve, Eun-Hye Choi, Cyrille Artho, and An-
gelo Gargantini. Optimal test suite generation for Modified Condition Decision
Coverage using SAT solving. In Computer Safety, Reliability, and Security, pages
123–138. Springer, 2018.

26. Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in
VLSI Design. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1998.

27. Jim Newton and Didier Verna. A theoretical and numerical analysis of the worst-
case size of reduced ordered binary decision diagrams. ACM Transactions on
Computational Logic, 20(1), January 2019.

28. Frederic Pothon. DO-178C/ED-12C versus DO-178B/ED-12B: Changes and Im-
provements. Technical report, AdaCore, 2012. available at https://www.adacore.
com/books/do-178c-vs-do-178b.

29. Sherief Reda and Ashraf M. Salem. Combinational equivalence checking using
Boolean satisfiability and binary decision diagrams. In Design, Automation and
Test in Europe. Conference and Exhibition (DATE), pages 122–126. IEEE, 2001.

30. Leanna Rierson. Developing Safety-Critical Software: A Practical Guide for Avia-
tion Software and DO-178C Compliance. CRC Press, 2013.

31. Gregory Tassey. The economic impacts of inadequate infrastructure for software
testing, 2002.

32. Sergiy Vilkomir and Jonathan Bowen. Reinforced Condition/Decision Coverage
(RC/DC): A new criterion for software testing. In International Conference of B
and Z Users, volume 2272 of LNCS, pages 291–308. Springer, 2002.

33. Elaine Weyuker, Tarak Goradia, and Ashutosh Singh. Automatically generating
test data from a Boolean specification. IEEE Transactions on Software Engineer-
ing, 20(5):353–363, 1994.

144 Paper C

20 F. Ahishakiye et al.

34. Elaine J. Weyuker, Stewart N. Weiss, and Dick Hamlet. Comparison of program
testing strategies. In Symposium on Testing, Analysis, and Verification (TAV),
pages 1–10. ACM, 1991.

35. James Worrell. Logic and Proofs-Binary Decision Diagrams. Available at https:
//www.cs.ox.ac.uk/people/james.worrell/lec5-2015.pdf.

36. Tianyong Wu, Jun Yan, and Jian Zhang. Automatic test data generation for
unit testing to achieve MC/DC criterion. In International Conference on Software
Security and Reliability (SERE), pages 118–126. IEEE Computer Society, 2014.

37. Ling Yang, Jun Yan, and Jian Zhang. Generating minimal test set satisfying
MC/DC criterion via SAT based approach. In Annual ACM Symposium on Applied
Computing (SAC), pages 1899–1906. ACM, 2018.

Paper C 145

PAPER D
COVERAGE VISUALIZATION AND ANALYSIS OF
NET INSCRIPTIONS IN COLOURED PETRI NET
MODELS

Faustin Ahishakiye, José Ignacio Requeno Jarabo, Lars Michael Kristensen, Volker Stolz

Journal of Innovations in Systems and Software Engineering (ISSE), March, 2022
(Submitted, under review).

Coverage Visualization and Analysis of Net
Inscriptions in Coloured Petri Net Models

Faustin Ahishakiye1*, José Ignacio Requeno Jarabo2†, Lars
Michael Kristensen1† and Volker Stolz1†

1*Computer Science, Electrical Engineering, and Mathematical
Sciences, Western Norway University of Applied Sciences,

Inndalsveien 28, Bergen, 5063, Norway.
2Information Systems and Computing, Complutense University of

Madrid, C/Prof. José García Santesmases, 9, Madrid, 28040,
Spain.

*Corresponding author(s). E-mail(s): fahi@hvl.no;
Contributing authors: jrequeno@ucm.es; lmkr@hvl.no;

vsto@hvl.no;
†These authors contributed equally to this work.

Abstract
High-level Petri nets such as Coloured Petri Nets (CPNs) are charac-
terised by the combination of Petri nets and a high-level programming
language. In CPNs and CPN Tools, the inscriptions (e.g., arc expres-
sions and guards) are specified using Standard ML. The application of
simulation and state space exploration for validating CPN models tra-
ditionally focusses on behavioural properties related to net structure,
i.e., places and transitions. This means that the net inscriptions are
only implicitly validated, and the extent to which their sub-expressions
have been covered is not made explicit. This paper extends our pre-
vious work for coverage analysis of programming languages via net
inscriptions of CPN models. In particular, we upgrade the CPN Tools
library responsible for annotating, instrumenting and collecting the
evaluation of Boolean conditions for determining the coverage criteria
based on model executions (runs). The library now automates most of
the instrumentation parts that were done manually before, and inte-
grates the reports of the coverage analysis inside the CPN Tools GUI.
We evaluate our approach on new publicly available CPN models.

1
Paper D 149

2 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

Keywords: Coverage analysis, MC/DC, CPN model, Testing

1 Introduction
Coverage analysis is important for programs in relation to fault detection.
Structural coverage criteria are required for software safety and quality design
assurance [1], and low coverage indicates that the software product has not
been extensively tested. Two common metrics are statement- and branch cov-
erage [2], where low coverage concretely indicates that certain instructions
have never actually been executed. Coloured Petri Nets [3] and CPN Tools [4]
have been widely used for constructing models of concurrent systems with sim-
ulation and state space exploration (SSE) being the two main techniques for
dynamic analysis. CPN model analysis is generally concerned with behavioural
properties related to boundedness, reachability, liveness, and fairness proper-
ties. This means that the main focus is on structural elements such as places,
tokens, markings (states), transitions and transition bindings. Arc expres-
sions and guards are only implicitly considered via the evaluation of these
net inscriptions taking place as part of the computation of transition enabling
and occurrence during model execution. This means that design errors in net
inscriptions may not be detected as we do not obtain explicit information on
for instance whether both branches of an if-then-else expression on an arc have
been covered.

We argue that from a software engineering perspective, it is important
to be explicitly concerned with quantitative and qualitative analysis of the
extent to which net inscriptions have been covered. Our hypothesis is that
the coverage criteria used for traditional source code can also be applied to
the net inscriptions of CPN models. Specifically, we consider the modified
condition decision coverage (MC/DC) criterion. MC/DC is a well-established
coverage criteria for safety-critical systems, and is required by certification
standards, such as the DO-178C [5] in the domain of avionic software systems.
In the context of MC/DC, a decision is a Boolean expression composed of sub-
expressions and Boolean connectives (such as logical conjunction). A condition
is an atomic (Boolean) expression. According to the definition of MC/DC [6,
2], each condition in a decision has to show an independent effect on that
decision’s outcome by: (1) varying just that condition while holding fixed all
other possible conditions; or (2) varying just that condition while holding
fixed all other possible conditions that could affect the outcome. MC/DC is
a coverage criterion at the condition level and is recommended due to its
advantages of being sensitive to code structure, requiring few test cases (n+1
for n conditions), and it is the only criterion that considers the independence
effect of each condition.

