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A B S T R A C T   

Young chronological age is one of the strongest predictors for antisocial behaviour in the general population and 
for violent offending in individuals with psychotic disorders. An individual’s age can be predicted with high 
accuracy using neuroimaging and machine-learning. The deviation between predicted and chronological age, i. 
e., brain age gap (BAG) has been suggested to reflect brain health, likely relating partly to neurodevelopmental 
and aging-related processes and specific disease mechanisms. Higher BAG has been demonstrated in patients 
with psychotic disorders. However, little is known about the brain-age in violent offenders with psychosis and 
the possible associations with psychopathy traits. 

We estimated brain-age in 782 male individuals using T1-weighted MRI scans. Three machine learning models 
(random forest, extreme gradient boosting with and without hyper parameter tuning) were first trained and 
tested on healthy controls (HC, n = 586). The obtained BAGs were compared between HC and age matched 
violent offenders with psychosis (PSY-V, n = 38), violent offenders without psychosis (NPV, n = 20) and non- 
violent psychosis patients (PSY-NV, n = 138). We ran additional comparisons between BAG of PSY-V and 
PSY-NV and associations with Positive and Negative Syndrome Scale (PANSS) total score as a measure of psy-
chosis symptoms. Psychopathy traits in the violence groups were assessed with Psychopathy Checklist-revised 
(PCL-R) and investigated for associations with BAG. 

We found significantly higher BAG in PSY-V compared with HC (4.9 years, Cohen’s d = 0.87) and in PSY-NV 
compared with HC (2.7 years, d = 0.41). Total PCL-R scores were negatively associated with BAG in the violence 
groups (d = 1.17, p < 0.05). Additionally, there was a positive association between psychosis symptoms and BAG 
in the psychosis groups (d = 1.12, p < 0.05). 

While the significant BAG differences related to psychosis and not violence suggest larger BAG for psychosis, 
the negative associations between BAG and psychopathy suggest a complex interplay with psychopathy traits. 
This proof-of-concept application of brain age prediction in severe mental disorders with a history of violence 
and psychopathy traits should be tested and replicated in larger samples.   
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1. Introduction 

Violence and antisocial behaviour in individuals with psychotic 
disorders challenge clinical practice and optimal treatment, with 
devastating consequences for the persons involved, their families and 
society at large. Epidemiological and clinical research has identified 
several risk factors related to violent behaviour in psychotic disorders, 
including substance abuse, positive psychotic symptoms, previous 
criminal history and male sex (Fazel et al., 2017; Witt et al., 2013). 
Further, the presence of psychopathy traits heightens violence risk 
(Laajasalo et al., 2011), with a 4-fold increase in likelihood for violent 
recidivism in schizophrenia patients with comorbid psychopathy 
(Tengstrom et al., 2000). 

In the general population, the association between age and violence 
is well-established (Rocque et al., 2015), with the peak for incarceration 
for any offense, including violent crime, occurring during early adoles-
cence (<25 years) and gradually declining with age. This phenomenon, 
known as the age-crime curve is one of the most consistent and well- 
documented observations in developmental criminology (Farrington, 
1986; Moffitt, 1993; Moffitt, 2018; Shulman et al., 2013). Further, age 
has been identified as one of the strongest predictors for estimating risk 
of violent crime in severe mental illness (https://oxrisk.com/oxmiv/), 
with a decreasing likelihood of violence with increasing age (adjusted 
odds ratio 0.63 per 10 years of age in a cohort aged 15–65 years) (Fazel 
et al., 2017). 

The age-dependency of violent behaviour has been suggested to be 
partly explained by the neurobiological processes underlying improve-
ments in decision making, impulse control and emotion regulation 
which occur during brain development beyond early adolescence (Arain 
et al., 2013). In general, structural maturation of the human brain is 
underpinned by complex processes involving both progressive and 
regressive changes characterised by regional specificity (Storsve et al., 
2014). It has been shown that adolescents exhibiting antisocial behav-
iour (conduct problems, callous-unemotional and psychopathic fea-
tures) have increased grey matter volumes (De Brito et al., 2009) and 
cortical thickness (Yang et al., 2015) in regions subserving cognitive and 
emotional regulatory functions compared with their peers. While these 
findings have been suggested to indicate a delay in brain maturation 
(Blair, 2009), antisocial behaviour and psychopathic traits in adult in-
dividuals have been generally associated with grey matter reductions in 
prefrontal, limbic and paralimbic regions (Boccardi et al., 2011; Ermer 
et al., 2012; Johanson et al., 2019; Yang et al., 2010), thus indicating a 
complex interplay between the phenotypic life course trajectories and 
structural brain development. 

