
          

        Fakultet for ingeniør- og naturvitskap 

                  Institutt for datateknologi, elektroteknologi og realfag 

realfag 

 

 

BACHELOR’S THESIS 

Visualizing smart charging of electric vehicles for 

support personnel 

 

Roger Karlsen, Kristin Standal, Mads Henrik Sørbø 

 

Faculty of Engineering and Natural Sciences 

Institute of Computer Science, Electrical Technology and Natural Sciences 

Information Technology 

 

Supervisor: Volker Stolz 

Submission Date: 23.05.2022 

 

I confirm that the work is self-prepared and that references/source references to all sources used in the work are provided, 

cf. Regulation relating to academic studies and examinations at the Western Norway University of Applied Sciences (HVL), 

§ 10. 

 

 

 

 



          

        Fakultet for ingeniør- og naturvitskap 

                  Institutt for datateknologi, elektroteknologi og realfag 

realfag 

 

TITLE PAGE FOR PROJECT 

Title: 
Visualizing smart charging of electric vehicles for support personnel 

Date: 
23.05.2022 

Author(s): 
Roger Karlsen 

Kristin Standal 

Mads Henrik Sørbø 

Number of pages w/o attachments: 33 

Number of pages with attachments: 85 

Field of study: 
Information Technology 

Number of discs / CDs: 0 

Contact at field of study: 
Volker Stolz 

Grading: None 

Remarks: 

 

Project Owner: 
Tibber 

Project Owner reference: None 

Project Owner Contact: 
Marcus Almgren 

Contact information: 
marcus.almgren@tibber.com 

Samandrag: 
Målet med oppgåva var å lage eit view som ein del av ein eksisterande web-applikasjon. Denne web-
applikasjonen er eit internt verktøy som blir brukt av Tibber-ansatte. Viewet må vise og visualisere den 
informasjonen som trengs for å feilsøke såkalla ‘smart charging’-spørsmål. Kundeservice-teamet hos Tibber er 
hovudbrukarane av dette viewet. Hovudmålet er å gjere kundeservice-teamet meir effektivt når det kjem til 
kundebehandling. For å evaluere produktet har kundeservice-teamet svart på eit spørjeskjema etter at 
produktet har blitt sluppet. Prosjektgruppa konkluderte med at det ferdige produktet oppfyller dei gitte krava. 
 
Summary: 
The goal of the assignment was to create a view as a part of an existing web application. This web application is 
an internal tool used by Tibber employees. The view should display and visualize information needed to 
troubleshoot so-called ‘smart charging’ questions. The customer support team at Tibber are the main users of 
the view. The main goal is to make the customer support team more efficient when handling customer cases. 
For the evaluation of the product, the customer support team answered a survey after the release of the 
product. The project group concluded that the final product fulfills the requirements given. 

 

Keywords: 

Smart Charging Microservices Customer tooling 

 

 

Western University of Applied Sciences, Faculty for Engineering and Natural Sciences 

Post address: Postboks 523, 6803 Førde Visitation address: Svanehaugvegen 1, 6812 Førde 

Phone: 55 58 58 00  E-mail: post@hvl.no   Website: www.hvl.no 

 

mailto:post@hvl.no
http://www.hvl.no/


          

        Fakultet for ingeniør- og naturvitskap 

                  Institutt for datateknologi, elektroteknologi og realfag 

realfag 

PREFACE 

In this report, the work around the bachelor thesis “Visualizing smart charging of electric 

vehicles for support personnel” is described. Through this project, a product was developed 

for Tibber. The project is conducted by Roger Karlsen, Kristin Standal, and Mads Henrik 

Sørbø.  

 

We would like to acknowledge and thank the following people in their help with this project: 

● Volker Stolz, Professor in Software Engineering at HVL and thesis supervisor 

● Marcus Almgren, Engineering Manager at Tibber and project owner 

● Markus Persson, Product Manager at Tibber and responsible for Varys 

● Trond Nordheim, Lead Backend Developer at Tibber 

● Finn Michael Halvorsen, Senior Software Engineer at Tibber 



          

        Fakultet for ingeniør- og naturvitskap 

                  Institutt for datateknologi, elektroteknologi og realfag 

realfag 

TABLE OF CONTENTS

1 INTRODUCTION ............................................................................................................................................... 1 

1.1 CONTEXT............................................................................................................................................................... 1 

1.2 MOTIVATION ......................................................................................................................................................... 1 

1.3 PROJECT OWNER .................................................................................................................................................... 1 

1.4 PROBLEM DESCRIPTION AND GOAL ............................................................................................................................. 2 

1.5 REPORT STRUCTURE ................................................................................................................................................ 2 

2 PROJECT DESCRIPTION .................................................................................................................................... 2 

2.1 PRACTICAL BACKGROUND ......................................................................................................................................... 2 

2.1.1 Previous work ........................................................................................................................................... 2 

2.1.2 Initial requirements .................................................................................................................................. 3 

2.1.3 Current methods for troubleshooting smart charging ............................................................................. 4 

2.1.4 Initial solution idea ................................................................................................................................... 5 

2.2 CONSTRAINTS ........................................................................................................................................................ 6 

2.3 RESOURCES ........................................................................................................................................................... 6 

2.4 LITERATURE ABOUT THE PROBLEM .............................................................................................................................. 7 

3 PROJECT DESIGN ............................................................................................................................................. 8 

3.1 PROPOSED SOLUTION .............................................................................................................................................. 8 

3.2 PROJECT METHODS ............................................................................................................................................... 10 

3.2.1 Development methods ........................................................................................................................... 10 

3.2.2 Project plan ............................................................................................................................................ 11 

3.2.3 Risk analysis ........................................................................................................................................... 12 

3.3 EVALUATION PLAN ................................................................................................................................................ 13 

4 SOLUTION ..................................................................................................................................................... 14 

5 RESULTS ........................................................................................................................................................ 20 

5.1 EVALUATION METHOD ........................................................................................................................................... 20 

5.2 EVALUATION RESULT ............................................................................................................................................. 21 

5.3 PROJECT RESULT ................................................................................................................................................... 24 

5.4 PROJECT IMPLEMENTATION .................................................................................................................................... 24 

6 DISCUSSION .................................................................................................................................................. 25 

7 CONCLUSION AND FURTHER WORK .............................................................................................................. 27 

8 SOURCES ....................................................................................................................................................... 28 

9 ATTACHMENTS.............................................................................................................................................. 29 



 

1 

 

1 INTRODUCTION 

1.1 Context 

Tibber customers are buying energy at the market spot price with an hourly precision, allowing 

them to optimize their energy consumption by seeing the current and future prices of their 

respective market. To help in this optimization, Tibber provides different integrations to devices 

such as: heaters, radiators, coolers, and chargers of electrical vehicles. These integrations aim to 

automate the workflow of being cost aware, avoiding the most expensive hours when possible. 

