

Rev: 1.10 Page | 1 28/05/2022

Bachelor thesis:

Martin Eggen

Jakob Hauser

28/05/2022

FPGA solution for communication
between IPbus and a power control

unit using a custom USART

Document control

Rev: 1.10 Page | 2 28/05/2022

Document control

Thesis title:
FPGA solution for communication between IPbus and a power
control unit using a custom USART

Date/Version
28. May. 2022 / 1.10

Report number:
BO22EB-08

Authors:
Martin Eggen
martineggen99@gmail.com

Jakob Hauser
jakob.hauser72@gmail.com

Study:
19HEEL

The number of pages
including attachments: 53

HVL’s supervisor/guide:
Svein Haustveit
svein.haustveit@hvl.no

Grading:
Open

Other notes:
We accept that the report may be published

Client:
Department of Physics and Technology - University of Bergen

Clients reference:
BO22EB-08

The client’s contact person (including contact information):
Johan Alme
+47 55 58 28 71
johan.alme@uib.no

Revision Date Status Performed by

0.10 26. Apr. 2022 First draft. Martin Eggen & Jakob Hauser

0.20 3. May 2022 Second draft. Martin Eggen & Jakob Hauser

0.21 6. May 2022 Restructure. Martin Eggen & Jakob Hauser

0.30 19. May 2022 Third draft. Martin Eggen & Jakob Hauser

1.00 26. May 2022 Release draft. Martin Eggen & Jakob Hauser

1.10 27. May 2022 Release version. Martin Eggen & Jakob Hauser

mailto:martineggen99@gmail.com
mailto:jakob.hauser72@gmail.com
mailto:svein.haustveit@hvl.no
mailto:johan.alme@uib.no

Acknowledgements

Rev: 1.10 Page | 3 28/05/2022

Acknowledgements

First and foremost, we would like to thank our supervisor, Professor Johan Alme, for being a

great supervisor. Helping us throughout our whole project of writing this bachelor. From the

very start, he was very helpful and encouraging giving us a good start to the project. He could

help us with every part of the process as well. No matter if it was giving technical advice,

teaching about GitHub and Linux, or helping us write the thesis.

We also want to thank our project neighbours Birger Olsen and Håvard Birkenes for being very

active in the project, and always prepared to do joint testing or problem-solving. As well as

being very helpful and willing to help, when asked about parts of the project.

A big thanks also has to go to our long-time lecturer and supervisor, Assistant Professor Svein

Haustveit, for giving us the necessary knowledge to fulfil our task at hand. Teaching us to look

at VHDL code as physical circuits rather than just code. Giving us a more in-depth

understanding of how our written code would translate to circuitry.

Abstract

Rev: 1.10 Page | 4 28/05/2022

Abstract

The proton Computed Tomography (pCT) project in Bergen is a project aiming on designing a

CT-scanner prototype using protons instead of photons. The current solution is using multiple

layers of Monolithic Active Pixel chips (MAPS), called ALPIDE, to create a three-dimensional

image scan. The ALPIDEs were developed at CERN for the inner Tracking System in a large ion

collider experiment (ALICE).

A stable and reliable power supply chain is needed during operation. For that, a power supply

is used for each layer, distributing even power to all layers. Custom PCBs housing

microcontrollers are installed between the power supplies and the sensor layers. The PCBs are

named Power Control Units (PCU). They are responsible for enabling the power to the layers

and cutting the power if monitored currents, voltages or temperatures exceed programmable

thresholds. An Ethernet connection is set up between the FPGA board and the control room

computers, using a special protocol called IPbus developed at CERN. The PCUs use a custom

Universal Synchronous/Asynchronous Receiver/Transmitter (USART) protocol for

communication with the FPGA board. This thesis is a detailed VHDL solution for the FPGA that

is responsible for this communication. The design consists of multiple different components

that are to function on their own as well as in combination. For each component, a testbench

is made, and documentation is presented. In the tests, the UVVM library [1] has been used to

provide a structured methodology. The work is also available in a git repository [2].

The thesis contains a complete, and functioning solution for communication between IPbus

and multiple USART slaves. In addition, two additional modules are planned for the design: (1)

a version module including a version number and the git hash from the repository, and (2) a

local housekeeping unit monitoring board-specific parameters such as current consumptions,

voltage levels and temperatures. These modules were not realized due to time constraints.

The design has been simulated and verified using structural verification methodology.

Hardware tests using an IPbus connection and preliminary versions of the PCU have also been

conducted. These tests prove the design is operating as specified by the requirements.

https://git.app.uib.no/pct/powermonitor

Acronyms

Rev: 1.10 Page | 5 28/05/2022

Acronyms

ALICE - A Large Ion Collider Experiment

BUS - Electrical conductors that carry digital signals between components

DUT - Device Under Testing

FPGA - Field-programmable gate array

GUI - Graphical User Interface

HW - Hardware

I2C - Inter-Integrated Circuit

IPbus - Control link by CERN

LED - Light-Emitting Diode

LSB - Least Significant Bit

LVDS - Low-voltage differential signalling

MCU - Microcontroller

MJCU - Martin & Jakob’s Communication Unit

MSB - Most Significant Bit

MUX - Multiplexer (digital logic)

PCB - Printed Circuit Board

pCT - Proton Computed Tomography

PCU - Power Control Unit

PSU - Power Supply Unit

SOBP - Spread-Out Bragg Peak

SW - Software

UiB - Universitetet i Bergen

USART - Universal Synchronous/Asynchronous Receiver/Transmitter

UVVM - Universal VHDL Verification Methodology

VHDL - The Very High-Speed Integrated Circuit Hardware Description Language

Rev: 1.10 Page | 6 28/05/2022

Table of Contents

Document control ... 2

Acknowledgements ... 3

Abstract ... 4

Acronyms ... 5

List of Figures ... 8

List of Listings .. 9

List of tables .. 9

Outline ... 10

1 Introduction ... 11

1.1 Particle Therapy ... 11

1.1.1 Medical Imaging Methods ... 12

1.2 The Bergen protonCT Project .. 13

1.3 Requirements .. 16

2 Related work ... 17

2.1 IPbus .. 17

2.2 Connected projects ... 20

2.2.1 The Control room .. 20

2.2.2 The Power Control Unit ... 20

3 Problem analysis .. 21

4 Design .. 22

4.1 MJCU – top-level ... 23

4.2 com_module .. 24

4.2.1 com_module_reg .. 25

4.2.2 com_module_fifo .. 29

4.2.3 com_module_usart ... 31

4.3 global_module ... 34

4.4 dummy_module .. 35

4.5 version_module and housekeeping_module .. 35

4.5.1 Version_module .. 35

4.5.2 Housekeeper_module ... 35

5 Tests and verification .. 36

5.1 Verification .. 36

Rev: 1.10 Page | 7 28/05/2022

5.1.1 UVVM .. 37

5.1.2 DO-file .. 39

5.2 Hardware testing ... 39

6 Discussion .. 43

7 Conclusion and Outlook .. 44

7.1 Conclusion ... 44

7.2 Outlook .. 44

8 Bibliography ... 45

Appendix A Development tools .. 46

Appendix B Address map for all modules inside the MJCU .. 47

A.1 Module addresses .. 47

A.2 Address map ... 48

Appendix C DATA FLOW ... 50

Appendix D Picture of an ALPIDE sensor .. 52

Appendix E Project plan.. 53

Rev: 1.10 Page | 8 28/05/2022

List of Figures

Figure 1 - Graphical illustration of how the dose is delivered to the tissue [3] 11