Accordingly, it has been demonstrated that chronological age may 
not be able to capture the overall neurocognitive, physiological and 
disease-specific aging processes (Franke et al., 2013; Gaser et al., 2013). 
Recent advances in neuroimaging and machine learning techniques 
have enabled accurate prediction of age at an individual level (Cole and 
Franke, 2017). Interestingly, application of brain age measures proved 
to outperform chronological age in prediction of recidivism in a sample 
of incarcerated male offenders (Kiehl et al., 2018), thus indicating that 
proxies based on structural brain age may be better suited to account for 
individual differences in biological ageing than the chronological one. 
But little is known about deviation between the predicted and chrono-
logical age, referred to as brain age gap (BAG) in relation to violence and 
psychosis. BAG has been suggested to reflect both the general charac-
teristics of brain health, likely relating to neurodevelopment and aging 
as well as specific disease-related neurodegenerative mechanisms (Cole 
et al., 2019; Franke and Gaser, 2019). 

In schizophrenia, the relation between chronological and brain- 
predicted age has been extensively investigated, with studies reporting 
higher BAG using structural (Kaufmann et al., 2019; Koutsouleris et al., 
2014; Nenadic et al., 2017), blood perfusion (Rokicki et al., 2021) and 
diffusion weighted imaging (Tonnesen et al., 2020) data. Increased 
brain-age in this patient group may indicate reduced residual lifespan 

and converges with recent reports from epidemiological studies showing 
that males with psychotic disorders lose at least 10 life-years compared 
with males in the general population, largely due to natural causes such 
as cardiovascular and other non-communicable diseases (Plana-Ripoll 
et al., 2019; Tesli et al., 2022). While a few explorative studies in 
schizophrenia patients with a history of violence applied machine 
learning based on clinical and sociodemographic predictors (Kirchebner 
et al., 2020; Sonnweber et al., 2021) and neuroimaging data (Gou et al., 
2021), there are no previous studies of brain-age prediction in this pa-
tient subgroup. Indeed, we lack knowledge on the interplay between the 
apparent brain aging in psychosis, history of violence, and psychopathy 
traits. Further, we need more insight into how psychopathy traits map 
onto brain maturation patterns in individuals with and without psy-
chotic disorders. 

Here we present the first proof-of-principle application of brain-age 
prediction in psychosis, violent behaviour, and psychopathy traits. 
Specifically, we aimed at mapping brain deviations based on BAG- 
defined measures derived from brain morphology using T1-weighted 
structural MRI in violent offenders with and without psychosis and 
their associations with psychopathy features. Based on previous studies, 
we hypothesised that psychotic disorders would be associated with a 
higher BAG compared with healthy controls. Due to mixed neuro-
structural findings in psychopathy, we remained agnostic about the 
expected direction of effects for the associations between BAG and 
groups with a history of violence and psychopathy. 

2. Materials and methods 

2.1. Participants 

The final sample consisted of 782 male participants. All participants 
were recruited from the greater Oslo region as part of four studies: the 
Thematically Organized Psychosis study (TOP), the STROKEMRI study, 
The Youth TOP study (uTOP), and The Forensic Psychiatry study (sTOP). 
The inclusion restricted exclusively to male individuals was due to very 
low number of recruited female subjects in the study (1 in the violent 
offenders with psychosis group), thus precluding investigation of puta-
tive sex differences in brain age or associations with history of violence. 

The inclusion criteria for participants in the sTOP study (violent of-
fenders with psychosis (PSY-V), and non-psychotic violent offenders 
(NPV)) were age between 18 and 70 years, absence of head trauma 
leading to loss of consciousness and no current or previous somatic 
illness that might have affected brain morphology. The NPV group 
consisted of incarcerated persons serving a preventive detention sen-
tence, which is the most severe sanction according to the Norwegian 
penal law and is imposed in cases of particularly serious crimes 
involving interpersonal violence. 

