
An Automated DRS4-based Data
Acquisition System for Characterizing

Scintillators Coupled to Silicon
Photomultipliers

Authors:
Thomas G. B. Mavropoulos
Sigve Bjørhovde Heggedal

Supervisors:
Ilker Meric

Stein-Arild Tjugum

Bachelor’s thesis in Automation and Robotics at

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

Spring 2022

Preface
This bachelor’s report is written by Thomas Bjørhovde Mavropoulos and Sigve Bjørhovde
Heggedal, at Western Norway University of Applied Sciences (HVL) campus Bergen.
The project was presented to us in the late autumn of 2021, and we started working on
it early January 2022.

Our project came to us through our internal supervisor in this Bachelor’s thesis,
Ilker Meric, who obtained it from the company Roxar. Stein-Arild Tjugum, represent-
ing Roxar, has been our external supervisor. Our project is the successor of a former
Bachelor’s project, that was also carried out by students at HVL in cooperation with
Roxar.

This is a project that has introduced us to radiation physics on a higher level than
we had previously been exposed to throughout our education. Although the physics is
fundamental for the inner workings of the detector, our objective has primarily demanded
the use of disciplines that we were more familiar with beforehand. That includes subjects
such as electric circuits, instrumentation and programming, which have all been part of
our curriculum at HVL. In addition to this we had some prior experience in the realm
of 3D-modelling and -printing, which has proven to be instrumental in completing our
task.

We would like to thank our supervisors Ilker Meric of HVL and Stein-Arild Tjugum of
Roxar, for the opportunity to work on this project, as well as their counsel and direction
throughout. We would also like to thank HVL for access to the premises and materials
necessary to complete this project.

Abstract
INTRODUCTION. Silicon photomultipliers (SiPM) are a technology that opens the
door to new innovation. The SiPM has advantages over older technologies, such as
photomultiplier tubes. However, it is necessary to determine the feasibility of adopting
such technologies into systems designed to operate in a wide variety of environments for
prolonged time. This requires reliable data acquisition regarding their performance.
AIM. We have aimed to develop an automated, modular and easy-to-use data acquisi-
tion system, that would assist Roxar in exploring the performance of silicon photomulti-
plier modules in conjunction with scintillators and radioactive sources. Reproducibility
at all levels was emphasized.
METHODS. A number of constraints were balanced throughout the design process
to meet the project’s requirements. We detail these constraints and design choices as
they pertain to the Domino Ring Sampler 4 Evaluation Board’s (DRS4) software, the
enclosure housing the silicon photomultiplier module, scintillator and other components,
as well as the security measures taken to protect the silicon photomultiplier.
RESULTS. We have produced a lightweight and extensible system. It is capable of
collecting relevant data over time, storing it in a format commonly used in data analysis,
and displaying the data in useful graphs. This process is completed automatically after
first being initialized. The enclosure design ensures the repeatability of experiments and
safety of the sensitive silicon photomultiplier.
CONCLUSION. The resultant system does indeed meet the project’s requirements.
The overall design is such that it is reliable and easy to use for automation, delivers
reproducible data and supports others developing it further.

Keywords: Gamma Detection, Scintillation, Photomultiplier, Domino Ring Sampler

Sammendrag
INTRODUKSJON. Silisium fotomultiplikatorer (SiPM) er en teknologi som åpner
døren til ny innovasjon. SiPM har fordeler fremfor eldre teknologier som fotomultiplika-
torrør. Imidlertid er det nødvendig å utforske gjennomførbarheten av å ta i bruk slike
teknologier i systemer designet for å operere i en lang rekke miljøer over lengre tid. Det
krever pålitelig datainnsamling for å kunne si noe om ytelsen deres.
MÅL. Vi har hatt som mål å utvikle et automatisert, modulært og brukervennlig
datainnsamlingssystem for å hjelpe Roxar med å utforske ytelsen til silisiumfotomul-
tiplikatormoduler opp mot ulike scintillatorer og radioaktive kilder. Reproduserbarhet
på alle nivåer er spesielt vektlagt.
METODER. Vi har gjennom hele designprosessen balansert ulike hensyn for å best
mulig møte prosjektkravene. Vi beskriver hvilke hensyn og designvalg vi har tatt med
tanke på bruk av Domino Ring Sampler 4 Evaluation Board (DRS4) sin programvare,
kabinettet som huser silisiumfotomultiplikatormodul, scintillator og andre komponenter.
Vi gjør også rede for sikkerhetstiltakene som er tatt for å beskytte silisiumfotomultip-
likatoren.
RESULTAT. Resultatet av dette prosjektet er et smidig og utvidbart system som
både kan samle inn relevante data over tid, lagre dataen i et format som er populært for
dataanalyse, og vise disse dataene som grafer. Denne prosessen fullføres automatisk etter
initialisering. Kabinettdesignet sikrer repeterbarheten av eksperimenter og sikkerheten
til den sensitive silisiumfotomultiplikatoren.
KONKLUSJON. Det resulterende systemet oppfyller prosjektkravene. Det overordnede
designet er slik at det er enkelt og pålitelig å bruke til automatisering, leverer repeterbare
data og åpner for videreutvikling av andre.

Contents

1 Introduction 1
1.1 Contracting entity . 1
1.2 Project requirements . 1
1.3 Scintillation Gamma Detectors . 2

1.3.1 Scintillation . 2
1.3.2 Silicon Photomultipliers . 3
1.3.3 The Domino Ring Sampler IV . 4

2 Methodology 6
2.1 Hardware . 6

2.1.1 The computer . 7
2.1.2 The PT1000 and MAX31865 breakout board 8
2.1.3 Housing sensitive components . 10

2.2 Software . 13
2.2.1 Operating system . 13
2.2.2 Evaluating the DRS4 software . 14

3 Results 16
3.1 The final enclosure . 16
3.2 Running the software . 18

4 Discussion 21

5 Conclusion 24

References 25

A Appendix 27
A.1 Installation . 27
A.2 Source code . 28
A.3 Technical drawings . 40
A.4 Bill of materials . 42

v

1
Introduction

In this thesis we aim to automate the process of data acquisition, as well as evaluate the
operational parameters, of silicon photomultiplier (SiPM) modules used with scintillators
for gamma detection.

1.1 Contracting entity
The company Roxar Emerson, previously Roxar Flow Measurement, concern themselves
with the development of products and solutions for the oil and gas industry. Among the
type of automation solutions the oil and gas industry requires is reliable flow measure-
ment in their piping. To this end, Roxar has developed several products, such as their
Multiphase Flow Meter.

Roxar is interested in exploring the viability of emerging technologies, such as silicon
photomultipliers, and the application of such technologies. The hope is that this could
lead to the development of new products with gains in precision and lower costs of
manufacture.

1.2 Project requirements
We have been asked to develop an automated solution to assist with the exploration of
scintillating materials in conjunction with silicon photomultiplier components. The end
goal is an accessible system able to accurately gather relevant data from these materials
and components, that can deliver reproducible results, and is able to present this data
in intelligible and extensible forms.

The materials and components are required to be interchangeable and the system
must be able to collect data regarding their stability over time and temperature sensi-
tivity. To this end, we have been supplied with and directed to use the Domino Ring
Sampler IV evaluation board, hereafter abbreviated to DRS4, for data sampling. We
have also been supplied with a silicon photomultiplier kit and scintillator. These three
components make up a gamma detector.

For this project, the ability for others to be able to replicate our work and reproduce
our results is emphasized. Thus, particular care during the design process is expected,

1

Mavropoulos and Heggedal 1. Introduction

and exhaustive documentation of our process and results will need to be presented.
To summarize, the system must:
• Detect gamma radiation
• Record relevant data
• Use the DRS4 for data gathering
• Function with different scintillators and photomultipliers

1.3 Scintillation Gamma Detectors
Scintillation Gamma Detectors are systems able to detect gamma radiation. This is
accomplished through the process of converting the gamma radiation to light particles.
The light is then detected via a suitably sensitive light sensor, which, in turn, supplies a
small voltage to a device capable of processing that signal, such as an oscilloscope. An
overview of such a system is shown in Figure 1.1.

In this section, we will elaborate on these component’s functions, as well as relate
pertinent details about the the specific components used in this project.

gamma ray

scintillator

light light detector

amplifier

Figure 1.1: Sketch demonstrating the principle of gamma ray scintillation detection

1.3.1 Scintillation
Scintillation in this case means the flashes of visible or near-visible light that some
materials emit when struck by certain energetic particles, such as gamma rays. Various
materials that emit ionizing radiation can be utilized for the purpose of delivering a
steady flow of gamma particles. The gamma radiation, which is on the high-energy end
of the electromagnetic spectrum, can in turn be transformed into electromagnetic waves
with a longer wavelength (and thereby lower energy) [3, 6].

Materials that emit light upon absorption of gamma rays are known as scintillators.
Scintillators can generally be separated in organic and inorganic materials. Organic scin-
tillators are aromatic hydrocarbon compounds, such as Naphthalene (C10H8), Antracene
(C14H10) and Stilbene (C14H12). Inorganic scintillators range from crystals of salts, such
as sodium iodide (NaI), caesium iodide (CsI) and barium fluoride (BaF2), to plastic ma-

2

Mavropoulos and Heggedal 1. Introduction

Figure 1.2: A scintillator - the LYSO crystal provided us for this project

terials such as polyvinyl toluene (PVT), where the latter is doped with a small amount
of an organic scintillator [3].

