
 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 1 of 88 26.05.2022

BACHELOR THESIS:

BO22EB-03 - AMS HAN TO WI-FI MQTT
INTERFACE WITH DISPLAY AND
MOBILE APPLICATION

Shao Heain Tseng

Lazar Delic

 Javed Qasimi

26. May. 2022

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 2 of 88 26.05.2022

Document Control

Report title

AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application
Date/Version

26. May. 2022/3.0
Report number:

B022EB-03
Author(s):

Shao Heain Tseng
Lazar Delic
Javed Qasimi

Course:

ELE350
Number of pages including
appendixes

88

Supervisor at Western Norway University of Applied Sciences

Svein Haustveit
Security classification:
Open

Comments:

We, the authors, allow publishing of the report.

Contracting entity:
Western Norway University of Applied Science

Contracting entity’s reference:

Contact(s) at contracting entity, including contact information:
Svein Haustveit
+47 55 58 76 59
Svein.Haustveit@hvl.no

Revision Date Status Performed by
R.0.0 02.05.22 Started Project Javed Qasimi
R.0.1 03.05.22 Fill up information

Adjusted cover page
Shao Heain Tseng

R.0.2 03.05.22 Made and inserted illustrations
Added contents to 1 - 3.1.2

Javed Qasimi
Lazar Delic

R.0.5 04.05.22 Added contents to 3.1.2 – 3.1.6
Added illustrations

Lazar Delic

R.0.6 05.05.22 Added contents 3.1.7-3.2 Lazar Delic
R.0.7 06.05.22 Added preface, contents to 4.2

Added contents to chapter 5

Lazar Delic
Shao Heain Tseng
Javed Qasimi

R.0.8 08-10.05.22 Added sub-headings and contents
Create illustrations

Lazar Delic
Shao Hean Tseng
Javed Qasimi

R.1.0 11.05.22 Added WBS diagram
Added contents to remaining chapters
First draft

Lazar Delic
Shao Hean Tseng
Javed Qasimi

R.1.1 18.05.22 Adjust chapter placement
Add minor contents to 3-4

Lazar Delic
Shao Hean Tseng
Javed Qasimi

R.1.5 19-20.05.22 Fix project structure with PBS in mind
Finish user manual first draft
Adjustments to chapter 1.3-8 and
appendix

Lazar Delic
Shao Hean Tseng
Javed Qasimi

R.2.0 22.05.22 Added hyperlinks
Adjusted Appendix A-K
Added GANTT diagram

Lazar Delic
Shao Hean Tseng
Javed Qasimi

R.3.0 23.05.22-
31.05.22

Corrected grammar issues
Added bullet points in chapter 4
Adjusted Chapters 1-6

Lazar Delic
Shao Hean Tseng
Javed Qasimi

mailto:Svein.Haustveit@hvl.no

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 3 of 88 26.05.2022

Preface
This report is given by Western Norway University of Applied Sciences (HVL) [1], campus Bergen

in the subject ELE350-1 21H Bacheloroppgave. The project was started in January and concluded

in early June. The group consists of Javed Qasimi, Shao Heain Tseng, and Lazar Delic from

Electronical engineering at HVL Bergen.

We would like to thank our friend and fellow student Martin Eggen for 3D-printing the case

designs using his 3D-printers. We also want to thank our advisor Svein Haustveit for leading us in

the right direction. Lastly, we want to thank InfoTech AS [2] for providing a professional testing

area, and certain components.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 4 of 88 26.05.2022

1 Table of Contents
Document Control ... 2

Preface ... 3

1 Introduction ... 7

1.1 Contracting entity .. 7

1.2 Problem description .. 7

1.3 Main idea of solution ... 8

1.4 Failure preparations .. 9

1.4.1 Agile ... 9

1.4.2 Work Breakdown Structure ... 10

1.5 GANTT diagram ... 10

2 Specification of requirements ... 11

2.1 Secondary priority tasks – If there is enough time .. 11

2.2 Viable solutions ... 11

2.2.1 Spot price ... 11

2.2.2 Hardware solutions ... 12

2.3 Choosing a solution ... 12

3 Problem analysis .. 13

3.1 Advanced Measurement & Control System .. 13

3.1.1 AMS reader limitations .. 13

3.1.2 The HAN Interface ... 13

3.2 Hardware development .. 16

3.2.1 Main components ... 16

3.3 Software development .. 17

3.3.1 Getting spot price using API .. 17

3.3.2 Azure Functions ... 17

3.3.3 Software protocols .. 19

3.4 Issues regarding tools and HW/SW aspects .. 20

3.5 Problem analysis conclusion ... 21

3.5.1 Hardware ... 21

3.5.2 Software .. 21

4 Realization of selected solution .. 22

4.1 Hardware analysis ... 22

4.1.1 Circuit block diagram ... 22

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 5 of 88 26.05.2022

4.1.2 ESP32 in the SPR and the SPD ... 24

4.1.3 SPR circuit breakdown ... 24

4.1.4 SPD circuit breakdown .. 30

4.2 Software analysis ... 32

4.2.1 Software principles .. 32

4.2.2 Learn GitHub .. 32

4.3 Embedded software overview .. 33

4.3.1 SPR software .. 33

4.3.2 SPD software ... 35

4.4 Software overview ... 36

4.4.1 C# overview ... 36

4.4.2 Flutter Mobile application development .. 37

4.5 Case design .. 38

4.5.1 Design differences between the SPR- and the SPD case ... 38

4.5.2 First case design .. 39

4.5.3 Second case design .. 39

5 Testing ... 41

5.1 ESP32 Thing Plus testing .. 41

5.1.1 Problems encountered .. 41

5.2 First circuit ... 41

5.2.1 Component testing .. 41

5.2.2 Complete circuit testing .. 42

5.3 Second circuit .. 42

5.3.1 Changes from the first circuit .. 42

5.3.2 Preliminary component testing ... 42

5.3.3 Testing results.. 43

6 Discussion .. 44

6.1 What went well ... 44

6.2 What went wrong? .. 44

7 Conclusion ... 45

References ... 46

Appendix A. Abbreviation .. 51

Appendix B. Datasheet ... 52

Appendix C. Project management .. 53

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 6 of 88 26.05.2022

A.1 GANTT Diagram ... 53

A.2 Work Breakdown Structure ... 54

Appendix D. User manual ... 55

A.1 Open HAN port .. 55

A.2 MQTT sign up ... 57

A.3 Smart Power Reader .. 60

A.4 Smart Power Display ... 64

A.5 SPR & SPD placement .. 68

Appendix E. Setup Arduino IDE .. 69

Appendix F. Bill of materials ... 73

Appendix G. Mobile Application... 74

Appendix H. How to setup your PC for Flutter development .. 79

Appendix I. Setup Android Studio and Android SDK .. 80

Appendix J. Testing circuits .. 81

Appendix K. List type .. 84

Appendix L. Arduino libraries ... 86

Appendix M. Hardware schematics ... 87

Appendix N. Case Design .. 88

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 7 of 88 26.05.2022

1 Introduction

1.1 Contracting entity
The Western Norway University of Applied Sciences or HVL is a Norwegian public institution of

higher education. HVL was first founded in 1839 in Stord. Subsequently, the University went

through many changes, the final one was being established in 2017 when five separate campuses

merged into one of the largest institutions in the country. HVL offers a wide variety of academic

programs at Bachelor’s, Master’s, and PhD levels.

1.2 Problem description
The following Bachelor thesis concerns electronics engineering, where the assignment is to use

the new Advanced Measurement and Control Systems (AMS) to measure the power consumption

and similar metrics and send the information to a HW solution using the Home Area Network

(HAN) interface.

The task is to bring an easier way to display power usage to the general consumer, however

multiple competitors already exist on the market offering a variety of solutions. The most popular

solutions are created by Fjordkraft [3] and Tibber [4]. They offer an app solution that shows the

current price and power usage, however, to use their services one needs to have them as their

power supplier as well. This means that you cannot use their app or their services while having

another supplier.

The other competition on the market are the likes of Homey [5] and Futurehome [6]. These are

advanced systems that charge a high price; however, they are independent of any power supplier.

They also offer a mobile app solution; though, they do not offer a display solution. For a separate

display to be connected to these devices, it would have to be a DIY, or “do it yourself” project. This

is not convenient for the general customer.

Keeping the competition in mind, a new, fresh, and simple solution is needed. The main issue with

all the current solutions is the lack of a quick solution. They all require the app to be launched and

thereafter a browsing of different menus. However, none offer a solution that can show the price

in a quick glance wherever in the household. That is the main problem description to be overcome.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 8 of 88 26.05.2022

1.3 Main idea of solution
The contracting entity envisioned a solution where using the new AMS readers we could use

microcontrollers and a Meter-Bus Transceiver (Transmitter and Receiver) to receive this data and

display the power usage on a separate entity that receives the information using a cloud-based

solution. The final product deviated somewhat for the main idea but withheld the same general

solution of an easily accessible power metric display.

Figure 1 - General visualization of how the product works and where it is used

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 9 of 88 26.05.2022

1.4 Failure preparations
Minimizing chance of failure is crucial in any project. Having the right preparations is key for a

successful project. Therefore, following certain methodologies while working on the project

proved valuable.

1.4.1 Agile

Agile was used to have an organized well-executed project. The team regularly followed Agile in

the approach towards a finished product. With regular meetings and planning sessions, it was

attempted to make the project as mistake-free as possible.

Figure 2 - Agile Diagram

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 10 of 88 26.05.2022

1.4.2 Work Breakdown Structure

With the work breakdown structure, it is possible to have a straightforward plan, making the

project more organized and predictable. The work breakdown structure lays down a foundation

on what tasks need to be done.

Figure 3 - Work Breakdown Structure

1.5 GANTT diagram
To visualize and plan deadlines in a structured way, using a GANTT diagram helps clarify these

issues. The GANTT diagram is divided into three main parts. “Software”, “Hardware” and

“Writing”. These categories consist of subcategories that summarize the work done throughout

the project. Each assignment is assigned to a team member(s), and is prioritized from high (H),

medium (M) to low (L). The GANTT diagram can be seen in Appendix B-A.1.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 11 of 88 26.05.2022

2 Specification of requirements
HVL gave us the following suggestions on how we can solve this problem. Many of these

suggestions ended up being used with some slight variations to either improve performance or

functionality from a user’s perspective. The ideas below given by HVL were taken into

consideration and worked upon to create the most well-rounded product.

Tasks

• Build Complete HW for HAN to Wi-Fi solution

• Make an embedded SW that can receive measurements from the HAN-port and send them

via Wi-Fi to a Local server or to a cloud solution

• Fetch spot price call over the internet

• Build a simple display that receives measurement via Wi-Fi and shows it on the display

• Interconnect task 1 & 2 using a cloud solution server

• Receive measurements and save them on a local server or a cloud solution.

• Create a mobile app which can receive data from a local server or a cloud solution and

shows the power usage in real time.

2.1 Secondary priority tasks – If there is enough time
Creating a mobile application that can receive power usage is a quality-of-life feature that is of

secondary priority. However, if there is enough time to be disposed of an attempt will be made to

create a simple application using “Flutter [7]”. This application is to show the spot price and power

usage at a given time.

2.2 Viable solutions
After considering the specification of requirements, viable solutions need to be chosen. The

following subheadings consist of said solutions.

2.2.1 Spot price

The first topic of discussion is getting the spot price. This can be obtained in two ways, the first

one being an Application Programming Interface (API) call made through the internet to fetch

today’s prices. The second way is partnering up with multiple power suppliers so that as many

people as possible can use the product. The main difference between these two ways of getting

the current price is the accuracy of the price. Non-partnered API calls can only get an estimated

value through day-ahead prices. However, power suppliers have this information on demand,

therefore it would give an exact reading of what the current price is.

What made the most sense to the group is to go with the API solution that did not require

partnering up with a power supplier. While getting a precise price is advantageous, it does limit

us from reaching a larger crowd of individuals. Therefore, fetching the current spot price is the

better solution.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 12 of 88 26.05.2022

2.2.2 Hardware solutions

2.2.2.1 Single device

The problem at hand has multiple viable solutions. The first one being a single device solution.