Coverage analysis for software is usually provided through dedicated instru-
mentation of the software under test, either by the compiler, or additional

150 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 3

tooling, such as binary instrumentation. Transferring this to a CPN model
under test, our aim is to combine the execution of a CPN model (by simula-
tion or SSE) with coverage analysis of SML guard and arc expressions. Within
CPN Tools, there is no coverage analysis of the SML expressions in a CPN
model. This means that to record coverage data for a CPN model under test, it
is necessary to instrument the Boolean expressions such that the truth-values
of individual conditions are logged in addition to the overall outcome of the
decision. Our approach to instrumentation makes use of side-effects by out-
putting intermediate results of conditions and decisions, which we then process
to obtain the coverage verdict. No modifications to the net structure of the
CPN model are necessary. Furthermore, the instrumentation has little impact
on model execution so that it does not delay the simulation and SSE.

In this article, we extend our approach for coverage analysis of net
inscriptions in CPN models [7] with the following new contributions:

1. We automate our instrumentation: it takes as input the original CPN model
and produces an instrumented model where the Boolean expressions in
guards and arcs are transformed into a form that emits log entries that are
collected for coverage analysis. The automatic instrumentation also pro-
cesses the definition of auxiliary SML functions, which were not considered
in our manually instrumented solution.

2. We integrated a coverage visualization in CPN model such that a tester can
observe which guard and arc expressions are covered or not. The covered
parts are highlighted in green whereas the uncovered parts are shown in red
with a possibility to see coverage percentage for each decision.

3. We test more CPN models and gather coverage statistics for seven
additional CPN models publicly available.

The remainder of this paper is organised as follows. In Section 2, we intro-
duce the MC/DC coverage criterion in more detail. In Section 3, we present
our approach to deriving coverage data and show how to instrument guard and
arc expressions to collect the required coverage data. In Section 4 we consider
the post-processing of coverage data. We demonstrate the application of our
library for coverage analysis on publicly available CPN models in Section 5.
In this section, we also evaluate our approach with respect to overhead in
execution, and discuss our findings. Section 6 discusses related work, and we
present our conclusions including directions for future work in Section 7. Our
coverage analysis library, the instrumented example models, the Python code
to instrument, produce reports and graphs, and documentation is available at
https://github.com/selabhvl/cpnmcdctesting.

2 Coverage Analysis and MC/DC
When considering CPN models, we will be concerned with coverage analysis of
guard and arc coverage of expressions. A guard expression is a list of Boolean
expressions all of which are required to evaluate to true in a given transition

Paper D 151

4 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

binding for the transition to be enabled. We refer to such Boolean expressions
as decisions. Similarly, an if-then-else expression on an arc will have a decision
determining whether the then- or the else-branch will be taken. Decisions are
constructed from conditions and Boolean operators.

Definition 1 (Condition, Decision) A condition is a Boolean expression containing
no Boolean operators except for the unary operator NOT.

A decision is a Boolean expression composed of conditions and zero or more
Boolean operators. It is denoted by D(c1, c2, · · · , ci, · · · , cn), where ci, 1 ≤ i ≤ n are
conditions.

As an example, we may have a guard (or an arc expression) containing
a decision of the form D = (a ∧ b) ∨ c, where a, b, and c are conditions.
These conditions may in turn refer to the values bound to the variables of the
transition. The evaluation of a decision requires a test case assigning a value ∈
{0, 1, ?} to the conditions of the decision, where ? means that a condition
was not evaluated due to short-circuiting. Short-circuit means that the right
operand of the and -operator (&&/∧) is not evaluated if the left operand is
false, and the right operand of the or -operator (||/∨) is not evaluated if the
left operand is true.

Depending on the software safety level (A-D) which is assessed by exam-
ining the effects of a failure in the system, different structure coverage criteria
are required. Statement coverage for software levels A-C, branch/decision cov-
erage for software levels A-B, and MC/DC for software level A [2]. Statement
coverage is considered inadequate because it is insensitive to some control
structures. Both statement- and branch coverage are completely insensitive
to the logical operators (∨ and ∧) [8]. The criteria taking logical expressions
into consideration have been defined [1]. These are condition coverage (CC),
where each condition in a decision takes on each possible outcome at least
once true and once false during testing; decision coverage (DC) requiring only
each decision to be evaluated once true and once false; and multiple condition
coverage (MCC) which is an exhaustive testing of all possible input combina-
tions of conditions to a decision. CC and DC are considered inadequate due
to ignorance of the independence effect of conditions on the decision outcome.
MCC requires 2n tests for a decision with n inputs. This results in exponen-
tial growth in the number of test cases, and is therefore time-consuming and
impractical for many test cases.

To address the limitations of the coverage criteria discussed above, modified
condition/decision coverage (MC/DC) is considered and is required for safety
critical systems such as in the avionics industry. MC/DC has been chosen as
the coverage criterion for the highest safety level software because it is sensitive
to the complexity of the decision structure [6] and requires only n+1 test cases
for a decision with n conditions [1, 9]. In addition, MC/DC coverage criterion
is suggested as a good candidate for model-based development (MBD) using
tools such as Simulink and SCADE [10]. Thus, our model coverage analysis

152 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 5

is based on MC/DC criterion. The following MC/DC definition is based on
DO-178C [2]:

Definition 2 (Modified condition/decision coverage) A program is
MC/DC covered and satisfies the MC/DC criterion if the following holds:

• every point of entry and exit in the program has been invoked at least once,
• every condition in a decision in the program has taken all possible outcomes
at least once,

• every decision in the program has taken all possible outcomes at least once,
• each condition in a decision has shown to independently affect that decision’s
outcome by: (1) varying just that condition while holding fixed all other
possible conditions, or (2) varying just that condition while holding fixed all
other possible conditions that could affect the outcome.

The coverage of program entry and exit in the Definition 2 is added to
all control-flow criteria and is not directly connected with the main point of
MC/DC [11]. The most challenging and discussed part is showing the inde-
pendent effect, which demonstrates that each condition of the decision has
a defined purpose. The item (1) in the definition defines the unique cause
MC/DC and item(2) has been introduced in the DO-178C to clarify that so-
called Masked MC/DC is allowed [12, 5]. Masked MC/DC means that it is
sufficient to show the independent effect of a condition by holding fixed only
those conditions that could actually influence the outcome. Thus, in our analy-
sis, we are interested in evaluation of expressions by checking the independence
effect of each condition.