For this project, we have been supplied with a Lutetium–yttrium oxyorthosilicate
(LYSO) crystal by HVL. This is an inorganic scintillator developed in an attempt to
combine the desirable characteristics of other compounds [12]. LYSO provides high
light output and an excellent energy resolution.

1.3.2 Silicon Photomultipliers

Figure 1.3: The Ketek Silicon photomultiplier evaluation kit. © Ketek

The fundamental application of a Silicon Photomultiplier, hereafter referred to as
SiPM, is to detect light. The SiPM’s usefulness lies in its ability to detect electromag-
netic radiation even at low levels and with high precision. The lower ranges at which a
SiPM can detect light was previously only achieved through the use of photomultiplier
tubes, which is an older technology with its own limitations [25]. It can directly detect
electromagnetic radiation ranging from near ultraviolet (UV) to near infrared (IR), cor-
responding well with the range of the electromagnetic spectrum known as visible light

3

Mavropoulos and Heggedal 1. Introduction

[2].
The SiPM can be considered a successor of the Geiger-Mode avalanche photo-diode

(GM-APD). Simply put, the GM-APD utilizes photoelectric effect to detect photons.
SiPMs are constructed out of several GM-APDs connected in parallel. This application
enables counting of photons, as several photons can be detected simultaneously. This in
turn leads to a higher level of precision and reliability [2].

During the course of this project, we will be working with a SiPM module supplied to
us by HVL. It is part of a silicon photomultiplier evaluation kit by the company Ketek
[24]. The kit includes a socket module for the SiPM to be inserted into, as well as a bias
source and a preamplifer. These are there to ensure a clean and readable signal from
the sensor. The whole of the kit will be incorporated into the project.

1.3.3 The Domino Ring Sampler IV
The Domino Ring Sampler 4 (DRS4) is an Integrated Circuit (IC), colloquially referred
to as a “chip”, developed by Dr. Stefan Ritt at the Paul Scherrer Institute in Switzerland.
It was developed for the purpose of taking extremely precise measurements of time for
experiments Dr. Ritt was conducting [11]. For the purpose of allowing other interested
parties to easily evaluate the chip’s capabilities, the DRS4 Evaluation Board, hereafter
abbreviated to DRS4 rather than just the chip, was created. It comes with a series
of features, but for the purposes of this project it might be thought of as a small,
programmable and precise oscilloscope.

An oscilloscope is an electronic instrument that samples voltages and reads them out
as waveforms. Oscilloscopes made for laboratory work are usually quite large compared
to the DRS4 and their source code is usually not open for modification [15]. The three
pictures in Figure 1.4 serve as a visual aid to underline the difference in dimensions.

Figure 1.4: A Tektronix oscilloscope, a DRS4 and both of them together.

The DRS4 is also supplied with open source software (OSS) [26]. Open source sig-
nifies that the software’s source code is made available and is released under a license
that permits users to change and build upon said code [14]. The software supplied are

4

Mavropoulos and Heggedal 1. Introduction

a graphical user interface (GUI) oscilloscope application, called DRS Oscilloscope, and
a command line interface application, DRS command line interface. Both of these ap-
plications are “interactive” in that the user is required to first run the programs and
thereafter supply a set of commands.

The applications can be run on Windows systems, GNU/Linux systems and Mac
systems. This is due to a cross-platform library, wxWidgets, used by the library that
handles most of the graphical interface disparities between systems [27].

For this project, we will familiarize ourselves with this software, its capabilities and
limitations, and attempt to build upon it to meet the project requirements. From the
outset there are three areas that require improvement: the need for interactivity in an
automated process, the inability to acquire data over a given time and the inability of
combining new sensor data, such as temperature, in data acquisition.

Figure 1.5: Screenshots of the DRS4’s oscilloscope and CLI applications

5

2
Methodology

This chapter details the design choices that are the sum of our finalized product. We have
chosen to separate this into two parts. One part pertaining to the physical system and
one detailing that which concerns the digital inner workings — hardware and software.

A general overview of the elements that comprise the system can be found in Figure
2.1. Here the different components are separated and their individual functions, as well
as the flow of data, are shown. The project concerns itself with all the steps depicted
here. Proper housing for the radioactive source, scintillator and SiPM, safety measures
for controlling power input to the SiPM, data gathering from the DRS4, control of the
DRS4, and data analysis through the computer.

Scintillator Silicon Photomultiplier

MCX to SMA MCX to SMA

Preampli�er DRS4 EBRadioactive source

12V DC

Bias source

29.5V DC
2mA

Computer

Figure 2.1: A general overview of the components the system is made up of and how
they relate to each other in terms of their input/output flow

2.1 Hardware
As per Figure 2.1, this project concerns itself with several hardware components. Cer-
tainly there is hardware to read out and to compute data, but the project also concerns
itself with other types of physical components. For the project to be accessible, and for

6

Mavropoulos and Heggedal 2. Methodology

the SiPM modules and scintillators to function, there are several constraints that need
to be met.

In this section we will detail the design choices we have made that comprise the
physical components of this project.

2.1.1 The computer

Figure 2.2: The Raspberry Pi 3 single-board computer. © Raspberry Pi Foundation

The necessity of a computer for this project is due to the data gathering and processing
that is required. As we have seen from previous projects, the processing power to
quickly sample and write data to file can not be met with simpler electronics, such
as micro controller units (MCUs) like the popular Arduino [10]. Instead, we require
a device capable of interpreting a wider range of programming and interfacing with
various devices at high speeds. One such crucial device is the DRS4, which requires a
USB connection with appropriate drivers and libraries.

To meet these requirements, we have chosen to base our project on the single-board
computer, Raspberry Pi. This small computer has become popular due to its ease-of-use,
small form factor, computing power and useful connectors, and has achieved this at a
relatively low price point [18]. During the decade since its release, the Raspberry Pi has
seen widespread adoption and, crucially, has shown itself capable of reliably operating
over long stretches of time in industrial applications [19].

Before choosing the Raspberry Pi for this project, we looked at how it might impact
the projects usability and longevity. In terms of usability, the computer’s small size
allows it to be used in a laboratory without taking up too much space - the Raspberry
Pi is only 85.6mm × 56.5mm [16]. Adding to this is the fact that it can easily be
controlled without monitor, keyboard or mouse — A so-called “headless setup”. Instead,
the Raspberry Pi can be securely controlled through wired (ethernet) and wireless (WiFi)
network connection, as well as through serial console (UART) via the Secure Shell (SSH)
protocol. This allows for flexibility and easy control of the device regardless of what
security concerns any company’s or institution’s IT department might have regarding
adding new devices to their networks.

7

Mavropoulos and Heggedal 2. Methodology

In terms of longevity, the Raspberry Pi is not only capable of running the GNU/Linux
operating system, but is, in fact, closely integrated with it. GNU/Linux is one of the
most widely used operating systems and is found on smartphones, personal computers,
servers and embedded systems. It is free, open source, extensible and reliable. The Rasp-
berry Pi’s officially supported operating system, Raspberry Pi OS, is a Debian-based
distribution [20]. Debian is a GNU/Linux distribution commonly used in enterprise
environments as it is known for it’s long-term support, stability and security [21].

The Raspberry Pi is also notable for its available and easy to use GPIO (General-
purpose input/output) pinout [17]. The GPIO pinout enables users to work with low-
level electronics in a way which you would not find in a typical computer. It is through
the GPIO pins one is able to establish a serial connection, and for this project we also
use the GPIO for reading temperature data and supplying voltage to a relay switch.

Figure 2.3: The Raspberry Pi’s GPIO pinout scheme. © Raspberry Pi Foundation

Finally, the Raspberry Pi has exchangeable storage capabilities. Its primary storage
is a mircoSD flash card, which can range from a few to several hundreds gigabytes of
space. It is also able to support further storage space through external USB hard drives.
Regardless of what types or amounts of data one wishes to acquire or for how long they
are to be amassed, there are good storage options with the Raspberry Pi.

2.1.2 The PT1000 and MAX31865 breakout board
As per the project requirements, it is necessary to acquire relevant data to ascertain the
functioning of the components in use. In particular, we are looking at the noise induced
due to the SiPM’s thermal sensitivity. Thus, the SiPM modules are meant to be tested
at varying temperatures over time.

There are numerous ways of measuring temperature, but the PT100 and PT1000
sensors are commonly preferred for industrial applications [22]. The PT100 and PT1000
sensors are a type of resistance temperature detector (RTD). They are known for their
high accuracy and repeatability, and the PT1000 provides even more accurate results for
small changes in temperature. Still, it should be noted that there is a delay in response
time that needs to be accounted for before choosing this type of sensor [23]. For the
purposes of this project we consider this delay to be negligible. It would, however,
be prudent to have an understanding of the temperature data being provided for this
project. That is to say, we will only be measuring the ambient temperature inside of the

8

Mavropoulos and Heggedal 2. Methodology

enclosure built for this project, and there is a delay of up to 60 seconds associated with
larger shifts in temperature due to the construction of the PT1000. As per Figure 2.4,
the PT1000 is housed in a protective and insulating casing. The delay is due to changes
in ambient temperature needing to propagate through to the casing’s core before being
registered.