The inclusion criteria for participants in the TOP study (non-violent 
psychosis group, PSY-NV) were following: a diagnosis of psychosis 
spectrum disorder based on the DSM-IV criteria, age 18–65 years. 
Healthy control subjects (HC) were randomly selected from the Nor-
wegian national population registry (http://www.ssb.no/en). The HC 
were screened with the Primary Care Evaluation of Mental Disorders to 
confirm no history of psychiatric disorder. Younger participants (age 
12–18 years) were included from the uTOP study. The inclusion criteria 
for these participants were similar to the TOP study, a psychosis diag-
nosis was based on DSM-IV criteria using the Norwegian version of the 
Schedule for Affective Disorders and Schizophrenia for School Aged 
Children (6–18 years) present and lifetime version (Kaufman et al., 
1997). The inclusion criteria for the HC from the STROKEMRI study 
were age at or above 18 and no history of neurological or psychiatric 
disorder. 

The study was approved by the Norwegian Regional Committee for 
Medical Research Ethics. All participants and their guardians provided 
written informed consent to participate in the study. Key demographics 
are described in detail in Table 1 and supplementary Fig. S1. Key clinical 
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information is summarised in Table 2. Detailed inclusion criteria are 
described in the supplementary material M1. 

2.2. Clinical assessments 

The assessment of violence for PSY-V and NPV was based on court 
files and hospital records. The inclusion criteria for these two groups 
were murder, attempted murder as well as severe physical assaults to-
wards other people (including sexual assaults) according to the Mac-
Arthur criteria (Monahan et al., 2000). Both groups were 
institutionalised at the time of inclusion in the study due to perpetration 
of violent crime; the PSY-V group was hospitalised at high security 
psychiatric wards and the NPV group was incarcerated at high security 
prisons. 

Psychopathy traits were evaluated with the Psychopathy Checklist- 
revised (PCL-R) (Hare, 2003). The PCL-R applies a 20-item scale to 
measure behavioural patterns and personality traits associated with the 
construct of psychopathy both in research and forensic settings. The 
evaluation procedure was based on an in-depth interview as well as 
inspection of the individual’s history of violent offending including 
court documentation and/or medical records. The PCL-R assessment 
was performed by certified psychiatrists and psychologists calibrated 
through the official PCL-R training. The same two raters scored both 
psychotic and non-psychotic offenders to ensure internal consistency of 
evaluations in the prisons and hospital wards. 

To ensure no previous history of violence in the nonviolent psychosis 
group, their medical files have been thoroughly examined. This pro-
cedure entailed evaluation of all study inclusion protocols, which are 
based on detailed information obtained from medical records including 
both structured interview with the patient and clinical journals. 

Current psychosis symptoms were rated with the Positive and 
Negative Syndrome Scale (PANSS) in both psychosis groups (PSY-V and 
PSY-NV) as well as in NPV group (Kay et al., 1987). IQ was measured in 
all groups with the Norwegian version of the Wechsler Abbreviated 
Scale of Intelligence (WASI-II) (Hays et al., 2002) by trained 
psychologists. 

2.3. MRI acquisition, image quality control and image pre-processing 

T1-weighted volumes were collected on two 3 T scanners (GE Med-
ical Systems and DiscoveryTM (MR750)) located at the Oslo University 
hospital, Norway. (1) GE Signa HDxt scanner with a standard 8-channel 
head coil, using a sagittal 3D fast spoiled gradient echo (FSPGR) 
sequence with the following parameters: repetition time (TR) = 7.8 ms, 
echo time (TE) = 2.9 ms, flip angle 12◦, slice thickness 1.2 mm, 166 
sagittal slices, field of view (FOV) 256 mm × 256 mm, acquisition matrix 
256 × 192 mm, voxel size = 1 × 1 × 1.2 mm3 and (2) DiscoveryTM 
(MR750) scanner with the vendor’s 32-channel head coil, using an 
inversion recovery-fast spoiled gradient echo sequence (BRAVO) with 
the following parameters: TR = 8.16 ms, TE = 3.18 ms, TI = 450 ms, flip 
angle = 12◦, FOV = 256 mm, acquisition matrix = 256 × 256 mm, 188 
sagittal slices, slice thickness = 1.0 mm, voxel size = 1 × 1 × 1 mm3. 