Figure 2 - Simplified CAD of the pCT instrument... 13

Figure 3 – Bergen pCT project overview ... 14

Figure 4 - Simplified overview of the pCT power control system ... 14

Figure 5 – power control unit .. 15

Figure 6 – PCU connected to a power supply unit .. 15

Figure 7 - The Xilinx KCU105Evaluation Board [4] ... 16

Figure 8 - ipbus implemented in a top-file .. 17

Figure 9 - ipbus_fabric_sel with modules connected.. 18

Figure 10 - powermonitor repository - folder structure inside each module 22

Figure 11 - Block diagram of MJCU as payload ... 23

Figure 12 - com_module block diagram .. 24

Figure 13 - IPbus wait state slaves .. 25

Figure 14 – zero-wait state read ... 26

Figure 15 – zero-wait state write .. 27

Figure 16 - part one in a pointer-based FIFO illustration. ... 29

Figure 17 – part two in a pointer-based FIFO illustration. .. 29

Figure 18 - part three in a pointer-based FIFO illustration. .. 30

Figure 19 - part four in a pointer-based FIFO illustration. .. 30

Figure 20 - Custom USART protocol between the FPGA and PCUs ... 31

Figure 21 – The state machine in com_module_usart. ... 32

Figure 22 - Example of a wave diagram from a small testbench .. 36

Figure 23 - MJCU writing 0x00AA to PCU-address 0x01 (asynchronous) .. 40

Figure 24 - MJCU reading 0x00AA from PCU-address 0x01 (asynchronous) .. 40

Figure 25 - Mean bit error using 115200 baud ... 42

Figure 26 - Mean bit error using 921600 baud ... 42

Figure 27 - Project plan ... 43

Figure 28 - Project plan for BO22EB-08 ... 53

Rev: 1.10 Page | 9 28/05/2022

List of Listings

Listing 1 - Connecting a slave to IPbus .. 19

Listing 2 - How ACK follow strobe ... 25

Listing 3 - IPbus slave - read process ... 26

Listing 4 - IPbus slave -write process ... 27

Listing 5 - IPbus slave - address map ... 28

Listing 6 - UVVM log report ... 37

Listing 7 - UVVM do-file ... 38

List of tables

Table 1 - IPbus signals between master and slave [5] ... 18

Table 2 - address map com_module ... 28

Table 3 - Address map global_module .. 34

Table 4 - Address map dummy_module ... 35

Table 5 - Bit-error test with varying baud rates, performing 1000 read operations 100 times. 41

Table 6 - Module addresses .. 47

Table 7 - Address map for MJCU ... 49

Outline

Rev: 1.10 Page | 10 28/05/2022

Outline

Chapter 1: Introduction. This chapter contains an introduction to the project that this thesis

is a part of. Also included are the requirements for the project connected to this thesis.

Chapter 2: Related work. The related work chapter focuses on giving background information

on what work was needed for this project to work. IPbus is explained and given an

introduction. Both adjacent master theses are also presented.

Chapter 3: Problem analysis. This is the start of the project. Problem analysis is an analysis of

the requirements and the earlier work, to conclude with an idea on how to solve the task.

Chapter 4: Design. Designing the VHDL solution was the biggest part of creating a working

solution. In this chapter, a detailed walkthrough of all the different components in this solution

is given. As well as some in-depth information on the workings of each component.

Chapter 5: Tests and verification. In this chapter, the focus lies on what tests were performed

on and around the project. Including what type of tests were performed, and what tools were

used to perform said tests. Thereby looking into what UVVM is and why it was used.

Chapters 6: Discussion, and Chapter 7: Conclusion and Outlook. These chapters evaluate the

work done in this thesis. Outlook also gives a discussion on the future work needed.

Introduction

Rev: 1.10 Page | 11 28/05/2022

1 Introduction

1.1 Particle Therapy
Radiotherapy is the traditional form of cancer treatment using irradiation. In radiotherapy,

high-energy electromagnetic radiation is used to kill cancer cells. Radiotherapy is an important

method for cancer treatment. It can be used alone, or in combination with other methods like

surgery, chemotherapy, and/or immunotherapy. The goal of the treatment is to damage the

cancer cells either directly or indirectly. Stopping them from reproducing or causing them to

die.

Sending ionizing radiation through the body is effective for killing cancer cells, but it also

damages healthy cells in the process. Healthy tissue has an advantage over tumorous tissue

though. It heals faster. Treatment is therefore distributed over multiple sessions of irradiation.

Each dose administered is weak enough for the healthy tissue to recover in between the

treatments. The photon beams are sent through the body from several directions to further

spread out the damage. A high level of precision is important to make sure that the healthy

tissue receives a low amount of radiation. With higher precision comes the possibility of safely

increasing the dosage. Resulting in fewer sessions to complete the treatment.

The biological structure varies from tumour to tumour. It can even vary within a single tumour.

Oxygen is a mediator for indirect damage to DNA. Parts of a tumour, which have reduced

access to oxygen, can be more resistant to radiation. Samples, MR- and PET pictures are used

to provide information about the tumour’s biology. This makes it possible to individualize the

treatment of different tumours [3].

Figure 1 - Graphical illustration of how the dose is delivered to the tissue [3]

Introduction

Rev: 1.10 Page | 12 28/05/2022

Particle therapy uses positively charged ions like protons or carbon ions instead of the

traditional photons. This opens the possibility for treatment of delimited areas inside a

patient, whilst damaging DNA more efficiently. Compared to radiotherapy, particle therapy

results in fewer side effects such as organ damage or secondary cancers because it reduces

the radiation to the surrounding tissue.

The two methods differ the most in how the energy is deposited in the tissue. Figure 1 shows

how the energy is transferred using radio- and particle therapy.

The photons (blue) transfer a large amount of energy to the tissue a short distance after they

penetrate the skin. Therefore, the tumour is radiated from different angles to achieve the

correct amount of radiation. The yellow line illustrates how the protons deposit a major part

of their energy directly into the tumour. This peak is called the Bragg peak. It can be adjusted

to target where the tumour is located. The Bragg peak is not wide enough to cover the whole

tumour. A modified beam is therefore created to get a broader range. This beam is called

Spread-Out Bragg Peak (SOBP). The graph also shows the potential of using carbon-ions with

an even more effective peak.

1.1.1 Medical Imaging Methods

Computed Tomography

A Computed Tomography (CT) scan combines multiple images taken from different angles of

a body using beams of photons. The device is rotated around the body, and the body is moved

horizontally to create a three-dimensional image.

Proton Computed Tomography

Proton Computed Tomography (pCT) uses protons instead of photons. The images are created

by sending a beam of protons with enough energy to pass directly through the patient so that

the Bragg peak ends up in the calorimeter. This reduces the amount of irradiated tissue. The

protons will interact with electrons and/or the nuclei of an atom. These interactions will cause

them to change paths. The path of the protons after exiting the body is then reconstructed

from the data collected by the calorimeter.

It is possible to achieve higher accuracy when using pCT-scanning for dose planning compared

to a CT scan. Currently, the proton treatment is estimated by the Houndsfield units from CT

scanning. This estimation causes an error of 2-3% [3]. This implies that by using proton CT, less

of the healthy tissue will be irradiated and the risk of late effects is reduced.

Introduction

Rev: 1.10 Page | 13 28/05/2022

1.2 The Bergen protonCT Project

The University of Bergen is the leading part of the Bergen proton CT project. The project

consists of multiple parts, as shown in Figure 3. The main part of this project is the calorimeter

depicted in Figure 2. It is made out of 43 layers with 108 ALPIDE sensors on each layer. They

are monolithic active pixel sensors (MAPS) created for the CERN ALICE experiment. These

layers are responsible for collecting information about the proton’s velocity and position.

Figure 2 - Simplified CAD of the pCT instrument

Each of the layers is connected to individual transition cards and custom power control units

(PCU) that deliver the power from the power supply units (PSU) to the layer. This thesis is

aimed to make a system that could write and read information to and from the PCUs and

forward it to a computer inside the control room. An FPGA board is being used to achieve this.

Introduction

Rev: 1.10 Page | 14 28/05/2022

Figure 3 – Bergen pCT project overview

Figure 4 shows how the different components in the pCT power control system are connected

to this thesis. The computer in the control room connects to the FPGA board with an ethernet

cable using the IPbus protocol. The FPGA board is connected to 43 PCUs via ethernet cables,

using a custom USART protocol for communication.