Resistance thermometer Connection leadsSheath Insulator

Figure 2.4: Overview depicting the inner construction of a RTD sensor, such as the
PT1000.

In addition, when using a PT1000 sensor, it is not simply a matter of connecting
the sensor to a computer and reading out an analog value. A circuit is required to
allow us to measure the PT1000’s change in resistance and convert it from analog to
digital output. These are common and can readily be made, but for the purposes of
ease of use and easy replication, we have decided to use a ready-made solution. The
MAX31865 breakout board by Adafruit provides easy temperature output and requires
little previous knowledge of electronics [1]. It is a flexible solution in that it is agnostic in
regards to what type of wiring scheme one’s particular PT1000 employ. The MAX31865
also comes with an analog-to-digital converter (ADC), which allows us to access the
PT1000’s analog output from the Raspberry Pi. The Raspberry Pi does not itself have
any analog GPIO pins. Adafruit also provide a library for configuring the PT1000 and
reading the temperature data [4].

Figure 2.5: A PT1000 sensor and a MAX31865 breakout board. © Adafruit

9

Mavropoulos and Heggedal 2. Methodology

2.1.3 Housing sensitive components
Early on we were made aware of the care with which the equipment needed to be handled.
A previous Bachelor’s project had been unfortunate enough to irreparably damage their
SiPM module by supplying it with too much current [10]. There is also the concern that
data acquisition might not only be affected by light contamination, but that continuous
light could itself damage the SiPM — de-calibrating the device, lowering its sensitivity
and affecting its electrical features [13].

Committed to learning from past mistakes, we looked closely at the previous group’s
enclosure and considered in which ways it could be improved upon. Their enclosure
solution was a plastic box, shown in Figure 2.6, that was large enough to fit much of the
system, and not only the scintillation gamma detector components themselves. The bias
source and preamplifier were also placed inside of the enclosure. We surmised this was
solely due to short length of the cables running from the SiPM module. This resulted
in one having to pull the plug from the wall socket to power off the bias Source before
lifting the lid, or risk exposing the SiPM to continuous light while powered.

In addition, there was the matter of the box’s light-tightness. Holes had been drilled
into the side of the box to provide the cables access to the outside. These had electrical
tape placed over them to hinder light exposure.

Finally, the SiPM module itself was placed facing up on a cardboard box with cable
holes in the bottom. The scintillator would be balanced on top of the SiPM and the
radioactive source would presumably be positioned close by. The lack of appropriate
holders for the components, or even defined positions, introduces the possibility of un-
wanted variance between experiments. Also, even a slight bump to the box might make
the scintillator fall off the SiPM, which would halt an experiment in place. There should
be no air gap between the SiPM and scintillator.

Figure 2.6: The enclosure utilized by the previous Bachelor’s group.

Taking all of this into account, it became apparent that it would be beneficial to
fashion a new enclosure. After all, this Bachelor’s hinges upon very sensitive equipment’s
ability to produce reliable and repeatable results. To that end we believe there are two

10

Mavropoulos and Heggedal 2. Methodology

key factors that must steer the design process for this project to be viable. First,
it is important that we establish safety measures to avoid accidental damage to the
equipment. Secondly, we must limit the chances of any experiment’s results being altered
or spoiled due to environmental variables.

Towards the goal of establishing safety measures for protecting the SiPM, we wanted
power to be supplied to the bias source only when certain conditions were met. To
accomplish this we decided to explore two avenues. One idea was to integrate a micro
switch into the enclosure that would act as a ”lid sensor”. This sensor would signal
whether the lid on the enclosure was present or not, with the intent of disallowing the
supply of voltage to the SiPM whenever the lid was removed or inadequately positioned.
The other idea was to use a phototransistor inside of the enclosure. This would allow our
digital system to measure the enclosure’s internal illumination. If the phototransistor
was able to measure any light inside the box, it would signify that there was more light
present than the SiPM was meant to absorb and so we would cut power.

As we wanted to make sure that a powered SiPM would never be exposed to light, we
opted for an analog solution where the power supply was cut off whenever the enclosure
was open. This would best be accomplished with a relay to control the supply voltage
to the bias source. The idea is simple: whenever the lid is off, the bias source should
be off as well. We would simply intersect one of the leads from the cable supplying the
bias source, and connect either end to the connectors of the relay’s “Normally Open”
switch. In addition to the relay itself, we would design a simple circuit containing a
flyback diode in series with a resistor. The purpose of the flyback diode is to protect
the connected Raspberry Pi from over-voltage spikes when switching off the relay. The
circuit is shown in Figure 2.7.

Bias source

N
C

N
O

Relay 22
0

Ω

Micro switch

5V12
V

Figure 2.7: Circuit for operating the Bias Source via a relay.

The physical enclosure itself would have to satisfy the second key factor: providing an
environment that supports repeatability for experiments. In addition to slots and holders
designed for the PT1000 RTD, phototransistor and micro switch, a modular system with
holders and standardised placement of components would need to be created. A way for
cables to enter the box without causing light pollution would also be required.

We moved through several designs until we eventually ended up with an enclosure we
would iteratively improve on. Cables would enter into the box from behind the SiPM,

11

Mavropoulos and Heggedal 2. Methodology

Figure 2.8: 3D models of the enclosure with and without ”loose parts” respectively

limiting light exposure in this way. An area with an insertable cover would be fashioned
to further mitigate the risk of light pollution. In the same vein, the SiPM would be
housed inside an insertable holder with fasteners on the sides of the box. The same
would hold true for a scintillator and gamma source holder. Controlling all dimensions
of the box, we would be able to ensure that there was always contact between the SiPM
and scintillator.

In Figure 2.9 you will find our final enclosure designs: A model of a holder for the
LYSO scintillator and a 1� coin-shaped gamma source, the cable cover (highlighted in
green) allows cables to pass through while blocking light, the LYSO scintillator’s contact
with the SiPM is facilitated by their holders.

Figure 2.9: Scintillator and gamma source holder, the cable cover, and scintillator in
contact with SiPM

12

Mavropoulos and Heggedal 2. Methodology

2.2 Software
Software is the collection of programs used by a computer to produce a given result.
When devising a system such as the one we have created for this project, there are many
design choices that need to be made regarding the software.

There are many types of software categories, such as System Software, Programming
Software, Driver Software and Application Software. These categories can be hierarchical
in the sense that a opting software in one category will probably result in constraints in
regards to what is available in other categories. There are external constraints that need
to be met. For this project, we have endeavoured to build this system while keeping
in mind stability, longevity and reproducibility — reproducibility here referring to the
ease of setting up the system by oneself. We have also looked at compatibility with the
software required to use the DRS4.

In this section, we will detail the design choices we have made that comprise the
software components of this project.

2.2.1 Operating system
When deciding on an operating system (OS), we looked to balance several factors. We
had to ask ourselves what type of system we envisioned, what type of hardware would
be available to us and in what way our choice would affect the usability, stability and
reproducibility of our system. We have built this system with the GNU/Linux operating
system in mind. There were mainly two considerations in choosing this operating system
— the computer and the DRS4.

We have previously accounted for our choice of computer, the Raspberry Pi. This
computer is capable of running numerous operating systems (OS), such as Windows
10 IoT Core and different flavours of GNU/Linux. There are some differences between
these systems, chief amongst them being that GNU/Linux is flexible and performant
even on systems with fewer resources. Windows has traditionally been held to be less so
due to the Desktop Environment (DE) that is a key feature of that system. Windows,
however, is more widely used at all levels of computer literacy.

Building upon the foundation of the DRS4 was a requirement for this project. The
DRS4’s application software is able to run on Windows systems, GNU/Linux and OSX
[8]. However, we encountered several obstacles when attempting to run the DRS4 soft-
ware. In Windows, we found that the instructions for installation of driver software
were outdated. While we were able to run the application software, the software and
the device were never able to speak to each other because of these driver issues. Several
attempts were made in mitigating this without result, and we also looked for help in the
DRS4’s forums. There we found that others had encountered the same problem, but
that the authors of the software did not have a solution [7].

When attempting to install the software on a GNU/Linux system, we discovered
that the installation instructions were similarly lacking. When installing the DRS4’s
software in GNU/Linux, compilation of the source code is required. As part of this

13

Mavropoulos and Heggedal 2. Methodology

process, a specific version of an outside library for the graphical interface, wxWidgets
2.8.12, is required [9]. That version is 11 years old, and, probably, so are the installation
instructions. We did eventually manage to successfully compile and make use of the
DRS4 in GNU/Linux, and we were confident in our ability to build our own software
on that foundation. However, the problems with the installation path prompted us to
make certain design choices with regards to reproducibility.

2.2.2 Evaluating the DRS4 software
As mentioned previously, at the outset of this project there were three immediately
apparent areas of concern.

First, the application software supplied with the DRS4 was built for interactivity.
That is to say, the software must first be run and then given a series of commands to
perform its tasks. In other words, its construction did not lend itself to automatic data
acquisition.

Secondly, the software is unable to acquire data over a specified amount of time. Data
acquisition is accomplished by defining a number of “events” that one wishes to capture.
The events here signify a voltage detected above some set trigger threshold. While
the expected amount of triggers over time might be somewhat predictable, this project
seeks to map out the conditions in which SiPM modules start to provide inaccurate
and unpredictable results. Thus, having to specify a number of events, rather than a
duration for data acquisition is insufficient.