2.4. Image quality control 

Image quality control was performed as a two-step process. First, all 
T1w images were processed with MRIQC (Esteban et al., 2019). The 
images classified by a default machine learning algorithm to an exclude 
node with a probability of at least 0.5 were further visually investigated 
by two trained raters (NT and JR). In the second step, quality assessment 
of the area and thickness of cortical maps was performed by a careful 
visual inspection of lateral and medial snapshots of all maps by the same 
raters. The participant was excluded if the surface values included 
negative values, uncharacteristic patterns or strong value disbalance 
between hemispheres. 

Table 1 
Participant demographics summarised by diagnosis. Abbreviations: HC – healthy controls, NPV – violent offenders without psychosis, PSY-NV – non-violent psychosis 
patients, PSY-V – violent offenders with psychosis, N – number of participants, SD – standard deviation. Data quality was estimated using MRIqc random forest 
classifier (scale from 0 to 1, the smaller the number, the better the image quality).  

Group N Age, mean (years) Age, SD (years) Age, min (years) Age max, (years) Data quality, mean Data quality, SD 

HC 586  39.7  16.0  12.7  92.0  0.401  0.151 
NPV 20  42.4  14.4  22.7  71.0  0.403  0.137 
PSY-NV 138  29.0  8.7  15.1  57.8  0.416  0.133 
PSY-V 38  34.7  8.9  19.2  54.1  0.461  0.151 
Total 782  37.7  15.2  12.7  92.0  0.407  0.148  

Table 2 
Mean, standard deviation (sd) and 1st and 3rd quantiles (Q) of interquartile 
range of IQ and clinical scores of incarcerated participants and patients with 
psychosis. As scores were available for a subset of subjects with imaging data, 
the sample size (n) is smaller than the total sample size of respective groups. 
Abbreviations: NPV – violent offenders without psychosis; PSY-V – violent of-
fenders with psychosis; PSY-NV – non-violent psychosis patients, NA – not 
applicable.   

HC NPV PSY-NV PSY-V 

Wechsler Abbreviated Scale of Intelligence (IQ) 

n 413 17 128 19 
mean 114.0 101.6 102.4 93.8 
sd 10.6 12.8 14.4 15.1 
Q1 109.0 90.0 92.0 85.5 
Q3 121.0 109.0 113.0 108.0   

Global Assessment of Functioning (symptoms, GAF-S) 
n 0 0 134 34 
mean NA NA 48.1 41.6 
sd NA NA 13.7 10.7 
Q1 NA NA 39.0 35.0 
Q3 NA NA 58.8 48.8   

Global Assessment of Functioning (function, GAF-F) 
n 0 0 131.0 34.0 
mean NA NA 48.1 38.9 
sd NA NA 13.2 7.6 
Q1 NA NA 39.5 35.0 
Q3 NA NA 55.5 44.8   

Positive and Negative Syndrome Scale (PANSS) 
n 0 20 137 34 
mean NA 39.4 60.8 64.6 
sd NA 11.2 17.1 18.9 
Q1 NA 33.0 50.0 51.0 
Q3 NA 39.25 70.0 80.8   

Defined daily dose (DDD) for antipsychotic medication 
n 0 0 123 34 
mean NA NA 1.06 1.58 
sd NA NA 0.83 0.79 
Q1 NA NA 0.60 0.96 
Q3 NA NA 1.33 2.06  
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2.5. Image pre-processing 

Briefly, FreeSurfer v7.1 (Fischl, 2012) was used to extract 34 cortical 
thickness and area region of interest (ROI) values, in addition to average 
thickness and total area in each hemisphere based on the Desikan- 
Killiany atlas (Desikan et al., 2006). The choice of this particular atlas 
was based on its high intra and inter reliability with manual ROI par-
cellation (Iscan et al., 2015), its common use in large projects such as UK 
Biobank and ABCD-study as well as in research on brain age estimation 
(Rokicki et al., 2021; Vidal-Pineiro et al., 2021), thus providing trans-
parency and facilitating replication of our findings. We extracted vol-
umes of 45 subcortical ROIs based on the automated volume 
segmentation (Fischl, 2012). Additionally, 30 hippocampal subfield and 
amygdala nuclei volumes per hemisphere (60 in total) were obtained by 
applying the hippocampal subfield segmentation algorithm as provided 
in FreeSurfer (Iglesias et al., 2015). All area and volume ROI values were 
controlled for total intracranial volume (ICV) by building a linear model 
in the training set. To harmonise data from different scanners we used 
neuroCombat R package (Fortin et al., 2018) (Supplementary Figs. S2- 
S4). ComBat calculates scanner-specific location as well as scale pa-
rameters for each feature independently and subsequently pools infor-
mation across features using empirical Bayes, thus improving parameter 
estimation, particularly for small sample size studies (Fortin et al., 
2017). 