Example 1 Consider the decision D = (a∧ b)∨ c. Table 1a presents all eight possible
test cases (combinations) for MCC. The MC/DC pairs column for example, c(1, 2)
specifies that from test case 1 and 2 we can observe that changing the truth value

TC a b c D MC/DC pairs
1 0 0 0 0
2 0 0 1 1 c(1,2)
3 0 1 0 0
4 0 1 1 1 c(3,4)
5 1 0 0 0
6 1 0 1 1 c(5,6)
7 1 1 0 1 a(3,7), b(5,7)
8 1 1 1 1

(a) MCC test cases

TC a b c D MC/DC pairs
1 0 ? 0 0
2 1 1 ? 1 a(1,2)
3 1 0 0 0 b(2,3)
4 0 ? 1 1 c(1,4)

(b) Selected MC/DC test cases

Table 1: MCC and selected MC/DC test cases for decision D = (a ∧ b) ∨ c

Paper D 153

6 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

of c while keeping the values of a and b, we can affect the outcome of the decision.
Comparing MCC to MC/DC in terms of the number of test cases, there are seven
possible MC/DC test cases (1 through 7) that are part of an MC/DC pair, where
condition c is represented by three MC/DC pairs of test cases. However, for a decision
with three conditions, only four (i.e., n+1) test cases are required to achieve MC/DC
coverage as shown in Table 1b, where ’?’ represents the condition that was not
evaluated due to short-circuiting.

3 Instrumentation of CPN models
In this section, we describe our instrumentation approach on an example CPN
model, and highlight the salient features of our coverage analysis library. Our
overall goal is that through simulation or SSE, we instrument and (partially)
fill a truth-table for each decision in the net inscriptions of the CPN model.
Then, for each of these tables, and hence the decisions they are attached to, we
determine whether the model executions that we have seen so far satisfy the
MC/DC coverage criteria. If MC/DC is not satisfied, either further simulations
are necessary, or if the state space is exhausted, developers need to consider the
reason for this short-coming, which may be related to insufficient exploration
as per a limited set of initial markings, or a conceptual problem in that certain
conditions indeed cannot contribute to the overall outcome of the decision.

3.1 MC/DC coverage for CPN models
MC/DC coverage (or any other type of coverage) is commonly used with exe-
cutable programs: which decisions and conditions were evaluated by the test
cases, and with which result. Specifically, these are decisions from the source
code of the system (application) under test. Of course, a compiler may intro-
duce additional conditionals into the code during code generation, but these
are not of concern. CPN Tools already reports a primitive type of coverage as
part of simulation (the transition and transition bindings that have been exe-
cuted) and the state space exploration (transitions that have never occurred).
These can be interpreted as variants of state- and branch coverage.

Hence, we first need to address what we want MC/DC coverage to mean
in the context of CPN models. If we first consider guard expressions on transi-
tions, then we have two interesting questions related to coverage: if there is a
guard, we know from the state space (or simulation) report whether the tran-
sition has occurred, and hence whether the guard expression has evaluated to
true. However, we do not know if during the calculation of enabling by CPN
Tools it ever has been false. If the guard had never evaluated to false, this
may indicate a problem in the model or the requirements it came from, since
apparently that guard was not actually necessary. Furthermore, if a decision
in a guard is a complex expression, then as per MC/DC, we would like to see
evidence that each condition contributed to the outcome. Neither case can be
deduced from the state space report or via the CTL model checker of CPN

154 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 7

Tools as the executions only contain transition bindings that have occurred,
and hence cases where the guard has evaluated to true.

3.2 Automated Instrumentation of Net Inscriptions
In the following, we describe how we instrument the guards on transitions
such that coverage data can be obtained. We developed an automated instru-
mentation based on the .cpn XML file of CPN Tools in combination with an
SML parser. Arc expressions are handled analogously. Guards in a CPN model
are written following the general form of a comma-separated list of Boolean
expressions (decisions):

[bExp0, . . . , bExpn]

A special case is the expression

var = exp

which may have two effects: if the variable var is bound already via a pattern
in another expression (arc or guard) of the transition, then this is indeed
a Boolean equality test (decision). If, however, var is not bound via other
expressions, then this assigns the value of exp to the variable var and does
not contribute to any guarding effect.

We consider general Boolean expressions which may make use of the full fea-
ture set of the SML language for expressions, most importantly Boolean binary
operations, negation, conditional expressions with if-then-else and function
calls. Simplified, we handle:
〈bExp〉 ::= not 〈bExp〉 | 〈var〉 | f 〈exp〉0 . . . 〈exp〉n

| 〈bExp〉 andalso 〈bExp〉 | 〈bExp〉 orelse 〈bExp〉
| if 〈bExp〉 then 〈bExp〉 else 〈bExp〉
| let . . . in 〈bExp〉 end

Function symbols f cover user-defined functions as well as (built-in) rela-
tional operators such as <,=; we do not detail the overall nature of arbitrary
SML expressions, but refer the reader to [13] for a comprehensive discussion.
The automatic instrumentation also processes the definition of SML functions
in the body of the .cpn XML file, which were not considered in our man-
ually instrumented solution. We do not provide instrumentation to measure
coverage of pattern matching in function definitions and case expressions.

SSE or simulation of the model is not in itself sufficient to determine the
outcome of the overall expression and its subexpressions: guards are not explic-
itly represented, and we only have the event of taking the transition in the
state space, but no value of the guard expressions. Hence, we need to rely on
side-effects during model execution to record the intermediate results. Our key
idea is to transform every subexpression and the overall decision into a form
which will use SML’s file input/output to emit a log-entry that we can col-
lect and analyse. The coverage statistics is calculated from the logged entries
through a Python script that is easy to reuse in other contexts.

Paper D 155

8 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

Listing 1: Expressions
datatype condition =

AND of condition * condition
OR of condition * condition
NOT of condition
ITE of condition * condition

* condition
AP of string * bool;

Listing 2: Evaluation function
fun eval (AP (cond,v))=([(cond, SOME v)],v)

eval (OR (a,b)) = let
val (ares,a’) = eval a;
val (bres,b’) = eval b;
in
(ares^^bres, a’ orelse b’)
end
...
fun EXPR (name,expr) : bool = [...]

For the necessary instrumentation, a transformation of guard and arc
expressions, we essentially create an interpreter for Boolean expressions: when
guards are checked (in a deterministic order due to SML’s semantics from left
to right), we traverse a term representation of the Boolean expression and out-
put the intermediate results. The Boolean expressions that are found in the
definition of the SML functions will also trigger log messages during the SSE
or simulation of the model.