This device then must receive data from the HAN-port and thereafter send data to the cloud. To

view the information sent, a mobile application also must be made. The finished product will have

to have live spot price viewing as well. This is done through an API call over the internet as

mentioned earlier.

2.2.2.2 Dual device

The second solution to the problem is having two devices. This makes the product unique and

worth buying. As mentioned earlier, Tibber and other power suppliers already have a solution

that includes a singular device connected to a mobile device. What separates this idea is, a display

that can be placed anywhere in the household, showing both power usage and price. As of the time

of writing, there are no other suppliers that offer a display solution on the market. The only

downside to this solution is the time it takes to create two circuits which can be a tough task within

a short period of time.

2.3 Choosing a solution
Since our assignment is to make a solution that can read the signals from the AMS reader, it was

decided that the focus is to be on the power reading unit, later named “Smart Power Reader”

referred to as SPR. The display circuit, the “Smart Power Display”, SPD, would also have a high

priority; however, this would only be a priority if the first circuit is developed within the

timeframe.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 13 of 88 26.05.2022

3 Problem analysis
At first glance, the specifications are straight forward. However, plenty of choices need to be made

to fulfill the requirements set. These choices are divided into subheadings, the subheadings range

from technical research to the choice of programs and components.

3.1 Advanced Measurement & Control System
Advanced Measurement & Control System (AMS) was announced in Norway in 2011 which

replaced the existing analogue meters. An AMS is a modern technology for measuring and sending

single or multiple phases of voltages, currents, and power consumptions to power suppliers.

By this introduction of AMS, the power companies are imposed by the Norwegian Water

Resources and Energy Directorate (NVE) to make the meter data available to the customer. This

is done through a RJ45 standard (ISO/IEC 8877 [8]) physical output called “Home Area Network”

(HAN) interface and a standardized electrical interface Meter BUS (EN 13757-2 and EN1434-3

[9]). Customers can request to open the HAN interface from their power company.

3.1.1 AMS reader limitations

When analyzing the task at hand, a problem was discovered. There are three different AMS

readers in Norway. These AMS Readers are known as the Kaifa-, Kamstrup- and Aidon AMS

readers. Kaifa is mostly used in western Norway, while Kamstrup and Aidon are found elsewhere.

With the group having no access to the Kamstrup and Aidon readers, the testing will therefore

only be done on Kaifa readers.

3.1.2 The HAN Interface

The HAN interface is the sole reason for this project being possible. The HAN-port delivers various

data ranging from momentary power usage to power usage accumulated within the last hour.

Underneath is an example of where the HAN-port can be found on any new digital electricity

readers.

Figure 4 HAN-port location on Kaifa, Kamstrup, and Aidon AMS readers

The HAN interface delivers three different packets. The first packet gets sent every two seconds.

The most important data this packet delivers is active power usage given in Watts [W]. The second

packet comes every ten seconds and sends a more substantial amount of data than the smaller

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 14 of 88 26.05.2022

packet, as seen in Figure 5. Packet number three sends a packet every hour, which includes the

most important data that is the power usage accumulated within the last hour given in Watt-hour

[Wh]. The HAN interface offers access to plenty of other information; however, the general

consumer is most intrigued by the power usage, and power usage per hour. Therefore, only the

two mentioned data will be fetched.

Figure 5 - Overview on all data sent via the HAN interface

Figure 6-List showing when the different packets arrive

The current idea is to only use the data sent for power usage and power usage per hour. However,

it is completely possible to integrate other data in the future. An example is the date and time

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 15 of 88 26.05.2022

being delivered every two seconds, this can be processed and shown on the screen. The same

applies for most of the data shown in Figure 6 as well as in Appendix K.

3.1.2.1 M-Bus Protocol (Meter-Bus Protocol)

The M-Bus Protocol is a protocol that allows computers to read energy consumption data from

power meters, heat meters, gas meters, water meters and various sensors and actuators from

different manufacturers. M-Bus support remote powering of slaves and works in a Half Duplex

fashion. The wire named M-Bus+ is kept at constant 36V to supply the slaves with power. The

other wire M-Bus- alternates between 0 and 12V, giving either 36V or 24V in difference between

M-Bus+ and M-Bus-. The difference between M-Bus+ and M-Bus- determines if it is a logical one

or zero being transmitted. 36V between them corresponds to a logical "one" and 24V to a logical

"zero". Based on the M-Bus description documentation, the protocol used between a master and

slaves is an asynchronous serial bit transmission. This is visualized on the Figure 8.

To get the transmission to work, the first requirement is that the transmission between two

telegrams must have no delay. The second requirement is that the eleventh bit, which is the "stop"

bit, must be a logical “one”, while the "start" bit must be a logical “zero” to start transmission. As

seen in Figure 8, the bits are sent in an ascending order, least significant bit first (LSB).

Figure 7 - M-Bus master/slave connection

Figure 8 - M-Bus transmission packet

36V

24V

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 16 of 88 26.05.2022

3.1.2.2 Universal Asynchronous Receiver/Transmitter (UART) Protocol

Universal Asynchronous Transmitter

Receiver (UART) [10] is a hardware

peripheral protocol that can be found inside

microcontrollers. UART converts the

incoming- and outgoing data into the serial

binary stream. 8-bit serial data received from

the peripheral device is converted into the

parallel form using serial to parallel

conversion. Likewise, the parallel data

received from a Central Processing Unit

(CPU) is converted using serial to parallel conversion. The asynchronous serial communication

data and speed is also configurable.

Serial Peripheral Interface (SPI) and Universal Serial Bus (USB) are often used for fast

communication, while UART is most often used at lower data transfer speeds. UART is a cheap

communication device with a transmitter/receiver. One wire is required from transmission of

data while another wire is needed for receiving data. Using an RS232-TTL converter or USB-TTL

converter one can communicate with a Personal Computer (PC). The common thing

between RS232 and UART is that they are both asynchronous, meaning that they don’t require a

clock to communicate. UART consists of one start bit, 1 or 2 stop bits and a parity bit for serial

data transfer.

3.2 Hardware development
When designing a hardware circuit, it is important to be able to verify the circuit through

simulations and circuit analysis. To achieve this, a Printed Circuit Board (PCB) design tool that

offers a large variety of components is essential. Be as it may, there are no design tools that have

all the necessary parts for this project and simultaneously support live simulation on said parts.

Therefore, we must settle for programs that allow us to gather all the components into one

singular program.

As a result, it is decided to use EasyEDA [11] as the main PCB design tool. This is simply because

there is no other tool that included all the components we laid forth. Finding a single design tool

that has all the components makes the order and manufacturing process more organized.

3.2.1 Main components

Based on the specifications given, Wi-Fi access on the circuit is a crucial factor for both cloud

access and for fetching spot price using the internet. Therefore, it was decided that the ESP32-

WROOM-32D [12] microcontroller is a solid fit for this assignment. Using this microcontroller we

conquer specifications, namely, communication with cloud solutions and -APIs. The ESP32 was

sub-consequently also chosen because of the group’s knowledge of the Arduino IDE and C++

programming. This effectively leads to a smoother starting phase.

In addition to the ESP32 we also needed other components to achieve the goals set. For the chosen

microcontroller to understand the signals delivered from the AMS reader, a Meter Bus (M-BUS)

Transceiver is needed. There were multiple acceptable solutions on the market. The first being

NCN5150 [13], and the latter being TSS721A [14]. Both allow microcontrollers to understand the

Figure 9 - UART block diagram

https://www.codrey.com/embedded-systems/rs232-serial-communication/

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 17 of 88 26.05.2022

signals sent from the AMS reader. The signals sent are M-BUS signals that need to be “translated”

to Transistor-Transistor Logic (TTL) signals.

3.2.1.1 Supporting components

When creating a complete circuit there are plenty of components involved. The main components

have already been introduced. The ESP32, and TSS721A/NCN5150 (M-BUS to TTL converters).

However, there are some lesser components that also have an important job. R-783.3-1.0 [15] is

a 5-volt to 3.3-volt converter. This is something that is bound to the ESP32 microcontroller and is

needed for the ILI9341 [16] display to obtain enough power using an external power supply. In

addition to the microcontroller, an attempt is made to standardize 3.3V in all parts throughout

the circuit. This thought process is done so that the circuit must have as little converters as

possible.

The LT1936 [17] is the second buck-converter that is to be implemented into the circuit. This

converter should make it possible to use only the HAN-port as a power supply to the SPR, meaning

that the one cable connection should be fulfilled.

Lastly it is important to choose resistors, capacitors, transistors, and coils carefully as these are

essential for stabilization and amplification of signals.

3.3 Software development
When doing software development, it is important to get familiar with the task and the different

protocols used in the project. To fulfill the specification of requirements, it requires deep analysis

of the software specification.

3.3.1 Getting spot price using API

Fetching the spot price in each power region is a considerable task. The first part is finding an API

that allows for commercial use while using their services. As there were no Norwegian

distributors that allowed for such use, we ended up using a European platform, Transparency

European Network of Transmission System Operators for Electricity (ENTSO-E) [18]. The

advantages here are the amount of API calls allowed per minute. The European platform allows a

total of up to 400 calls. Seeing as the API needs to be called only once per day, this would allow for

up to 2.3 million calls with just four separate tokens.

3.3.2 Azure Functions

The main reason for choosing azure functions is because of its ability to deliver data to any device

using API. This means that any device that can make HTTP-call can receive the data from the

cloud-based solution. Additionally, the main reason for having to use Azure Function is because

of the lack of available open-source APIs for day ahead prices. There are no free solutions on the

market that offer a straightforward solution. Most solutions are either paid solutions, or solutions

that need to be processed further to access the data needed. Therefore, making code that only

sends relevant data like spot price at any hour during the day is necessary. This would take away

repeating code of processing Extensible Markup Language (XML) and other formats into raw data,

while also offering a solution that only gives the data a person needs.

Another advantage to Azure Functions is that the cloud service costs scale with on-demand calls.

This means that the cloud service does not accumulate high prices unless there is high demand. In

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 18 of 88 26.05.2022

addition to relative price costs, using Azure Functions makes it possible to publish the code to the

cloud service using Visual Studio. This means that if any bugs were to occur, it is easily updatable

and fixable using Azure. Additionally, with a history in C# programming, it made the decision

easier and more straightforward. The data received from Azure Functions can as a result be

received as a regular function within most programming languages.

3.3.2.1 Using Norges Bank API to convert Transparency data

When getting the spot price through Transparency ENTSO-E, the data firstly comes in as

EUR/MWh. This data needs to be converted to NOK/kWh to meet the Norwegian standard. This

conversion can be done through visual studio using C#. However, the current spot price depends

solely on the power region a person lives in, and the current exchange rate between NOK and EUR.

The exchange rates are publicly available on Norges Bank [19] API and the values are delivered

using the JSON (JavaScript Object Notation) format.

3.3.2.2 Spot price data processing

Norway is divided into 5 individual power zones shown in Figure 10. The general citizen is not

familiar with their power zone. That being the case, a simple solution where the power zone is not

used would be optimal.

The first solution example is location tracking using GPS; however, this would prove costly and

there might be privacy concerns as a result. The idea that ended up sticking because of its

simplicity was a postal code solution. As seen in Figure 11 below, Norway is divided into 9

different postal codes. These postal codes create a pattern that can be seen within the power zones

as well. For example, postal codes nine and eight equate to power zone four. Using this trend, one

can estimate the power zone using postal codes. This also solves the privacy issue, as through

postal codes, only a general area is sent, meaning that the precise location is not used.

Figure 10 - Power zone distribution in Norway Figure 11 - Postal code distribution in Norway

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 19 of 88 26.05.2022

3.3.3 Software protocols

3.3.3.1 MQTT interconnection

MQ Telemetry Transport (MQTT) is a communication protocol based on a publish and subscribe

system. The illustration below explains what this means.

Figure 12 - MQTT publish/subscribe example

As seen above, it starts with a client that sends data to a broker. In this case that would be power

usage, thereafter this data can then be accessed by MQTT clients that subscribe to the “topic”, the

topic being “power usage”. After subscribing to a topic, data like power usage and power usage

per hour can then be processed as an integer or a floating point. This use case is intended for the

mobile application to receive the data and show it to the user.