2.6. Brain age gap calculation 

For brain age prediction we used a feature set based on cortical 
thickness, area and subcortical volumes, in total n = 245 features per 
individual (full list is provided in the supplementary material M2). We 
divided data into a training and testing set, full workflow is presented in 
Supplementary Fig. S5. The testing set consisted of patients and HC 
matched for age and scanner (Ho et al., 2011). 

To train the models described below we used data obtained from 390 
male HC. Next, we tested the performance of our trained models by 
predicting age in unseen matched HC in the test sample (196 in-
dividuals). More specifically, we calculated the Spearman’s correlation 
between the predicted and the chronological age before age bias 
removal, as well as the root mean square (RMSE) and mean absolute 
error (MAE) in years. 

To account for the small sample size and to reduce the likelihood of 
spurious findings, we used three different models to evaluate BAG: 
random forest, extreme gradient boosting with and without parameter 
optimisation:  

1. Random forest algorithm as implemented in randomForest package 
in R (Breiman, 2001), which is known for its resilience to overfitting, 
robustness to noise and few hyperparameters to tune. To determine 
the optimal value of predictors sampled for splitting at each node, we 
used tuneRF function from the same library. We grew 5,000 trees, as 
more trees provide more robust and stable error estimates and var-
iable importance measures (Boehnke, 2019).  

2. Extreme gradient boosting, an ensemble model based on gradient 
tree boosting (Chen and Guestrin, 2016); trained in an additive 
manner with sequential addition of learners so that prediction error 
from previous model estimates is corrected. This model was imple-
mented in XGBoost package in R, an algorithm and has been shown 
to accurately predict brain age in in a recent large scale age predic-
tion study (Kaufmann et al., 2019) with the following parameters: 
learning rate eta = 0.1, nround = 5000, gamma = 1, max_depth = 6, 
subsample = 0.5 (defaults).  

3. To improve the model even further we used extreme gradient 
boosting with hyper parameter tuning by applying random search 
procedure as implemented in mlr R package. 

We adjusted predicted brain age for the brain prediction bias using 

the method proposed in (Beheshti et al., 2019). First, we calculated slope 
and intercept of linear regression between the predicted brain age gap 
and chronological age, and then we subtracted these from predicted age 
and added chronological age. The slope and intercept were calculated in 
the training set and then applied to left out patients and age matched 
healthy controls (Fig. 1ab and Supplementary Fig. S6). 

To estimate the features contributing the most to brain age predic-
tion we used the mean increase in mean squared error (MSE) for random 
forest and gain for XGBoost models. MSE quantifies the difference be-
tween randomly shuffled and actual values for the investigated feature, 
while keeping the rest of the features intact when applied on unseen 
data. Gain represents the fractional contribution of each feature to the 
model based on the total gain of this feature’s splits. Higher percentage 
means a more important predictive feature. To visualise the feature 
importance, the results were mapped onto segmented brain surface 
using the ggseg R package (Mowinckel and Vidal-Piñeiro, 2020). 

2.7. Statistical analyses 

In order to assess group differences between patients and HC, we 
matched subjects to controls with respect to age using nearest neighbour 
matching with 1:1 ratio and logistic regression distance as implemented 
in the R package matchIt (Ho et al., 2011). The subsequent between 
group statistical analyses were performed using general linear models 
(GLM) as implemented in the permutation analysis of linear models 
(PALM) (Winkler et al., 2014) toolbox with 10,000 permutations while 
controlling for effects of age, and demeaning the data including cova-
riates in the design matrix. We used family wise error correction to 
correct for the number of contrasts (2) and number of models (3). 
Additionally, we corrected for the number of groups with FDR correc-
tion (four groups: HC vs PSY-V, PSY-NV, NPV and PSY-NV vs PSY-V). 
The results were corrected for 24 tests in total. Additionally, to assess 
effect sizes we calculated Cohen’s d. To calculate the BAG in years be-
tween two groups we calculated the difference between the means of the 
underlying distributions. 