When doing this optimization on electric vehicles, called smart charging, there are many other 

variables to consider, other than the hourly market price for energy. Tibber needs to have 

contact with the vehicle, understand where it is located, know if it is connected to a charger that 

Tibber controls, have access to the desired charging goals set by the customer, be able to read 

the current state of charge from the battery among others. Tibber might also start or stop the 

charging in order to help stabilize the grid frequency. All in all, there are many things that could 

possibly go wrong and when that happens, the customer support at Tibber wants to swiftly and 

accurately be able to help understand the root cause of potential larger issues or at least be able 

to assist that individual customer.  

1.2 Motivation 

Customer support at Tibber is using an internal tool called Varys and it is in this tool Tibber wants 

to improve the visualization of events around smart charging of electric vehicles. The different 

events can come from a multitude of different sources: logs, databases, APIs, and message 

queues. Getting them collected in an easy-to-understand view is both a very complex task, but 

also highly valuable and something that can be iterated on to improve it over time. The goal is to 

build something in Varys that enables non-technical support people to help owners of electrical 

vehicles with potential issues, combining data from multiple sources into one view. 

1.3 Project owner 

Marcus Almgren, who is an engineering manager at Tibber, is the owner of the project. For the 

smart charging view Markus Persson, a product manager at Tibber, has proposed features that 

they want the new view in Varys to have.  

Tibber was founded in 2016 by Daniel Lindén and Edgeir Vårdal Aksnes. In the long run, Tibber 

wants to develop the best digital tool possible, enabling customers to take advantage of new 

technologies in order to reduce customers energy consumption and expenses. According to 

Energy Star, encouraging consumers to consume less energy benefits almost everyone, with the 

exception of the "dinosaurs'' of the energy industry, who stand to benefit the least (EnergyStar, 

n.d.). 

 



 

 

2 

 

Today, Tibber employs more than 110 people and is expanding at a rapid rate (Tibber, n.d.). 

1.4 Problem description and goal 

Currently, Tibber customer support personnel need to fetch, manage, and interpret data 

manually in various databases and systems. The types of data can be timeseries or state 

variables, which are fetched from the customer's electrical vehicle, smart charger, or their load 

balancer. Tibber wants to ease this process for the support department and wishes to aggregate 

the data from the various logs and state variables and present it within a single view in their in-

house support application named Varys. Aggregating the data is valuable in itself, but it will also 

generate new easy-to-understand notification messages and states, thereby expediting the 

troubleshooting process. 

How can the various events and data streams involved in charging an electric vehicle be 

visualized online in such a way that a non-technical support person can assist customers? 

The first milestone is getting the view to a point where it can be tested by support personnel, as 

this will enable feedback to evaluate and make changes to the view to further optimize the smart 

charging troubleshooting. 

1.5 Report structure 

Chapter two shows a detailed description of the project with specifications from the project 

owner and how we plan to achieve this. Chapter three goes over the design process for the 

project. In chapter four, the solution will be showcased, and chapter five will evaluate the result 

and the project as a whole. Chapter six will discuss the project in general and how it was to work 

on the project.  

2 PROJECT DESCRIPTION 

2.1 Practical background 

2.1.1 Previous work 

Varys, the software on which this project is based in large part, is a complete and robust product 

built on Vue that has been extensively tested and is currently in use by the entire customer 

support department. Varys has all information regarding a customer, their homes, subscriptions, 

and registered devices.   

Vue is a progressive framework for creating user interfaces, it is implemented as additional 

markup to HTML. The core library focuses solely on the view layer, and it is simple to use and 

integrate with other libraries or projects. When combined with modern tooling and supporting 

libraries, Vue is perfectly capable of powering intricate Single-Page Applications. 



 

 

3 

 

A typical view in Varys is built by a number of generic components that can be reused and 

extended in a number of different ways. As new components are required, they are developed 

on a continuous basis. The overall style, including colors, typefaces, padding, and margins, have 

already been decided. 

Varys depends on a number of microservices. Microservices is an architecture that enables rapid, 

frequent, and reliable delivery of large, complex applications which goes hand in hand with agile 

development methods. By being as modular as possible, microservices overcome the limitations 

of monolithic systems. In their simplest form, they aid in the development of applications by 

separating them into a set of small services, each of which runs in its own process and is 

independently deployable, they can be monitored and scaled independently. This makes them 

fail-tolerant, as they can continue operating in the event of a system failure or an error in one of 

the system's components. These services may be written in a variety of different programming 

languages and utilize a variety of distinct data storage techniques. 

Among the most important ones for this project is the ‘Customer’ service and the ‘Device 

Orchestrator’ service. Please note that throughout this report, the names of different services 

and attributes will not be the actual words as used in the source code. This is requested by 

Tibber, because knowing what certain features and attributes are named in the source code can 

be a back door usable by malicious attackers. 

Device Orchestrator (DO) 

This service orchestrates third-party device integration and provides access to a collection of 

device data, as well as device control when supported. It collects data such as the battery level, 

the location of the car, the charging speed, and the settings from the customer app. 

DO determines the average charging power of the preceding charging sessions and compares it 

to the latest charging session's average. If the value of the most recent charging session differs 

significantly from the average of the previous charging sessions, it will use the average of the 

previous charging sessions for the machine learning calculations. If it is less than that, the most 

recent charging session's value will be used. DO sends this data to a machine learning service, 

which generates a charging schedule indicating when to begin charging. 

2.1.2 Initial requirements 

The initial demand for the view is that it should be easy for customer support personnel to 

quickly find errors in the configuration of cars and/or chargers. They have expressed that they 

want customer support personnel to stop having to read through logs manually and to have the 

logs and other data be visualized. That the view should only have information that is related to 

smart charging. This boils down to having information about cars, chargers, and load balancers. 