We have designed a data type (see Listing 1) that can capture the above
constructs, and define an evaluation function (see Listing 2) on it. As we later
need to map coverage reports back to code, for overall expressions EXPR and
atomic proposition AP we introduce a component of type string that allows this
identification. The evaluation function eval collects the result of intermediate
evaluations in a list data structure, and the EXPR function (implementation not
shown) turns this result into a single Boolean value that is used in the guard,
and as a side-effect outputs the truth value outcome for individual conditions.
As an example, if we consider a guard: a>0 andalso (b orelse (c=42));
then we can transform this guard in a straight forward manner into
EXPR("Gid", AND(AP("1", a>0), OR(AP("2", b), AP("3", c=42)))).
It is important to notice that this does not give us the (symbolic) Boolean
expressions, as we still leave it to the standard SML semantics to evaluate the
a>0, while abstractly we refer to the AP as a condition named “1”. We elide
expression- and proposition names for clarity in the text when not needed.

Any subexpression must be total and not crash and abort the
model execution. A short-circuiting evaluation needs to explic-
itly incorporate the andalso or orelse operator and becomes
more verbose, hence e.g. x=0 orelse (y/x >0.0) becomes
OR (AP("O1", x=0)) (AP("O2", y/x > 0.0)).

We can likewise apply the transformation to Boolean expres-
sions in arc expressions: any Boolean expression is transformed into

156 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 9

fun InitRndNumbers () = List.tabulate (n,(fn i => (List.nth(allIDs,i),i+1,"")));

InitRndNumbers()

new Round Number is initialized as 8080,
which is the same with one of IDs

Initialized
Proposer

ReplicaIDxRndxValue

InitProposer ()

New
Leader

In
ReplicaIDxLeaderID

Leader
Round

Out
Rnd

Leader
ID

Out
LeaderID

0

RequestIn

ReplicaIDxValue

Request
Value

In/Out
Value

""

Obtain
Leader
Round

[id' = id andalso id = lid,value <>""]

Store
Leader

ID

[id <> lid]

P_HIGH

Store
Request

[id = id']

(id, rnd, value)

rnd + n

(id', lid)

(id, lid)

lid lid'

(id,rnd,value')
(id',value)

(id',rnd,value)

value

value'

if id' = id
then (id,rnd+n,value)
else (id, rnd,value)

In

Out

In/Out

Out

In

(a) Original model

fun InitRndNumbers () = List.tabulate (n,(fn i => (List.nth(allIDs,i),i+1,"")));

new Round Number is initialized as 8080,
which is the same with one of IDs

InitRndNumbers()

Initialized
Proposer

ReplicaIDxRndxValue

InitProposer ()

New
Leader

In
ReplicaIDxLeaderID

Leader
Round

Out
Rnd

Leader
ID

Out

LeaderID

0

Request

In

ReplicaIDxValue

Request
Value

In/Out
Value

""

Obtain
Leader
Round

[EXPR("OLR", AND(AND(AP("1",id' = id), AP("2", id = lid)),AP("3",value <>"")))]

Store
Leader

ID

[EXPR("SLID", AP("1",id <> lid))]

P_HIGH

Store
Request

[EXPR("SR", AP("1",id = id'))]

(id, rnd, value)

rnd + n

(id', lid)

(id, lid)

lid lid'

(id,rnd,value')
(id',value)

(id',rnd,value)

value

value'

if EXPR("Arc5InitPRO", AP("1", id' = id))
then (id,rnd+n,value) else (id, rnd,value)

In

Out

Out

In/Out

In

(b) Model after instrumentation and visualization

Fig. 1: Paxos [14]: Guard and arc expressions before and after instrumentation

EXPR(. . .(AP ("An",bExp)). . .), resulting for example in the transformation
of if bexp1 orelse bexp2 then e1 else e2 into
if EXPR("E1",OR(AP ("1",bexp1), AP ("2",bexp2))) then e1 else e2.

Figure 1 shows the sub-modules contained in the Paxos CPN model [14]
called the initial Proposer and it is associated to the InitProposer substitution
transition. It initializes Proposers to obtain a new leader, and receive a client
request for consensus. Then, the value of the current round number of the
leader and the value of the received client request will be presented on the port
places as tokens, respectively [14].

The "InitProposer" module is one of several modules of the Paxos model,
and the arc and guard expressions in the other modules were transformed in a
similar manner. The figure also illustrates how, after evaluating coverage data,
we indicate full coverage by colouring the guard green, otherwise red.

Paper D 157

10 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

4 Post Processing of Coverage Data
We now discuss the coverage analysis which is performed via post-processing
of the coverage data recorded through the instrumentation. We did not imple-
ment the MC/DC coverage analysis in SML directly. Rather, we feed individual
observations about decision outcomes and their constituent conditions into a
Python tool that computes the coverage results. This allows us to reuse the
backend in other situations, without being SML or CPN specific.

4.1 Coverage Analysis
The general format from the instrumentation step is a sequence of colon-
delimited rows, where each triple in a row captures a single decision with the
truth values of all conditions in a fixed order and the outcome. As an exam-
ple, see Script 4.1. The name (stemming from the first argument to an EXPR

above) is configurable and should be unique in the model; and derived from
the name of the element (guard or arc) the expression is attached to. This
makes it easy to later trace coverage results for this name back to the element
in the model. We recommend to derive the name from the element (guard or
arc) the expression is attached to. This makes it easy to later trace coverage
results for this name back to the element in the model, and for the user to
navigate to the sub-module containing the element should they desire to do so.

Script 4.1: Log decisions
...
a3:01:0
t42:01110:0
t42:01011:1
...

Script 4.2: Decisions evaluation table
...
Returna19
0001 0
0010 0
0101 0
0110 0
1001 1
1101 1
1110 1
...

MCDC covered? False

R{1:[(0001, 1001), (0101, 1101), (0110,

1110)], 2:[], 3:[], 4:[]}

Script 4.1 shows that the decision “t42” was triggered twice, possibly on a
guard which did not enable the transition (outcome indicating false), after
which the exploration choose different transition bindings which resulted in a
changed outcome of the 3rd and 5th condition in this decision and an overall
outcome of true. We chose to print the binary representation instead of,
e.g., a slightly shorter integer value to facilitate casual reading of the trace.
Also, this allows us to enforce the correct number of bits that we expect per
observation, corresponding to the number of conditions in the decision, which
mitigates against instrumentation- or naming-mistakes.