Figure 4 - Simplified overview of the pCT power control system

 layers
 of those are
tracking layers

 o er
Control
Units

Introduction

Rev: 1.10 Page | 15 28/05/2022

Figure 5 shows what in Figure 4 is labelled as “ o er control units”. These are the custom-

made circuit boards that transfer power from the PSUs (shown in Figure 6) to the ALPIDE

layers. The connections are depicted in Figure 3. 43 of these boards will be connected to the

FPGA board through an RJ45 rack.

The PCUs have full control over the power given to the ALPIDE layers by the PSUs. They can

control the maximum voltage and current on its outputs and shut down the connected layer

if a maximum temperature is reached. All the information about different values and

thresholds is available to read and modify by the user through the FPGA.

Figure 5 – power control unit

Figure 6 – PCU connected to a power supply unit

Introduction

Rev: 1.10 Page | 16 28/05/2022

1.3 Requirements
The prime objective of this thesis is to make a stable communication link between a computer

inside a control room (using IPbus by CERN) and 43 external devices (using a custom USART

protocol). Designing it to be as stable and reliable as possible. Prioritizing stability over

efficiency.

The requirements are as follows:

• FPGA design fit to a Xilinx KCU105 Evaluation Board containing

o An IPbus gateway.

o A bus connected to multiple slaves containing

▪ 43 slaves for communication with external devices

▪ A global module overarching all 43 communication slaves

▪ A test module, for confirming functionality

▪ Slaves managing onboard functions and a version GitHash

• Developed using a type of GIT version control system.

• Developing every component with testbenches using the UVVM library.

• Good documentation for every part of the system.

The Xilinx KCU105 Evaluation Board features the Kintex XCKU040-2FFVA1156E FPGA. It has all

the I/O resources that would be necessary for this project. The required resources contain an

RJ45 port for connecting to the control room, some GPIO for prototyping, and two FMC

connectors (high/low pin-count) for connecting the PCUs.

Figure 7 - The Xilinx KCU105Evaluation Board [4]

Related work

Rev: 1.10 Page | 17 28/05/2022

2 Related work

2.1 IPbus
IPbus is a packet-based control protocol made by CERN for communicating with address-

aware hardware inside an FPGA [5]. They have made both the software and the firmware side

that communicate with each other through 1Gbit ethernet. It does not support devices with

auto-negotiation. The software side has a Control Hub that uses an IPbus reliability mechanism

to correct for losses or duplications. The firmware side can be connected to multiple slaves

made by a user, using high-performance and reliable connections.

The IPbus firmware module is an on-chip system. All the calculations and timings are being

made and processed inside the FPGA chip. No external devices are needed. This makes it

compatible with a wide range of FPGAs regardless of what type of sensors or circuitry

surrounds the chip. It is designed to be a common module that can run by itself alongside a

user’s main code inside the same F G . This makes it easy to integrate into a project.

Figure 8 - ipbus implemented in a top-file

CERN has made several example designs for different development boards. This is currently

made for Xilinx devices only, but the code is adaptable to fit onto Intel devices as well.

The firmware side of IPbus acts like a master within the FPGA and communicates with

connected slaves located inside the PAYLOAD-block using a 31Mhz clock and seven signals

shown in Table 1. These seven signals are located inside two types named ipb_wbus and

ipb_rbus. Ipb_wbus has all the signals going from master to slave, and ipb_rbus got the ones

going from slave to master. These signal types can be used to declare signals or ports like this:

IPBUS_IN : in ipb_wbus;

IPBUS_OUT : out ipb_rbus;

The reduction of signals makes it easier to follow the routing of the signals between the

different modules and components.

Related work

Rev: 1.10 Page | 18 28/05/2022

Signal Direction Width Description

ipb_addr Master to slave 32 Bus address

ipb_wdata Master to slave 32 Data to be written to a slave

ipb_write Master to slave 1 Asserted for a write cycle, deserted for a read cycle

ipb_strobe Master to slave 1 Qualifies address and data; assertion marks start of

a cycle

ipb_rdata Slave to master 32 Data read from a slave

ipb_ack Slave to master 1 Acknowledge flag; assertion marks end of cycle

ipb_err Slave to master 1 Bus error flag; assertion marks end of cycle

Table 1 - IPbus signals between master and slave [5]

The slaves themselves do not need to handle the address signal from IPbus. This is handled by

a component inside PAYLOAD named ipb_fabric_sel shown in Figure 9. Ipb_fabric_sel is

responsible for which slave gets to communicate with the IPbus. This makes it possible to

make slaves that do not know what address to respond to. They are just waiting for a strobe

signal from fabric_sel. As a result, all slaves can interpret the signals the same way. They just

need to take care of any internal registers.

Figure 9 - ipbus_fabric_sel with modules connected

Related work

Rev: 1.10 Page | 19 28/05/2022

The implementation of fabric_sel also makes it easier to add more slaves to the system if

needed. Using the port map of the dummy_module slave as an example:

-- Slave 67 : dummy_module

dummy_module : entity work.dummy_module

port map(

CLK => ipb_clk,

RST => ipb_rst,

IPBUS_IN => ipbw(67),

IPBUS_OUT => ipbr(67)

);

Listing 1 - Connecting a slave to IPbus

Dummy_module will answer to module address 67 because it is connected to in- and output

number 67 on fabric_sel. If more slaves are introduced, they can be connected to pin 68, 69

and so on. They will then automatically answer to the corresponding module address.

Related work

Rev: 1.10 Page | 20 28/05/2022

2.2 Connected projects
In the previous chapter, a mention was given to the wider project that stretches beyond the

borders of this assignment. Where in Figure 3 and Figure 4 a complete overview and a

simplified view of the entirety of the project was shown. In relevance to the FPGA, the

connecting parts of the project can be split into two parts. The “control room” and the “power

control units”. These two parts have each their own master student working on them.

2.2.1 The Control room

The software for the control room is designed by Håvard Birkenes [6]. The control room as it

is referred to is a computer connected to all information channels of the project. The section

Håvard is responsible for contains all that is connected to the power control system. It is

responsible for handling the control, configuration, and monitoring of the power system. The

configuration data are stored in a MongoDB database, and the monitoring data are stored in

a time-based database (inFluxDB). Grafana is used to visualize the monitored values.

Python is used as the design language in this part, and this enables the possibility to

communicate with the API directly using script-based functions. This is extremely valuable in

the test and development phase.

2.2.2 The Power Control Unit

The PCU and the concept of the distributed power system is designed by Birger Olsen [7],

Originally, the plan was that all layers should be powered by one large power supply, and there

should be one central power control unit for all layers. However, the solution proposed by [7]

proved cheaper, more elegant and easier to implement.

The PCU, which sits directly on the power supply, includes filters to reduce the power supply

noise, as well as a microcontroller that enables the power to the sensor layers and monitors

the currents, voltages and temperatures. Additionally, it contains programmable thresholds.

The power is cut if the monitored values exceed these thresholds. This gives a short response

time which is needed to avoid damage to the sensor layers and lowers the speed requirement

for the rest of the power control system. Making it possible to prioritize reliability before

speed. It is important to stress that since the sensor layers measure ionizing radiation, errors

can be expected that for instance generates high current consumption due to single event

effects in the sensors.

Problem analysis

Rev: 1.10 Page | 21 28/05/2022

3 Problem analysis

Writing a design to an FPGA requires a VHDL design tool. In this case, since the selected FPGA

is from Xilinx, we were given access to a program called Vivado. This was made available to us

by the University in Bergen.

The Xilinx KCU105 Evaluation Board featuring the Kintex UltraScale XCKU040-2FFVA1156E

FPGA was chosen on the premise that it featured everything that was needed in terms of IO-

resources and FPGA. It was also the most convenient choice since other options would have

to include a custom PCB design. The need for prototypes during development and the low

quantity production would have led it to be more expensive than buying a finished product.

This would also require a design team that would increase the costs even further.

