

 Fakultet for ingeniør- og naturvitskap

 Institutt for datateknologi, elektroteknologi og realfag

Visualizing Smart Charging of Electric Vehicles
for Support Personnel

System documentation

Version 1.6

This document is based on Systemdokumentasjon from NTNU. Revision, customizations, and adaptations to use at

IDER, DATA-INF done by Carsten Gunnar Helgesen, Svein-Ivar Lillehaug and Per Christian Engdal. The document is

also available in Norwegian.

 Fakultet for ingeniør- og naturvitskap

 Institutt for datateknologi, elektroteknologi og realfag

REVISION HISTORY

Date Version Description Author

06/MAY/22 1.0
Import system documentation

from external sources.

Roger Karlsen

Mads Henrik Sørbø

10/MAY/22 1.1
Import project structure from

external source.
Roger Karlsen

16/MAY/22 1.2
Import source code

documentation.
Roger Karlsen

19/MAY/22 1.3 Various minor fixes.
Roger Karlsen

Mads Henrik Sørbø

20/MAY/22 1.4

Obfuscate service names. Update

platform and component

diagrams.

Roger Karlsen

Mads Henrik Sørbø

21/MAY/22 1.5 Write about security. Kristin Standal

22/MAY/22 1.6
Update architecture text and

project structure.
Mads Henrik Sørbø

 Fakultet for ingeniør- og naturvitskap

 Institutt for datateknologi, elektroteknologi og realfag

TABLE OF CONTENTS

1 INTRODUCTION .. 1

2 ARCHITECTURE ... 2

3 PROJECT STRUCTURE .. 4

4 COMPONENT DIAGRAM ... 5

5 DOMAIN MODEL .. 6

6 SECURITY ... 7

7 INSTALLATION AND EXECUTION ... 8

8 DOCUMENTATION AND SOURCE CODE ... 9

9 CONTINUOUS INTEGRATION AND TESTING ... 11

10 REFERENCES ... 12

1

1 INTRODUCTION

The purpose of this document is to give a simplified overview of how the smart charging view is

built. The smart charging view is a single view in the Varys application. The names of services this

view is dependent on, their composition, and endpoints have been obfuscated to protect

Tibber’s security. The document contains various models and source code snippets explaining

how the various components are structured and how they interact with each other.

2

2 ARCHITECTURE

The Tibber platform is built as a collection of microservices hosted on Amazon Web Services,

using technologies such as lambda functions, events, and queues for interservice

communication. Varys is dependent on various other microservices to function. In the case for

this project, the most central services are the Customer and Device Orchestrator services (names

are obscured for security reasons).

The Device Orchestrator service has information about every device registered on a

customer and/or their homes. We call on this endpoint to fetch the devices that are

related to the smart charging view. The relevant devices in this case are registered cars,

load balancers, and chargers.

The Customer service has information about the customer and their home(s).

Figure 2.1 below shows a simplified overview of the communication between Varys, its

backend, and other services. SNS/SQS is a publish-subscribe pattern that uses queues and

messages for intercommunication between services.

Figure 2.1 Simplified overview of the communication between Varys, its backend, and other
services.

3

As a result of employing a microservices architecture, each service is self-contained and may

utilize several technologies that best suit its requirements, such as NetCore, Node JS,

PostgreSQL, and Python. In figure 2.2, a data flow generated by NewRelic shows the

dependencies between Varys and other microservices in the Tibber-sphere.

Figure 2.2 Data flow that shows dependencies between Varys and other microservices.

4

3 PROJECT STRUCTURE

Varys has a client and server component where the server part of the application relies on other

microservices. The project structure below shows where the Smart Charging view is located in

the Varys application. Almost all of the code written for this project is contained within the

“Smart charging”-folder under “Views”. The “smart-charging.js”-file under the “server/routers”-

folder is responsible for calling the endpoints and fetching the data needed, so that they can be

called in the various components for the Smart Charging view.

Varys/

└── src/

 ├── client/

 │ ├── components

 │ ├── filters

 │ ├── mixins

 │ ├── router

 │ ├── styles

 │ ├── utils

 │ ├── views/

 │ │ ├── Other views

 │ │ ├── Smart Charging/

 │ │ │ ├── components/

 │ │ │ │ ├── modals/

 │ │ │ │ ├── AlertItem.vue

 │ │ │ │ ├── AlertItems.vue

 │ │ │ │ ├── BatteryBar.vue

 │ │ │ │ ├── CarsOfflineTable.vue

 │ │ │ │ ├── CarsTable

 │ │ │ │ ├── ChargersTable.vue

 │ │ │ │ ├── ChargingCalculator.vue

 │ │ │ │ ├── HighlightItems.vue

 │ │ │ │ └── LoadBalancingTable.vue

 │ │ │ ├── alert.js

 │ │ │ └── index.vue

 │ │ └── Other views

 │ └── App.vue

 ├── server/

 │ └── routers/

 │ └── smart-charging.js

 └── test/

 ├── client/

 └── server/

5

4 COMPONENT DIAGRAM

Figure 4.1 shows the structure of the most central Vue-components and their inherited

properties.

Figure 4.1 Smart Charging View structure.

6

5 DOMAIN MODEL

The domain model in figure 5.1 shows the domain of the customer. Each customer has at least

one home with zero to many devices. These devices can be cars, chargers, and load balancers.