As mentioned, it is intended to use this protocol to send and receive power usage through the

internet. The broker that has been decided is Ubidots [20]. Ubidots has a good solution for

students and enterprises such as limitless free usage, while also having a large database that

stores data from up to two years. The amount of data stored per day can be increased with a

subscription fee per month. Therefore, it is a good solution if this were to be an expanded business.

Furthermore, Ubidots offers API Tokens as verification, this makes the communication safe, and

password protected. What is more, through this token, it is possible to fetch all data and send it to

a mobile application using an API call. This then opens for the possibility to view power usage in

the home from anywhere in the world. If the mobile device has internet connection and the correct

token, it is possible to view the power usage and spot price from anywhere. This is how API calls

work and was one of the main reasons for using this MQTT broker.

3.3.3.2 The ESP-NOW protocol

As for communication between the SPR and the SPD it was initially planned to use MQTT for

communication. However, since the ESP32 supports ESP-NOW, it is determined that to reduce

traffic to the MQTT server, ESP-NOW will be the main communication method between the two

devices.

ESP-NOW is a protocol defined by Espressif [21] which sends data using 802.11 packets without

the need of being on the same Wireless Local Area Network (WLAN) network. ESP-NOW allows

for multiple devices to be connected without using Wi-Fi. For the connection to be established, the

sender (SPR) needs to get the Media Access Control (MAC) Address of the receiver (SPD). With

the protocol being low power, this means that the circuit itself will use less power overall, making

it more possible to fulfill the one cable connection without power delivery issues. Additionally,

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 20 of 88 26.05.2022

ESP-NOW sends packets of 250 Bytes, making it possible to send large packs of data every second.

This packet size is more than enough for this assignment.

The ESP-NOW protocol is to be used to send and receive loads of data. Among this data is, current

spot price throughout a given day, power usage and power usage per hour. The data is sent using

structs in C/C++ and received as raw data. In this case the power usage received will be given as

a floating point, while the spot price is delivered as a floating-point array containing the price for

every hour during the day.

3.3.3.3 Protocols working together

The initial thought is to have the two devices, SPR and SPD working together as master and slave

respectively through ESP-NOW. The SPR is going to send power usage to MQTT using Wi-Fi and

the SPD using ESP-NOW. For a connection to be established with ESP-NOW, the MAC Address of

the receiver (SPD) needs to be registered to the sender (SPR). Doing the data transfer in this

manner makes it so that the SPD never has to connect to MQTT, saving power and making the

code faster. After the data gets delivered to MQTT, it is safe to get accessed using a mobile

application.

Figure 13 - Protocols working together

3.4 Issues regarding tools and HW/SW aspects
While deciding the different components, there were some issues found. To begin with, it was

planned to go with the NCN5150 as it was an alternative to the TSS721A as it was out of stock at

the time. After deeper research and testing, it was determined that the NCN5150 delivers less

power than the TSS721A. This difference is enough to make the circuit unstable so that the ESP32

does not get enough power delivery to both send data through Wi-Fi, while also processing the

data received from the HAN-port. Therefore, the TSS721A gives more stability through more

power delivery. The TSS721A was also recommended by our Advisor making it a clearer choice.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 21 of 88 26.05.2022

It was originally planned to use Multisim as the main circuit design program. However, the lack of

supported components quickly led us away from this program. Other applications were also

considered, but ultimately led to the same problem. An example here is OrCAD [22] and KiCad

[23]. Ultimately EasyEDA was the only software solution that had our components in its database.

3.5 Problem analysis conclusion
To make the chapter more readable and understandable, the subheadings are divided into

hardware and software.

3.5.1 Hardware

As a conclusion to the problem analysis, it has been decided that the ESP32 will be the main

processing unit. This opens for the use of C/C++ and the Arduino IDE, a programming language

and compiler that the group is familiar with and ready to work with. As for the rest of the

components, for the conversion from M-BUS to TTL, the group decided to go for the TSS721A

transceiver. This component is chosen over the NCN5150 because of its superior power delivery

to the ESP32.

For the converters from 36V to 3.3V and 5V to 3.3V we decided to stick with the LT1936 and the

R-783.3-1.0 respectively as the components are a perfect fit for this project. Another benefiting

factor is that these components are all parts that are supported by EasyEDA. Making it possible to

create a circuit design within one singular program. For the SPD, it is planned to include a display

to show data. The display chosen is the ILI9341 2.8-inch display.

3.5.2 Software

There are multiple protocols to consider in this project. The protocols that are directly tied to the

project specification are the HAN protocol interface and the MQTT protocol. MQTT allows us to

publish and subscribe to topics using Wi-Fi, while the HAN protocol allows us to collect power

data from AMS readers. A protocol that we decided to add that was not a part of the specification

is the ESP-NOW protocol. The reason for the addition of ESP-NOW is for ease of use for the general

consumer, as well as resulting in overall lower power draw.

Next to EasyEDA and the Arduino IDE, it was determined to also use Azure Functions through

Visual Studio because of the practicality of their cloud-based services where the cost scales with

on demand requests. Since Azure Functions supports C# and our group has good knowledge of

this object-oriented language, it ended up being a clear choice.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 22 of 88 26.05.2022

4 Realization of selected solution
The illustration below shows a block diagram of the complete realization of the solution. It combines

backend, frontend and the hardware aspects of the solution and shows everything together

categorized.

Figure 14 Block diagram of complete solution

4.1 Hardware analysis
Creating a circuit requires lots of preparation. Therefore, creating diagrams and following the

datasheets given is critical for a successful project. Thus, digging deeper into each will give more

clarity to the project.

4.1.1 Circuit block diagram

An organized and systematic way to visualize a circuit is using block diagrams. It lays out a solid

foundation to follow onward as the circuit is being designed. The block diagram in Figure 15

shows the entire circuit. The idea was to have a circuit that is suitable for both the SPR- and the

SPD device. Meaning that both devices use the same circuit but have different enclosures that

separate them. This opens for faster and better testing experience, while also reducing cost

significantly.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 23 of 88 26.05.2022

Figure 15 - Complete circuit block diagram

Although the SPR and the SPD use the same circuit board, their functions on the circuit board can

be divided into two separate block diagrams as seen in Figure 16 and Figure 17. Both diagrams

will each have its own rundown in chapter 4.1.3 and chapter 4.1.4.

Figure 16 – SPR block diagram

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 24 of 88 26.05.2022

Figure 17 - SPD block diagram

4.1.2 ESP32 in the SPR and the SPD

The ESP32[11] is an integral component to both the SPR and the SPD. It is a feature-rich

microcontroller that has low power consumption and supports both Wi-Fi and Bluetooth

operations. What is more, the ESP32 has a wide operating temperature from -40 °C to +125 °C

with the recommended operating temperature being up to +80 °C, making it robust and highly

compatible with many smaller circuits. The ESP32 additionally has plenty of General Purpose

Input Output (GPIO) ports which opens for future expandability.

As said, the shared circuit includes ESP32 as the main microcontroller unit. The microcontroller

features 4 MB of integrated SPI flash, an onboard antenna, and a small, compact design. With all

its features, the ESP32 needs an average of 80mA operating current, and a minimum of 500mA of

current delivery by a power supply. This is no issue for the SPD as it has an external 5V power

supply, however for the SPR it proved to be more difficult. The SPR only gets its power delivery

through the HAN interface, which does not support power delivery over 500mW based on the

HAN documentation, however the interface has been tested to be able to deliver over 700mW.

Still, it was our mission to have as low power consumption as possible therefore the ESP32 was

the perfect microcontroller for the job as it support the low power ESP-NOW protocol as well.

However, even with its low power consumption, the ESP32 still needs a buck converter to operate

in a stable manner, hence the LT1936.

4.1.3 SPR circuit breakdown

As said, the complete circuit block diagram can then be separated into two independent diagrams.

The first diagram (Figure 16) to be explained is the SPR unit. Here we can see that only the LT1936,

TSS721A and the ESP32 microcontroller are necessary to keep the SPR functional. The SPRs main

function is to read the M-Bus signals sent from the AMS reader, get power delivery from the AMS

reader, and finally process the information given and send it to the cloud. With this in mind, an

explanation as to why we chose the given components is in order.

In summary, these are the hardware requirements the SPR has:

• Convert 36V-24V down to 3.3V

• Single cable (RJ-45) power delivery from the HAN-port

• Convert M-BUS data from the HAN interface to TTL

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 25 of 88 26.05.2022

• Use the onboard antenna to communicate via Wi-Fi

• Use ESP-NOW to send data with the use of the ESP32 microcontroller

4.1.3.1 LT1936 Step-Down converter

The LT1936 is a current mode PWM step-down DC/DC converter. What is more, the LT1936 also

has an internal 1.9A power switch. The converter has nearly 84% efficiency for 3.3V/1.2A output

shown at Figure 18. With an input range of 3.6V to 36V the converter is well-suited for our project.

The circuit diagram in Figure 19 shows the simple build up for a 3.3V step-down converter found

in the LT1936-datasheet [17].

Figure 18 - Efficiency graph for 3.3V/1.2A Figure 19 - Step-Down Converter to 3.3V circuit

To understand the step-down converter, here is a breakdown of the most important pins:

The BOOST pin is used to deliver a drive voltage, which is higher than the input voltage, to the

internal bipolar NPN power switch. The BOOST pin must be at least 2.3V above the SW pin for best

efficiency. Hence choosing appropriate capacitor and diode connecting to the BOOST pin is

necessary.

The SW pin is the output of the internal power switch. This pin connects to the inductor, catch

diode and boost capacitor

The 𝐒𝐇𝐃𝐍̅̅ ̅̅ ̅̅ ̅̅ pin is used to put the LT1936 in shutdown mode. To shut down the LT1936, tie the pin

to ground, however if normal operation is wanted, tie the pin to 2.3V up to 5V.

The Exposed Pad must be soldered to the PCB and electrically connected to ground. For better

thermal performance, a large ground plane and thermal vias was used. More detail is found in the

datasheet page 6 [24]

To optimize the performance a step-down converter can provide, we follow as much as we can

from the datasheet page 12 [25] and 14 [26], for our circuit and PCB layout.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 26 of 88 26.05.2022

Inductor

According to the datasheet on page 8 [27], Selection of an inductor value can be simply calculated

using the given formula:

𝐿 = 2.2(𝑉𝑂𝑈𝑇 + 𝑉𝐷)

From which the output voltage 𝑉𝑂𝑈𝑇 is to be 3.3V

and 𝑉𝐷 is the voltage drop of the catch diode

(~0.4V) and L is in 𝜇𝐻. Which gives us the value of

inductor as:

𝐿 = 2.2 · (3.3 + 0.4) = 8,14 𝜇𝐻

Based on the value given, we can then look for our

inductor by the table of inductor vendors provided on the same page (Figure 18).

Since we use EasyEDA for our schematic and PCB

design, there are only a few components listed on

Figure 17 that are currently in stock supplied by

JLCPCB [28]. After hours of comparing, we decided to

use CDRH6D38NP-100NC [29], manufactured by

Sumida Corporation [30]. The CDRH6D38NP-100NC

gives a wide range of inductance around 10 ± 30% 𝜇𝐻

and a saturation current & temperature rise

comparison graph on Figure 18, which is a perfect

match for our design.

Catch diode

A recommendation from the datasheet is to have a 1A

Schottky diode for the catch diode D1. The diode must

have a reverse voltage rating equal to or greater than

the maximum input voltage. DFLS140LQ diode [31] is

mentioned in the datasheet, it has a reverse voltage

rating equal to 40V which is greater than our input

voltage and a 1.1A average current.

Boost capacitor and diode

Capacitor C3 and diode D2 on Figure 19 are used to generate a boost voltage that is higher than

the input voltage. It is recommended to use 0.22 𝜇𝐹 capacitor and fast switching diode namely

1N4148W [32].

Input capacitor

Current input supply is drawn in pulses with a fast rise and fall time in Step-Down regulators. The

job of an input capacitor is to reduce voltage ripple at the LT1936 and to force this very high

Figure 21 - Saturation Current &
Temperature Rise Graph

Figure 22 - Circuit for LT1936
buck converter

Figure 20 - Inductor Vendors

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 27 of 88 26.05.2022

frequency switching current into a tight local loop, reducing Electromagnetic interface (EMI).

Based on the datasheet, a 4.7𝜇𝐹 or higher value ceramic capacitor of X7R or X5R is recommended.