In our supplementary analyses we ran pairwise comparisons for the 
groups with a history of violence (NPV and PSY-V) with age-matched HC 
while controlling for the diagnosis of psychosis in the statistical model. 
Additionally, the two psychosis groups (PSY-V and PSY-NV) were 
compared with HC while controlling for violence in the statistical model. 

To assess associations between BAG averaged over three brain age 
prediction models and PCL-R, PANSS, antipsychotic medication, calcu-
lated as defined daily dose (DDD), and IQ we used GLM in the PALM 
toolbox with 10,000 permutations with PCL-R, PANSS total score, DDD 
of antipsychotic medication, and IQ entered as predictors and control-
ling for the effects of age and group in four separate models. 

3. Results 

3.1. Predicting brain age in healthy controls 

The best age prediction performance was achieved by XGBoost with 
standard parameters model MAE = 6.6 (r2 = 0.46), followed by XGBoost 
with parameters optimisation MAE = 7.1 (r2 = 0.43), and random forest 
MAE = 7.3 (r2 = 0.45). The complete list of fit results is presented in 
Table 3. The models showed high agreement in age prediction with 
correlation of 0.91 and above both for HC and patients (the full list of 
correlations is listed in the Supplementary Table T1). 

In general, feature importance patterns were in agreement, as 
Pearsońs correlation (Supplementary Fig. S7) over all feature impor-
tance metrics ranged from 0.89 to 0.97 (all pcorr < 0.05, Bonferroni 
adjusted for 12 comparisons, 4 modalities × 3 models). Volume based 
features showed highest correlation (r = 0.94–1.00 all pcorr < 0.05) and 
area-based lowest, yet still significant (r = 0.44–0.73, all pcorr < 0.05). 
Further, out of top 10 predictive features, 6 were in common across 3 
models (Supplementary Tables T2-T4). 
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The top 3 features contributing most to age prediction in the XGBoost 
with standard and optimal parameters coincided and included white 
matter hypointensities volume, 3rd ventricle volume and right superior 
frontal thickness (Fig. 1c). For random forest the top 3 features were: left 
pallidum, mean thickness of right hemisphere and left superior frontal 
thickness (Supplementary Fig. S8). For the most precise XGBoost model 
with standard parameters among top 20 features: 8 were volume, 11 
were thickness and 1 was area. 3 features were bilateral, 8 from right 
and 9 from left hemisphere. The lists with top 20 contributing features 
are presented in the Supplementary Tables T2-T4. 

3.2. Group differences in BAG 

Demographics for each group comparison are listed in the Supple-
mentary Table T5. The results are shown in Fig. 2, Table 4 and Sup-
plementary Fig. S6. 

All models showed significantly higher BAG in both psychosis groups 
as compared to HC, with the PSY-V group having largest effect (4.9 
years, p <.05, Cohen’s d = 0.87), followed by PSY-NV (2.7 years, p <.05, 
d = 0.41). The PSY-V had higher BAG, though the difference was not 
significant when compared to PSY-NV (1.6 years, p >.05, d = 0.27). 
Additionally, the NPV had higher BAG, yet again not significant when 
compared to HC (0.4 years, p >.05, d = 0.07). 

Secondary analyses did not show significant differences between 
groups with a history of violence (NPV and PSY-V) and age-matched HC 
while controlling for the diagnosis of psychosis for any model or be-
tween psychosis patients (PSY-V and PSY-NV) while controlling for DDD 
of antipsychotic medication. All models revealed significantly higher 
BAG among psychosis groups (PSY-V and PSY-NV) compared with HC 
while controlling for history of violence, with 2.8 years (p <.01, d =
0.49) on average. The results are summarised in Fig. 3 and 

Fig. 1. Association between chronological and predicted age before (a) and after (b) controlling for brain age bias. Color points and lines represent different 
participant groups. Dashed black line represents an ideal fit. Brain map of feature contribution measured as gain for brain age prediction (c). Based on the xgboost 
model with standard parameters. 

Table 3 
Model fit results in out of sample HC (n = 196). MAE – mean absolute error, 
RMSE – root mean square error, rMAE and rRMSE errors after controlling for 
brain age bias.  