158 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 11

Our Python tool parses the log file and calculates coverage information.
It prints the percentage of decisions that are MC/DC and branch covered in
textual mode and in GNU Plot syntax (see charts in Figure 3). The output con-
tains individual reports in the form of the truth tables for each decision, which
summarizes the conditions that are fired during the execution of the CPN
model, and sets of pairs of test cases per condition that show the independence
effect of that condition.

In the case that the decision is not MC/DC covered, the information pro-
vided by the Python script helps to infer the remaining valuations of the truth
tables that should be evaluated in order to fulfil this criteria. In the example
in Script 4.2, the first condition (left-most column in the table) has multiple
complementary entries where the expression only varies in one bit (e.g., rows
0001 and 1001) and the output changes (0 to 1). The R set shows three such
pairs for condition 1, but no complementary entries at all are found in the
truth table for conditions 2, 3 and 4, and hence indicated as empty sets []
by Python. This information can then be used by developers to drill down
into parts of their model, e.g. through simulation, that have not been covered
adequately yet.

4.2 Combining Coverage Data from Multiple Runs
Coverage- or testing frameworks rely on their correct use by the operator,
only a sub-class of tools such as fuzzers are completely automated. Our central
mcdcgen() function only explores the state space for the current configura-
tion as determined by the initial markings. Compared to regular testing of
software, this corresponds to providing a single input to the system under test.

It is straightforward to capture executions of multiple runs of the Petri
net: our API supports passing initialisation functions that reconfigure the net
between runs. However, as there is no standardised way of configuring alterna-
tive initial markings or configurations in CPN Tools, the user has to actively
make use of this API. In the default configuration, only the immediate net
given in the model is evaluated, and no further alternative configurations are
explored.

As an example, we show in Listing 3 how we make use of this feature in
the MQTT-model, where alternative configurations were easily discoverable
for us: the signature of MC/DC-generation with a simple test-driver is
mcdcgenConfig = fn : int*(’a→’b)*’a list*string→unit, where the
first argument is a timeout for the SSE, the second is a function with side-
effects that manipulates the global configurations that are commonly used in
CPN Tools to parameterise models, the next argument is a list of different
configurations, followed by the filename for writing results to.

Listing 3: MC/DC tool invocation
use (cpnmcdclibpath^"config/simrun.sml");
(* Invocation with default settings (no timeout) *)
mcdcgen("path/to/mqtt.log");

Paper D 159

12 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

(* Invocation without timeout; base model + 2 configurations *)
mcdcgenConfig(0, applyConfig,[co1,co2],"path/to/mqtt3.log");

This function will always first evaluate the initial model configuration,
and then have additional runs for every configuration. Internally, it calls into
CPN Tools’ CalculateOccGraph() function for the actual SSE. Hence the
first mcdcgen-invocation in Listing 3 will execute a full SSE without timeout,
whereas the second mcdcgenConfig-invocation would produce three subse-
quent runs logged into the same file, again without a default timeout. The
test-driver can easily be adapted to different scenarios or ways of reconfigur-
ing a model. Alternatively, traces can also be produced in separate files that
are then concatenated for the coverage analysis.

Coverage Visualization in CPN Model
To visualize the coverage information in a graphical CPN model, we provide
another Python script which parses the CPN model and changes the colour of
guards in the CPN model based on coverage data. We take both the original
model under test and the coverage results as input arguments and produce a
new model where covered arcs and transitions are highlighted in green, whereas
the uncovered parts are highlighted in red.

5 Evaluation on Example Models
In this section, we provide experimental results from an evaluation of our
approach to model coverage for CPNs. We present the results of examin-
ing eleven (11) non-trivial CPN models from the literature that are freely
available as part of scientific publications: a model of the Paxos distributed-
consensus algorithm [14], a model of the MQTT publish-subscribe proto-
col [15], three models for distributed constraint satisfaction problem (DisCSP):
weak-commitment search (WCS), asynchronous backtracking (ABT) and syn-
chronous backtracking (SBT) algorithms [16], a complex model of the runtime
environment of an actor-based model (CPNABS) [17], a reactor control sys-
tem for a nuclear power plant (RCS-NPP) model and Niki T34 Syringe driver
model [18]. In addition, we have tested four CPN models for test case genera-
tion from natural language requirements (NatCPN) [19]: nuclear power plant
(NPP) model, turn indicator system (TIS) model, priority command (PC)
model and vending machine (VM) model. All models come with initial mark-
ings that allow state space generation, in the case of MQTT, T34PIM and
DisCSP complete, and incomplete in the case of Paxos, NatCPN and CPNABS.

5.1 Experimental Setup
Figure 2 gives an overview of our experimental setup. Initially, we have the
original CPN model under test and we instrument it by transforming SML
expressions into a form that as a side-effect prints how conditions were evalu-
ated and the overall outcome of the decision (cf. Section 3). Second, we run the

160 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 13

Fig. 2: Experimental setup for Coverage analysis for CPN models

SSE on the instrumented model and then reconfigure the configuration (initial
marking) with any additional initial configurations if they are obvious from
the model. As the side effect of SSE, we run the MC/DC generation which
gives as output a log file containing the information of evaluations of condi-
tions in arcs expressions and guards and the decision outcome. Finally, we run
the MC/DC analyser (cf. Section 4) that determines whether each decision is
MC/DC-covered or not. In addition, it reports the branch coverage (BC), by
checking if each of the possible branches in each decision has been taken at
least once.

Furthermore, we visualize the coverage information in the CPNs models
taking as input the original CPN model and the results of how conditions and
decisions are MC/DC evaluated. This results in the coloured CPN model where
the covered parts are coloured in green and the uncovered parts are presented
in red. Figure 1(a) shows a CPN model structure of an original model and
Figure 1(b) shows the instrumented CPN model after coverage analysis where
covered and uncovered parts are highlighted. Table 2 presents the summary
of the percentage of how much the tested CPN models are MC/DC and BC
covered. The percentage is calculated as the number of covered conditions over
the total number of conditions in case of MC/DC and the ratio of covered
decisions/branches and the total number of decisions/branches.