They also want there to be alerts with varying colors depending on severity that pops up at the 

top of the view if there are any configuration errors. The view should list all cars, chargers, and 

load balancers in three different tables for each registered home. 



 

 

4 

 

This is the minimum set of specifications put forth that is required for the view to be useful to 

support staff. When this is achieved, support personnel can begin testing. 

2.1.3 Current methods for troubleshooting smart charging 

In this section, we will present an example of how customer support currently has to figure out a 

scenario of a misconfigured charger and car, where both have set different departure times, 

which might lead to errors for when the car should be finished charging. 

A customer calls in saying that their car had not finished charging at the correct time. The 

customer support person has to look up the customer in Varys and is then presented with the 

information shown in figure 2.1. 

 

Figure 2.1 Customer look-up 

From here the customer support person has to figure out which home (if there are multiple) that 

might have the error, then proceed to that home to continue. In the home view there is a table 

that lists all the different devices the customer has registered to that home; in this list the 

customer support person will have to find the correct device and click a button that lets one look 

at it as a JSON-modal (see figure 2.2).  While viewing the JSON-modal, the customer support 

person has to navigate to the correct property, which in this example is listed under 

“smartChargingSettings” and then either copy the values that this device has for departure times 

and paste them in a document or write them down. Then, they have to exit the modal and find 

the corresponding charger and find the correct property that shows set departure times. After 

finding the correct properties they can then start comparing the values and see if they differ. In 

this scenario the departure times differ, and it was an answer for why the car was not fully 

charged at the correct time. However, if the departure times were set to the same time, it might 

be some other reason for why the car did not charge at the correct time and therefore the 

support person has to start to look for other causes. Doing these steps can take a while and one 

can see the value of reducing the time the customer support person has to spend navigating the 

different devices and finding the right properties whilst looking for a cause for the problem. 



 

 

5 

 

 

Figure 2.2 JSON-modal example 

2.1.4 Initial solution idea 

As one might infer from the example above, Tibber wants to cut the time customer support 

personnel use while navigating through the different views and look up data manually. They 

want to gather everything related to smart charging in one view, where common 

misconfigurations will alert the support person instantaneously. So, the initial idea is to 

aggregate all the various data and logs into one view and set up an alarm system that will notify 

of common misconfigurations as well as having all other data related to smart charging available 

within the view should there be a need for manual lookup. 

A number of different Vue components are used to construct the various views in Varys. The new 

view that is being created must be consistent with the other views that already exist in Varys. 



 

 

6 

 

The solution for the tables that contain listings of cars and devices need to be styled similarly to 

the tables in other views. 

From the requirement we know that we need at least five components: one for cars, one for 

chargers, one for load balancers, one for alerts and one for item highlights. 

2.2 Constraints 

Because the new view will be created within an existing application, it must be visually and 

functionally compatible with the existing design and layout. We do not have complete 

creative flexibility in developing the view but must adhere to the application's existing 

design. The new system is not hardware-dependent, as Varys is a web application that runs 

in any modern web browser. 

2.3 Resources 

Tibber has provided each student with appropriate hardware, MacBook Pro M1, to use in the 

project. 

Notion is a project management and note-taking software used for task management. Notion 

includes kanban boards, tasks, wikis, and databases, as well as modified markdown support. The 

program provides a one-stop shop for taking notes, managing knowledge and data, and 

managing projects and tasks. Read more about Notion on their official website:  

https://www.notion.so/product.  

Tibber uses Git and GitHub for version control and for hosting the repository online.  

Metabase is an open-source, easy-to-set-up software that connects independent databases. It 

enables anyone to create intuitive queries without prior knowledge of SQL and to visualize data 

in a meaningful way. Read more about Metabase on their official website: 

https://www.metabase.com/product/.  

The developers are free to use any integrated development environment (IDE) they prefer; 

however it should support intelligent code completion and ESLint. VSCode and Webstorm are 

two popular examples. ESLint is a static code analysis tool that identifies problematic JavaScript 

code patterns (ESLint, n.d.). 

Docker is a platform for developing, shipping, and running applications with the help of 

containers. A container is a standard software unit that encapsulates code and all of its 

dependencies so that an application can run quickly and reliably in different computing 

environments. A Docker container image is a small, self-contained, executable software package 

that contains everything required to run an application, including code, runtime, system tools, 

system libraries, and settings (Docker, n.d.). Read more about Docker on their official 

documentation: https://docs.docker.com/get-started/overview/.  

https://www.notion.so/product
https://www.metabase.com/product/
https://docs.docker.com/get-started/overview/


 

 

7 

 

Yarn is a packet manager for your code. Yarn is used in this project to install, operate, and test 

both the frontend and backend of Varys on a local machine. Read more about Yarn here: 

https://yarnpkg.com/getting-started.  

Postman is an API platform for developers to design, build and test APIs. It is not required for this 

project, but it is useful for testing and creating automated tests for API endpoints. Read more 

about Postman on the official website: https://www.postman.com/product/what-is-postman/.  

Vue (also known as Vue.js) is a JavaScript framework for building user interfaces. It builds upon 

standard HTML, CSS, and JavaScript, and provides a component-based programming model 

which helps to develop both simple and complex user interfaces. Read more about Vue here: 

https://vuejs.org/guide/introduction.html. 

Bootstrap is a popular frontend framework for developing responsive and mobile-friendly 

websites. It is built upon HTML, CSS and JavaScript. Bootstrap includes user interface 

components, layouts and JavaScript tools. Read more about Bootstrap here: 

https://getbootstrap.com/docs/4.6/getting-started/introduction/. 

BootstrapVue is a framework based on Bootstrap v4 and is used for creating responsive websites 

specifically with Vue.js. It is a collection of complete components which makes it easier to use 

Bootstrap along with Vue. Read the BootstrapVue documentation here: https://bootstrap-

vue.org/docs. 

CircleCI is a continuous integration and continuous delivery platform that can be used to 

implement DevOps practices. Read more about DevOps in chapter 3.3 of this paper and more 

about CircleCI in the official documentation: https://circleci.com/docs/2.0/about-circleci/.  