With the requirements in mind, there are still multiple options on how to structure the VHDL

design. The F G ’s task is to transfer data bet een a control room and the multiple power

control units. One way of designing a system like this would be to make multiple components

that take care of different requirements and then connecting them together. This way of

design results in a tidy, and easy to test and troubleshoot. Each of the components can be

verified in a controlled testbench. Making it easy to add more components in the future if

needed. A goal of the design is to make it as efficient as possible, to make sure it’s not the

bottleneck of the system. One of the ways to accomplish this is to make sure the system can

communicate with the PCUs in parallel. Since the solution is an FPGA design, it is possible to

have the communication between one PCU take the same amount of time as communicating

with all 43 of them at the same time. It is important to state that the system does not have a

strict timing requirement. It is however important that the configuration time does not feel

slow for the user, and that the monitoring is frequent enough. In this case, reliability is more

important than speed. One of the ways to make it more reliable is by writing the data that has

been written to a given address to the control room using what is called a handshake. The

PCUs already have this as a built-in function in their custom USART protocol. It confirms which

address was reached by sending a copy of the address back as soon as it is received. This

confirmed address is then put together with the data received inside the FPGA to formulate a

handshake to the control room as well.

Since this bachelor thesis is a part of a bigger system, it was important to make the project

structured and understandable for other people that may modify or reuse it after this bachelor

thesis has ended. UiB were already using a custom version of GitHub namely git.app.uib as a

Git version control system. Which we used as well in the development of this project.

The project has multiple modules with independent testbenches and files, so it was important

to keep everything organized and well structured. To be consistent with the naming of folders

and components was also a high priority.

Design

Rev: 1.10 Page | 22 28/05/2022

4 Design

The main essence of this project was to make an FPGA solution that would take in data from

an already existing bus design (IPbus) and convert said data into a serial data transfer toward

the PCUs, and the other way around. The protocol for the PCUs was made a few weeks after

this project began but it was still prone to change.

It was made clear that the goal should not be to complete every requirement given, but to

make sure everything that was constructed was working as intended. A lot of time went into

the creation of testbenches because of this.

To make this project well-structured and easy to understand, each of the modules was created

separately. This made it possible to connect them to different testbenches to show how the

individual parts of the system worked. To make sure the git repository [2] was well structured,

all the folders for the different modules got the same layout. Every module has its own folder

including the subfolders components, scripts, source files (src) and testbench (tb). This makes

navigating to the desired files easier, and each testbench can be compiled the same way. The

reason structure is so important is because someone else should be able to do further work

and development on it in the future if it is needed.

Figure 10 - powermonitor repository - folder structure inside each module

https://git.app.uib.no/pct/powermonitor

Design

Rev: 1.10 Page | 23 28/05/2022

4.1 MJCU – top-level

MJCU is an acronym for Martin and Jakob’s Communication Unit. Figure 11 shows a simplified

block diagram of how the modules are connected to each other, to IPbus and to the power

control units. Since the modules have internal registers, a decision was made that

ipb_fabric_sel should use ipb_addr(15 downto 8) to determine which module to select.

Leaving Ipb_addr(7 downto 0) available for selecting internal registers inside the modules. This

should give a sufficient amount of both potential slaves and slave addresses. The modules in

this design are com_module, global_module and dummy_module.

Figure 11 - Block diagram of MJCU as payload

Design

Rev: 1.10 Page | 24 28/05/2022

4.2 com_module
Com_module is short for communication module. It is the largest of the modules in this design

and is responsible for communicating with the power control units. This module is meant to

be duplicated as many times as the amount of power control units connected to the system.

One com_module will be connected to one PCU.

Com_module consists of four components. Com_module_reg, two com_module_fifos and

com_module_usart. Com_module_reg handles the communication with IPbus. It can read data

from one com_module_fifo and write to the other. F FO stands for “First n First Out”, and is

used to temporary queue up data. Every com_module has two FIFOs. One for the data from

com_module_reg to com_module_usart (TX_FIFO), and one for the data from

com_module_usart to com_module_reg (RX_FIFO). Com_module_usart communicates with

a power control unit using a custom 8-bit USART protocol. This protocol sends data in bulks of

8 bits, one bit at a time with a start bit for every transaction. The bits are being sent with a

given baud rate. Because the baud rate (default set to 115200 bits/s) is much slower than the

clock speed the modules are using (31 MHz), it is necessary to use FIFOs to prevent the loss of

data.

Figure 12 - com_module block diagram

Design

Rev: 1.10 Page | 25 28/05/2022

4.2.1 com_module_reg

Com_module_reg is the component that handles the signals between the IPbus interface and

any given com_module. The goal was to make com_module a “zero ait state”-slave, meaning

that it can receive or transmit data on every clock cycle. Figure 13 shows two write

transactions between IPbus and two slaves. The slave written to in cycle 0 is what is referred

to as a “one ait state”-slave. It uses one clock cycle before it responds with ipb_ack. IPbus is

made in a way that the slave can have multiple wait states. IPbus will wait for ack before

proceeding. Cycle 1 shows a slave with zero wait states. These types of slaves are the most

efficient ones because they never require IPbus to wait for a response.

Figure 13 - IPbus wait state slaves

To make “zero ait state”-slaves, it was necessary to have the ipb_ack mirror the ipb_strobe.

In the first iteration, ack was given strobe’s value directly. But because of the way

ipbus_fabric_sel (Figure 9) handles the ack-signal, it had to be given its value via a MUX like

this:

IPBUS_OUT.ipb_ack <= '1' when IPBUS_IN.ipb_strobe = '1' else '0';

Listing 2 - How ACK follow strobe

The first plan was to make one process for both read- and write operations. This would cause

the slave to require one wait state on every read operation because they both would be

following the clock. Therefore, it has separate read and write processes.

Design

Rev: 1.10 Page | 26 28/05/2022

IPbus read transaction

The signal diagram in Figure 14 shows a read transaction with a com_module_reg. The

communication is made possible by reacting to every signal coming from IPbus. In a read

transaction between IPbus and a zero-wait state slave, IPbus will change the signals going to

the slave on one clock cycle. The slave can then interpret these signals and change rdata’s

value accordingly. IPbus will then read from rdata on the next clock cycle.

Figure 14 – zero-wait state read

The p_read process monitors every signal inside IPBUS_IN and reacts if any of them change. If

strobe is high and write is low, DATA is written to rdata for the IPbus to read.

p_read : process(IPBUS_IN) -- Module writes data to IPBUS

begin

IPBUS_OUT.ipb_rdata <= (others => '0');

 if IPBUS_IN.ipb_strobe = '1' and IPBUS_IN.ipb_write = '0' then

 IPBUS_OUT.ipb_rdata <= DATA;

 end if; -- STROBE & READ & MODULE_ADDRESS

end process p_read;

Listing 3 - IPbus slave - read process

Design

Rev: 1.10 Page | 27 28/05/2022

IPbus write transaction

The timing in the write transaction in Figure 15 is synchronized with the clock. The slave checks

if strobe and write are high on every rising edge of the clock. If so, it reads the data from wdata.

Figure 15 – zero-wait state write

p_write : process(CLK) -- Module reads data from IPBUS

begin

 if rising_edge(CLK) then

 if RST = '1' then

 else

 if IPBUS_IN.ipb_strobe = '1' and IPBUS_IN.ipb_write = '1' then

 DATA <= IPBUS_IN.ipb_wdata;

 end if; -- STROBE & WRITE & MODULE_ADDRESS

 end if; -- RST

 end if; -- CLK

end process p_write;

Listing 4 - IPbus slave -write process

The process p_write also includes the reset signal to make sure this only happens on a rising

edge of the clock.

Design

Rev: 1.10 Page | 28 28/05/2022

Address map

As already mentioned, ipb_addr(7 downto 0) from IPbus is available for selecting internal

registers inside the modules. Com_module_reg takes care of this selection. Table 1 shows the

address map of a com_module. The first two registers are reserved as control and status.

Nothing is implemented here, as there was no need to do so. This was just a habit from earlier

designs and makes it easier to implement more features later if needed. The data written to

register 3 is sent to com_module_usart through one of the FIFOs and further down towards

the power control units. Register 4 holds the data received by the power control units. Register

5 is a trigger register that resets both FIFOs. It does not matter if the data sent to register 5 is

all zeros or all ones, everything is considered a reset if the register is reached.