Output capacitor

The function of an output capacitor C3 can be divided into two parts. Firstly, along with the

inductor L1, a square wave generated by the LT1936 is filtered to produce the DC output. It

determines the output ripple, and for the switching frequency it is important to have a low

impedance. Secondly, it stores energy for the purpose of sustaining transient loads and stabilizing

the LT1936’s control loop.

Protective diode

Diode D4 prevents a shorted input from discharging a

backup battery tied to the output. The diode also

protects the circuit from a reversed input.

In our case, we use it to prevent a reversed input since

we do not have a backup battery.

PCB Layout

Laying out components on a PCB also plays a big part in the project. We place the components as

similar as what a recommendation is found in the datasheet. Figure 24 and Figure 25 represent

the recommendation and our PCB layout respectively.

Figure 24 shows the recommended component placement with trace, ground plane and via

locations for proper operation and minimize the EMI.

Due to the large, switched currents flow in the LT1936’s VIN and SW pins, the catch diode (D1)

and the input capacitor (C2). The loop formed by these components should be as small as possible.

The Exposed Pad on the bottom of the package must be soldered to a ground as large as it can be

so that it acts as a heat sink and to keep thermal resistance as low as possible.

Figure 23 - Protective Diode D4 placement

Figure 24 - PCB layout ensures LOW EMI Operation Figure 25 - PCB layout based on recommendation

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 28 of 88 26.05.2022

4.1.3.2 The TSS721A M-Bus to TTL transceiver

M-BUS Transceiver is a component which transmits M-BUS data to TTL signal using UART

protocol so that both the microcontroller and the computer can understand. The information sent

from the HAN interface and out on the “Two-Wire M-Bus” will be marked with an OBIS code, which

is an identification of the value that is sent by the smart meter. These OBIS codes will be equal on

all AMS meters installed, to ensure that customers can use the same reading device regardless of

AMS meters used. To make the data readable for a microcontroller, a suitable transceiver is

needed for this job. Texas Instruments has qualified the TSS721A transceiver. This device was

redesigned to apply to the EN1434-3 requirements.

TSS721A is a M-BUS to TTL designed by Texas Instrument that only requires few external

components like resistors, capacitors, and transistors for operating the component. Figure 23 is

found in TSS721A-datasheet under Section Header “Application information” on page 9 [33], we

can easily use the block diagram for designing the schematic for us purposes.

Figure 26 - TSS721A component block diagram

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 29 of 88 26.05.2022

The transceiver supports up to 9600 Baud in Half Duplex for UART Protocol. According to the

KAIFA-KFM_001 specification shown in Figure 24 AMS smart power meter sends a Baud rate of

2400, therefore TSS721A is suitable for the operation.

Protective Resistors

The bus interface involves two wires, and all slaves

connected to the bus can operate only with power

provided by the master. Aiming to maintain correct

operation of the BUS line, it must have a protective resistor

with a value of (430 ± 10) Ω in the bus line. The bus can

reach voltages up to 42 V and the purpose of the protection

resistor limits the current in the case of short circuit to a maximum of 100 mA (42 V / 420 Ω).

Since the bus are polarity independent and for protecting the slave, the value of the protective

resistors (R1 and R2) can split into two which will be 220 Ω max for each line of BUS.

Sampling capacitor

According to the schematic found on Github, designed by

roarfred [34] and gskjold [35], a 100nF Sampling capacitor 𝐶𝑆𝐶

at pin SC is being used. 𝐶𝑆𝐶 is charged and discharged with a

current 𝐼𝑆𝐶𝑐ℎ𝑎𝑟𝑔𝑒 and 𝐼𝑆𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 respectively. There must be

sufficient time to recharge the capacitor 𝐶𝑆𝐶 between the bits

arriving.

Storage capacitor

The storage capacitor 𝐶𝑆𝑇𝐶 at pin STC is charged with constant current from the current source

CS1. The charge current 𝐼𝑆𝑇𝐶 must be defined by an external resistor 𝑅𝑅𝐼𝐷𝐷 at pin RIDD. According

to the datasheet, the resistor value 𝑅𝑅𝐼𝐷𝐷 can be chosen from 13k to 80k Ω. The lower the value is

chosen, the faster the storage capacitor is charged. We decided to use 22k Ω , the same as the

designer Roarfred has.

Figure 27 - HAN OBIS list information

Figure 28 - Protective Resistors R1 & R2

Figure 29 - Sampling capacitor
Csc

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 30 of 88 26.05.2022

4.1.4 SPD circuit breakdown

The second figure shows the block diagram for the SPD unit. Here we can see that the ILI9341, R-

78 series buck converter and the ESP32 microcontroller are necessary to keep the SPD functional.

The SPD in its essence serves as a display that is powered using a 5V Micro-USB cable that recieves

data from the SPR and displays said data accordingly.

In summary, these are the hardware requirements the SPD has:

• Convert 5V down to 3.3V

• Receive power delivery using a Micro-USB cable

• Receive data using ESP-NOW with the use of the ESP32 microcontroller

• Use received data and display said data on the screen accordingly

4.1.4.1 TFT LCD Display (ILI9341)

ILI9341 is an LCD display driver that runs on 2.5V to 3.3V.

The display has a resolution of 240x320 with a 2.8-inch

display.

4.1.4.2 External Power Supply

For the slave device (SPD) to operate, it is required to run with an

external power supply. This power supply must give enough

power to both the microcontroller and the ILI9341 Display to

work. A good example of an external power supply that can be used

is a mobile adapter, which already has a buck converter which

converts 100-240VAC to 5VDC.

4.1.4.3 5VDC-3.3VDC buck converter

In consideration of providing 3.3VDC to the microcontroller and the

display by using external power supply, a second step-down

conversion is necessary. Hence, a “R-783.3-1.0” buck converter in

Figure 32 is here to take the responsibility.

Figure 30 - The ILI9341 2.8-inch
display

Figure 31 - External power brick

Figure 32 - 3.3V Buck converter

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 31 of 88 26.05.2022

R-783.3-1.0 has high efficiency of up to 97% shown in Figure 33, while the other 3% get dissipated

as heat. It also has significantly low ripple and noise figures shown in Figure 34

The figure on the right is a standard configuration of

the 5V to 3.3V buck converter circuit. This is also the

circuit that was mainly used on the SPD.

Figure 34 - Efficiency graph

Figure 33 - Buck converter configuration

Figure 35 - Ripple graph

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 32 of 88 26.05.2022

4.2 Software analysis
To separate the two main software parts, the software subcategories are divided into embedded

software overview and software overview. The embedded software portion will explain the

software within the SPR and the SPD. The software overview will however include information

about Azure functions development, C# development and flutter application development.

4.2.1 Software principles

While creating the code for this project, there were certain programming principles to keep in

mind. It is important to keep the code simple and understandable so that other developers can

understand and continue developing the code. In addition, comments are spread through the code

to explain its purpose and role. This makes it easier to understand and develop the code at a later

point.

Additionally, if all the code were to be on one singular file, it would be long and hard to understand.

Since among other languages, we are using C++ and C#, two object-oriented languages, using

inheritance makes the code readable, trackable, and understandable.

4.2.2 Learn GitHub

While scouring the internet for relevant inspiration, learning how to use GitHub is crucial as a

software developer. Learning about branches, forks and other aspects of GitHub is crucial to be

able to navigate the internet efficiently.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 33 of 88 26.05.2022

4.3 Embedded software overview
Embedded software is software written to devices not typically thought of as computers, rather,

they are known as embedded systems. Within this chapter, the embedded software development

is done upon the ESP32 microcontroller within the SPR and the SPD circuit.

4.3.1 SPR software

The SPR software has a certain sequence it follows after powering up the device. In the block

diagram, a detailed software overview can be seen, showing the sequence of events mentioned.

These are the embedded software requirements the SPR has:

• Create a local access point in which one can connect the SPR to MQTT and local Wi-Fi

• After connecting to Wi-Fi, start sending data to MQTT

• Receive the MAC from access point and connect to SPD using ESP-NOW

• Receive price in NOK using Azure Functions API

• Use ESP-NOW to send price, power usage and power usage per hour to the SPD unit

Figure 36 - SPR software block diagram

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 34 of 88 26.05.2022

4.3.1.1 Wi-Fi based operations

The SPR is the main unit, hence explaining what is going on inside the unit brings clarity to its

purpose. When the SPR is turned on for the first time, it creates a local access point. This access

point then allows the user to connect the SPR to the internet, MQTT, and if necessary to the SPD

as well. The option to connect to the SPD using the SPDs MAC Address is optional and can be left

blank if it is unwanted. After establishing an internet connection, the SPR then connects to MQTT

and starts sending power usage. Additionally, after an internet connection has been established,

the spot price is fetched using the Azure Functions rest API once per day. This action is only

executed once per day so that as little strain is done to the cloud-based service as possible. Lastly,

the SPR fetches the time using an API so that local time is known and used to fetch the spot price

in the current date.

4.3.1.2 Data processing

After the SPR has established all its connections, the SPR then starts executing its power reading

code. The data is received as TTL and depending on the list length it corresponds to lists one, two

or three as seen in Figure 6. After receiving the entire list, the specific bits for power usage then

need to be fetched as well. This is done with the use of bit-shifting, taking the first 8-bit value and

moving it 8 bits to the left, and adding the second 8-bit to create a 16-bit value that represents

power usage.

If the MAC address was received during the access point setup, the SPR will constantly scan for

SPD and try to establish a connection with the MAC Address given. If the right MAC Address was

given, and a connection was established, the SPR then sends the processed data from the AMS

reader to the SPD unit.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 35 of 88 26.05.2022

4.3.2 SPD software

In the same way as the SPR, the SPD also follows a set sequence of events after the device boots

up. In the block diagram, an SPD software block diagram can be seen.

These are the embedded software requirements the SPD has:

• Create a local access point in which one can connect the SPD to local Wi-Fi

• Receive price, power usage, and power usage per hour using ESP-NOW

• Display power usage, power usage per hour and price on the ILI9341 display

The SPD serves as a smart display, it receives data and displays the given data. However, first a

connection needs to be established. The SPD needs to connect to Wi-Fi, the same as the SPR,

though the SPD does not need MQTT and MAC Address information for a connection to be

established. The SPD in fact has no connection with MQTT to reduce load and power consumption.

As for the MAC address, only the sender needs to know this information. Additionally, it fetches

current time using a rest API, and displays it on the screen if a Wi-Fi connection has been

established.

Figure 37 - SPD software block diagram

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 36 of 88 26.05.2022

After the Wi-Fi connection has been established, the SPD then displays its MAC Address on its

display and waits for a connection to be established between it and the SPR. After establishing a

connection, the SPD shows all relevant information like power usage, power usage per hour and

spot price on its display. All data is received as raw data. Power usage and power usage per hour

are received as floating points, while the spot price is a float array that consists of twenty-four

floating point values that indicate a certain hour’s price. All data received is received using ESP-

NOW, meaning that no API calls, or MQTT subscriptions are made to receive this data, reducing

load and power consumption greatly. As a result, the SPD only needs to receive data, it does not

send out any data at all.

4.4 Software overview
The software overview chapter consists of C# software development, and Flutter mobile

application development. In the illustration below, we can see business logic, which is logic that

happens behind the scenes that the user does not see and presentation logic, which is what a user

is presented with. This chapter will mainly feature business logic and presentation logic.

Figure 38 - Software block diagram

4.4.1 C# overview

When working on the software, there were plenty of obstacles to conquer. Firstly, learning Azure

trigger-based programming was something none of the team members had done before. After

receiving the necessary data as a response message, models then must be made to process the

response. This is both for the XML response from Transparency, and the JSON response from

Norges Bank. Additionally, converting XML response to JSON in C# had to be solved through

extensive research. The solution for receiving these different formats and extracting relevant data

is creating models that are specifically made to receive that certain message.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 37 of 88 26.05.2022

When processing the data and making it ready to send, using a JSON format was chosen when

sending the spot price in NOK. The data is sent using dictionaries in C#. This ensures for a key, and

a value to be stored. The hours of the day were used as keys, and the spot price were stored as

values. This means that the spot price of any hour throughout the day can be fetched by asking for

any particular hour, but also the entire dictionary, containing all hours can be sent.