And finally, the application software was not built to incorporate other sensors and
their data into the acquisition process. As noted before, while a SiPM is sensitive to
photoelectrons, it is no less sensitive to thermally generated electrons [12]. We are
interested in the degree to which temperature and prolonged use affect the noise-to-
signal ratio of SiPM modules and must therefore include some measurement pertaining
to the temperature coinciding with a trigger event.

Upon further inspection of the application software we discovered additional concerns
for our consideration. As briefly mentioned in the previous section, the installation of
the application software in GNU/Linux requires an old and unsupported version of the
wxWidgets library. While we did find an installation path, this obstacle suggested to us
that it might be imprudent to build further on that shaky foundation. In addition, we
had considered that, for the purposes of automation, a graphical user interface would not
be required. As we had decided to use GNU/Linux as the operating system, neither did
we require the cross-platform capability the library afforded us. Therefore we surmised
that the wxWidgts library introduced too much complexity to the project. We therefore
decided that we would not try to extend the functionality of the existing application
software. Instead, we would write our own program, only reusing the DRS4 library and
its functions for communication with the DRS4.

Since the DRS4 library is written in C/C++, we chose C++ as the language we
would write our own code in. For creating graphs we were asked to use Python, which is
a popular language in academic circles due to its easy readability and powerful libraries

14

Mavropoulos and Heggedal 2. Methodology

related to data analysis, specifically the libraries pandas and seaborn.

15

3
Results

In this chapter we present the results of our work during this project. As in the previous
chapter, we present hardware and software separately.

3.1 The final enclosure
When building the enclosure, we took special care that it would ensure the repeatability
of experiments, and that it would protect the SiPM from damage.

Due to the sensitivity of the SiPM, we needed to verify that our enclosure was not
prone to light contamination. As mentioned previously, this pertains both to the re-
peatability of experiments and the integrity of the SiPM. To discover the degree of
light-tightness our enclosure provided, we first used a flashlight inside of the enclosure
in an attempt to visually verify any bleed-through. This simple test showed that there
was no visible light passing through the enclosure’s walls given a wall thickness of at
least 2.25mm while using non-translucent black filament.

(a) Open enclo-
sure, photo-
transistor in
direct light
(121 kΩ).

(b) Closed en-
closure, no
light contam-
ination (9.96
MΩ).

Figure 3.1: Verification of light-tightness using phototransistor.

16

Mavropoulos and Heggedal 3. Results

To further establish the degree of light-tightness, we measured the light inside the
enclosure at different levels of light obstruction; without the lid, with the lid, and with
the lid and cable cover. To this end we employed a phototransistor. With this method,
as per Figure 3.1, we were able to show that light-tightness was achieved when both the
lid and cable cover present.

Furthermore, the enclosure protects the SiPM from taking any damage because of
light exposure by utilising a simple switch. The switch tells a relay whether the SiPM is
to be supplied with power. As shown in Figure 3.2, the switch is depressed when the lid
is placed upon the box. The lid is fashioned in such a way that it can only be placed in
one orientation, ensuring that the lid is always correctly placed above the switch. The
analog nature of this arrangement means a near-instantaneous power down of the SiPM,
if the lid were to be moved askew or removed.

(a) Micro switch seen in back (b) The lid with extrusion for switch

Figure 3.2: Enclosure design ensuring SiPM is never exposed to light when powered

Then there is the matter of providing an environment for the other components that
is conducive to good measurements. The PT1000 RTD snaps into place inside the box
at a designated location. The SiPM is fastened inside a module which slides into place
at an allotted position. This is directly adjacent to where a holder for the scintillator
and gamma source is placed. The gamma source snaps into place and is held securely.
Through experiments we have run, we have gotten results that are consistent with what
one would expect from a design that ensures that the scintillator and SiPM are securely
touching throughout the duration of stationary experiments.

To conclude, we have now been able to run the planned experiments using this en-
closure. The improvements from the previous design allowed us to fit it inside a climate
chamber, avoiding having the preamplifier and bias source there as well. More on the
results of the experiment will follow in the next section.

17

Mavropoulos and Heggedal 3. Results

3.2 Running the software

Usage: drs4client [OPTION]
Command-line application for timed data acquisition with DRS4 EB.

-f, --sampling-frequency Set sampling frequency. Default: 5 [GHz]
-i, --input-range input range, ex. input 0 means -0.5 to 0.5. Default: 0
-l, --trigger-level Set trigger level in volts. Default: 0.02 [V]
-d, --trigger-delay Set trigger delay in ns. Default: 250 [ns]
-n, --numbered Run for given number of events. Default: 0
-t, --timed Run for given amount of seconds. Default: 0
-w, --ignore-wave Do not save waveforms, only time and temp. Default: False
-h, --help Shows this help message

Examples:
drs4client -t259200 Records events for 72 hours.
drs4client -n50 -w Records 50 events without waveform data.

Figure 3.3: The application software drs4client’s help screen

The software is run and initiated with a set of parameters defining its operation. This
is a common way of running command line applications which lends itself to automating
tasks.

As part of the project we wanted to run two experiments. First we recorded times-
tamped events and coinciding temperature measurements — excluding waveform data
— in room temperature over a period of 72 hours with a set of parameters (as shown
below.) Then we repeated the same experiment, only now utilising a climate chamber
to cycle the temperature at given intervals. To initiate the first experiment, we had to
input the following command:

sudo ./drs4client --timed 259200 --ignore-wave --trigger-level 0.015

When later repeating the experiment under other conditions, that exact command is
once again used. The program would then output the running parameters and indicate
its progress. The output after 72 hours would then display:

Found DRS4 evaluation board, serial #2964, firmware revision 30000
Sampling frequency set to 5 GHz, input range 0 v, trigger level 0.015 v, trigger delay 250

ns.
Time-based capture set to 259200 seconds. Capturing waveforms turned off.
Starting timed capture...
Running for 259200 seconds
Total elapsed time: 259200s

In the background the software produces files with event data. As mentioned, it may
include or exclude waveform data. The benefit of excluding waveform data is that it
requires less space.

18

Mavropoulos and Heggedal 3. Results

The Comma-separated values (CSV) format is a common and widely used data ex-
change format [5]. The raw data from the software’s data acquisition is stored as a text
file, in a CSV-like format. The text file produced by the software is essentially lines of
event data, including the event index, timestamp and temperature. Every line is pre-
ceded by a CSV structure containing the waveform data, if that information is stored.
These waveforms can then easily be extracted and used for further analysis.

...
Event #344322, Temp: 39.838, Time: 86384515.0 ms
Event #344323, Temp: 39.838, Time: 86384769.0 ms
Event #344324, Temp: 39.872, Time: 86385006.0 ms
...

Figure 3.4: Example of file excluding waveform data

For the purposes of this project, however, when further processing the recorded data
we strip out any waveform data as it is not used. Instead, the file is parsed, solely on
the basis of the data found in Figure 3.4, into a pure CSV file. The time in milliseconds
is converted into a timedelta format and the data is then further handled, resampling
every 30 minutes of data and finding the mean temperature, as well as other possible
calculations, such as finding the standard deviation and the number of recorded events
every 30 minutes.

ms,temp_mean,temp_std,temp_count
0 days 00:00:00.002000,5.643623544543732,0.13925902931290338,7386
0 days 00:30:00.002000,5.2772295290102385,0.06979964283333595,7325
0 days 01:00:00.002000,5.137910683468018,0.025488690660789844,7301
0 days 01:30:00.002000,5.087723410682411,0.015091708748774501,7283
...

Figure 3.5: Example of resulting CSV file

This is then further used to plot and display three graphs, each displaying the re-
lationship between temperature and time, the number of events every 30 minutes and
time, and the temperature and the number of events every 30 minutes.

In the experiment conducted at room temperature, the equipment was left to run in a
lab where the temperature only fluctuated slightly. During the second experiment, we set
the climate chamber to continuously cycle the temperature throughout the experiment’s
72 hours. From the starting point of 5°C, we incremented the temperature by 5°C every
second hour. At 50°C we would then decrement the temperature in the same way, until
again reaching 5°C.

By visual examination we find that the results of our two experiments indicate a
relation between shifts in temperature and the performance of the SiPM. Figure 3.6
contains three graphs which represent the data acquired while running the experiment
at room temperature. Here we see a lack of clear trends in relation to the change of
temperature.

19

Mavropoulos and Heggedal 3. Results

0.0 0.5 1.0 1.5 2.0 2.5
Time [ms] 1e14

21.5

22.0

22.5

23.0

23.5

24.0
M

ea
n

te
m

pe
ra

tu
re

 [°
C]

0.0 0.5 1.0 1.5 2.0 2.5
Time [ms] 1e14

7500

7505

7510

7515

7520

ev

en
ts

 p
r 3

0
m

in
ut

es
7500 7505 7510 7515 7520

events pr 30 minutes

21.5

22.0

22.5

23.0

23.5

24.0

M
ea

n
te

m
pe

ra
tu

re
 [°

C]

Figure 3.6: Three graphs representing data recorded at room temperature

This is clearly contrasted with the data recorded in the climate chamber. As shown in
Figure 3.7, we see a trend emerge, that the number of events fluctuates with the changes
in temperature. This seems to be in accordance with the hypothesis that a thermal
sensitivity should give rise to dark pulses and noise [12].