Name Register
address

Width Access Default Value Description

COM_MODULE (module address 0x01 – 0x40)

CONTROL 0x01 32 W 0x00 Not in use

STATUS 0x02 32 R 0x00 [31..4] Not in use
[3] TX is full (1 = full)
[2] TX is empty (1 = empty)
[1] RX is full (1 = full)
[0] RX is empty (1 = empty)

WRITE 0x03 32 W 0x00 Writes data to the corresponding PCU.
[31] R/W̅ bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data to PCU

READ 0x04 32 R 0x00 Reads a 32-bit vector from the corresponding
PCU.
[31] R/W̅ bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data from PCU

RESET_FIFO 0x05 32 W 0x00 Resets both TX and RX FIFO to clear them.

Table 2 - address map com_module

One of the goals with com_module_reg was to make the code behind the address map easy

to understand and modify for future use. That’s hy both p_read and p_write have a case

statement, shown underneath, to interpret ipb_addr(7 downto 0). To add more registers,

simply add one or more lines ith “when X”..” => ” in either or both p_read or p_write

depending on if the register should be read-only, write-only or read/write.

case IPBUS_IN.ipb_addr(7 downto 0) is

 when c_CONTROL =>

 when c_STATUS =>

 when c_WRITE =>

 when c_READ =>

 when c_RESET => -- RESET FIFO

 when others =>

end case; -- REGISTER
Listing 5 - IPbus slave - address map

Design

Rev: 1.10 Page | 29 28/05/2022

4.2.2 com_module_fifo

The FIFO is an acronym for “First n First Out”. The main and only purpose of a FIFO is to act

as a temporary backed up data storage. We decided to use a pointer-based design. Using two

pointers that are moving through a list of saved messages as they are written or read. Where

one of them is responsible to read and the other one to write to their current location. An

example of this is illustrated in Figure 16 and Figure 17. In Figure 16 there have been eight

messages sent into the FIFO, two of these messages have then been read. That means that

there are now six messages in the FIFO, messages three through eight. In Figure 17, another

twelve messages have been sent into the FIFO, and now a total of nine messages have been

read. At this point, messages ten through twenty are still in the FIFO, and one through nine

are out. This shows how the “pointer in” has moved through the hole list and moved back

to the start, but it isn’t a problem because enough messages have already been read. The

place where messages five through nine were stored is no “free space”.

Figure 16 - part one in a pointer-based FIFO illustration.

Figure 17 – part two in a pointer-based FIFO illustration.

Design

Rev: 1.10 Page | 30 28/05/2022

There are some important corner cases to take into consideration when working with a FIFO.

First and foremost, you will encounter one of these if you only write messages into the FIFO,

but never read any out. This will end up in the FIFO being full. In this case, this FIFO will not

accept any more messages, and any message that is still trying to get in will just be forgotten.

However, when this happens the signal FIFO_IS_FULL, which is an output, will be set to 1. This

corner case is illustrated in Figure 18.

Figure 18 - part three in a pointer-based FIFO illustration.

Another corner case to take into consideration is what happens if you only try to read from

the FIFO. At some point, there will be no more messages inside, and the FIFO will be empty.

In this case, the FIFO will return only 0. As well as when full, there is an out signal

“F FO_ S_ M TY” that is set to 1 hen this corner case is hit. llustration of this case in Figure

19.

Figure 19 - part four in a pointer-based FIFO illustration.

Design

Rev: 1.10 Page | 31 28/05/2022

4.2.3 com_module_usart

The main part of the com_module is the com_module_usart. This part is responsible for the

communication between the MJCU and the PCUs. When it came to choosing how to design

this component, the choice was very clear. In earlier subjects in our study, we have had

multiple experiences with state machines. So, it felt natural to choose a state-machine

solution for the design.

The TX_FIFO sends out one 32-bit message at a time every time the com_module_usart tells

it to do so. The F FO has t o additional information outputs, “F FO_ S_ M TY” and

“F FO_ S_FU ”. The component continuously tells the FIFO to send out a new message as

long as “F FO_ S_ M TY” is false. This is to make the component as time efficient as possible.

In Figure 20 a signal diagram is showing the protocol that is used for communicating. Starting

every transaction with an initializing bit where high goes to low. A 7-bit address is sent

followed by a R/W bit. Then for every read or write transaction a handshake is sent. The

handshake is just the slave repeating what it has just received. Depending on if it is a read or

a write, either master or slave then proceeds to send its data.

Figure 20 - Custom USART protocol between the FPGA and PCUs

Design

Rev: 1.10 Page | 32 28/05/2022

The state machine

The state machine contains the following states: IDLE, NEW_ADDRESS, ADDRESSING_PART1,

ADDRESSING_PART2, RUNNING, FINISHING.

Figure 21 – The state machine in com_module_usart.

The component will be in IDLE until FIFO_IS_EMPTY goes from 1 to 0. Then it moves into

NEW_ADDRESS to set up all the different signals and reset the counters. After this state was

created, the next part was to figure out how to do the transaction itself. There is one master

(com_module_usart) and one slave (PCU). The serial transaction is split into 3 parts.

The first part is the master writing to the slave which one of the internal registers of the PCU

it wants to read or write to. Then in part two, the slave responds with the same read/write-

bit and register address that it received from the master. This is called a handshake. With a

handshake, the master can be certain that the correct address has been reached, and that the

slave is active and responding correctly.

Design

Rev: 1.10 Page | 33 28/05/2022

When the handshake is received, the next part depends on if the message is a “read” or a

“write”. In both cases, 16 bits split into two chunks of 8 bits will be transferred between master

and slave. When it is a “read” that is being e ecuted, the slave will know, because of the

read/write-bit, to write its data to the bus, and the master will read it. When a “ rite” is being

executed, the master sends data to the bus, and the slave reads.

This sequence contains the states ADDRESSING_PART1, ADDRESSING_PART2, and RUNNING.

ADDRESSING_PART1 takes care of sending the read/write-bit and the register address.

ADDRESSING_PART2 reads the read/write-bit and the address that the slave responds with.

RUNNING includes both the “read” and “ rite” sequences. Read reads 16 bits from the slave

and write writes 16 bits to the slave. The read/write-bit that was sent during the

ADDRESSING_PART1 decides which one of the two sequences to run. Either way, the whole

RUNNING state must get through the same number of bits. This means that the only thing that

changes is whether to write to the slave or to read from the slave.

Then there is one more state, FINISHING. This state serves the purpose of delivering the data

package to the RX_FIFO and telling the TX_FIFO that it is ready for the next transaction.

Then it switches back to IDLE.

While all this is happening, a 32-bit vector is constructed in the same format as the one read

from the TX_FIFO. This data package includes if it was a read or write that was executed, what

register it spoke with, and the data received/sent.

There is one more important part. Because this is USART, it needs an additional clock signal to

synchronize the data transfer. There is a separate process that takes care of the USART clock

signal. This signal is generated at a given baud rate that is controlled by the global_module.

The main process that handles the communication follows this signal when writing or reading.

How the data is read

In all parts of the state machine where data is being read or written, it is only one bit at a time.

This means that the serial data that goes in or out needs to be converted to a vector at some

point. This is solved by using a counter that iterates through a vector and writes one bit at a

time into the vector. It would have been more space-efficient to use a shift register rather

than a pointer-based design. A shift register uses as many flip-flops as there are bits in the

vector. This is not a problem for this project because the FPGA is as big as it is. The pointer-

based design gave options for easy modification while developing. Coincidentally this ended

up being very useful. The reason is that there was some confusion regarding if the most

significant bit should come first or the least significant bit. In the end, the data needed to be

flipped. All data transactions in the USART are LSB to MSB as of the current version.