In addition to the software resources listed above, the employees of Tibber are also a resource 

for this project. There are people working in the smart charging team who are available to 

answer any questions regarding the smart charging functionality, as well as charger integrations 

and other features in Varys. The customer support team can assist because they know what 

common problems and questions the customers have. The product that will be developed during 

this project is also for the use of customer support, so their feedback is valuable.  

2.4 Literature about the problem 

“Leveraging microservice architecture by using Docker technology” by D. Jaramillo, D. V. Nguyen 

and R. Smart is a paper about microservice architecture and it explains the advantages of using 

Docker in the implementation (Jaramillo, 2016).  

Microservices: Yesterday, Today and Tomorrow is a chapter from Present and Ulterior Software 

Engineering by Dragoni, N. et al. Before describing the current state of the art in the field, this 

chapter analyzes the history of software architecture and the factors that led to the initial 

diffusion of objects and services, and then microservices. Finally, open issues and future 

obstacles are discussed. This poll offers an academic perspective on the problem while primarily 

https://yarnpkg.com/getting-started
https://www.postman.com/product/what-is-postman/
https://vuejs.org/guide/introduction.html
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://bootstrap-vue.org/docs
https://bootstrap-vue.org/docs
https://circleci.com/docs/2.0/about-circleci/


 

 

8 

 

addressing newcomers to the field. In addition, a few practical concerns are examined and a few 

feasible solutions are offered (Dragoni, 2017).  

3 PROJECT DESIGN 

3.1 Proposed solution 

As the new view is to be part of an already existing web application the new view must adhere to 

existing design. Tibber has put forth a mock-up on how they wish the new view to look (see 

figure 3.1). The columns are divided into one property per column. 

 

 

Figure 3.1 Mock-up received from Tibber 

The view has the following (from top to bottom): 

● Tabs for the customer’s home(s) 

● Tabs for “Configuration” and “Schedules” 

● An alerts section with alert popups 



 

 

9 

 

● A highlights section for a quick glance value if the customer is eligible for smart charging 

and eligible for a “price guarantee” 

● A table that lists the customer’s load balancer(s) 

● A table that lists the customer’s car(s) 

● A table that lists the customer’s charger(s) 

●  

 

Figure 3.2 An alternative mock-up. 

As well as supplying a mock-up for how Tibber wished the view to look they also have provided a 

table sketch (see figure 3.2) of how the tables might be arranged, should the option of having 

one property per column make the view have too many columns if the number of properties 

shown gets too high.  

The multi-column proposal has the inherent advantage of presenting far more fields and actions. 

The disadvantage is that the rows will be taller as a result. This, however, is irrelevant because 

the rows will remain very few. 

In this scenario, the alternate approach for presenting the table is ideal, as we need to display a 

large number of properties and actions per row.  



 

 

10 

 

3.2 Project methods 

3.2.1 Development methods 

Several different development methods will be explained in a short and simple manner below. 

Afterwards, the selected method will be expanded upon, and it will be explained why this 

method was chosen. 

Scrum is an iterative and incremental framework for developing, delivering, and sustaining 

products in complex environments. It is designed for teams of ten or fewer members, with the 

work broken down into goals that can be completed within one iteration, called a sprint. A sprint 

is usually two weeks long. Scrum also includes daily stand-up meetings, which should not last 

more than 15 minutes. At the end of a sprint, there is also a sprint review which demonstrates 

the work done to stakeholders to elicit feedback. A scrum team consists of a product owner, a 

scrum master, and developers. Each role has certain responsibilities. Read more about the Scrum 

methodology here: https://www.scrum.org/resources/what-is-scrum. 

Extreme programming (XP) is an agile process and advocates frequent releases and short 

development cycles (Wells, 2013). Other elements of extreme programming are extensive code 

reviews, unit testing of all code and code simplicity. XP is all about the customer’s satisfaction 

and when using this methodology, the team should be able to quickly respond to changes in the 

requirements at any time in the development cycle. 

The Waterfall methodology is a developmental process that flows like a waterfall. It is sequential 

and each phase is completely finished before moving onto the next phase (Workfront, n.d.). The 

five stages of the waterfall model are requirements, design, implementation, testing/verification, 

and deployment. This methodology depends on the belief that all project requirements are 

understood upfront. 

The word DevOps is a combination of the words development and operations. DevOps is a 

methodology that describes an iterative development process, and it can be visualized as an 

infinite loop with these phases: plan, code, build, test, release, deploy, operate, monitor and plan 

(Courtemanche, n.d.). DevOps environments typically implement CI/CD (continuous integration 

and deployment/delivery), with an emphasis on task automation. 

 

Figure 3.3 DevOps visualized as an infinite loop. Reprinted from Understanding DevOps, In BairesDev (n.d.) Retrieved 
May 16, 2022, from http://www.bairesdev.com/devops/ 

https://www.scrum.org/resources/what-is-scrum


 

 

11 

 

Rapid application development (RAD) is both a general term and the name for James Martin’s 

method of rapid development. In general, RAD is an agile development process that puts less 

emphasis on planning and focuses more on user feedback and adaptive software development 

(OutSystems, n.d.). RAD is especially well suited for developing software that is driven by user 

interface requirements. The James Martin approach to the RAD method is divided into four 

phases: define requirements, make a prototype, absorb feedback, and lastly, finalize the product. 

The decision to choose an agile and iterative methodology is based on the nature of the software 

that is being developed and the usual work style at Tibber. Before starting the development, we 

receive a Kanban board from Tibber with the wanted features in a loosely prioritized order. 

However, some of the wanted features are not clearly defined and changes need to be 

implemented during the process. Therefore, we start with creating a minimum viable product 

(MVP). This enables us to test the software and explore ideas early on while also receiving 

feedback from customer service representatives. Once the MVP is in place, iterations on the 

product continue based on user feedback, adding the nice-to-have features and polish. Several 

iterations could take place on the same day. Even if a feature is deemed complete, it is still 

possible to go back and change or improve it. 

While developing we had progress meetings with Tibber every other Friday to discuss current 

progress and if there are any challenges in implementation. The time sheets and weekly status 

reports are presented in the project handbook (see attachment 3). 