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [ms] 1e14

10

20

30

40

50

M
ea

n
te

m
pe

ra
tu

re
 [°

C]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [ms] 1e14

7150

7200

7250

7300

7350

7400

7450

7500

ev

en
ts

 p
r 3

0
m

in
ut

es

7200 7300 7400 7500
events pr 30 minutes

10

20

30

40

50

M
ea

n
te

m
pe

ra
tu

re
 [°

C]

Figure 3.7: Three graphs representing data recorded in a climate chamber

20

4
Discussion

This project was set out to develop an automated data acquisition system based on the
DRS4 capabilities. The system should be reproducible and extensible, and the results
of experiments conducted through the system should be repeatable. Furthermore, the
system should be able to conduct said experiments over long periods of time while
gathering relevant data. To accomplish this we have had to engage with a wide variety
of technologies and tie them together into one cohesive system. As shown, we have
approached this from two sides; hardware and software.

Figure 4.1: A final overview of the components the system is made up of.

Our solution to the project’s requirements is an amalgamation of physical components
and software. The software is open-source and runs on GNU/Linux. When we first
started looking into the DRS4’s software we discovered several problems in terms of
drivers, libraries and code compilation. Three whole days were spent verifying that the
code could be compiled, so that we had a foundation to build upon. Also, the amount of
complex yet uncommented code in the DRS4 library meant that an inordinate amount

21

Mavropoulos and Heggedal 4. Discussion

of time was devoted to grasping the programs flow. Therefore, with the intent of being
more accessible to others, our software development process made a point of closely
evaluating any drivers, libraries and code before including it in our software.

This is why we have kept the libraries used in our C++ code to a minimum. Only
standard libraries and libraries required by the DRS4 library has been included. This
makes it more robust over time and easier for others to dig into, changing small things
or developing new features. Also, the GNU/Linux operating system is, of course, free
and is not going anywhere. This same philosophy was taken into account when choosing
the MAX31865 breakout board to read temperature data. It was chosen because it is
easy to set up and use, lowering the bar for others to reproduce this system on their
own.

As the enclosures 3D models are also available, this too is easily reproduced with a
3D printer, or extended with appropriate software. We feel that 3D printing provides an
excellent opportunity for prototyping. However, as we learned, some issues may arise.
Our models were designed in Google Sketchup, a free and intuitive software for creating
3D models. However, we found that these models were easily corrupted when exported
to STL files, which is required for printing. We managed to resolve this by loading these
files into Autodesk Fusion 360 and “repairing” them there through an automatic tool.
Still, it was a unnecessarily time-consuming process and so we would recommend using
other programs for 3D modeling in the future.

One of the most important aspect of our enclosure is the known geometrical rela-
tionship between components, as any change in the distance between scintillator and
gamma source could have a significant effect on the measured results. This is important
in order to ensure repeatability and reproducibility. The scintillator holder is designed
to fit a 3x3x20 mm LYSO crystal, and allows the scintillator to be placed in contact
with the SiPM. However, the enclosure is sufficiently dimensioned to allow utilization
of larger scintillators and the holder design should be easy to adapt to this end. In the
same spirit, the module holding the SiPM was implemented in order to facilitate the
use of alternative photomultipliers that might be advantageous to run experiments on in
the future. The module consists of two identical frames that the SiPM is “sandwiched”
between. The module in turn fits into a slot in the enclosure. This makes it possible to
use photomultipliers of both larger and smaller size than the SiPM used in this project.

Then there is also the matter of choosing a suitable filament for printing the enclosure.
As previously mentioned, we recommend using a non-translucent black PLA filament to
ensure light-tightness. Nevertheless, one iteration of the printing process ended up with
an enclosure printed in white PLA, because of black or dark PLA was out of stock at the
printing facility. We can clearly see from Figure 4.2 that light passes through the plastic.
In other words, although off-brand filaments have served us well, the type of filament
used does matter quite a bit. In addition to color, resilience towards heat emerged as
a relevant property of the filament. PLA is considered to handle temperatures of up to
60°C before it softens, and that was enough for our experiments utilizing the climate
chamber. However, it might be advantageous to consider more heat resilient materials
to allow for data collection experiments at higher temperatures.

22

Mavropoulos and Heggedal 4. Discussion

Figure 4.2: Light-tightness test of white and black PLA respectively.

Some of the enclosure’s design was changed in the end. The phototransistor had
originally been planned to be permanently integrated into the enclosure. However, we
ended up not implementing it in the final solution. We deemed it an unnecessary addition
to the enclosure as we found the micro switch and lid to sufficiently mitigate the risk of
unwanted light exposure to the SiPM while powered. Still, as shown previously in Figure
3.1, the phototransistor proved itself useful for validating the enclosure’s light-tightness.

Finally, we discovered that our self-made relay circuit might still be unsafe for the
Raspberry Pi, despite our efforts to counter the risk of overvoltage with the flyback
diode and resistor. Therefore we acquired a ready-made relay module designed for the
Raspberry Pi to replace our self-made circuit. The Raspberry Pi supplies a constant
voltage of 5V to both the “V+” and “Signal” pins on the module, so the only factor
controlling the relay is the lid sensor. Initially we were interested in controlling the relay
through our software on the Pi, but we found that it wouldn’t provide any real benefit
to do so. Operating the relay with the micro switch directly is the fastest possible way
to disengage the relay, and thereby cut the supply voltage to the bias source. For this
reason we opted to avoid solutions where the switch’s signal goes into the Pi, which in
turn controls the relay.

23

5
Conclusion

The study set out to develop a system capable of detecting gamma radiation and record-
ing relevant data with the use of the DRS4. It should also be able to accommodate
different scintillators and photomultipliers.

Now looking back at what we have produced, we see that our system is indeed capable
of detecting gamma radiation through scintillation. Through our experimental testing at
Roxar, we have also shown that we are able to acquire relevant data for further analysis.
Furthermore, while we never had access to other components than the ones provided
to us at the outset of this project, the enclosure was built to be modular. In other
words, it is fashioned in such a way as to readily accommodate different scintillators and
photomultipliers.

We also believe that we have created a system which is easily accessible and able to be
developed further. Future projects should have little trouble building on this foundation
to accomplish more advanced experiments and data analysis. For example, one might
look at the SiPM’s energy spectrum by extending the software’s functionality, enabling
the user to gradually adjust the trigger level over time.

24

Bibliography

[1] Adafruit PT100 RTD Temperature Sensor Amplifier - MAX31865. url: https :
//www.adafruit.com/product/3328. (accessed: 24.05.2022).

[2] advansid.com. “Introduction to SiPMs”. In: (2013). Last accessed 03.02.2022. url:
https://advansid.com/attachment/get/up_89_1411030571.pdf.

[3] Lucio Cerrito. Radiation and Detectors: Introduction to the Physics of Radiation
and Detection Devices. Last accessed 03.02.2022. 2017. url: https://link.springer.
com/chapter/10.1007/978-3-319-53181-6_9.

[4] CircuitPython Installation of MAX31865 Library. url: https://learn.adafruit.com/
adafruit-max31865-rtd-pt100-amplifier/python-circuitpython. (accessed: 24.05.2022).

[5] Comma-separated values. url: https://en.wikipedia.org/wiki/Comma-separated_
values#Specification. (accessed: 27.05.2022).

[6] Veronica Danielsen. “Scintillasjon (fysikk)”. In: (2020). Last accessed 03.02.2022.
url: https://snl.no/scintillasjon_-_fysikk.

[7] DRS4 Discussion Forum - no board found. url: https://elog.psi.ch/elogs/DRS4+
Forum/745. (accessed: 26.05.2022).

[8] DRS4 Evaluation Board User’s Manual. url: https://www.psi.ch/sites/default/
files/2020-02/manual_rev51.pdf. (accessed: 25.05.2022).

[9] DRS4 RPI Installation instructions. url: https://bitbucket.org/ritt/drs4eb/src/
master/raspi.txt. (accessed: 25.05.2022).

[10] Athavan Sivakumaran Endre Standnes Jakob Svensholt. “Testing av Gamma Scin-
tillasjonsdetektor. (Norwegian) [On the testing of gamma scintillation detection]”.
In: HVL Open (2019). doi: https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/
11250/2602579.

[11] Laura Hennemann. “Measuring the simultaneity”. In: (2015). Last accessed 25.05.2022.
url: https://www.psi.ch/en/media/our-research/measuring-the-simultaneity.

[12] Glenn F. Knoll. Radiation Detection and Measurement. Last accessed 26.05.2022.
2010. url: https://www.wiley.com/en-sg/Radiation+Detection+and+Measurement,
+4th+Edition-p-9780470131480.

[13] A. Nagai et al. “SiPM behaviour under continuous light”. In: (2019). Last accessed
27.05.2022. url: https ://www.researchgate .net/publication/336208250_SiPM_
behaviour_under_continuous_light.

[14] Open-source software. url: https://en.wikipedia.org/wiki/Open-source_software.
(accessed: 26.05.2022).