Design

Rev: 1.10 Page | 34 28/05/2022

4.3 global_module
The global_module is just a modified com_module_reg with a couple more outputs towards

the com_modules. The first two registers are reserved to control and status. Nothing is

implemented here, as there was no need to do so. This was just a habit from earlier designs

and makes it easier to add more features in the future if needed. The data written to register

3 is sent to every com_module in the system. This makes use of a big advantage the FPGA has

over a standard computer or an MCU. Since all com_modules get the same message, they can

begin communicating with all power control units at the same time. In other words,

communicating with one PCU takes the same amount of time as communicating with all of

them. Register 4 does not do anything because this module never gets any of the data from

the PCUs. Writing to register 5 will reset all other modules. This includes resetting the FIFOs

inside every com_module. Register 6 and 7 are used to control the baud rate between the

com_modules and PCUs. Write these values in binary, and they will be converted internally.

Name Register
address

Width Access Default Value Description

GLOBAL_MODULE (module address 0x00)

GLOBAL_CONTROL 0x01 32 W 0x00 Not in use

GLOBAL_STATUS 0x02 32 R 0x00 Not in use

GLOBAL_WRITE 0x03 32 W 0x00 Writes data to every com_module in the system.
[31] R/W̅ bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data to PCU

GLOBAL_RESET 0x05 32 W 0x00 Resets all modules except the global_module

COM_ENABLE_0 0x06 32 R/W 0xFFFFFFFF These 32 bits enable com_modules[1→32]
‘1’ = N B
Bit[n] controls com _module_[1+n]

This function is made in the case that modules
are not connected to a PCU.

COM_ENABLE_1 0x07 32 R/W 0xFFFFFFFF These 32 bits enable com_modules[33→64]
‘1’ = N B
Bit[n] controls com _module_[33+n]

This function is made in the case that modules
are not connected to a PCU.

SYSTEM CLOCK
SPEED

0x08 32 R/W 0x1D905C0 The speed of the clock used by the
com_modules.
This is used to calculate the baud rate towards
the PCUs.
Default: 31Mhz (clock from IPbus)

PSU BAUD RATE 0x09 32 R/W 0x1C200 The baud rate to use towards the PCUs

Table 3 - Address map global_module

Design

Rev: 1.10 Page | 35 28/05/2022

4.4 dummy_module
Dummy_module is the simplest module, and it was also the first one to be completed. After

the creation of com_module_reg, one signal was added to store a 32-bit vector. The thought

behind having a dummy_module is to make sure the communication between IPbus SW and

an IPbus HW-slave works properly. Write something to register 3 and it can be read back from

register 4.

Name Register
address

Width Access Type Default Value Description

DUMMY_MODULE (module address 0x43)

WRITE 0x03 32 W STAT 0x00 Write anything to store a new value

READ 0x04 32 R STAT 0xDEADBEEF Read back the stored value

Table 4 - Address map dummy_module

4.5 version_module and housekeeping_module

4.5.1 Version_module

The version_module is meant to include the iteration of code being used on the FPGA and the

githash connected to it. The githash is meant to be implemented automatically when

compiling the project in Vivado.

4.5.2 Housekeeper_module

The KCU105-board has some internal sensors. The housekeeper_module is meant to get

information from these sensors.

Tests and verification

Rev: 1.10 Page | 36 28/05/2022

5 Tests and verification

Testing and verification are important parts of every development process. It is important to

have data to back up the claims about how the part performs. Under development, testing is

also used to confirm correct behaviour along the way. The testing performed while developing

are often virtual testing.

5.1 Verification
Testbenches in VHDL are a great way to make sure the code is working as intended.

Testbenches provide the possibility to simulate every part of a system with user-defined

stimuli in a controlled and stable environment. This is a repeatable and reliable way of testing

because it is not affected by external interference since everything is happening in SW. After

the simulation is complete, a wave diagram is used to show the results. This diagram shows

the state of every desired signal throughout the simulation. This can make it easier to debug

any errors because it is possible to see where they happened. A wave diagram is also a good

way of explaining what the code does. A diagram is often more intuitive to understand than

straight-up code.

MJCU has a master testbench including all of the modules where every com_module is

connected to a dummy version of the PCUs. This testbench covers every task that should ever

occur in the system it is built for. All of the modules in MJCU also have their own testbenches

to make it possible to have a closer look at the modules individually.

Figure 22 - Example of a wave diagram from a small testbench

In small testbenches, like the one shown in Figure 22, it is possible to confirm that the

behaviour is correct. But when the testbenches get longer and more complex, this would be a

tedious task to do manually. Therefore, there is an automatic way to give a summary of the

testbench at the end of the simulation. This tool is called Universal VHDL Verification

Methodology (UVVM) [1].

Tests and verification

Rev: 1.10 Page | 37 28/05/2022

5.1.1 UVVM

UVVM [1] is an open-source tool, made by a Norwegian company named Bitvis, for making a

structured testbench in VHDL. It provides useful functionality that can make sure that the

outputs of the design under testing (DUT) have the expected values. It can wait on a signal to

change if the timing varies, and it can stop the simulation if a given time has passed without

getting an answer from the DUT. After the simulation has finished, it will give a report written

in a text file including all the information about what types of tests were performed and the

result. The report looks something like this:

UVVM:===

UVVM: ID_LOG_HDR_LARGE 0.0 ns TB seq. Start Simulation of TB for MJCU_tb

UVVM:===

UVVM:

UVVM: ID_LOG_HDR 40.0 ns TB seq. Write to PSU address 1 -> 5 via module_01

UVVM: --

UVVM:

UVVM: ID_LOG_HDR 91.0 ns TB seq. Write to PSU address A -> D via module_43

UVVM: --

UVVM:

UVVM: ID_LOG_HDR 900131.0 ns TB seq. Writing/reading to/from DUMMY_MODULE

UVVM: --

UVVM:

UVVM: ID_LOG_HDR 901151.0 ns TB seq. Read from PSU address 1 -> 5 via module_01

UVVM: --

UVVM:

UVVM: ID_LOG_HDR 901201.0 ns TB seq. Read from PSU address A -> D via module_43

UVVM: --

UVVM:

UVVM: ID_LOG_HDR 911241.0 ns TB seq. Changes baud rate to 3Mbit/s

UVVM: --

UVVM:

UVVM: ID_LOG_HDR 911251.0 ns TB seq. Global write to all PSU reg A

UVVM: --

UVVM:

UVVM:===

UVVM: *** FINAL SUMMARY OF ALL ALERTS ***

UVVM:===

UVVM: REGARDED EXPECTED IGNORED Comment?

UVVM: NOTE : 0 0 0 ok

UVVM: TB_NOTE : 0 0 0 ok

UVVM: WARNING : 0 0 0 ok

UVVM: TB_WARNING : 0 0 0 ok

UVVM: MANUAL_CHECK : 0 0 0 ok

UVVM: ERROR : 0 0 0 ok

UVVM: TB_ERROR : 0 0 0 ok

UVVM: FAILURE : 0 0 0 ok

UVVM: TB_FAILURE : 0 0 0 ok

UVVM:

UVVM:===

UVVM: >> Simulation SUCCESS: No mismatch between counted and expected serious alerts

UVVM:===

UVVM:

UVVM:

UVVM:

UVVM:

UVVM: ID_LOG_HDR 1813771.0 ns TB seq. SIMULATION COMPLETED

UVVM: --

Listing 6 - UVVM log report

Tests and verification

Rev: 1.10 Page | 38 28/05/2022

The UVVM-libraries required for a given testbench must be compiled before they can be used.

UVVM uses do-files to do this. The file named “compile_all.do” is located inside the “script”-

folder and is executed by calling it with three arguments.

Compile UVVM Dependencies (compile_all.do)

This file can be called with three arguments:

arg 1: Part directory of this library/module

arg 2: Target directory

arg 3: Path to custom component list file

do [simulation file (.do)] [arg 1][arg 2][arg 3]

Listing 7 - UVVM do-file

The component list mentioned above is a text file that includes the names of the libraries that

the user wants to compile.

Tests and verification

Rev: 1.10 Page | 39 28/05/2022

5.1.2 DO-file

The use of do-files to compile libraries, and one example project that used it to run a

simulation, inspired the use of do-files in this thesis. All the modules have individual

testbenches with a do-file to run them. All of the compiling and simulation in Multisim or

QuestaSim can be done through the terminal manually. This is a tedious task if the DUT has

multiple files. A do-file is a tool for automating this process. The ones in this project create a

folder named “sim”. Then it compiles all the UVVM- and IPbus-libraries necessary for the

testbenches and components into the folder. After all the external libraries are done, it

compiles all of the components for the DUT and the package file made for MJCU. Then it

simulates the testbench and opens the wave diagram.