3.2.2 Project plan 

To help keep track of tasks and to give a rough estimate about where development should be in 

a certain week, a Gantt chart was developed (see attachment 3). This chart was developed with 

two types of activity: development and report. Tasks that are related to development are 

marked with a blue color, whilst tasks related to the report are marked in green. By following this 

diagram, one should easily be able to see if they are behind schedule and in that case be able to 

mitigate further delays by being proactive and making changes before the time cost becomes too 

high. 

Tibber has also made a Kanban board (see figure 3.4) where they have listed different tasks and 

wishes for the view. A Kanban board is a type of organizational tool that is used to visualize the 

various tasks that are needed to get a project to completion. It is usually divided into various 

lanes where one can sort the tasks in whatever way one sees fit. It is often used in agile 

development to help prevent bottlenecks by balancing demands with available capacity. 

Development consists of continuous iterations (CI/CD), individual effort and daily/weekly sync 

depending on the task. Initially, the goal is to create a basic skeleton view based on the UI sketch 

created by the product owner. The data in the various columns does not have to be populated; 

what is critical is to have an accurate depiction of how the view will appear. Following approval 

of the view, the job of populating the tables with data can begin. 



 

 

12 

 

 

Figure 3.4 Kanban board 

Apart from the initial work with the skeleton, the most challenging problems are solved first to 

avoid major refactoring and restructuring down the road. Therefore, navigation/tabs 

functionality, as well as fetching/caching data, must work correctly and efficiently together. For 

example, unnecessary calls to endpoints should be avoided where possible and allow for parallel 

fetching for faster response time. Following that, iterate over this foundation to ensure that all 

requirements are met. 

3.2.3 Risk analysis 

In the risk analysis of the project a template of a qualitative risk analysis was used. In this 

template risks that are thought to have a chance of happening are listed. Then they are assigned 

with a value of what is thought to be the probability of it happening, on a scale from 1 to 5. 

Afterwards it is assigned a value of the consequence this risk would entail. And in the end, you 

multiply the values of the probability and consequence together and get the risk product. Which 

gives an indicator of the consequence this risk has for the project. See table 3.1 for more detailed 

information about the risk analysis. 

 

 

 

 

 

 

 

 

 

 



 

 

13 

 

Risk Cause Probability Consequence 
Risk 

product 
Mitigation 

Application 

fails to meet 

requirements 

Misunderstanding of 

requirements. Unable to 

code required features 

Low (2) Very high (5) 10 

Iterative 

development cycle 

(agile) where work 

is presented often 

Inaccurate 

estimations 

Unfamiliarity with "proper" 

software. Under or over 

estimations might occur 

which can skew timeframes 

and deadlines 

Medium (3) Medium (3) 9 

Adjust the Gantt-

diagram as 

necessary 

Change of 

scope 

Change of scope, be it from 

going in a different 

direction than thought, 

both from the developer’s 

side or from a directive of 

the stakeholders 

Very low (1) High (4) 4 

Adhere as closely as 

possible to the 

original goals set 

Failing to meet 

stakeholder 

expectations 

Skills / knowledge in the 

tools not up the standard 

expected of the students 

High (4) High (4) 16 

Crash courses on for 

example Udemy or 

ask for help. 

Low quality of 

code 

No uniformity or previous 

experience in working on a 

big project together. Code 

might suffer as a 

consequence. 

Medium (3) High (4) 12 

Review pull-

requests together 

and comment 

on bad code / 

improvements 

Low 

productivity 

Being stuck in a task and 

uncertain on how to 

proceed, and the more time 

passes the more anxious 

one gets, leading to a 

vicious circle. Low interest 

in the project 

Medium (3) Very high (5) 15 

Open and honest 

communication 

between students. 

Reserve judgment 

Lack of 

ownership 

No one takes responsibility 

ensuring that deadlines and 

milestones are met and 

celebrated 

Very high (4) Medium (3) 12 

Assign tasks to 

individual students 

in the Gantt-

diagram and follow 

up each other. 

Getting Corona Pandemic High (4) Very high (5) 20 
Follow guidelines 

from FHI 

Table 3.1 Risk analysis. 

3.3 Evaluation plan 

As soon as the minimum viable product is achieved the application will be released to the 

customer support department. From that point, there are two types of evaluation that will take 

place.  



 

 

14 

 

The first type of evaluation will be a simple statistical system which will save metadata of the 

visit by the support personnel. A basic definition of metadata is that metadata are data that 

describe other data (Dippo, 2000). The plan is to collect information about which customer was 

visited (and which house if the customer has multiple homes), which customer support user 

visited, and how many and what type of errors were present at the time of visiting. This can then 

be used by the managers to track how the new view is being used and assess which types of 

errors are more common.  

Tibber already has in place a database for storing usage or statistics from other Varys views and 

actions. Markus Persson, the product manager at Tibber responsible for Varys, made this when 

he became responsible for Varys. The system was made to try to give an overview over what was 

done via Varys. To be able to improve workflows and the robustness of the system they 

concluded that they must have some data from the system to be able to understand how it is 

being used. This database is a relational PostgreSQL database. The data will be stored in an 

already existing table used to track usage throughout Varys. The data will be stored as JSON 

object literals. 

The second type of evaluation is user feedback. As soon as the product is given to support 

personnel a page with the option to request changes or features will be posted in Notion. Here 

they will be able to give feedback on what’s working, what’s not working and if there are any 

bugs. After the view has been available to the support department for a while, they will receive a 

questionnaire containing questions regarding the new view. That they can answer on a rating 

scale from “Strongly Disagree” to “Strongly Agree”. This will help by giving an indicator on how 

the product is received and how useful it is to the support personnel. 

4 Solution 

As Varys is made in Vue.js, it is natural to continue using Vue. We started with setting up the 

various components we were going to need, the index being the most obvious. As explained in 

the “Previous work” section, Vue pages are put together by components, so therefore it is 

natural to sketch out what kind of components we need for the index view. For the minimum 

viable product for the index, we knew we needed at least five components: one for the car table, 

one for the charger table, one for the load balancing table, one for the alerts and one for the 

highlight section.  



 

 

15 

 

 

Figure 4.1 The initial three empty tables for the view. 