[15] Oscilloscope. url: https://en.wikipedia.org/wiki/Oscilloscope. (accessed: 25.05.2022).
[16] Raspberry Pi 4 Model B product brief. url: https://datasheets.raspberrypi.com/

rpi4/raspberry-pi-4-product-brief.pdf. (accessed: 24.05.2022).
[17] Raspberry Pi GPIO 40 pin header. url: https://www.raspberrypi.com/documentation/

computers/os.html#gpio-and-the-40-pin-header. (accessed: 24.05.2022).
[18] Raspberry Pi in Industrial Automation. url: https : / / en . wikipedia . org / wiki /

Raspberry_Pi. (accessed: 24.05.2022).

25

https://www.adafruit.com/product/3328
https://www.adafruit.com/product/3328
https://advansid.com/attachment/get/up_89_1411030571.pdf
https://link.springer.com/chapter/10.1007/978-3-319-53181-6_9
https://link.springer.com/chapter/10.1007/978-3-319-53181-6_9
https://learn.adafruit.com/adafruit-max31865-rtd-pt100-amplifier/python-circuitpython
https://learn.adafruit.com/adafruit-max31865-rtd-pt100-amplifier/python-circuitpython
https://en.wikipedia.org/wiki/Comma-separated_values#Specification
https://en.wikipedia.org/wiki/Comma-separated_values#Specification
https://snl.no/scintillasjon_-_fysikk
https://elog.psi.ch/elogs/DRS4+Forum/745
https://elog.psi.ch/elogs/DRS4+Forum/745
https://www.psi.ch/sites/default/files/2020-02/manual_rev51.pdf
https://www.psi.ch/sites/default/files/2020-02/manual_rev51.pdf
https://bitbucket.org/ritt/drs4eb/src/master/raspi.txt
https://bitbucket.org/ritt/drs4eb/src/master/raspi.txt
https://doi.org/https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/11250/2602579
https://doi.org/https://hvlopen.brage.unit.no/hvlopen-xmlui/handle/11250/2602579
https://www.psi.ch/en/media/our-research/measuring-the-simultaneity
https://www.wiley.com/en-sg/Radiation+Detection+and+Measurement,+4th+Edition-p-9780470131480
https://www.wiley.com/en-sg/Radiation+Detection+and+Measurement,+4th+Edition-p-9780470131480
https://www.researchgate.net/publication/336208250_SiPM_behaviour_under_continuous_light
https://www.researchgate.net/publication/336208250_SiPM_behaviour_under_continuous_light
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Oscilloscope
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header
https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi

Mavropoulos and Heggedal Bibliography

[19] Raspberry Pi in Industrial Automation. url: https : / / en . wikipedia . org / wiki /
Raspberry_Pi#Industrial_automation. (accessed: 24.05.2022).

[20] Raspberry Pi OS Documentation. url: https://www.raspberrypi.com/documentation/
computers/os.html. (accessed: 24.05.2022).

[21] Reasons to use Debian. url: https://www.debian.org/intro/why_debian.en.html.
(accessed: 24.05.2022).

[22] Resistance thermometer. url: https://en.wikipedia.org/wiki/Resistance_thermometer.
(accessed: 24.05.2022).

[23] Resistance thermometer: Advantages and limitations. url: https://en.wikipedia.
org/wiki/Resistance_thermometer#Advantages_and_limitations. (accessed: 24.05.2022).

[24] Silicon photomultipliers evaluation kit. url: https://www.ketek.net/wp-content/
uploads / 2017 / 01 / KETEK - PEVAL - KIT - MCX - QuickStartGuide . pdf. (accessed:
27.05.2022).

[25] Silicon photomultipliers: theory and practice. url: https ://www.youtube .com/
watch?v=BH768QRfzFA. (accessed: 27.05.2022).

[26] Software Download for the DRS4 Evaluation Board. url: https://www.psi.ch/en/
drs/software-download. (accessed: 26.05.2022).

[27] wxWidgets Cross-Platform GUI Library. url: https://www.wxwidgets.org/. (ac-
cessed: 26.05.2022).

26

https://en.wikipedia.org/wiki/Raspberry_Pi#Industrial_automation
https://en.wikipedia.org/wiki/Raspberry_Pi#Industrial_automation
https://www.raspberrypi.com/documentation/computers/os.html
https://www.raspberrypi.com/documentation/computers/os.html
https://www.debian.org/intro/why_debian.en.html
https://en.wikipedia.org/wiki/Resistance_thermometer
https://en.wikipedia.org/wiki/Resistance_thermometer#Advantages_and_limitations
https://en.wikipedia.org/wiki/Resistance_thermometer#Advantages_and_limitations
https://www.ketek.net/wp-content/uploads/2017/01/KETEK-PEVAL-KIT-MCX-QuickStartGuide.pdf
https://www.ketek.net/wp-content/uploads/2017/01/KETEK-PEVAL-KIT-MCX-QuickStartGuide.pdf
https://www.youtube.com/watch?v=BH768QRfzFA
https://www.youtube.com/watch?v=BH768QRfzFA
https://www.psi.ch/en/drs/software-download
https://www.psi.ch/en/drs/software-download
https://www.wxwidgets.org/

A
Appendix

The project’s source code and 3D models can be found at https://github.com/tmavro/
DRS4-client-HVL. Instructions for installation can be found there as well.

A.1 Installation
Compiling and running the software requires installation of libusb-1.0. It is also recom-
mended that you use a screen multiplexer, such as tmux, to enable running drs4client
in the background. On debian-based systems, such as Raspberry Pi OS, this can easily
be done in terminal:

sudo apt update && sudo apt -y upgrade && sudo apt-get install libusb-1.0.0-dev tmux

To capture temperature data with the MAX31865 breakout board, you will need
some Python libraries:

sudo pip3 install --upgrade setuptools adafruit-python-shell

wget
https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/raspi-blinka.py
-O- | sed '124d' - > raspi-blinka.py

sudo python3 raspi-blinka.py

sudo pip3 install adafruit-circuitpython-max31865

From there, simply clone this repository and run make.

git clone https://github.com/tmavro/DRS4-client-HVL

cd DRS4-client-HVL

make

At this point your system will require a restart.

27

https://github.com/tmavro/DRS4-client-HVL
https://github.com/tmavro/DRS4-client-HVL

Mavropoulos and Heggedal A. Appendix

sudo reboot

The software should be run within tmux. It is advisable that you familiarize yourselves
with the basics of tmux’s operation. In addition, drs4client requires root privileges to
access the DRS4 EB’s USB connection and run.

tmux

sudo ./drs4client --help

A.2 Source code

Listing A.1: drs4client.cpp
1 /* Authors: Thomas B Mavropoulos and Sigve B Heggedal */
2
3 /* ------
4 Libs
5 ------ */
6
7 //DRS-related
8 #include <unistd.h>
9 #include <ctype.h>

10 #include <sys/ioctl.h>
11 #include <errno.h>
12 #include "strlcpy.h"
13 #include "DRS.h"
14
15 #include <stdio.h> /* fprint */
16 #include <string.h>
17 #include <stdlib.h>
18 #include <iostream>
19
20 #include <iterator>
21 #include <math.h>
22 #include <getopt.h> /* getopt API */
23 #include <chrono> /* Time-related */
24 #include <array>
25
26 /* -------------------
27 Define directives
28 ------------------- */
29 #define DIR_SEPARATOR '/'
30 #define PROGRAM_NAME "drs4client"
31
32 /* ------------------
33 Global variables
34 ------------------ */
35

28

Mavropoulos and Heggedal A. Appendix

36 // Argument options
37 int argFreq = 5; // Sampling frequency
38 int argRange = 0; // Input range, -0.5 - 0.5 [V]
39 int argTrigLvl = 0.02; // Trigger level [V]
40 int argTrigDelay = 250; // Trigger delay [ns]
41 int argNumb = 0; // Numbered run
42 int argTime = 0; // Timed run
43 bool argIgnore = false; // Do not save waveforms
44 //char* argFile = "data.txt"; //TODO Filename handling
45
46 // Long argument options
47 static struct option const long_options[] =
48 {
49 {"sampling-frequency", optional_argument, NULL, 'f'},
50 {"input-range", optional_argument, NULL, 'i'},
51 {"trigger-level", optional_argument, NULL, 'l'},
52 {"trigger-delay", optional_argument, NULL, 'd'},
53 {"numbered", optional_argument, NULL, 'n'},
54 {"timed", optional_argument, NULL, 't'},
55 {"save-to", optional_argument, NULL, 's'},
56 {"ignore-wave", no_argument, NULL, 'w'},
57 {"help", no_argument, NULL, 'h'},
58 {NULL, 0, NULL, 0}
59 };
60
61 /* ---------
62 Methods
63 --------- */
64 void runBoardTime(DRSBoard* &b, std::chrono::seconds sekund, FILE* &f,

int &c); // Runs board for given amount of time
65 void runNumbEvents(DRSBoard* &b, int events, FILE* &f,

std::chrono::steady_clock::time_point starttime); // Runs board for
given amount of events