To simulate a module or the MJCU itself in either Multisim or Questa Sim, navigate to the

“script” folder in the desired module and run the do-file by typing “do sim.do” in the terminal.

This will compile all of the necessary libraries, package files and components and simulate the

testbench. It is also possible to run the sim.do file with an argument to save time the next time

the user wants to simulate the module. t’s the same commando but follo ed by an argument.

For example, “do sim.do e ample”.

5.2 Hardware testing
Physical testing is performed to test if the parts work as intended in the real world. This should

theoretically be done in the same environment as the part will be living in. This is because it

could be affected by external interference. There is also a possibility that the communication

protocol was misunderstood by one or both ends of a transmission line. This happened more

than once in this case. The first error between the MJCU and the PCUs was the Read/write bit.

It was the wrong way around. Then it became clear that the chip on the PCUs that deals with

the communication sends the data with LSB first and MSB last. The reason this didn’t cause an

error in the simulation was that both the master and slave were created by the same person.

This was a known risk when it was created. It is often easier to create a working

communication if the same person creates both sides. If the protocol is misunderstood, it may

not matter because both the master and the slave would have the same flawed protocol. This

is the reason why good documentation is important.

Tests and verification

Rev: 1.10 Page | 40 28/05/2022

Oscilloscope verification

Oscilloscopes are a good tool to verify correct behaviour in smaller data transfers. They make

it possible to see how signals behave instead of just looking at the result on the computer

screen. The two figures, Figure 23 and Figure 24 below show the first successful test between

the control room and a prototype of the PCU via the MJCU. The prototype was not configured

to synchronize the transfer with the clock signal generated by the MJCU. Instead, it was using

a baud rate of 115200 just like the standard. The timings were not perfect, so it is possible to

see some shifting in Figure 24.

Figure 23 - MJCU writing 0x00AA to PCU-address 0x01 (asynchronous)

Figure 24 - MJCU reading 0x00AA from PCU-address 0x01 (asynchronous)

Tests and verification

Rev: 1.10 Page | 41 28/05/2022

Large scale tests

The first large sample size test was done after the PCU prototype was able to use the USART

clock to synchronize data transfer. The test was to write a random 16bit-value to a given

register inside the PCU, then read from the register 1000 times. This was repeated 100 times

to get a mean number of errors. The errors only occurred on the data bits, never the address

bits. This test was performed multiple times to find the error rate of different baud rates. That

resulted in a bit error of around 4% when using 57 600, 115 200, 230 400 and 460800. While

921 600 and 1 000 000 gave an error rate of 0%.

Baud rates Mean bit error

57 600 4.3%

115 200 4.0%

230 400 4.2%

460 800 4.4%

921 600 0.0%

1 000 000 0.0%

Table 5 - Bit-error test with varying baud rates, performing 1000 read operations 100
times.

The reason for this behaviour is unclear. A possible cause might be a delay in the

communication. At lower baud rates a notable delay can be noticed in the response from the

PCUs. The delay is observed to be different from transaction to transaction, which could

explain the spread of errors on the graph in Figure 25.

Tests and verification

Rev: 1.10 Page | 42 28/05/2022

Figure 25 - Mean bit error using 115200 baud

The last test was done over a period of 17 hours. 60 million transfers were successfully

transferred using a baud rate of 921600 without a single error. Depicted in Figure 26.

Figure 26 - Mean bit error using 921600 baud

Discussion

Rev: 1.10 Page | 43 28/05/2022

6 Discussion

The project plan shown in Figure 27 was created to make sure we had enough time to learn

how to use the different programs, Linux, and GitHub before starting the development of the

MJCU. The time required was a bit shorter than expected for all activities except one. We were

supposed to make a test design in Vivado and upload it to the FPGA. Nothing more advanced

than a blinking LED, or something along those lines. Unfortunately, there were some troubles

regarding the licenses we had available for using Vivado, so this activity had to be delayed

until the licences were working. But because everything else took less time, we ended up being

ahead of the schedule. The communication towards the PCUs was estimated to take four

weeks because it was similar to something we had created before, and the protocol was

already established. This ended up being the most time-consuming part of the project because

the protocol changed a bit under the development and testing.

The goal was to finish the design before the Easter holiday. That would leave us with enough

time to comfortably create the MJCU. This goal was meant to be a bit out of reach to make us

work harder in advance of the holiday. In reality, the design was ready for its first physical test

before the deadline. The result of this test was that the communication between the control

room and FPGA was flawed. This was a quick and easy fix, and it ended up working the week

after the holidays. The next four weeks went into further development on the communication

towards the PCUs. In the third week, it was kind of working but with some hiccups. In the

fourth week, this was corrected and it was working as intended.

Figure 27 - Project plan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Writing
2 20 2 20

100%

Halfway presentation
12 2 12 1

100%

Hand in
22 1 22 1

100%

Bachelor presentation
23 2 23 2

0%

Preparations
2 4 2 2

100%

Making our own test

design 6 2 6 7
100%

Comunication towards

PCUs 8 4 8 12
100%

Complete design
8 8 8 14

100%

Deadlines

PERIODS

% Complete (beyond plan)

Easter(Holiday)

ACTIVITY
PLAN

START

PLAN

DURATION

ACTUAL

START

ACTUAL

DURATION

PERCENT

COMPLETE

Project Planner
Plan Duration

% Complete

Conclusion and Outlook

Rev: 1.10 Page | 44 28/05/2022

7 Conclusion and Outlook

7.1 Conclusion
An FPGA solution (MJCU) that can transfer data between a control room and multiple Power

Control Units has been developed and is working as intended. The communication towards

the control room is using IPbus. A well-documented and tested communication protocol

developed at CERN for communicating with address-aware hardware inside an FPGA. The

control room is the master of the power control system in the Bergen pCT project. It uses the

SW side of IPbus to communicate with the MJCU. MJCU consists of multiple types of slaves:

43 com_modules, a global module, and a dummy module. The 43 com_modules are

responsible for communicating with all of the PCUs using a custom USART protocol. The global

module can forward data to all of the com modules at the same time. The dummy module is

a feature to test the communication between the control room and MJCU.

Every module has its own testbench that could be simulated using a script. Download the

powermonitor repo, navigate to a desired module, and run the “sim.do”-script using either

Questa Sim or Multisim. This will compile everything necessary and run the simulation to show

how the module behaves and what features it has. The MJCU itself has a testbench where it

is connected to dummy_PCUs to show its behaviour and functionality. All the testbenches use

UVVM for verification and logging.

In conclusion, the design has been proven to work as intended, and the design process has

been conducted with a focus on documentation and verification. Hardware tests have shown

that the communication from top-level software to the PCU microcontroller is reliable and

stable. The requirements that were set at the start are met. Extensive testbenches are

designed, not only for the complete build, but also at the level of each individual component.

7.2 Outlook

The plan was to design two more modules. A version control and a housekeeper. The version

module would keep track of the version and GitHash and have it available for the control room

to read. There are some internal sensors on the Xilinx Evaluation Board that are possible to

read from via I2C. The housekeeper module was supposed to take care of this.

These two modules are left to be designed. What comes next would be to connect all three

parts of the system, the control room, the KCU105 Evaluation Board and the PCUs together

physically. The communication with the PCU has only been done using single-ended

communication signalling for the clock and the two data connections (TX and RX). This remains

to be swapped with bidirectional low-voltage differential signalling (LVDS). This means that

the RJ45 connector rack needs to be set up, and testing needs to be done to make sure

everything works at the intended scale. The control room and the PCUs need to be finalized

as well and then operate as a complete working system.

https://git.app.uib.no/pct/powermonitor

Bibliography

Rev: 1.10 Page | 45 28/05/2022

8 Bibliography

[1] Bitvis, “G THUB - UVVM,” 5 5 0 . [Online]. vailable: https://github.com/UVVM/UVVM.