It was also important to “foolproof” the code with use of exceptions, so that if there were to be

problems, the exception was to be handled and could be backtraced.

4.4.2 Flutter Mobile application development

Flutter is a cross-platform software development kit designed around the programming language

Dart. It is an open-source framework that can develop cross-platform applications using one

codebase. Flutter relies on a library of pre-made Material User Interface (MUI) and Cupertino

widgets to make a modern and beautiful UI. This makes it simple for people with limited mobile

development experience to launch their first minimum viable product.

4.4.2.1 Why chooses Flutter

Flutter is a cross-platform development tool. That means developers can use the same code base

for building an app on multiple platforms. From version 2.10 – Flutter supports iOS, Android,

Desktop and Web.

What is more, Community support plays a huge role in the development process, because a bigger

community means more available resources and third-party libraries. For instance – Syncfusion’s

widgets for Cartesian graph and Radial graph are crucial for our application.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 38 of 88 26.05.2022

4.5 Case design
When it comes to case design there are multiple things to keep in mind. The first thing being the

dimensions of the circuit. When designing the circuit, it was important to note that the circuit will

later be encapsulated into a case. That is why the circuit was made in a way so that the display can

be placed on top of the circuit and connect seamlessly, making it steadfast inside of the case.

Secondly, it was important to design the case in a way that the consumer can hold the device and

press reset in a way that feels natural. The thought process here was to be able to hold both the

SPR and SPD in a way that is comfortable for the human hand. Even though the product is not

meant to be held, having the design in this way opens for future expandability. It is planned to

have two holes for interactive buttons on the side of the case; these buttons can in a later stage

switch between menus and show the user more metrics. Therefore, we took some inspiration from

how controllers and phones are held in a landscape view as seen in the illustration below.

The last criteria concerns the size of the case. The SPD case needs to be wide enough to fit a screen

inside it, while keeping as slim of a design as possible, while the SPR needs to be small enough to

fit inside of a fuse box. It is also planned to have magnets attached on the back of SPR so that it can

be placed to the fuse box door as these are often made of steel.

The program used for this purpose is the AutoDesk Fusion 360 [36]. This program gives free

licenses to students and gives the opportunity to design, test and simulate your 3D design. Hence

the reason for choosing Fusion 360.

In summary the case design requirements are:

• The case design must fit the circuit and two buttons into it

• The SPR case must fit inside of a fuse box and be as compact as possible

• The SPD case must also fit a display, in addition to a circuit and two buttons

• The fit inside the case must be robust and snug

4.5.1 Design differences between the SPR- and the SPD case

To simplify the design process, a similar design was made for the SPD and the SPR. The main

difference is seen on the connectors. The SPD has a connector hole fit for the RJ-45, while the SPR

Figure 39-Handheld smartphone in a landscape view

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 39 of 88 26.05.2022

only needs to fit a Micro-USB cable. The other difference is the screen hole and screen mounts

necessary for the SPD and its display. Other than that, the case design and dimensions stay the

same. This is made possible because of the same circuit board that both devices have.

4.5.2 First case design

Because of the similarity in design, only the SPD case was printed and tested. If the SPD case were

to not fit, the same would apply to the SPR, therefore lessening the work necessary for

troubleshooting. After the main aspects of the case were rooted, the first case design was ready to

be developed. After obtaining access to a 3D printer, we 3D printed the first design. The precise

dimensions can be seen in Figure 41.

Figure 40 – 3D model of circuit with display Figure 41 – Case design with dimensions

The first case design ended up being somewhat inaccurate. In Figure 40, the display can be seen

as the red part. A slight miscalculation was done here so that there ended up being a slight offset

in the case design. The pins at the end of the display were not taken into account. The pins create

a raise in the case so that the circuit does not fit into the case. Therefore the design had to be

redesigned.

4.5.3 Second case design

4.5.3.1 SPR case

The SPR case features a design that is similar to the first design, however the second design is

more symmetrical and only has a port for the RJ-45 cable. Additionally, the circuit is completely

enclosed and has two buttonholes on the sides. This design fits finely inside a fuse box, making it

meet all the requirements set. The illustrations below show the current SPR case design and its

dimensions.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 40 of 88 26.05.2022

Figure 42 - SPR dimensions Figure 43 SPR from the side

4.5.3.2 SPD case

The second SPD case compared to the first design, features numerous improvements. The first

one being bigger holes that ensure room for the buttons chosen. The next improvement from the

first design is that the screen is secured safely from the inside. This means that the mounting holes

in the front disappear from the outside. Making the case smoother and better looking. Lastly, the

first design had an open side panel where the ports were easily accessible for testing. This left the

entire side open, while the latest design only has the relevant ports open. In the SPDs case it is the

RJ-45 port that is open from the outside, while the rest is enclosed.

Figure 44 – SPD case design with dimensions Figure 45 – Case design showing the display

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 41 of 88 26.05.2022

5 Testing
After receiving the components, intensive testing took place to confirm that the various

components were functional. When creating a circuit, a lot of things can go wrong. A single mistake

can lead to an entire circuit failure. That is why you must be thorough. The tests are divided into

three major categories. ESP32 testing, first circuit testing, and second circuit resting.

5.1 ESP32 Thing Plus testing
The ESP32 Thing Plus development board [37] was primarily used as the main board for testing.

Before the circuits were designed the code development was still ongoing. This was done on the

Thing Plus development card. The upside here is that the software can be developed and tested

before the circuit ever was made. Developing in advance ensures for more stability and planning.

5.1.1 Problems encountered

While developing the software for the microcontroller, problems inevitably occurred. The first

problem stumbled upon was the problem with integration of ESP8266 code to the ESP32. Even

though the two microcontrollers are from the same manufacturer and the same microcontroller-

branch, they do not support the same code entirely. With the ESP32 and the ESP8266 being the

most popular microcontroller, a lot of their code intertwined on the internet. This made it harder

to separate the two as both are written in C/C++. Consequently, some codes that have been taken

inspiration from did not work. This is an issue that persisted throughout the project as

information on the internet ended up being inconsistent.

Secondly there were multiple crashes happening on the ESP32. To begin with the issue was

unknown, as a result, problem solving was needed. To begin with, the ESP32 did not give any

reasonable error messages upon failure. This is where printing out status messages throughout

the code makes it easier to understand where the program fails, and where the fix needs to be

integrated. Through this methodology, we managed to find out what the main issue was. Setting

up the Wi-Fi connection saved the information to the flash memory, however if this fails while

setting up, the ESP32 might crash as a sub-consequence. This issue was later fixed using a button

solution so that a simple press of a button fixes this issue. Though, only through methodical testing

was this possible to resolve, otherwise the problem would persist without knowledge of what

caused it.

5.2 First circuit
The first circuit ended up as a steppingstone towards a more fulfilled second circuit. Even though

the first circuit did not work as intended, a lot was learned through the testing of this circuit as

seen below.

5.2.1 Component testing

The first step towards a finished first circuit was ordering components and testing said

components. The components that needed testing for the first circuit were the NCN5150, RJ45

Shield and the display. To begin with, the testing of NCN5150 was the most important part. Its job

was to convert M-BUS signals to TTL signals while doing so at 3.3V. After testing, it was concluded

that the NCN5150 indeed can convert these signals, however, the power supply of this component

to the ESP32 was not enough. Therefore, while testing the signals sent to the ESP32, this caused

some stability problems causing the ESP32 to shut down while it needed more power.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 42 of 88 26.05.2022

In addition to testing the NCN5150, the RJ45 shield was tested as a byproduct of the NCN5150s

testing as well. This worked as it was supposed to out of the box without fail, hence there being

no need to test it further.

Lastly the testing of the display was essential for the SPD unit. The ILI9341 display worked as it

should, however its unorthodox library proved difficult in the starting phase. For example, with

there not being a Clear() function in the library, the screen had to be erased by setting the desired

pixels to black, and later overwriting them. This meant that the code for the screen had to be

harder than it needs to be, causing repetitive code. However, this is something that was overcome,

and the display was later used in the second circuit as well.

5.2.2 Complete circuit testing

After the first circuit arrived, the testing of the circuit could begin. Immediately after the testing

had begun, it was noticed that the circuit was not getting enough power. Additionally, through

methodical testing of signals to and from the microcontroller, it was noticed that certain

connections were not as they should be. Meaning that this was not something that could be

changed through modifications to the physical circuit, but rather through a new circuit design.

In other words, after receiving the first circuit from the PCB distributor, the first circuit ended up

getting too little power. The NCN5150 did not deliver enough, and the circuit needed a 36V to 3.3V

converter to utilize the HAN-ports power delivery. The second circuit also is to include support

for a screen, an RJ-45 shield and a Micro-USB shield. Doing this secures the possibility of testing

for both the SPR and the SPD at the same time. Making it less expensive budget wise, than ordering

two separate circuits to test on, while also making it practical.

5.3 Second circuit
The second circuit led to more success; however, this was only possible through testing. After the

extensive testing of the first circuit after it had arrived, the group was ready for the second circuit

and had an idea of what was necessary.

5.3.1 Changes from the first circuit

After testing the first circuit, some changes were made to make it a better product. Firstly, the

NCN5150 was exchanged with the TSS721A as it now was available for sale again. This also

provides more power and stability to the circuit. The second change made was the integration of

multiple converters, resulting in more power delivery to the ESP32, and the circuit’s components.

The converters added are for both 5V to 3.3V and 36V to 3.3V. This means that we can test the

power delivery of each and see if it is sufficient to run the circuit independently.

5.3.2 Preliminary component testing

To ensure the stability and safety of the converters, to begin with we started testing on the LT1936

so that we can confirm that it delivers 3.3V/1.2A. The circuit layout suggested in section 4.1.3.1

Figure 18 was then soldered together and tested the claim. After the circuit was put together, using

a multimeter the claim was tested to be true and the 3.3V output was achieved.

The next converter tested was the R-783.3-1.0. This converter was tested using an external power

supply. The power supply used was a mobile charger that delivers 5V, while the expected output

is 3.3V. This was a simpler converter to test, so we quickly noticed that it indeed does give 3.3V as

output measured using a multimeter.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 43 of 88 26.05.2022

5.3.3 Testing results

After the problems with the first circuit, it was necessary to find out if the second circuit would

have the same issues. To begin with, the testing of power delivery on the second circuit and it

being sufficient was of high priority. The first power delivery source tested was the Micro-USB 5V

to 3.3V delivery. This ended up not working to begin with. Additionally, the LT1936 also was not

working, so something was wrong. When troubleshooting this issue, we used multimeters and an

Agilent Oscilloscope to find out where the problem stems from. After some testing on the circuit,

the problem showed itself on the resistors and capacitors on the circuit. With EasyEDA being a

newly introduced to software, errors caused by inexperience might occur. What happened is that

the resistor values were the same throughout the board, however the names indicating the values

were different. Meaning that the value of the resistors and some capacitors was the same, while

the name indicated otherwise. This was later fixed by desoldering the previous components and

soldering on the new and correct ones.

After this issue was resolved, the circuit worked as intended. The circuit was tested for stability.

This proved highly efficient, as it was possible to power the circuit only using the HAN-port power

delivery at a constant rate. This was even possible with the display, meaning that future versions

of the product can come as an only display option without the need for SPR to send data.

5.3.3.1 HAN interface testing

Receiving data using the HAN interface should now be possible, however there were slight delays.

In the beginning we thought that the data was readable straight from the TSS721A without any

work needed. The data packets the TSS721A sends are 12-bit packets, however the ESP32 by

default does not support this packet size. For the ESP32 to correctly process this information we

need to include an important snippet of code, Serial1.begin(2400, SERIAL_8N1, RX_PIN, TX_PIN).

This then allows for the ESP32 to process the data and receive said data sent through the HAN

interface.

Afterward, we had to find where the relevant data is stored within the packets. With the use of the

Agilent oscilloscope, we could visualize and perceive the packages sent. Through the HAN

documentation it says that the power usage location in the two second packet is different from

the ten second and one-hour packet. After studying data received as well as the documentation, it

was managed to obtain the power usage [W] from the two- and ten second packets. While also

obtaining the power usage per hour [Wh] from the one-hour packet.