66 int initScan(DRS* &drs, DRSBoard* &b); // Checks for board and
initializes it

67 void showUsage(int status); // Shows help screen with options
68 void processArgs(int argc, char **argv); // Handles cli arguments
69 void printArgs(); // Prints the given cli arguments
70
71 using namespace std;
72
73 int main(int argc, char **argv){
74 processArgs(argc, argv); // Processing arguments from cli
75
76 // Initializing board
77 DRS *drs; //Boards
78 DRSBoard *b; //Board
79 drs = new DRS();
80 if (initScan(drs, b) == EXIT_FAILURE) return EXIT_FAILURE; //

Initialize board, exits if no boards found.
81
82 printArgs();

29

Mavropoulos and Heggedal A. Appendix

83
84 // Run board for a given time or number of events
85 if (argTime > 0 && argNumb == 0) {
86 // Opens/creates file to save waveform
87 FILE* f;
88 f = fopen("data.txt", "w");
89 if (f == NULL) {
90 perror("Error writing to file");
91 delete drs;
92 return EXIT_FAILURE;
93 }
94 // Runs for amount of time in seconds
95 std::chrono::seconds sekunder(argTime); //TODO Implement more

complex time handling, not just seconds
96 int countEvents = 1; // Counts number of events
97
98 cout << "Starting timed capture...\n";
99 auto start = std::chrono::steady_clock::now();

100 runBoardTime(b, sekunder, f, countEvents);
101 auto end = std::chrono::steady_clock::now();
102 std::chrono::duration<double> elapsed_seconds = end - start;
103 cout << "\nTotal elapsed time: " << elapsed_seconds.count() <<

"s\n";
104
105 fclose(f);
106 delete drs;
107
108 //TODO Python plot magic here, probably?
109
110 return EXIT_SUCCESS;
111 }
112 else if (argNumb > 0 && argTime == 0){
113 FILE* f; // For storing waveforms
114 f = fopen("data.txt", "w");
115 if (f == NULL) {
116 perror("ERROR: Cannot open file \"data.txt\"");
117 delete drs;
118 return EXIT_FAILURE;
119 }
120
121 // Time counter
122 std::chrono::steady_clock::time_point starttime =

std::chrono::steady_clock::now();
123 // repeat argNumb times
124 for (int j=0 ; j<argNumb; j++) {
125 runNumbEvents(b, j, f, starttime);
126 }
127
128 cout << endl;
129
130 fclose(f);
131 delete drs;

30

Mavropoulos and Heggedal A. Appendix

132
133 return EXIT_SUCCESS;
134 }
135 else {
136 cout << ("User must choose to either run based on an ammount of

time or number of events. Exiting.\n");
137 delete drs;
138 return(EXIT_FAILURE);
139 }
140 }
141
142 // Returns temperature passed from python script
143 string measureTemp(){
144 array<char, 16> buffer;
145 string temp;
146 FILE* pipe = popen("python3 readtemp.py 2>&1", "r");
147 if (!pipe)
148 {
149 return "Temp error";
150 }
151 while (fgets(buffer.data(), 16, pipe) != NULL) {
152 temp += buffer.data();
153 }
154 pclose(pipe);
155
156 return temp;
157 }
158
159 // parses cli argument input to correct time format
160 void parseTimeArgumet() { //TODO Implement
161 }
162
163 void printArgs(){
164 printf("Sampling frequency set to %f GHz, input range %f V, trigger

level %f V, trigger delay %f ns. \n",
165 argFreq, argRange, argTrigLvl, argTrigDelay);
166 if (argTime > 0) printf("Time-based capture set to %d seconds. ",

argTime);
167 if (argNumb > 0) printf("Event-based capture set to %d events. ",

argNumb);
168 if (argIgnore) {
169 printf("Capturing waveforms turned off.\n");
170 }
171 else {
172 printf("Capturing waveforms turned on.\n");
173 }
174 }
175
176 // Simply prints help screen to console
177 void showUsage(int status){
178 if (status != EXIT_SUCCESS) {
179 cout << "Show Usage failure: Nothing to see here.";

31

Mavropoulos and Heggedal A. Appendix

180 exit(status);
181 }
182 else {
183 printf(("Usage: %s [OPTION] \n"), PROGRAM_NAME); //... [FILE]...\n"),

PROGRAM_NAME);
184 fputs(("Command-line application for timed data acqusition with DRS4

EB.\n"), stdout);
185
186 fputs(("\
187 \n\
188 -f, --sampling-frequency Set sampling frequency. Default: 5 [GHz]\n\
189 -i, --input-range input range, ex. input 0 means -0.5 to 0.5.

Default: 0\n\
190 -l, --trigger-level Set trigger level in volts. Default: 0.02

[V]\n\
191 -d, --trigger-delay Set trigger delay in ns. Default: 250 [ns]

\n\
192 -n, --numbered Run for given number of events. Default: 0\n\
193 -t, --timed Run for given amount of seconds. Default:

0\n\
194 -w, --ignore-wave Do not save waveforms, only time and temp.

Default: False \n\
195 -h, --help Shows this help message\n\
196 "), stdout);
197 printf(("\
198 \n\
199 Examples:\n\
200 %s -t259200 Records events for 72 hours.\n\
201 %s -n50 -w Records 50 events without waveform data.\n\
202 "), PROGRAM_NAME, PROGRAM_NAME);
203 }
204 cout << endl;
205 exit(status);
206 }
207
208 // Parse command line options
209 void processArgs(int argc, char **argv){
210
211 int c;
212 while ((c = getopt_long (argc, argv, "f::i::l::d::n::t::wh",

long_options, NULL)) != -1)
213 {
214 switch (c)
215 {
216 case 'f': //Set frequency
217 argFreq = atoi(optarg);
218 break;
219
220 case 'i': //Input range
221 argRange = atoi(optarg);
222 break;
223

32

Mavropoulos and Heggedal A. Appendix

224 case 'l': //Trigger level
225 argTrigLvl = atoi(optarg);
226 break;
227
228 case 'd': //Trigger delay
229 argTrigDelay = atoi(optarg);
230 break;
231
232 case 'n': //Numbered run
233 argNumb = atoi(optarg);
234 break;
235
236 case 't': //Timed run
237 argTime = atoi(optarg);
238 break;
239
240 /*case 's': //Save-to
241 printf("Option s has arg: %s\n", optarg ? optarg : "(none)");
242 //argFile = optarg; //TODO Fix this, maybe make a separate

method to handle properly
243 break;*/
244
245 case 'w': //Ignore waveform
246 argIgnore = true;
247 break;
248
249 default:
250 showUsage(EXIT_SUCCESS);
251 }
252 }
253 }
254
255 // Board collects data for given amount of events
256 void runNumbEvents(DRSBoard* &b, int events, FILE* &f,

std::chrono::steady_clock::time_point starttime){
257 float time_array[8][1024]; // Waveform data, time axis
258 float wave_array[8][1024]; // Waveform data, amplitude
259
260 //start board (activate domino wave)
261 b->StartDomino();
262
263 //Wait for trigger.
264 fflush(stdout);
265 while (b->IsBusy());
266
267 //read all waveforms
268 b->TransferWaves(0, 8);
269
270 //read time (X) array of first channel in ns
271 b->GetTime(0, 0, b->GetTriggerCell(0), time_array[0]);
272
273 //decode waveform (Y) array of first channel in mV

33

Mavropoulos and Heggedal A. Appendix

274 b->GetWave(0, 0, wave_array[0]);
275
276 double millisec =

std::chrono::duration_cast<std::chrono::milliseconds>
277 (std::chrono::steady_clock::now() - starttime).count();
278
279 //Save data
280 fprintf(f, "Event #%d, Temp:%.6s, Time: %.1f ms\n", events+1,

measureTemp().c_str(), millisec);
281 if (!argIgnore) {
282 fprintf(f, "t[ns],u[mV]\n");
283 for (int i = 0; i < 1024; i++){
284 fprintf(f, "%.3f,%.1f\n", time_array[0][i], wave_array[0][i]);
285 }
286 }
287 //print some progress indication
288 printf("\rEvent #%d read successfully", events);
289 }
290
291 // Board collects data for given amount of time
292 void runBoardTime(DRSBoard* &b, std::chrono::seconds sekund, FILE* &f,

int &counter) {
293
294 float time_array[8][1024]; // Waveform data, time axis
295 float wave_array[8][1024]; // Waveform data, amplitude
296
297 std::chrono::steady_clock::time_point starttime =

std::chrono::steady_clock::now();
298 std::chrono::time_point<std::chrono::system_clock> begin =

std::chrono::system_clock::now();
299 std::chrono::time_point<std::chrono::system_clock> end =

std::chrono::system_clock::now() + sekund; // Timed end-point
300
301 while (std::chrono::system_clock::now() < end) { // While current

time is still less than defined time end-point
302
303 // Start board (activate domino wave)
304 b->StartDomino();
305
306 // Wait for trigger. (This is where the small drift between given

run time and actual run time is introduced.)
307 fflush(stdout);
308 while (b->IsBusy());
309
310 // read all waveforms
311 b->TransferWaves(0, 8);
312
313 // read time (X) array of first channel in ns
314 b->GetTime(0, 0, b->GetTriggerCell(0), time_array[0]);
315
316 // decode waveform (Y) array of first channel in mV
317 b->GetWave(0, 0, wave_array[0]);

34

Mavropoulos and Heggedal A. Appendix

318
319 double millisec =

std::chrono::duration_cast<std::chrono::milliseconds>
320 (std::chrono::steady_clock::now() - starttime).count();
321
322 //Save data
323 fprintf(f, "Event #%d, Temp: %.6s, Time: %.1f ms\n", counter,

measureTemp().c_str(), millisec);
324 if (!argIgnore) {
325 fprintf(f, "t[ns],u[mV]\n");
326 for (int i = 0; i < 1024; i++){
327 fprintf(f, "%.3f,%.1f\n", time_array[0][i],

wave_array[0][i]);
328 }
329 }
330 // print progress update
331 std::chrono::duration<double> elapsed =

std::chrono::system_clock::now() - begin;
332 printf("\rRunning for %.0f seconds", elapsed.count());
333
334 counter++;
335 }
336 }
337
338 // Does a scan for boards and initializes with user-defined parameters

(or defaults.) Always picks first board as we only support one board.
Returns 0 if no board found.