Before we started filling the page with real data, a skeleton had to be put in place first. This 

means getting the three different tables up and filling them with dummy data. While filling them 

with dummy data we quickly saw that the proposed solution about having one column per 

property would cause too much clutter. We opted then for the solution of having multiple 

properties in a shared column. After the tables were in place, a highlights component was made 

that will at one point in the future show customer support if the customer is eligible for Smart 

Charging and if the customer is eligible for something Tibber calls “price guarantee”. 

The alerts section could not be started before getting data into the view. After the three main 

tables were in place it was time to start fetching data. This is accomplished by retrieving data 

from the Device Orchestrator service. We can query and retrieve the majority of the data we 

require through this service. 

Conveniently, the DO API is built on the ASP.NET framework, which means it comes pre-loaded 

with swagger. Swagger generates documentation for all API endpoints automatically, which 

simplifies the process of getting an overview. Additionally, it is exportable (JSON) and can be 

imported into Postman, which simplifies testing. 

Testing is accomplished by making calls to relevant endpoints with the required query 

parameters and/or JSON data and assessing whether the response/data returned is as 

expected/sufficient. 



 

 

16 

 

 

Figure 4.2 Smart Charging view components and their inherited properties. 

Now the endpoints need to be implemented on the Varys backend server to be prepared for 

usage in Vue, the client side of the application. An endpoint on the backend is created such that 

it prepares an object that is sufficient and usable. A single backend endpoint often does multiple 

requests to a single or multiple services, sometimes in parallel when it’s possible to optimize the 

response time.  



 

 

17 

 

 

Figure 4.3 Navigation, alerts, highlights, and various configuration tables. 

Navigation 

Navigation is made intuitive through the use of tabs. To help the client and servers save some 

resources, each customer's home page includes its own lazily fetched page. This means that the 

data and UI for each home are only fetched and rendered when the client explicitly requests 

them, i.e., clicks a tab.  

Alerts (Green: “Good”, Orange: “Warning”, Red: “Error”) 

The alert messages serve as a detailed summary; they also assist the support user with quick 

troubleshooting by automatically generating messages based on available devices and their 

configuration state. Customer support agents can hover over the ‘i’-icon to obtain additional 

information about the alert. 

 

 

Figure 4.4 Alert example where there is a misconfiguration. 



 

 

18 

 

Highlights 

Similar to the preceding, but shorter. Green indicates that something is fully functional, for 

example, that Smart Charging is properly configured and expected to operate. Yellow alerts the 

support personnel to the possibility of an issue, typically due to ambiguous data. Red indicates 

that it is not properly configured or that it is missing required devices. 

Configuration state tables 

Feature a summary of devices with their type, name (if available) and most relevant 

configuration state variables. It also provides links to dashboards and available quick actions like 

start, stop or edit configuration. The rest of the configuration variables are available through a 

JSON-document with expandable properties by clicking “show all info” (see figure 4.5). 

 

Figure 4.5 JSON-modal that shows all info. 

Online cars include battery and Smart Charging state. The orange bar on the left shows the 

charge state of the battery. It is orange to indicate that smart charging is disabled, otherwise it 

would be green. If it is currently charging, it will do an animation.  

Retrieving live data from a vehicle could take up to 20 seconds. This was perhaps a result of 

having to wake up the car from sleep. To avoid a negative user experience, the interface includes 

a switch labelled "use live data" that enables the fetching of live data in the background while 

maintaining a responsive UI. Additionally, a pulsing circle indicator is added to indicate that data 

is being fetched (see figure 4.7). 

 

Figure 4.6 Table for the cars. 



 

 

19 

 

 

Figure 4.7 Loading Indicator. 

Certain vehicles are not yet supported by the app due to the lack of APIs or the time required for 

in-house reverse engineering. Customers may still add their cars as “offline” where they 

manually set their charge status to still take advantage of a more primitive Smart Charging. These 

cars appear under the offline cars table.  

The chargers table (figure 4.8) shows information pertaining to the charger(s). If the customer 

has activated smart charging for the product a green icon checkmark is placed next to the “Smart 

charging” property in the “Parameter/settings” column, if it’s not activated a red x-icon is shown 

instead. This gives a quick glance value for the customer support person showing if the property 

is active or not. Other than that, it shows the max current for the charger, the connection type, 

which is either cellular or WiFi. If it has both types of connections, it will show WiFi, and its signal 

strength, measured in RSSI (Received Signal Strength Indicator). The software version property 

fetches the device’s installed software number and checks if it has the latest software installed. 

This is then displayed in the “Latest software installed” with a yes / no indicator. Should the 

customer support person not find the information they’re looking for in the column, they have 

the option of pressing the information-icon (i) which will display the entire JSON object literal. 

 

 

Figure 4.8 Table for the chargers. 

 

Based on battery capacity, socket type, and current, the charging calculator (figure 4.9) provides 

an estimate of charging time. Additionally, it accounts for energy loss due to connection friction. 

The tool is currently quite basic, but it can be easily expanded to include features such as 

generated profiles and default settings based on the customer's available devices and 

configuration. 



 

 

20 

 

 

Figure 4.9 Charging Calculator. 

5 Results 

5.1 Evaluation method 

For the evaluation of the final result, we expanded upon an already existing metadata logger in 

Varys. This let us make metadata about the visit the person working in customer support had. It 

currently logs the following: 

● userId - The ID of the customer support person, everyone in Tibber has their own unique 

Varys user ID 

● customerId - The ID of the customer, every customer of Tibber has their own unique 

Varys customer ID 

● pageView_smartCharging - A flag for the log entry that the entry has metadata regarding 

the smart charging view, so it can be filtered out from other log entries pertaining data 

about other views. 

● createdAt - Timestamp of the visit 

● Metadata - A JSON Object Literal containing the following: 

○ homeId - the customer's home ID where all related devices are listed 

○ Errors - A number of how many errors (from the alerts) where shown for this 

home 

○ Warning - A number of how many warnings (from the alerts) where shown for this 

home 

■ For example: 
{"home": "a3f446c6-787e-4ff2-b80d-8ffb6b794c8z", "errors": 1, "warnings": 1} 

 

When the smart charging view is released for the customer support department one can track 

visits to the page, how many errors and warnings were present. 

Another evaluation method is to send out a questionnaire to the customer support team. They 

are the ones who will use this new software the most, and therefore their feedback is valuable. 