5.3.3.2 ESP-NOW and MQTT testing

After the circuit was made, the already made ESP-NOW and MQTT codes had to be tested on the

new circuit. The ESP-NOW protocol connects as it should using the MAC-Address of the receiver

as verification. Furthermore, the MQTT connection connects and publishes the data to the cloud

without issue, however everything had to be tested to secure the quality of the product.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 44 of 88 26.05.2022

6 Discussion
In this chapter we will discuss what went well and what went wrong throughout the project.

6.1 What went well
The project itself was a major success. The SPR and the SPD communicate without known issues. All

metrics sent from the SPR to the SPD are displayed on the display without issues. Posting data to MQTT

and fetching the data to a mobile application also works as intended. Both power usage, and power

usage per hour can be shown on the app every two seconds. The second circuit design was a success,

and with the right resistors and capacitors, the circuit can be powered with only one cable. The current

case design also ensures a snug fit, making the circuit well protected and encapsulated. With all these

things going well, the group is happy to call the project a success after accomplishing so much withing

such a short time-period.

6.2 What went wrong?
In any product-making project there will always be delays or unanticipated problems. In this case,

the project was assigned at a later date than other groups, meaning that there was time pressure

for the get-go. As a result, the first circuit was rushed, causing unwanted errors. The circuit

designing process took longer than expected. This is both because of stock shortage for the parts

we needed, and because of lack of supported circuit design programs at the time. Furthermore,

after a lengthy delivery time, the circuit did not work as intended. Thereafter, necessary

adjustments had to be made to the circuit to create a second, better version. Since there had to be

a second version, the project as a result fell behind schedule. As compensation the bachelor thesis

writing was delayed.

The unanticipated delay was software related. When creating the first circuit, there was time

pressure to find a fitting circuit design program. It was first planned to use Multisim for this,

however, this ended up being incompatible with the components we chose to use. Therefore,

searching for an alternative was an unexpected delay. What is more, the circuit also needed the

software to be uploaded. This caused more issues than anticipated. The serial data transfer was

later solved, however precious time was lost.

Lastly, there were issues regarding the HAN-port and receiving the M-BUS data. This was the most

unforeseen problem, as the TSS721A should make the values readable, however, this ceased to be

the case. Even though the issue was resolved, the problem cost the project a weeks’ time.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 45 of 88 26.05.2022

7 Conclusion
In conclusion, the project was successful in creating two devices that can communicate with one

another using protocols such as MQTT and the ESP-NOW protocol. The two devices, SPR and SPD,

can communicate safely with almost no delay. The master device, SPR, can successfully receive

and process data delivered from the AMS Reader. This data is later sent to the SPD unit and shown

on its display. The display features metrics such as power usage, power usage per hour, spot price

and the current time. SPD also features a Micro-USB connection making it possible to have the

product anywhere in the household. Moreover, the SPR manages to be running uninterruptedly

without the need of an external power supply. The connection is done through a one cable

connection that both sends data and delivers power to the components.

The SPR gets the spot price from a rest API through Azure Functions. This data is then processed

into an array containing today’s price within the entire day. The price is given in NOK as it is

converted from its original EUR status using the current exchange rate via Norges Banks API. The

current price can also be viewed on a mobile application made using Flutter. The mobile

application can through MQTT view the power usage per hour and the power usage right now.

Using the same API, the mobile application also shows the current spot price and a graph of the

price distribution this day.

The specifications were met and delivered upon even within such a short timeframe. The

following are completed tasks.

• Build Complete HW for HAN to Wi-Fi solution

• Make an embedded SW that can receive measurements from the HAN-port and send them

via Wi-Fi to a Local server or to a cloud solution

• Fetch spot price call over the internet

• Build a simple display that receive measurement via Wi-Fi and shows it on the display

• Receive measurements and save them on a cloud solution.

The specifications that were not delivered upon are the following:

• Interconnect task 1 & 2 using a cloud solution server

This was a feature that the devices supported to begin with, however, using ESP-NOW proved

more power efficient. making the circuit more stable, therefore we progressed away from this

specification.

The current circuit works as both the SPR and SPD, however this is not cost-efficient. For future

expansion, it is possible to simplify both circuits to fit the needs of the device. Resulting in a

cheaper price per unit. Subsequently, making the profit higher as well. For future notice it is

possible to simplify the setup of the device even more, making it as user-friendly as possible. In

addition, it is possible to improve the application, add more features and make GUI better. These

are all options that are available for the future.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 46 of 88 26.05.2022

References
[1] Western Norway University of Applied Sciences. (n.d.). Høgskulen på Vestlandet -

Høgskulen på Vestlandet. Retrieved May 22, 2022, from https://www.hvl.no/

[2] InfoTech AS. (n.d.). Infotech | Komplett leverandør for byggebransjen. Retrieved May

22, 2022, from https://infotech.no/

[3] Fjordkraft. (n.d.). Fjordkraft | hele Norges strømleverandør | Fjordkraft AS. Retrieved

May 22, 2022, from https://www.fjordkraft.no/strom/

[4] Tibber. (n.d.). Et uvanlig strømselskap ⚡️ Tibber. Retrieved May 22, 2022, from

https://tibber.com/no

[5] Homey. (n.d.). Et bedre smart hjem. Homey. Retrieved May 22, 2022, from

https://homey.app/no-no/

[6] futurehome. (n.d.). futurehome - simpler, safer, smarter home. Retrieved May 22,

2022, from https://www.futurehome.io/

[7] Flutter. (n.d.). Flutter - Build apps for any screen. Retrieved May 22, 2022, from

https://flutter.dev/

[8] Arne, V. (2016, June 28). 201603186-1-informasjon-til-kundene-via-han-

grensesnittet-i-ams-måleren-obis-koder-1772408_1124902_0.pdf. Retrieved May 22,

2022, from https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-

han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-

1772408_1124902_0.pdf?fbclid=IwAR0_mStq5HAMxgtaLVUX_UEMGNOGqDoahkx

5fBQWOj9wJUL4TRTKTqAK4KI#page=1

[9] BS EN 13757-2:2018 Communication systems for meters Part 2: Wired M-Bus

communication. (2020, February 28). Free Standards Download. Retrieved May 05,

2022, from https://www.freestandardsdownload.com/bs-en-13757-22018-

communication-systems-for-meters-part-2-wired-m-bus-communication.html

[10] Kumar. (2022, January 26). UART Communication Protocol - How it works?

Codrey Electronics. Retrieved May 01, 2022, from

https://www.codrey.com/embedded-systems/uart-serial-communication-rs232/

https://www.hvl.no/
https://infotech.no/
https://www.fjordkraft.no/strom/
https://tibber.com/no
https://homey.app/no-no/
https://www.futurehome.io/
https://flutter.dev/
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf?fbclid=IwAR0_mStq5HAMxgtaLVUX_UEMGNOGqDoahkx5fBQWOj9wJUL4TRTKTqAK4KI#page=1
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf?fbclid=IwAR0_mStq5HAMxgtaLVUX_UEMGNOGqDoahkx5fBQWOj9wJUL4TRTKTqAK4KI#page=1
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf?fbclid=IwAR0_mStq5HAMxgtaLVUX_UEMGNOGqDoahkx5fBQWOj9wJUL4TRTKTqAK4KI#page=1
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf?fbclid=IwAR0_mStq5HAMxgtaLVUX_UEMGNOGqDoahkx5fBQWOj9wJUL4TRTKTqAK4KI#page=1
https://www.freestandardsdownload.com/bs-en-13757-22018-communication-systems-for-meters-part-2-wired-m-bus-communication.html
https://www.freestandardsdownload.com/bs-en-13757-22018-communication-systems-for-meters-part-2-wired-m-bus-communication.html
https://www.codrey.com/embedded-systems/uart-serial-communication-rs232/

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 47 of 88 26.05.2022

[11] EasyEDA. (n.d.). EasyEDA - Online PCB design & circuit simulator. Retrieved

March 07, 2022, from https://easyeda.com/

[12] Espressif. (2019, May 09). ESP32-WROOM-32D & ESP32-WROOM-32U.

AIS. Retrieved May 22, 2022, from

https://datasheet.lcsc.com/lcsc/1912300803_Espressif-Systems-ESP32-WROOM-

32D_C473012.pdf

[13] ON Semiconductor. (2022, January 24). NCN5150 - Wired M-BUS Slave

Transceiver. NCN5150_D-2316905.pdf. Retrieved May 22, 2022, from

https://no.mouser.com/datasheet/2/308/1/NCN5150_D-2316905.pdf

[14] Texas Instruments, Incorporated [SLAS222, B]. (2022, May 11). TSS721A

Meter-Bus Transceiver datasheet (Rev. B). tss721a.pdf. Retrieved May 22, 2022,

from

https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%2

53A%252F%252Flcsc.com%252F

[15] RECOM. (2020, January 15). R-78-1.0-1709942.pdf. Retrieved May 22, 2022,

from https://no.mouser.com/datasheet/2/468/R-78-1.0-1709942.pdf

[16] jxchiang. (2014, January 7). ILI9341.pdf. Retrieved May 22, 2022, from

https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf

[17] Linear Technology Corporation. (2008, November 18). LT1936 - 1.4A, 500kHz

Step-Down Switching Regulator. 2006281609_Analog-Devices-LT1936EMS8E-

TRPBF_C665573.pdf. Retrieved May 22, 2022, from

https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-

TRPBF_C665573.pdf

[18] Unicorn Systems a.s. (n.d.). ENTSO-E Transparency Platform. Retrieved May

22, 2022, from https://transparency.entsoe.eu/

[19] Norges Bank. (n.d.). Norges Bank. Retrieved May 22, 2022, from

https://app.norges-

https://easyeda.com/
https://datasheet.lcsc.com/lcsc/1912300803_Espressif-Systems-ESP32-WROOM-32D_C473012.pdf
https://datasheet.lcsc.com/lcsc/1912300803_Espressif-Systems-ESP32-WROOM-32D_C473012.pdf
https://no.mouser.com/datasheet/2/308/1/NCN5150_D-2316905.pdf
https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%253A%252F%252Flcsc.com%252F
https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%253A%252F%252Flcsc.com%252F
https://no.mouser.com/datasheet/2/468/R-78-1.0-1709942.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf
https://transparency.entsoe.eu/
https://app.norges-bank.no/query/#/en/currency?currency=EUR&frequency=B&startdate=2021-05-22&stopdate=2022-05-22

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 48 of 88 26.05.2022

bank.no/query/#/en/currency?currency=EUR&frequency=B&startdate=2021-05-

22&stopdate=2022-05-22

[20] Ubidots. (n.d.). Ubidots: IoT platform | Internet of Things. Retrieved May 22,

2022, from https://www.ubidots.com/

[21] ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. (n.d.). Espressif Systems:

Overview. Retrieved May 22, 2022, from https://www.espressif.com/

[22] Cadence Design Systems, Inc. (n.d.). PCB Design Software | OrCAD |

Cadence. Retrieved May 22, 2022, from https://www.orcad.com/

[23] KiCad. (1992). KiCad EDA - Schematic Capture & PCB Design Software.

Retrieved May 22, 2022, from https://www.kicad.org/

[24] Linear Technology Corporation. (2008, November 18). LT1936 - Pin Function.

2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf. Retrieved May

22, 2022, from https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-

LT1936EMS8E-TRPBF_C665573.pdf#page=6

[25] Linear Technology Corporation. (2008, November 18). LT1936 - Applications

Information. 2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf.

Retrieved May 22, 2022, from https://datasheet.lcsc.com/lcsc/2006281609_Analog-

Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=12

[26] Linear Technology Corporation. (2008, November 18). LT1936 - Applications

Information - PCB Layout. 2006281609_Analog-Devices-LT1936EMS8E-

TRPBF_C665573.pdf. Retrieved May 22, 2022, from

https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-

TRPBF_C665573.pdf#page=14

[27] Linear Technology Corporation. (2008, November 18). LT1936 - Inductor

Selection and Maximum Output Current. 2006281609_Analog-Devices-

LT1936EMS8E-TRPBF_C665573.pdf. Retrieved May 22, 2022, from

https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-

TRPBF_C665573.pdf#page=8

https://app.norges-bank.no/query/#/en/currency?currency=EUR&frequency=B&startdate=2021-05-22&stopdate=2022-05-22
https://app.norges-bank.no/query/#/en/currency?currency=EUR&frequency=B&startdate=2021-05-22&stopdate=2022-05-22
https://www.ubidots.com/
https://www.espressif.com/
https://www.orcad.com/
https://www.kicad.org/
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=6
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=6
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=12
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=12
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=14
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=14
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=8
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf#page=8

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 49 of 88 26.05.2022

[28] JCLPCB. (n.d.). JLCPCB: PCB Prototype & PCB Fabrication Manufacturer.