5.2 Experimental Results
Table 2 presents the experimental results for the eleven example models [17, 15,
14, 16, 18, 19]. For each model, we consider the number of executed decisions
(second column) in arcs and guards. Column Model decisions refers to the
number of decisions that have been instrumented in the model. The number
of decisions observed in the model and in the log-file may deviate in case some
of the decisions are never executed, in which case they will not appear in the

Paper D 161

14 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

Table 2: MC/DC coverage results for example CPN models

CPN
Model

Executed
decisions

Model
decisions

Non-
trivial

decisions

MC/DC
(%)

BC
(%)

Simulation
status

Paxos 2,281,466 27 11 37.03 40.74 incomplete
MQTT-timeout 3,654 18 14 11.11 22.22 incomplete
MQTT-notimeout 1,828,751 23 19 21.73 65.22 complete
CPNABS 1,386,642 32 13 59.37 88.88 incomplete
DisCSP WCS 140680 9(2) 5 57.14 57.14 complete
DisCSP SBT 7686 7 3 57.14 57.14 complete
DisCSP ABT 604055 7 5 57.14 57.14 complete
NPP 194,481 13 13 53.84 92.3 incomplete
PC 8,677,800 10 9 90 90 incomplete
TIS 10,789,149 19 19 52.94 73.68 incomplete
VM 4,444 8 7 25 50 incomplete
T34PIM 3,644,768 23 8 69.56 82.6 complete

log file. We indicate them in brackets if during our exploration we did not
visit, and hence log, each decision at least once. In the case of DisCSP, there
are two guard decisions which were never executed. The column Non-trivial
decisions gives the number of the decisions (out of all decisions) that have
at least two conditions in the model, as they are the interesting ones while
checking independence effect. If a decision has only one condition, it is not
possible to differentiate MC/DC from DC. Columns MC/DC(%) and BC(%)
present the coverage percentage for the CPN models under test. We record
the ratio of covered decisions over the total number of decisions. Due to the
large (maybe infinite) state space, we set the timeout to 600 seconds: in most
models, running longer SSE do not increase the coverage metrics in terms of
the number of arcs and guards expression executed.

5.3 Discussion of Results
MC/DC is covered if all the conditions show the independence effect on the
outcome. BC is covered if all the branches are taken at least once. This makes
MC/DC a stronger coverage criterion compared to BC, which we will also
see in the following graphs. Figure 3 shows the coverage results as the ratio
of covered decisions and the number of executed decisions in guards and arcs
for both MC/DC and BC. The plots show that the covered decisions increase
as the model (and hence the decisions) is being executed. Note that the x-
axis does not directly represent execution time of the model: the state space
explorer prunes states that have been already visited (which takes time), and
hence as the SSE progresses the number of expressions evaluated per time
unit will decrease. In case an expression was executed with the same outcome,
the coverage results do not increase, since those test cases have already been
explored. Our instrumentation does not have a significant impact on the exe-
cution time of the model. Considering the time taken for the full SSE of the
finite state models, for instance DisCSP model, both without and with instru-
mentation, it takes 212.346 seconds versus 214.922 seconds respectively. It is
around 1% of overhead which is the cost for the instrumentation.

162 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 15

(a) MQTT model with timeout (b) MQTT model without timeout

(c) T34PIM model (d) DisCSP WCS model

(e) DisCSP SBT model (f) DisCSP ABT model

Fig. 3: MC/DC and BC versus number of executed decisions: finite models

The CPNABS model and T34PIM model have many single condition (triv-
ial) decisions, and their coverage percentage are higher compared to other
models. The Paxos model has less than a half of its decisions covered for
both BC and MC/DC with a small percentage difference. The VM model and
MQTT with timeout have also less percentage in coverage and both have a
high number of non-trivial decisions, which puts more weight on having a suit-
able test-suite to achieve good MC/DC coverage. In addition, we considered

Paper D 163

16 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

(a) CPN ABS model (b) Paxos model

(c) NPP model (d) PC model

(e) TIS model (f) VM model

Fig. 4: MC/DC & BC versus number of executed decisions: Incomplete models

additional configurations without timeout for the SSE in the MQTT model
and compared the coverage metrics when the configurations are set to timeout.
As shown in Figure 3(a)&(b), the MC/DC and BC percentage increased from
11.11% to 21% and 22.22% to 65.22% respectively. It is interesting to observe
the quality differences of the curves for the tested models. Some of the tested
models have less than half of their decisions covered. This should attract the
attention of developers and they should assess whether they have tested their

164 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 17

models enough, as these results indicate that there is something that might be
considered doubtful and require to revisit their test-suite. Two factors affect
the coverage percentage results presented for these models:

1. The tested models had no clear test suites; they might be lacking test cases
to cover the remaining conditions. Depending on the purpose of each model,
some of the test cases may not be relevant for the model or the model may
not even have been intended for testing. This could be solved by using test
case generation for uncovered decisions (see our future work).

2. The models might be erroneous in the sense that some parts (conditions)
in the model are never or only partially executed due to a modelling issue,
e.g. if the model evolved and a condition no longer serves any purpose or
is subsumed by other conditions. For example in the DisCSP model, there
are two decisions which were never executed, and we cannot tell if this was
intentionally or not without knowing the goal of the developers.

A main result of our analysis of the example models is that none of the mod-
els (including those for which the state space could be fully explored) have
full MC/DC or BC. This confirms our hypothesis that code coverage of net
inscriptions of CPN models can be of interest to developers, such as revealing
not taken branches of the if-then-else arc expressions, never executed guard
decisions, conditions that do not independently affect the outcome and some
model design errors. Our results show that even for full SSE, we may still find
expressions that are not MC/DC covered. Assuming that the model is correct,
improving coverage then requires improving the test suite. This confirms the
relevance and added value of performing coverage analysis of net inscriptions of
CPN models over the dead places/transitions report as part of the state space
generation. A natural next step in a model development process would be for
the developers to revisit the decisions that are not MC/DC covered and under-
stand the underlying reason. For the models that we have co-published, we
can indeed confirm that the original models were not designed with a full test-
suite in mind, neither from the initial configuration, nor through embedded
configurations like for example the MQTT model.

6 Related Work
Coverage analysis has attracted attention in both academic and industrial
research. Especially the MC/DC criterion is highly recommended and com-
monly used in safety critical systems, including avionic systems [5]. However,
there is a limited number of research addressing model-based coverage anal-
ysis. Ghosh [20] expresses test adequacy criteria in terms of model coverage
and explicitly lists condition coverage and full predicate coverage criterion for
OCL predicates on UML interaction diagrams, which are semantically related
to CPNs in that they express (possible) interactions. Test cases were not auto-
matically generated. In [21], the authors present an automated test generation
technique, MISTA (Model-based Integration and System Test Automation)

Paper D 165

18 Coverage Visualization and Analysis of Net Inscriptions in CPN Models

for integrated functional and security testing of software systems using high-
level Petri nets as finite state test models. None of the above works addressed
structural coverage analysis such as MC/DC or BC on CPN models.