They have the knowledge needed to verify if the finished product is satisfactory. Therefore, a 



 

 

21 

 

Likert scale survey was created. A Likert scale survey uses rating scale questions, which are one 

of the most common kinds for surveys that require respondents to rate the performance of a 

product or service, staff abilities, customer experience, and so on (QuestionPro, n.d.). 

 

Figure 5.1 Example of a rating scale question. 

The questionnaire included the following questions with a rating scale from “strongly disagree” 

to “strongly agree”. All questions are obligatory to answer.  

1 
I am more efficient in troubleshooting issues related to Smart Charging using the new 
Smart Charging view than before. 

2 It is easy to use the Smart Charging view. 

3 
In the Smart Charging view, it is easy to get the information I need for troubleshooting 
Smart Charging issues. 

4 
The Smart Charging view enables me to quickly troubleshoot issues regarding Smart 
Charging.  

5 The information in the Smart Charging view is well structured. 

Table 5.1 Survey questions. 

In addition to the questions, an optional text box with the opportunity to write other types of 

feedback was also included. 

5.2 Evaluation result 

From the statistics tool that was developed we are able to monitor how much the support team 

is using the application. Figure 5.2 shows the initial days after release (including weekend days) 

and unique visits. The big spike on Tuesday April 19th was when the view was released to the 

support team. Please note that the number of unique visits mean that a user has used the view 

one or more times during a day.  



 

 

22 

 

 

Figure 5.2 Number of unique users per day 

 

Figure 5.3 Number of unique customers that have been looked up. 

In figure 5.3 you can see the number of unique customers per day the support personnel have 

visited in the smart charging view. Excluding weekends, this shows that there is a steady flow of 

customers that need assistance with smart charging. 



 

 

23 

 

The following graphs show the results for the customer support questionnaire. 

 

Figure 5.4 Results for question 1 

 

Figure 5.5 Results for question 2 

 

Figure 5.6 Results for question 3 



 

 

24 

 

 

Figure 5.7 Results for question 4 

 

Figure 5.8 Results for question 5 

5.3 Project result 

After finishing the project Tibber is left with a view the support department can make use of. 

Support personnel are now able to find information about various devices related to smart 

charging in this new view. They get alerted if there are any configuration errors, whereas earlier 

they would have to find the information manually and conclude for themselves if there were any 

errors present.  

Verifying if customers are eligible for price guarantees or smart charging no longer requires that 

support personnel manually locate the device and identify the charger type. This information is 

now instantly available in each customer’s smart charging view. 

5.4 Project implementation 

We started this project early in January 2022. In the beginning most of the time was spent 

learning about Vue and what micro services are. After we felt we had a good grasp we started 



 

 

25 

 

planning for the view. From Tibber’s requirements and mock-ups we roughly knew what we 

needed to do first, which was making a basic skeleton of the view with empty tables. 

After getting the skeleton up and running in a way that conformed with the overall design of 

Varys we started on the next part of the project: fetching data to populate the tables. As the data 

was requested from the Device Orchestrator service, we spent some time learning and using 

Postman to figure out which endpoints we needed to use for our view.  

Fetching and separating the data received into the different tables was what occupied us for a 

while. As the various device information gets returned as JSON Object Literals, we needed to 

figure out which properties Tibber wanted to display in the tables.  

After we had fetched and prepared the data for the tables, we started working on the various 

configuration checks, one for the alerts and one for the highlights section. 

During implementation of the vehicle table, it was discovered that retrieving live data could take 

up to 20 seconds as a result of having to wake the car from sleep. To avoid a negative user 

experience, a switch labelled "use live data" was added. This option enables the fetching of live 

data in the background while maintaining a responsive UI. Additionally, a pulsing circular 

indicator is added to illustrate that data is being fetched. 

Before the minimum viable product was achieved a metadata logging system was put in place on 

the view, as per a request from Tibber. This enables them to monitor how the view is used and 

gives valuable feedback on how the workflow in Varys is as a whole. 

After the view was released to the customer support department, time was spent fixing bugs and 

trying to implement other features. 

6 Discussion 

Working on the project felt efficient and frictionless thanks to a good framework, tools, and 

development methods. You can always deliver something with few obstacles if you make small 

code contributions and deploy frequently. Because the most recent code is always out, frequent 

deployment leads to more testing. If something breaks, it is usually related to the most recent 

code changes, which can be easily pinpointed, saving time and frustration. Also, seeing the 

newest changes and additions immediately after writing the code, makes the work more 

rewarding. It also makes it relatively easy to quickly see if it works or if it needs to be done in 

another way. That is why an agile methodology works really well in this scenario. There is always 

the possibility to go back and make changes to the code. If we had chosen to use the waterfall 

methodology, we would not be as flexible to adjustments.  

Icons and other graphics are an important factor in a large number of user interfaces, visually 

representing objects, actions, and concepts. When used properly, they effectively communicate 

the fundamental idea and intent of a product or action while also providing numerous benefits to 

user interfaces, such as saving screen space and improving visual appeal. 



 

 

26 

 

 

The result from the customer support team questionnaire was as expected. Unfortunately, the 

questionnaire was sent out late and we did not receive as many responses as we wanted. 

However, the Norwegian customer support team at Tibber consists of 14 members, so the eight 

responses we received can be considered to sufficiently represent the whole team. 

When discussing the evaluation results below, the questions will be referred to by numbers. The 

numbers will correspond with the table below. 

 

Table 6.1 The questions from the customer support questionnaire 

For us, the first question is the most important one. The purpose of this project is to make the 

job easier for the customer support team and make them more efficient. The result for question 

1 shows that a majority of the respondents, 6 out of 8, agree that they are more efficient when 

using the new Smart Charging view. We can assume that this is because the data is presented in 

a different and more optimal way than before. 

Question 2 and 3 deal with ease of use. The view is simple and easy to understand, but still 

leaves something to be desired. While 6 out of 8 respondents think that the view is easy to use, 

the results for question 3 are more spread out. Even if the view is easy to use for most of the 

respondents, there are still improvements to be made when it comes to actually retrieving the 

information needed. 2 out of 8 slightly disagree that it is easy to obtain the information needed 

for troubleshooting smart charging issues, while 50% agree with the statement. Hopefully, this is 

something that can change for the better over time as the users get to know the view. Of course, 

the view was created to contain only the necessary information needed to answer questions 

about smart charging and to present this data in an intuitive way, but perhaps it is not yet 

perfected. The feedback from the customer support team will be taken into consideration to 

further develop the view.  