339 int initScan(DRS* &drs, DRSBoard* &b){
340 // show any found board(s)
341 for (int i=0 ; i<drs->GetNumberOfBoards() ; i++) {
342 b = drs->GetBoard(i);
343 printf("Found DRS4 evaluation board, serial #%d, firmware

revision %d\n",
344 b->GetBoardSerialNumber(), b->GetFirmwareVersion());
345 }
346
347 // exit if no board found
348 if (drs->GetNumberOfBoards() == 0) {
349 printf("No DRS4 evaluation board found\n");
350 return EXIT_FAILURE;
351 }
352
353 // continue working with first board only
354 b = drs->GetBoard(0);
355
356 //initialize board
357 b->Init();
358
359 // set sampling frequency
360 b->SetFrequency(argFreq, true);
361
362 // enable transparent mode needed for analog trigger

35

Mavropoulos and Heggedal A. Appendix

363 b->SetTranspMode(1);
364
365 //set input range to given value, +/- 0.5. Ex. 0 gives a range from

-0.5 to 0.5
366 b->SetInputRange(argRange);
367
368 // The following lines enables hardware trigger on CH1 at given

voltage positive edge
369 if (b->GetBoardType() >= 8) { // Evaluaiton Board V4&5
370 b->EnableTrigger(1, 0); // enable hardware trigger
371 b->SetTriggerSource(1<<0); // set CH1 as source
372 } else if (b->GetBoardType() == 7) { // Evaluation Board V3
373 b->EnableTrigger(0, 1); // lemo off, analog trigger on
374 b->SetTriggerSource(0); // use CH1 as source
375 }
376 b->SetTriggerLevel(argTrigLvl); // Trigger level. Defualt: 0.05 V
377 b->SetTriggerPolarity(false); // positive edge
378
379 // set trigger delay. Default: zero ns trigger delay
380 b->SetTriggerDelayNs(argTrigDelay);
381 return EXIT_SUCCESS;
382 }

Listing A.2: Temperature readout
1 # SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
2 # SPDX-License-Identifier: MIT
3
4 # https://github.com/adafruit/Adafruit_CircuitPython_MAX31865
5
6 import time
7 import board
8 import digitalio
9 import adafruit_max31865

10
11 # Create sensor object, communicating over the board's default SPI bus
12 spi = board.SPI()
13 cs = digitalio.DigitalInOut(board.D5) # Chip select of the MAX31865

board.
14 sensor = adafruit_max31865.MAX31865(spi, cs)
15
16 # Read temperature.
17 temp = sensor.temperature
18 # Print the value.
19 print(temp)

Listing A.3: Graph plotter
1 import csv
2 import re
3 import pandas as pd
4 import seaborn as sb

36

Mavropoulos and Heggedal A. Appendix

5 import matplotlib.pyplot as plt
6
7 # Create CSV file and writer
8 f = open('data.csv', 'w', newline='')
9 writer = csv.writer(f)

10
11 # Regex matches for temp and time
12 regex = re.compile(": (\d*\.\d*),.*: (\d*)")
13
14 with open("data.txt") as data:
15 # Go through each line of data.txt
16 for line in data:
17 # See if it matches with regex
18 for match in regex.finditer(line):
19 # Write a new row with regex matches
20 writer.writerow([match.group(1),match.group(2)])
21
22 #Close writer and CSV file, data.csv
23 f.close()
24
25 # Read data.csv, defining column names and setting index column set to

'ms'.
26 data = pd.read_csv('data.csv', names=['temp', 'ms', 'count'],

index_col='ms')
27
28 # Rewrite time column to panda timedelta milliseconds
29 data.index = pd.to_timedelta(data.index, unit='ms')
30
31 # Resample to calculate mean temperature and number of events every 30

minutes
32 resamp = data.resample('30min').agg({'temp': ['mean', 'count']})
33
34 # Flattens multiindex columns and fixes names
35 resamp.columns = resamp.columns.map('_'.join)
36
37 print(resamp)
38
39 # Save the resampled data as CSV
40 resamp.to_csv('result.csv')
41
42 # Create plots
43 sb.set_style("darkgrid")
44
45 fig, ax =plt.subplots(1,3)
46
47 res = sb.lineplot(x='ms', y='temp_mean', data=resamp, ax=ax[0], ci='sd')
48
49 res.set(xlabel='Time [ms]', ylabel='Mean temperature [°C]')
50
51 res2 = sb.lineplot(x='ms', y='temp_count', data=resamp, ax=ax[1], ci='sd')
52
53 res2.set(xlabel='Time [ms]', ylabel='# events pr 30 minutes')

37

Mavropoulos and Heggedal A. Appendix

54
55 res3 = sb.scatterplot(x='temp_count', y='temp_mean', data=resamp,

ax=ax[2])
56
57 res3.set(xlabel='# events pr 30 minutes', ylabel='Mean temperature [°C]')
58
59 plt.show()
60
61 fig.savefig("result.pdf", bbox_inches='tight')

Listing A.4: Climate chamber
1 import datetime as dt
2 import serial.tools.list_ports
3 import cts_connection_serial as connect
4
5 ports = list(serial.tools.list_ports.comports())
6 for p in ports:
7 print(p)
8 if 'MOXA USB Serial Port' in p.description:
9 port = p

10 print('Connecting...')
11
12 cts = connect.Connection(port=port.device, baud=19200, timeout=0.25)
13 response = cts.read_set_temp_and_actual()
14 print('Set temp:', response[0], ' Actual temp:', response[1])
15
16
17 k = 0
18
19 temp_list1=[5, 10, 15, 20, 25, 30, 35, 40, 45]
20 temp_list2=[50, 45, 40, 35, 30, 25, 20, 15, 10]
21
22 hourly = dt.datetime.now()
23 minute = dt.datetime.now()
24
25 f = open("bachelorbrostemp.txt", "a")
26 f.write("date,set_temp,acc_temp\n")
27 f.close()
28
29 while True:
30 while k < len(temp_list1):
31 if dt.datetime.now() > minute:
32 minute = dt.datetime.now() + dt.timedelta(minutes=1)
33 f = open("bachelorbrostemp.txt", "a")
34 f.close()
35
36 if dt.datetime.now() > hourly:
37 f = open("bachelorbrostemp.txt", "a")
38 hourly = dt.datetime.now() + dt.timedelta(minutes=120)
39 cts.set_temp(temp_list1[k])
40 print("Setting temperature to", temp_list1[k], "degrees C

38

Mavropoulos and Heggedal A. Appendix

at", dt.datetime.now())
41 f.write(str(dt.datetime.now()))
42 f.write(",")
43 f.write(str(cts.read_set_temp_and_actual()[0]))
44 f.write(",")
45 f.write(str(cts.read_set_temp_and_actual()[1]))
46 f.write("\n")
47 k += 1
48 f.close()
49 k = 0
50
51 while k < len(temp_list2):
52 if dt.datetime.now() > minute:
53 minute = dt.datetime.now() + dt.timedelta(minutes=1)
54 f = open("bachelorbrostemp.txt", "a")
55 f.close()
56
57 if dt.datetime.now() > hourly:
58 f = open("bachelorbrostemp.txt", "a")
59 hourly = dt.datetime.now() + dt.timedelta(minutes=120)
60 cts.set_temp(temp_list2[k])
61 print("Setting temperature to", temp_list2[k], "degrees C

at", dt.datetime.now())
62 f.write(str(dt.datetime.now()))
63 f.write(",")
64 f.write(str(cts.read_set_temp_and_actual()[0]))
65 f.write(",")
66 f.write(str(cts.read_set_temp_and_actual()[1]))
67 f.write("\n")
68 k += 1
69 f.close()
70 k=0

39

Mavropoulos and Heggedal A. Appendix

A.3 Technical drawings

40

Mavropoulos and Heggedal A. Appendix

41

Mavropoulos and Heggedal A. Appendix

A.4 Bill of materials

42

	Introduction
	Contracting entity
	Project requirements
	Scintillation Gamma Detectors
	Scintillation
	Silicon Photomultipliers
	The Domino Ring Sampler IV

	Methodology
	Hardware
	The computer
	The PT1000 and MAX31865 breakout board
	Housing sensitive components

	Software
	Operating system
	Evaluating the DRS4 software

	Results
	The final enclosure
	Running the software

	Discussion
	Conclusion
	References
	Appendix
	Installation
	Source code
	Technical drawings
	Bill of materials