Retrieved March 19, 2022, from https://jlcpcb.com/

[29] Sumida Corporation. (2017, January 09). SMD Power Inductor CDRH6D38.

1809140821_Sumida-CDRH6D38NP-100NC_C167280.pdf. Retrieved May 22, 2022,

from https://datasheet.lcsc.com/lcsc/1809140821_Sumida-CDRH6D38NP-

100NC_C167280.pdf

[30] Sumida Corporation. (n.d.). SUMIDA CORPORATION. Retrieved April 25,

2022, from https://www.sumida.com/

[31] Diodes Incorporated. (2015, June 17). DFLS140LQ. 2004301407_Diodes-

Incorporated-DFLS140LQ-7_C526561.pdf. Retrieved May 22, 2022, from

https://datasheet.lcsc.com/lcsc/2004301407_Diodes-Incorporated-DFLS140LQ-

7_C526561.pdf

[32] JiangSu ChangJiang Electronics Technology CO., LTD. (2015, March 10).

SOD-123 Plastic-Encapsulate Diodes - BAV16W/1N4148W.pdf.

1809211019_Changjiang-Electronics-Tech--CJ-1N4148W-G_C164915.pdf. Retrieved

May 22, 2022, from https://datasheet.lcsc.com/lcsc/1809211019_Changjiang-

Electronics-Tech--CJ-1N4148W-G_C164915.pdf

[33] Texas Instruments, Incorporated [SLAS222, B]. (2022, May 11). TSS721A

Meter-Bus Transceiver datasheet (Rev. B) - Application Information. tss721a.pdf.

Retrieved May 22, 2022, from

https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%2

53A%252F%252Flcsc.com%252F#page=9

[34] Roarfred. (n.d.). Electrical Design Schematics. AmsToMqttBridge. Retrieved

March 04, 2022, from

https://github.com/roarfred/AmsToMqttBridge/tree/master/Electrical/HAN_ESP_TSS7

21#pcb

[35] gskjold. (n.d.). gskjold/AmsToMqttBridge: ESP8266 and ESP32 compatible

firmware to read, interpret and publish data to MQTT from AMS electrical meters

https://jlcpcb.com/
https://datasheet.lcsc.com/lcsc/1809140821_Sumida-CDRH6D38NP-100NC_C167280.pdf
https://datasheet.lcsc.com/lcsc/1809140821_Sumida-CDRH6D38NP-100NC_C167280.pdf
https://www.sumida.com/
https://datasheet.lcsc.com/lcsc/2004301407_Diodes-Incorporated-DFLS140LQ-7_C526561.pdf
https://datasheet.lcsc.com/lcsc/2004301407_Diodes-Incorporated-DFLS140LQ-7_C526561.pdf
https://datasheet.lcsc.com/lcsc/1809211019_Changjiang-Electronics-Tech--CJ-1N4148W-G_C164915.pdf
https://datasheet.lcsc.com/lcsc/1809211019_Changjiang-Electronics-Tech--CJ-1N4148W-G_C164915.pdf
https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%253A%252F%252Flcsc.com%252F#page=9
https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%253A%252F%252Flcsc.com%252F#page=9
https://github.com/roarfred/AmsToMqttBridge/tree/master/Electrical/HAN_ESP_TSS721#pcb
https://github.com/roarfred/AmsToMqttBridge/tree/master/Electrical/HAN_ESP_TSS721#pcb

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 50 of 88 26.05.2022

using IEC-62056-7-5 or IEC-62056-21 standard. GitHub. Retrieved March 04, 2022,

from https://github.com/gskjold/AmsToMqttBridge

[36] Autodesk Inc. (n.d.). Fusion 360 | 3D CAD, CAM, CAE & PCB Cloud-Based

Software. Autodesk. Retrieved May 22, 2022, from

https://www.autodesk.com/products/fusion-360/overview?term=1-

YEAR&tab=subscription

[37] SparkFun Electronics. (n.d.). SparkFun Thing Plus - ESP32 WROOM (Micro-

B) - WRL-15663. SparkFun Electronics. Retrieved May 22, 2022, from

https://www.sparkfun.com/products/15663

[38] Solberg, R. (2019, July 24). Smart meter part 1: Getting the meter data.

Kode24. Retrieved May 22, 2022, from https://www.kode24.no/guider/smart-meter-

part-1-getting-the-meter-data/71287300

https://github.com/gskjold/AmsToMqttBridge
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription
https://www.sparkfun.com/products/15663
https://www.kode24.no/guider/smart-meter-part-1-getting-the-meter-data/71287300
https://www.kode24.no/guider/smart-meter-part-1-getting-the-meter-data/71287300

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 51 of 88 26.05.2022

Appendix A. Abbreviation
AMS Advanced Measurement and control Systems

API Application Programming Interface

CPU Central Processing Unit

DIY Do it yourself

EMI Electromagnetic Interference

ENTSO-E European Network of Transmission System Operators for Electricity

HAN Home Area Network

JSON JavaScript Object Notation

LSB Least Significant Bit

MAC Media Access Control

M-BUS M-Bus or Meter-Bus

MQTT MQ Telemetry Transport

MUI Material User Interface

NVE Norwegian Water Resources and Energy Directorate

PBS Product Breakdown Structure

PC Personal Computer

PCB Printed Circuit Board

SPD Smart Power Display

SPI Serial Peripheral Interface

SPR Smart Power Reader

Transceiver Transmitter and Receiver

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver Transmitter

UI User Interface

USB Universal Serial Bus

WLAN Wireless Local Area network

XML Extensible Markup Language

file:///D:/Dropbox/HVL/S6_VAR/Bachelor/Oppgave/Bachelor%20Report/New%20Microsoft%20Excel%20Worksheet.xlsx%23RANGE!A26

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 52 of 88 26.05.2022

Appendix B. Datasheet
Component Designator Footprint JLCPCB Part # Mouser Part #

X5511FV-20-C70D30-
1000 H1,H2 HDR-TH_20P-P2.54-V-F-3 C2684741

920-C62A2021S10100 USB1 MICRO-USB-SMD_MICRO-5P-5.9 C40939

C136740 IO0,RST SW-SMD_L6.0-W3.5-LS8.0-1 C136740

DFLS140LQ-7 D3,D1 POWERDI-123_L2.8-W1.8-LS3.7-RD C526561

RC0805FR-0710KL R6 R0805 C84376

CR0805F82202G R3 R0805 C101566

ESP32-WROOM-32D U6 WIFIM-SMD_39P-L25.5-W18.0-P1.27-BL C473012

TZ-P2-0805YGTCS2-0.8T U5,U8,U9 LED0805-RD_YELLOW C688885

1N4148W-G D2 SOD-123_L2.8-W1.8-LS3.7-RD C164915

CR-05FL7--470R R4,R5 R0805 C280005

CDRH6D38NP-100NC L1 IND-SMD_L4.0-W4.0 C167280

R-RJ45R08P-A004 RJ2 RJ45-TH_R-RJ45R08P-A004 C385834

0805B104K500NT C1,C4,C5,C10 C0805 C38141

BSS84LT1G Q2 SOT-23-3_L2.9-W1.3-P1.90-LS2.4-BR C82079

TC212B227K006Y C3,C2 CAP-SMD_L3.5-W2.8-R-RD C110311

TAJA106K016RNJ C7 CASE-A_3216 C7171

CR0805J220RP05Z R11,R10,R1,R2,R7,R8,R9 R0805 C881343

T491A106M020AT C6 3216[1206] - TANTCAP C117023

CL10B224KB8NNNC C9 C0603 C64705

CL10A226MQ8NRNC C8 C0603 C59461

C1608X5R1E475MT000E C11 C0603 C342979

C39576 H3 HDR-TH_9P-P2.54-V-F-1 C39576

TSS721AD U7 SOIC-16_L9.9-W3.9-P1.27-LS6.0-BL C2871278

LT1936EMS8E#TRPBF U10 MSOP-8_L3.0-W3.0-P0.65-LS5.0-BL-EP C665573

R-783.3-1.0 DD1 R-78 919-R-783.3-1.0

https://datasheet.lcsc.com/lcsc/2101181035_XKB-Connectivity-X5511FV-20-C70D30-1000_C2684741.pdf
https://datasheet.lcsc.com/lcsc/2103081232_Jing-Extension-of-the-Electronic-Co--920-C62A2021S10100_C40939.pdf
https://datasheet.lcsc.com/lcsc/2108131730_Korean-Hroparts-Elec-C136740_C136740.pdf
https://datasheet.lcsc.com/lcsc/2004301407_Diodes-Incorporated-DFLS140LQ-7_C526561.pdf
https://datasheet.lcsc.com/lcsc/1810201611_YAGEO-RC0805FR-0710KL_C84376.pdf
https://datasheet.lcsc.com/lcsc/1810170229_LIZ-Elec-CR0805F82202G_C101566.pdf
https://datasheet.lcsc.com/lcsc/1912300803_Espressif-Systems-ESP32-WROOM-32D_C473012.pdf
https://datasheet.lcsc.com/lcsc/2006241134_TUOZHAN-TZ-P2-0805YGTCS2-0-8T_C688885.pdf
https://datasheet.lcsc.com/lcsc/1809211019_Changjiang-Electronics-Tech--CJ-1N4148W-G_C164915.pdf
https://datasheet.lcsc.com/lcsc/1811092011_Viking-Tech-CR-05FL7--470R_C280005.pdf
https://datasheet.lcsc.com/lcsc/1809140821_Sumida-CDRH6D38NP-100NC_C167280.pdf
https://datasheet.lcsc.com/lcsc/2101272133_Ckmtw-Shenzhen-Cankemeng-R-RJ45R08P-A004_C385834.pdf
https://datasheet.lcsc.com/lcsc/1810261412_FH-Guangdong-Fenghua-Advanced-Tech-0805B104K500NT_C38141.pdf
https://datasheet.lcsc.com/lcsc/1810301520_onsemi-BSS84LT1G_C82079.pdf
https://datasheet.lcsc.com/lcsc/2110091730_Sunlord-TC212B227K006Y_C110311.pdf
https://datasheet.lcsc.com/lcsc/1811071223_AVX-TAJA106K016RNJ_C7171.pdf
https://datasheet.lcsc.com/lcsc/2010191934_Ever-Ohms-Tech-CR0805J220RP05Z_C881343.pdf
https://datasheet.lcsc.com/lcsc/1809031230_KEMET-T491A106M020AT_C117023.pdf
https://datasheet.lcsc.com/lcsc/1810261513_Samsung-Electro-Mechanics-CL10B224KB8NNNC_C64705.pdf
https://datasheet.lcsc.com/lcsc/1811151138_Samsung-Electro-Mechanics-CL10A226MQ8NRNC_C59461.pdf
https://datasheet.lcsc.com/lcsc/1912111437_TDK-C1608X5R1E475MT000E_C342979.pdf
https://datasheet.lcsc.com/lcsc/1811051203_BOOMELE-Boom-Precision-Elec-C39576_C39576.pdf
https://www.ti.com/cn/lit/ds/symlink/tss721a.pdf?ts=1649010999287&ref_url=https%253A%252F%252Flcsc.com%252F
https://datasheet.lcsc.com/lcsc/2006281609_Analog-Devices-LT1936EMS8E-TRPBF_C665573.pdf
https://no.mouser.com/datasheet/2/468/R-78-1.0-1709942.pdf

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 53 of 88 26.05.2022

Appendix C. Project management

A.1 GANTT Diagram

Figure 46 - GANTT Diagram

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 54 of 88 26.05.2022

A.2 Work Breakdown Structure

Figure 47 - Work Breakdown Structrue

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 55 of 88 26.05.2022

Appendix D. User manual

A.1 Open HAN port
Below uses Norway grid company’s website (BKK AS) as demonstration.