[Accessed 11 5 2022].

[2] M. ggen and J. R. Hauser, “Git ppUiB,” 5 0 . [Online]. Available:

https://git.app.uib.no/pct/powermonitor.

[3] T. Bodova, “High-Speed Signal and o er istribution of,” epartment of hysics and

Technology - University of Bergen, Bergen, 2020.

[4] “AMD - Xilin ,” 0 . [Online]. Available: https://www.xilinx.com/products/boards-and-

kits/kcu105.html#specifications. [Accessed 21 05 2022].

[5] ipbus - cern, “cern.ch,” 0 06 0 1. [Online]. vailable:

https://ipbus.web.cern.ch/doc/user/html/firmware/bus.html.

[6] H. Birkenes, Design of Configuration and Monitoring System for Power Supply in ProtonCT

Project, Bergen: Institute of Physics and Technology - University of Bergen, Soon to be released.

[7] B. Olsen, Power and Monitor Solution for the ProtonCT, Bergen: Institute of Physics and

Technology - University of Bergen, Soon to be released.

Development Tools

Rev: 1.10 Page | 46 28/05/2022

Appendix A Development Tools

Software:

• Vivado 2019

• Questa Sim 2020.4

• GitHub

Hardware:

• KCU105 Evaluation Board featuring the Kintex UltraScale XCKU040-2FFVA1156E FPGA

Address map for all modules inside the MJCU

Rev: 1.10 Page | 47 28/05/2022

Appendix B Address map for all modules inside the MJCU
A.1 Module addresses
All the slaves inside the MJCU have different addresses.

From IPbus SW -> IPbus HW-slaves

They are as follows.

NAME
ADDRESS

HEX DEC

GLOBAL_MODULE 0x00 0

COM_MODULE_1 0x01 1

COM_MODULE_2 0x02 2

... ... …

VERSION 0x41 65

HOUSEKEEPER 0x42 66

DUMMY_MODULE 0x43 67

Table 6 - Module addresses

Address map for all modules inside the MJCU

Rev: 1.10 Page | 48 28/05/2022

A.2 Address map
Address map for all internal slaves inside the MJCU including two examples.

From IPbus SW -> IPbus HW-slaves

Name Register
address

Width Access Default Value Description

GLOBAL_MODULE (module address 0x00)

GLOBAL_CONTROL 0x01 32 W 0x00 Not in use

GLOBAL_STATUS 0x02 32 R 0x00 Not in use

GLOBAL_WRITE 0x03 32 W 0x00 Writes data to every com_module in the system.
[31] R/W̅ bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data to PCU

GLOBAL_RESET 0x05 32 W 0x00 Resets all modules except the global_module

COM_ENABLE_0 0x06 32 R/W 0xFFFFFFFF These 32 bits enable com_modules[1→32]
‘1’ = N B
Bit[n] controls com _module_[1+n]

This function is made in the case that modules
are not connected to a PCU.

COM_ENABLE_1 0x07 32 R/W 0xFFFFFFFF These 32 bits enable com_modules[33→64]
‘1’ = N B
Bit[n] controls com _module_[33+n]

This function is made in the case that modules
are not connected to a PCU.

SYSTEM CLOCK
SPEED

0x08 32 R/W 0x1D905C0 The speed of the clock used by the
com_modules.
This is used to calculate the baud rate towards
the PCUs.
Default: 31Mhz (clock from IPbus)

PSU BAUD RATE 0x09 32 R/W 0x1C200 The baud rate to use towards the PCUs

COM_MODULE (module address 0x01 – 0x40)

CONTROL 0x01 32 W 0x00 Not in use

STATUS 0x02 32 R 0x00 [31..4] Not in use
[3] TX is full (1 = full)
[2] TX is empty (1 = empty)
[1] RX is full (1 = full)
[0] RX is empty (1 = empty)

WRITE 0x03 32 W 0x00 Writes data to the corresponding PCU.
[31] R/W̅ bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data to PCU

Address map for all modules inside the MJCU

Rev: 1.10 Page | 49 28/05/2022

Name Register
address

Width Access Default Value Description

READ 0x04 32 R 0x00 Reads a 32-bit vector from the corresponding
PCU.
[31] R/W̅ bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data from PCU

RESET_FIFO 0x05 32 W 0x00 Resets both TX and RX FIFO to clear them.

DUMMY_MODULE (module address 0x43)

WRITE 0x03 32 W 0x00 Write anything to store a new value

READ 0x04 32 R 0xDEADBEEF Read back the stored value

Table 7 - Address map for MJCU

Address for reaching [NAME] register: 0x[MODULE ADDRESS] & [REGISTER ADDRESS]

Example:

To reach WRITE in global_module: 0x0003

To reach READ in com_module_23: 0x1704

DATA FLOW

Rev: 1.10 Page | 50 28/05/2022

Appendix C DATA FLOW
Data flow from the Control room to the PCUs and back

Rev: 1.10 Page | 51 28/05/2022

Picture of an ALPIDE sensor

Rev: 1.10 Page | 52 28/05/2022

Appendix D Picture of an ALPIDE sensor
This picture shows the sensors used inside the calorimeter

Project plan

Rev: 1.10 Page | 53 28/05/2022

Appendix E Project plan

Figure 28 - Project plan for BO22EB-08

Project Planner
 Period Highlight:21

PERIODS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Meet with UiB representative 1 1 1 1 100%

Gain Lab and software access 2 1 1 2 100%

Feasability study 2 4 2 4 100%

Writing 2 19 2 19 100%

Bachelor thesis 5 17 5 17 100%

Guidance settlement 6 1 6 1 100%

Halfway presentation 12 2 12 1 100%

Reflection paper 20 1 20 1 100%

Exam + handin (physics) 21 2 21 2 0%

EXPO poster 22 1 22 1 100%

Hand in 22 1 22 1 100%

Bachelor presentation 23 2 23 2 0%

Graduation party 24 1 24 1 0%

Learn to use GIThub 4 1 4 1 100%

Learn to use Vivado 5 2 5 2 100%

Learn to use Questasim 5 2 5 2 100%

Learn to use Linux 4 2 4 2 100%

Test IPbus(wp3) 5 2 5 2 100%

Making our own test design 6 2 6 7 100%

Comunication towards PCUs 8 4 8 9 100%

Complete design 8 8 8 9 100%

Introduction 2 2 2 2 100%

FPGA design thinking 3 3 3 3 100%

Log 2 21 2 21 100%

Actual (beyond plan) Easter(Holiday) Completed deadlinesDeadlines% Complete (beyond plan)

PERCENT

COMPLETE

Plan Duration Actual Start % Complete

ACTIVITY
PLAN

START

PLAN

DURATION

ACTUAL

START

ACTUAL

DURATION

	Document control
	Acknowledgements
	Abstract
	Acronyms
	List of Figures
	List of Listings
	List of tables
	Outline
	1 Introduction
	1.1 Particle Therapy
	1.1.1 Medical Imaging Methods

	1.2 The Bergen protonCT Project
	1.3 Requirements

	2 Related work
	2.1 IPbus
	2.2 Connected projects
	2.2.1 The Control room
	2.2.2 The Power Control Unit

	3 Problem analysis
	4 Design
	4.1 MJCU – top-level
	4.2 com_module
	4.2.1 com_module_reg
	4.2.2 com_module_fifo
	4.2.3 com_module_usart

	4.3 global_module
	4.4 dummy_module
	4.5 version_module and housekeeping_module
	4.5.1 Version_module
	4.5.2 Housekeeper_module

	5 Tests and verification
	5.1 Verification
	5.1.1 UVVM
	5.1.2 DO-file

	5.2 Hardware testing

	6 Discussion
	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	8 Bibliography
	Appendix A Development Tools
	Appendix B Address map for all modules inside the MJCU
	A.1 Module addresses
	A.2 Address map

	Appendix C DATA FLOW
	Appendix D Picture of an ALPIDE sensor
	Appendix E Project plan