There are multiple other types of devices that have been excluded from this model because they

are not relevant to the development of the smart charging view.

Figure 5.1 Domain model of a Customer object.

7

6 SECURITY

The smart charging view is a part of Varys and is therefore protected in the same way as Varys is.

To be able to use Varys, a user must be both authenticated and authorized. The purpose of

authentication is to confirm that users are who they claim to be. Once this has been confirmed,

authorization is used to grant the user permission to access different levels of information and

perform specific functions, based on the rules established for different user types (SailPoint,

2021).

Varys is an internal tool in Tibber, and it is only used by a subset of employees of Tibber. If you

do not have a user with the correct credentials, gaining access to the system is quite difficult.

First, a user must log in with their Tibber-account. Two-factor authentication is also obligatory,

usually with an Authentication app on a personal mobile device. To use Varys and the smart

charging view, the user must have the authorization to do so i.e., they must have the correct

access credentials. An admin has authority to give other users access. This system was already in

place before this project started and it was not deemed necessary that the team knows the inner

workings of the security system.

To prevent unauthorized access to the system and avoid exploits and leaks, it is essential to

adhere to best practices, such as storing passwords in a hashed and salted format, maintaining

up-to-date libraries, etc. Thus, you avoid common security issues like rainbow tables, SQL

injection and cross-site scripting.

8

7 INSTALLATION AND EXECUTION

Docker is utilized to run test databases and proxies in order to access APIs from other running

microservices, both for test and live data.

Yarn is used to install, operate, and test (via jest) the frontend and backend of Varys on a local

machine. After fetching the project from GitHub, some secrets must be added to the product

prior to running yarn install, which uses package.json to determine which libraries must be

downloaded and then installs them.

Otherwise, the product is a part of a bigger web application that is constantly online and

accessible in a web browser. Therefore, as long as the code is pushed to the production

environment, it will always be possible to access the Smart Charging view. There is no need to

start a program or similar to use the application.

9

8 DOCUMENTATION AND SOURCE CODE

Components are written in such a way that they are as generic and reusable as possible,

meaning they can easily be used elsewhere in the application as long as their required

properties are supplied by its parent. Below are examples of the most basic components

in the project and how they are used.

Figure 8.1 The component used in AlertItems.vue.

Figure 8.2 Usage of the AlertItem-component in index.vue.

Alerts (Green: “Good”, Orange: “Warning”, Red: “Error”):

The alert messages serve as a detailed summary; they also assist the support user with quick

troubleshooting by automatically generating messages based on available devices and their

10

configuration state. Customer support agents can hover over the ‘i’-icon to obtain additional

information about the alert.

AlertItems-components are used in index.vue (see figure 8.2), the main file for the smart

charging view. It is referred to with an <alert-item> tag. The required properties are passed on

with dynamic properties, here named ‘:id’ and ‘:alert’.

Figure 8.3 shows the BatteryBar.vue-file. It uses scoped CSS (see figure 8.4) to shift the default

progress bar layout to a vertical one. This is used for displaying the current state of the car and

whether smart charging is enabled. It will also be animated to indicate that a car is currently

charging.

Figure 8.3 BatteryBar.vue.

Figure 8.4 "Scoped" CSS for BatteryBar.vue.

11

9 CONTINUOUS INTEGRATION AND TESTING

CircleCI includes testing as part of the build process. Typically, only builds that have successfully

completed the development flow are deployable in both the development and production

environments.

The popular Jest framework is used for unit testing. Important components include security and

authority, as well as any essential functionality. For instance, only particular policy groups should

have access to specific information or areas.

Vue Test Utils simplify the testing of Vue components. It enables testing of everything from View

props and methods to properly rendered text.

Testing is an important part of CD/CI because it reduces the risk of critical errors and bugs and

makes the process more efficient by reducing the time spent manually reading through code. It

will not allow merging and will stop builds with failing tests. Therefore, test coverage should be

sufficient but not overdone as writing tests is a time-consuming process.

Figure 9.1 Development and deployment flow to production.

12

10 REFERENCES

Docker (n.d.) Developers bring their ideas to life with Docker. Available at:

https://www.docker.com/why-docker/ (Retrieved May 16, 2022).

Microsoft (2021) SQL Injection. Available at: https://docs.microsoft.com/en-us/sql/relational-

databases/security/sql-injection?view=sql-server-ver15 (Retrieved Apr 12, 2022).

NewRelic (n.d.) Welcome to New Relic. Available at: https://docs.newrelic.com/docs/new-relic-

solutions/get-started/intro-new-relic (Retrieved Mar 2, 2022).

Sailpoint (2021) What Is the Difference between Authentication and Authorization? Available at:

https://www.sailpoint.com/identity-library/difference-between-authentication-and-

authorization/ (Retrieved Apr 12, 2022).

https://www.docker.com/why-docker/
https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-injection?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-injection?view=sql-server-ver15
https://docs.newrelic.com/docs/new-relic-solutions/get-started/intro-new-relic
https://docs.newrelic.com/docs/new-relic-solutions/get-started/intro-new-relic
https://www.sailpoint.com/identity-library/difference-between-authentication-and-authorization/
https://www.sailpoint.com/identity-library/difference-between-authentication-and-authorization/