Step 1: Log in to its website (as you are already their customer)

Step 2: Click the link “HAN-port” places on the middle

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 56 of 88 26.05.2022

Step 3: Request for opening the HAN-port (figure below shows after requesting)

Step 4: HAN-port has successfully opened

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 57 of 88 26.05.2022

A.2 MQTT sign up

Step 1:

Create a Ubidots account

Step 2:

Log in to account and click the “Devices” → “Devices”

Step 3:

Click on “Demo” or a category that has been created

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 58 of 88 26.05.2022

Step 4:

Change the name “Demo” to “SPR”, and copy the Token for later use

Step 5:

Add 2 variables by clicking the “+” → “Raw”

Copy API Token

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 59 of 88 26.05.2022

Step 6:

Change the name to both “Power Usage” and “kWh”

(NOTE: the name must be exact as mentioned)

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 60 of 88 26.05.2022

A.3 Smart Power Reader

After creating an Ubidots account and copying the Token, and the Smart Power Reader device

is ON, the user can then connect to the Access Point “Smart Power Reader”. The Access Point

can be found by using Wi-Fi

Step 1:

Connecting to Access Point “Smart Power Reader”

Step 2:

Default password: PowerMadeEasy

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 61 of 88 26.05.2022

Step 3:

After successfully connecting to “Smart Power Reader”, the device should be led to a website

automatically. If not, click on the “Smart Power Reader” or a pop-up message that states “Sign

in to Wi-Fi network”

If the website does not pop-up by default, simply type in “192.168.4.1” on a link-field

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 62 of 88 26.05.2022

Step 4:

The website will have the following start page shown below

Step 5:

Click on the blue box “Configure WiFi” and wait for 3-5 seconds

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 63 of 88 26.05.2022

Step 6:

2. Fill up the requirements

1. Select Wi-Fi

3. Save

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 64 of 88 26.05.2022

A.4 Smart Power Display

Step 1:

Start up the “Smart Power Display” using 5V Micro USB power supply. (picture)

Step 2:

Connecting to Access Point “Smart Power Display”

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 65 of 88 26.05.2022

Step 3:

Default password: PowerMadeEasy

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 66 of 88 26.05.2022

Step 4:

After successfully connecting to “Smart Power Display”, the device should be led to a

website automatically. If not, click on the “Smart Power Reader” or a pop-up message that

states “Sign in to Wi-Fi network”

If the website does not pop-up by default, simply type in “192.168.4.1” on a link-field

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 67 of 88 26.05.2022

Step 5:

The website will have the following start page shown below

Step 6:

Click on the blue box “Configure WiFi” and wait for 3-5 seconds

Step 7:

SSID:

name of the Wi-Fi

Password:

Wi-Fi password

2. Fill up the requirements

1. Select Wi-Fi

3. Save

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 68 of 88 26.05.2022

A.5 SPR & SPD placement

Figure 48 - General visualization of how the product works and where it is used

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 69 of 88 26.05.2022

Appendix E. Setup Arduino IDE
Step 1: Install Arduino IDE

Step 2: Paste in ESP32 board manager URL in Arduino → Tools → Preferences (shortcut: Ctrl +

Comma) : https://raw.githubusercontent.com/espressif/arduino-esp32/gh-

pages/package_esp32_dev_index.json

Reference:

• https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-

instructions/

• https://learn.adafruit.com/adafruit-metro-esp32-s2/arduino-ide-setup-2

Step 3: Open the Boards Manager. Go to Tools > Board > Boards Manager…

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://learn.adafruit.com/adafruit-metro-esp32-s2/arduino-ide-setup-2

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 70 of 88 26.05.2022

Search for ESP32 and install the “ESP32 by Espressif Systems”

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 71 of 88 26.05.2022

Testing the Installation

Step 1: Select your board in Tools → Board menu (in my case it’s the ESP32 Dev Module)

Step 2: Select the Port (If there are several Ports to select, go to Windows → Device Manager → Ports

(Com & LPT) then find the one that states “CP210x USB to UART Bridge”)

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 72 of 88 26.05.2022

Step 3: Using example in File → Examples → WiFi → WiFiAccessPoint

Step 4: Upload the codes to ESP32 micro controller by clicking the arrow on the top left window in

Arduino

Once “done uploading”, it would show the following message (not identical)

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 73 of 88 26.05.2022

Appendix F. Bill of materials
Budget list

First circuit

Second circuit

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 74 of 88 26.05.2022

Appendix G. Mobile Application
1. Postal code input

Figure 49 - Ability to adjust postal code

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 75 of 88 26.05.2022

2. Power usage with a thirty second refresh rate

Figure 50 - User interface after setup

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 76 of 88 26.05.2022

3. Power usage with a two second refresh rate

Figure 51 - Refresh rate of 2 seconds

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 77 of 88 26.05.2022

4. Spot price graph

Figure 52 - Price distribution

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 78 of 88 26.05.2022

5. Changing postal code after configuration

Figure 53 - edit postal code

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 79 of 88 26.05.2022

Appendix H. How to setup your PC for Flutter development
1. Head over to https://docs.flutter.dev/get-started/install/windows and download the zip

file.

2. After the installation is completed, unzip the zip folder to a directory (e.g. C:\src\flutter)

3. Add flutter to your User Environment PATH variable by adding flutter\bin

(C:\src\flutter\bin)

4. To check if flutter was added successfully – run the “where flutter dart” command in a new

console window

5. Run flutter doctor to check which steps are remaining to complete the Flutter installation.

https://docs.flutter.dev/get-started/install/windows

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 80 of 88 26.05.2022

Appendix I. Setup Android Studio and Android SDK
1. Download Android Studio from https://developer.android.com/studio

2. Agree Android Licenses by running “flutter doctor --android-licenses” command

3. Enabling Android SDK Command-line Tools

https://developer.android.com/studio

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 81 of 88 26.05.2022

Appendix J. Testing circuits

Figure 54 - testing desoldered ESP32

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 82 of 88 26.05.2022

Figure 55 - testing LT1936

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 83 of 88 26.05.2022

Figure 56 - Testing circuit for LT1936

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 84 of 88 26.05.2022

Appendix K. List type
Small package (2 seconds) received using oscilloscope software

Medium package (10 seconds) received using oscilloscope software

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 85 of 88 26.05.2022

Package of data shown in Hexadecimal form received by serial monitor in Arduino with 2400

baud rate

The picture above shows the structure of a package which always starts with “7E A0” and ends

with “7E” in Hexadecimal.

Start/end bytes

Package type

Effect

The key information we need from the package is the start bytes (marked in Yellow) and the

package type (marked in Light blue). With those two combined we can then extract other

information we need for our project. Our project focuses on one’s power usage in a given the

moment and total usage by the end of the day which we can simply extract the information from

the package we receive according to its type. Once the package of power usage has been

successfully extracted, we can then send it to both the MQTT cloud service and another device(s).

Data form example: Smart meter part 1: Getting the meter data - Kode24 [38]

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 86 of 88 26.05.2022

Appendix L. Arduino libraries
To write a code that allows for completion of the project, picking the right libraries is essential.

Underneath is a list of libraries that were used and a short description of their role in this project.

WiFi.h Allows the ESP32 to connect to Wi-Fi using the SSID and password to connect

HTTPClient.h Used to fetch API data through a URI link.

ArduinoJson.h Used to serialize and deserialize JSON. Very useful for fetching and saving data

esp_now.h Necessary for ESP-NOW connection between two or more ESP32 microprocessors.

TFT_eSPI.h Library for the ILI9341 display to work.

SoftwareSerial.h Very important library that allows for multiple serial connections. This is important
as Kaifas HAN interface uses 2400 Baud, while the other libraries use 115200 Baud.

PubSubClient.h Library that allows the ESP32 to publish and subscribe to MQTT brokers

WiFiManager.h Library used to make Access Point and connect to the internet, while also storing
parameters such as MQTT API token, password etc.

SPIFFS.h Saves variables to flash memory, making it so that the values remain saved even after
reset.

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 87 of 88 26.05.2022

Appendix M. Hardware schematics

Figure 57 - Hardware schematic of complete circuit

 BO22EB-03 - AMS HAN to Wi-Fi MQTT Interface with Display and Mobile Application

Rev:3.0 Page 88 of 88 26.05.2022

Appendix N. Case Design

Figure 58 - SPR case design with clearer dimensions

Figure 59 - SPD case design with clearer dimensions

	Document Control
	Preface
	1 Introduction
	1.1 Contracting entity
	1.2 Problem description
	1.3 Main idea of solution
	1.4 Failure preparations
	1.4.1 Agile
	1.4.2 Work Breakdown Structure

	1.5 GANTT diagram

	2 Specification of requirements
	2.1 Secondary priority tasks – If there is enough time
	2.2 Viable solutions
	2.2.1 Spot price
	2.2.2 Hardware solutions
	2.2.2.1 Single device
	2.2.2.2 Dual device

	2.3 Choosing a solution

	3 Problem analysis
	3.1 Advanced Measurement & Control System
	3.1.1 AMS reader limitations
	3.1.2 The HAN Interface
	3.1.2.1 M-Bus Protocol (Meter-Bus Protocol)
	3.1.2.2 Universal Asynchronous Receiver/Transmitter (UART) Protocol

	3.2 Hardware development
	3.2.1 Main components
	3.2.1.1 Supporting components

	3.3 Software development
	3.3.1 Getting spot price using API
	3.3.2 Azure Functions
	3.3.2.1 Using Norges Bank API to convert Transparency data
	3.3.2.2 Spot price data processing

	3.3.3 Software protocols
	3.3.3.1 MQTT interconnection
	3.3.3.2 The ESP-NOW protocol
	3.3.3.3 Protocols working together

	3.4 Issues regarding tools and HW/SW aspects
	3.5 Problem analysis conclusion
	3.5.1 Hardware
	3.5.2 Software

	4 Realization of selected solution
	4.1 Hardware analysis
	4.1.1 Circuit block diagram
	4.1.2 ESP32 in the SPR and the SPD
	4.1.3 SPR circuit breakdown
	4.1.3.1 LT1936 Step-Down converter
	4.1.3.2 The TSS721A M-Bus to TTL transceiver

	4.1.4 SPD circuit breakdown
	4.1.4.1 TFT LCD Display (ILI9341)
	4.1.4.2 External Power Supply
	4.1.4.3 5VDC-3.3VDC buck converter

	4.2 Software analysis
	4.2.1 Software principles
	4.2.2 Learn GitHub

	4.3 Embedded software overview
	4.3.1 SPR software
	4.3.1.1 Wi-Fi based operations
	4.3.1.2 Data processing

	4.3.2 SPD software

	4.4 Software overview
	4.4.1 C# overview
	4.4.2 Flutter Mobile application development
	4.4.2.1 Why chooses Flutter

	4.5 Case design
	4.5.1 Design differences between the SPR- and the SPD case
	4.5.2 First case design
	4.5.3 Second case design
	4.5.3.1 SPR case
	4.5.3.2 SPD case

	5 Testing
	5.1 ESP32 Thing Plus testing
	5.1.1 Problems encountered

	5.2 First circuit
	5.2.1 Component testing
	5.2.2 Complete circuit testing

	5.3 Second circuit
	5.3.1 Changes from the first circuit
	5.3.2 Preliminary component testing
	5.3.3 Testing results
	5.3.3.1 HAN interface testing
	5.3.3.2 ESP-NOW and MQTT testing

	6 Discussion
	6.1 What went well
	6.2 What went wrong?

	7 Conclusion
	References
	Appendix A. Abbreviation
	Appendix B. Datasheet
	Appendix C. Project management
	A.1 GANTT Diagram
	A.2 Work Breakdown Structure

	Appendix D. User manual
	A.1 Open HAN port
	A.2 MQTT sign up
	A.3 Smart Power Reader
	A.4 Smart Power Display
	A.5 SPR & SPD placement

	Appendix E. Setup Arduino IDE
	Appendix F. Bill of materials
	Appendix G. Mobile Application
	Appendix H. How to setup your PC for Flutter development
	Appendix I. Setup Android Studio and Android SDK
	Appendix J. Testing circuits
	Appendix K. List type
	Appendix L. Arduino libraries
	Appendix M. Hardware schematics
	Appendix N. Case Design