MC/DC is not a new coverage criterion. Chilenski [9] investigated three
forms of MC/DC including Unique-Cause (UC) MC/DC, Unique-Cause +
Masking MC/DC, and Masking MC/DC. Moreover, other forms of MC/DC
have been discussed in [22]. More than 70 papers were reviewed and 54 of them
discussed MC/DC definitions and the remaining were only focusing on the
use of MC/DC in faults detection. We presented in [23], a tool that measures
MC/DC based on traces of C programs without instrumentation.

Simulink [24] supports recording and visualising various coverage criteria
including MC/DC from simulations via the Simulink Design Verifier. It also
has two options for creating test cases to account for the missing coverage
in the design. Test coverage criteria for autonomous mobile systems based on
CPNs ware presented by Lill et al. in [25]. Their model-based testing approach
is based on the use of CPNs to provide a compact and scalable representation
of behavioural multiplicity to be covered by an appropriate selection of repre-
sentative test scenarios fulfilling net-based coverage criteria. Simão et al. [26]
provide definitions of structural coverage criteria family for CPNs, named CPN
Coverage Criteria Family. These coverage criteria are based on checking if all-
markings, all-transitions, all-bindings, and all-paths are tested at least once.
Our work is different from the above presented work in that we are analysing
the coverage of net inscriptions (conditionals in SML decisions) in CPN mod-
els based on structure coverage criteria defined by certification standards, such
as DO-178C [2].

7 Summary and Outlook
We have extended our earlier proof of concept [7] and the supporting soft-
ware tool to measure MC/DC and branch coverage (BC) of SML decisions in
CPN models. There are three main contributions in this paper: 1) We provide
a library and automated annotation mechanism that intercept evaluation of
Boolean conditions in guards and arcs in SML decisions in CPN models, and
record how they were evaluated; 2) we compute the conditions’ truth assign-
ments and check whether or not particular decisions are MC/DC-covered in
the recorded executions of the model; and 3) we collect coverage data using our
library from eleven publicly available CPN models and report whether they
are MC/DC and BC covered.

We have tested more CPN models and have improved the usability of our
instrumentation with respect to the previous release. Firstly, we automate
the annotation mechanism that intercepts evaluation of Boolean conditions,
which had to be done manually before. We also support the instrumenta-
tion of Boolean decision not only in the arcs and guards of CPN models,
but also in any SML decision (e.g., function declarations). Secondly, the new
release better integrates the coverage analysis tool with the graphical user

166 Paper D

Coverage Visualization and Analysis of Net Inscriptions in CPN Models 19

interface CPN Tools, which supports a broad palette of visual options to
indicate successful coverage of guards through colour based on different cov-
erage criteria (MC/DC, BC,. . .). We leave the encoding of partial functions
into delayed evaluation using so-called thunks in SML as future work since
it did not pose a problem yet in our example models. Thunks wrap expres-
sions into a constant function that needs to be called to trigger evaluation,
and can hence be passed around safely as arguments. As an example, consider
[List.length xs > 0, hd xs], which is a valid chain of guards, but will
crash in our instrumentation when the list xs is empty.

Our experimental results show that our library and post-processing tool
can find how conditions were evaluated in all the net inscriptions in CPN mod-
els and measure MC/DC and BC. Results reveal that the MC/DC coverage
percentage is quite low for the CPN models tested. This is interesting because
it indicates that developers may have had different goals when they designed
the model, and that the model only reflects a single starting configuration. We
can compare this with the coverage of regular software: running a program will
yield some coverage data, yet most programs will have to be run with many
different inputs to achieve adequate coverage.

To the best of our knowledge, our approach is the first work on cover-
age analysis of CPN models based on BC and MC/DC criteria. This work
highlighted that coverage analysis is interesting for CPN models, not only in
the context of showing the covered guard and arcs SML decisions, but also
the effect of conditionals in SML decisions on the model outcome and related
potential problems.

Outlook.
Our general approach to coverage analysis presents several directions forward
which would help developers get a better understanding of their models: firstly,
while generating the full state space is certainly the preferred approach, this is
not feasible if the state space is inherently infinite or too large. Simulation of
particular executions could then be guided by results from the coverage and try
to achieve higher coverage in parts of the model that have not been explored
yet. However, while selecting particular transitions to follow in a simulation
is straight-forward, manipulating the data space for bindings used in guards
is a much harder problem and closely related to test case generation (recall
the CPNs also rely on suitable initial states, which are currently given by
developers). Making use of feedback between the state of the simulation and
the state of the coverage would, however, require much tighter integration of
the tools.

As for the measured coverage results, it would be interesting to discuss
with the original developers of the models if the coverage is within their expec-
tations. While on the one hand low coverage could indicate design flaws, on
the other hand our testing may not have exercised the same state space as the
original developers did: they may have used their model in various configura-
tions, whereof the state of the git repository just represents a snapshot, or we

Paper D 167

20 REFERENCES

did not discover all possible configurations in the model. In the future, we may
also try to generate test-cases specifically with the aim to increase coverage.

References
[1] Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A Practi-

cal Tutorial on Modified Condition/Decision Coverage. Technical Report
NASA/TM-2001-210876, NASA Langley Server (2001). https://dl.acm.
org/doi/book/10.5555/886632

[2] Rierson, L.: Developing Safety-Critical Software: A Practical Guide for
Aviation Software and DO-178C Compliance, 1st edn., pp. 13–46. CRC
Press, USA (2013)

[3] Jensen, K., Kristensen, L.M.: Colored Petri Nets: A graphical language
for formal modeling and validation of concurrent systems. Commun. ACM
58, 61–70 (2015). https://doi.org/10.1145/2663340

[4] Jensen, K., Christensen, S., Kristensen, L.M., Michael, W.: CPN Tools
(2010). http://cpntools.org/

[5] Pothon, F.: DO-178C/ED-12C versus DO-178B/ED-12B: Changes and
Improvements. Technical report, AdaCore (2012)

[6] John J., C., Steven P., M.: Applicability of Modified Condition/Decision
Coverage to software testing. Software Engineering Journal 9(5), 193–200
(1994)

[7] Ahishakiye, F., Jarabo, J.R., Kristensen, L.M., Stolz, V.: Coverage Anal-
ysis of Net Inscriptions in Coloured Petri Net Models. In: Hedia, B.B.,
Chen, Y., Liu, G., Yu, Z. (eds.) 14th Intl. Conf. on Verification and
Evaluation of Computer and Communication Systems (VECOS). LNCS,
vol. 12519, pp. 68–83. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-65955-4_6

[8] Cornett, S.: Code Coverage Analysis. available at https://www.bullseye.
com/coverage.html, Accessed 6 June 2020 (1996-2014)