However, the results for question 4 show that improvement is needed. For the view to be 

considered efficient, we want the users to be able to troubleshoot issues in a quick manner. 

Again, this might be something that can improve in the future as the team members get used to 

the view, but there are also possible changes that can be made to make the users more 



 

 

27 

 

comfortable and able to quickly troubleshoot issues. In this case, their feedback and suggestions 

are welcome so that the view can be improved. 

The last question (5) is about the structure of the information presented in the view. With this 

question, we wanted to know if the information presented in the view is the necessary 

information, and also if it is structured in a way that makes sense for the customer support 

members. This is one of the attributes we want every user to totally agree with, but there seems 

to be varied opinions. Some things are easier to realize after the product is developed and 

released and after using the product for a while, one notices things that would benefit from 

being done in a different way. The great thing about choosing an agile development method is 

that changes can easily be made late in the development cycle. Even if this project is complete 

for us, the developers at Tibber will continue to work on this product by improving it and 

implementing new features. They will hopefully take advantage of the feedback from the 

customer support team and use it to make the product even better than it is today.  

As noted in section 3.4.2 Project plan, we received a Kanban board from Tibber with an overview 

over wanted features. Due to time constraints, we were unable to implement all of these 

features. However, the current product includes the most important features, and it will act as a 

starting point for the development team at Tibber as they plan on further developing the view.  

If we could redo this project with the knowledge that we have now, we would try to complete 

and release a minimum viable product earlier, so that the customer support team could play a 

bigger role earlier in the development. As it was, the product was released too late to receive 

feedback and properly act on it. If we obtained the feedback earlier, perhaps we would have the 

time to make significant changes and the results from the evaluation survey would be more 

positive, i.e., the respondents would agree to the different statements to a higher degree. The 

idea of the survey as an evaluation method came late, so it was prepared in a hasty manner. 

With more time, the survey could perhaps include additional, more detailed questions. It could 

also have been nice to send out the survey early, act on the feedback, and then ask the customer 

support team to answer the survey again. It would be interesting to see the differences in the 

results after making changes based on their feedback. 

7 Conclusion and further work 

At the start of the project, we sought to answer how the various events and data streams 

involved in charging an electric vehicle can be visualized in such a way that non-technical support 

personnel can easily and efficiently assist customers. At the end of the project, we have 

developed a view within a web application that we think solves this problem. Because of the 

positive feedback from the project owner, the product manager, and the customer support team 

at Tibber, we are confident that the initial goal has been reached.  

The customer support team gave mainly positive feedback, while there are things that can be 

improved. According to the statistics, the new view is being used on a daily basis by support 



 

 

28 

 

personnel. As the project went on, ideas for new features surfaced. While we could not manage 

to implement all these features during the course of the project, the development team at 

Tibber will keep working on the Smart Charging view. They will tweak the already existing 

features, while implementing new ones. A new service that will be used to show “charging 

events” is already in the works.  

All in all, based on words from the project owner, Marcus Almgren, and the product manager, 

Markus Persson, we believe that the product fulfills the requirements that were made at the 

beginning of the project and that we have given Tibber a satisfactory product that they can 

continue to develop. 

8 Sources 

Courtemanche, M., Mell, E. and Gillis, A.S. (n.d.) What is DevOps? The Ultimate Guide. Available 

at: https://www.techtarget.com/searchitoperations/definition/DevOps (Retrieved May 16, 

2022). 

Dippo, C.S. and Sundgren, B. (2000) The Role of Metadata in Statistics. Statistical Survey Paper. 

Washington, DC: Bureau of Labor Statistics. 

Docker (n.d.) What is a Container?. Available at: https://www.docker.com/resources/what-

container/ (Retrieved May 16, 2022).  

Dragoni, N. et al. (2017). Microservices: Yesterday, Today, and Tomorrow. In: Mazzara, M., 

Meyer, B. (eds) Present and Ulterior Software Engineering. Springer, Cham. doi: 10.1007/978-3-

319-67425-4_12 

EnergyStart (n.d.) About Energy Efficiency. Available at: 

https://www.energystar.gov/about/about_energy_efficiency (Retrieved Apr 4, 2022). 

ESLint (n.d.) Getting Started with ESLint. Available at: https://eslint.org/docs/user-guide/getting-

started (Retrieved May 15, 2022). 

Jaramilli, D, Nguyen, V, and Smart, R. (2016) Leveraging microservices architecture by using 

Docker technology. SoutheastCon 2016. doi: 10.1109/SECON.2016.7506647 

OutSystems. (n.d.) What is Rapid Application Development? Available at: 

https://www.outsystems.com/glossary/what-is-rapid-application-development/ (Retrieved May 

16, 2022). 

QuestionPro (n.d.) Rating Scale: Definition, Survey Question Types and Examples. Available at: 

https://www.questionpro.com/blog/rating-scale/ (Retrieved May 7, 2022). 

Tibber (n.d.) About Us. Available at: https://tibber.com/en/about-us (Retrieved Feb 15, 2022). 

Wells, Don. (2013) Extreme Programming: A Gentle Introduction. Available at: 

http://www.extremeprogramming.org/ (Retrieved May 16, 2022).  

https://www.techtarget.com/searchitoperations/definition/DevOps
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.energystar.gov/about/about_energy_efficiency
https://eslint.org/docs/user-guide/getting-started
https://eslint.org/docs/user-guide/getting-started
https://www.outsystems.com/glossary/what-is-rapid-application-development/
https://www.questionpro.com/blog/rating-scale/
https://tibber.com/en/about-us
http://www.extremeprogramming.org/


 

 

29 

 

Workfront. (n.d.) Waterfall Methodology. Available at: https://www.workfront.com/project-

management/methodologies/waterfall (Retrieved May 16, 2022).  

9 Attachments 

1. Vision Document 

2. Requirements Document 

3. Project Handbook 

4. System Documentation 

https://www.workfront.com/project-management/methodologies/waterfall
https://www.workfront.com/project-management/methodologies/waterfall