[9] John J., C.: An investigation of three forms of the Modified Condi-
tion Decision Coverage (MC/DC) criterion. Technical report, Office of
Aviation Research (2001)

[10] Heimdahl, M.P.E., Whalen, M.W., Rajan, A., Staats, M.: On MC/DC and
implementation structure: An empirical study. In: Proc. of IEEE/AIAA
27th Digital Avionics Systems Conference, pp. 5–315313 (2008). https:
//doi.org/10.1109/DASC.2008.4702848

[11] Vilkomir, S., Bowen, J.: Reinforced condition/decision coverage (RC/DC):
A new criterion for software testing. In: Proc. of ZB 2002:Formal Specifica-
tion and Development in Z and B. LNCS, vol. 2272, pp. 291–308. Springer,
Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1_15

[12] Certification Authorities Software Team (CAST): Rationale for Accept-
ing Masking MC/DC in Certification Projects. Technical report, Position
Paper CAST-6 (2001)

[13] Tofte, M.: Standard ML language. Scholarpedia 4(2), 7515 (2009). https:
//doi.org/10.4249/scholarpedia.7515

168 Paper D

REFERENCES 21

[14] Wang, R., Kristensen, L.M., Meling, H., Stolz, V.: Automated test case
generation for the Paxos single-decree protocol using a Coloured Petri Net
model. J. Logical and Algebraic Methods in Programming 104, 254–273
(2019). https://doi.org/10.1016/j.jlamp.2019.02.004

[15] Rodríguez, A., Kristensen, L.M., Rutle, A.: Formal Modelling and Incre-
mental Verification of the MQTT IoT Protocol. In: Proc. of Trans. Petri
Nets and Other Models of Concurrency. LNCS, vol. 11790, pp. 126–145.
Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60651-3_5

[16] Pascal, C., Panescu, D.: A Colored Petri Net model for DisCSP algo-
rithms. Concurr. Comput. Pract. Exp. 29(18), 1–23 (2017)

[17] Gkolfi, A., Din, C.C., Johnsen, E.B., Kristensen, L.M., Steffen, M., Yu,
I.C.: Translating active objects into Colored Petri Nets for communication
analysis. Science of Computer Programming 181, 1–26 (2019). https://
doi.org/10.1016/j.scico.2019.04.002

[18] Caesarea Medical Electronics: Niki T34 syringe pump
instruction manual (2008). https://manuals.plus/cme/
cme-niki-t34-stringe-pump-manual-pdf

[19] Silva, B.C.F., Carvalho, G., Sampaio, A.: Test case generation from nat-
ural language requirements using CPN simulation. In: SBMF. LNCS, vol.
9526, pp. 178–193. Springer, Berlin, Heidelberg (2015). https://doi.org/
10.1007/978-3-319-29473-5_11

[20] Sudipto Ghosh, France, R., Braganza, C., Nilesh Kawane, Andrews,
A., Orest Pilskalns: Test adequacy assessment for UML design model
testing. In: Proc. of 14th Intl. Symp. on Software Reliability Engineer-
ing, ISSRE’03., pp. 332–343 (2003). https://doi.org/10.1109/ISSRE.2003.
1251054

[21] Xu, D., Xu, W., Kent, M., Thomas, L., Wang, L.: An automated test
generation technique for software quality assurance. IEEE Reliab. 64(1),
247–268 (2015). https://doi.org/10.1109/TR.2014.2354172

[22] Paul, T.K., Lau, M.F.: A systematic literature review on Modified Con-
dition and Decision Coverage. In: Proc. of the 29th Annual ACM Symp.
on Applied Computing. SAC ’14, pp. 1301–1308. Association for Comput-
ing Machinery, New York, USA (2014). https://doi.org/10.1145/2554850.
2555004

[23] Ahishakiye, F., Jakšić, S., Stolz, V., Lange, F.D., Schmitz, M., Thoma, D.:
Non-intrusive MC/DC measurement based on traces. In: Méry, D., Qin,
S. (eds.) Intl. Symp. on Theoretical Aspects of Software Engineering, pp.
86–92. IEEE, Guilin, China (2019). https://doi.org/10.1109/TASE.2019.
00-15

[24] Simulink: Types of Model Coverage. Accessed 06 April 2022. https://se.
mathworks.com/help/slcoverage/ug/types-of-model-coverage.html

[25] Lill, R., Saglietti, F.: Model-based Testing of Cooperating Robotic Sys-
tems using Coloured Petri Nets. In: Proc. of SAFECOMP 2013 -
Workshop DECS (ERCIM/EWICS Workshop on Dependable Embed-
ded and Cyber-physical Systems) of the 32nd Intl. Conf. on Computer

Paper D 169

22 REFERENCES

Safety, Reliability and Security, Toulouse, France (2013). https://hal.
archives-ouvertes.fr/hal-00848597

[26] Simão, A., Do, S., Souza, S., Maldonado, J.: A family of coverage testing
criteria for Coloured Petri Nets. In: Proc. of 17th Brazilian Symposium
on Software Engineering (SBES’2003), pp. 209–224 (2003)

170 Paper D

	Dedication
	Preface
	Acknowledgments
	Abstract
	Sammendrag
	I Overview
	Introduction
	Software Testing
	Research Questions
	Research Methodology
	Goals and Contributions
	Thesis Outline
	Supplementary Material

	Background
	Coverage Analysis
	Modified Condition Decision Coverage (MC/DC)
	Concurrent Programs
	Data Race Detection
	Source of Traces and Tracing Mechanisms
	Coloured Petri Nets (CPNs) Models
	Binary Decision Diagrams (BDDs)

	MC/DC Analysis and Measurement
	Non-intrusive MC/DC Measurement Based on the Traces
	Related Work on MC/DC Measurement

	Data Race Monitoring in Concurrent Programs
	Hardware-assisted Data Race Detection
	Related Work on Data Race Detection

	Coverage Analysis on Design Level Models
	MC/DC Measurement of Net Inscriptions in CPN Models
	Related Work on MC/DC Analysis in CPN Models

	Generating Test Cases Satisfying MC/DC
	Approach for MC/DC Test Cases Generation based on BDDs
	Related Work on MC/DC Test Case Generation

	Conclusions and Future Work
	Revisiting of Research Questions
	Summary of our Contributions
	Limitations and Future Work

	Bibliography

	II Articles
	Non-intrusive MC/DC measurement based on traces
	Hardware-Assisted Online Data Race Detection
	MC/DC Test Cases Generation based on BDDs
	Coverage Visualization and Analysis of Net Inscriptions in Coloured Petri Net Models