Model r2 MAE, years RMSE, years rMAE, years rRMSE, years 

RF  0.45  7.3  8.9  4.6  5.8 
XGB-std  0.46  6.6  8.3  5.3  6.8 
XGB-opt  0.43  7.1  8.7  5.2  6.4  
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Supplementary Table T6. The BAG scores were explained by the 
contribution of psychosis diagnosis rather than a history of violence 
(rightmost dark red line Fig. 3a and the rightmost dark blue line Fig. 3b). 

PCL-R scores (Fig. 4a) were available for the subset of participants (n 
= 32) from NPV (n = 17) and PSY-V (n = 15) groups. There were no 
significant differences in PCL-R scores between NPV and PSY-V. The 
analysis revealed a significant negative association between PCL-R and 
average BAG while controlling for group and age r2 = -0.096, t = 1.81, d 
= 1.17, p < 0.05. We repeated a similar analysis for PANSS total scores 
(Fig. 4b), with the data available for the participants from PSY-V (n =
34) and PSY-NV (n = 137) groups (total n = 171). The results showed a 
positive association between PANSS total score and mean BAG, r2 =

0.0280, t = 2.22, d = 1.12, p < 0.05. Data for antipsychotic medication 
was available for 157 out of 176 participants from PSY-V and PSY-NV 
groups. The results revealed a positive association between antipsy-
chotic medication and mean BAG, r2 = 0.0236, t = 1.94, d = 0.91, p <
0.05. IQ scores did not significantly contribute to the model (r2 = -0.057, 
t = 1.38, d = 0.45, p < 0.08). The results for associations for individual 
models are provided in the Supplementary Table T7. 

The cross validation on the full set of HC is presented in Supple-
mentary Table T8 and the complete list of fit results is presented in 
Table 3. 

4. Discussion 

In this study, we applied three different machine learning models 
based on structural MRI to estimate neurobiological age. Our results 
revealed several new insights into the interplay of violence, psychosis, 
and psychopathy based on neuroimaging predicted brain-age. First, we 
found a higher brain age gap (BAG) in the PSY-V and PSY-NV when 
compared with HC, but no significant differences between the PSY-V and 
PSY-NV, or between NPV and HC. Second, total PANSS scores in psy-
chotic individuals with and without a history of violence were associ-
ated with higher BAG. Third, psychopathy scores (measured with PCL- 
R) in individuals with a history of violence with and without psycho-
sis were negatively associated with BAG. The implications of these 
findings are discussed in detail below. 

Our study revealed the BAG to be 4.9 years higher in the PSY-V and 
2.7 years higher in the PSY-NV when compared to HC. These estimates 
are in line with our hypotheses and with previous reports on T1-based 
brain-age prediction in psychosis spectrum disorders, where increased 
BAG has been demonstrated throughout the course of illness, in in-
dividuals with high risk for psychosis (1.7 years) (Koutsouleris et al., 
2014), first episode psychosis (2.6 years) (Kolenic et al., 2018) as well as 
in chronic schizophrenia disorder (up to 5.5 years) (Koutsouleris et al., 
2014; Nenadic et al., 2017; Rokicki et al., 2021; Schnack et al., 2016). 
The observed stepwise trend of higher BAG in PSY-V (4.9 years versus 
2.7 years in PSY-NV) may be due several causes, not necessarily exclu-
sively linked to accelerated brain ageing, given that variations in brain- 
age can reflect developmental differences which show lifetime stability 
(Vidal-Pineiro et al., 2021). 

Further, in the present sample, we did not find significant differences 

Fig. 2. Group comparison of BAG in HC vs NPV, PSY-NV PSY-V groups. Both distributions and means are shown. Asterisks on the right side indicate significant 
results (FDR corrected), with p <.05, p <.01 and p <.001 being marked as 1 to 3 asterisks, respectively. Distributions for HC are shown in grey. Abbreviations: HC – 
healthy controls, NPV – violent offenders without psychosis, PSY-NV – non-violent psychosis patients, PSY-V – violent offenders with psychosis. 

Table 4 
Mean group differences between NPV, PSY-NV and PSY-V and age and sex 
matched HC. Abbreviations: HC – healthy controls, NPV – violent offenders 
without psychosis, PSY-NV – non-violent psychosis patients, PSY-V – violent 
offenders with psychosis, Cd – Cohen’s d. BAG was additionally controlled for 
age within each comparison, Cd, t-values and p-values were calculated with 
PALM using permutation modelling. p-values were adjusted for 3 models (FWE) 
× 2 contrasts (FWE) × 4 groups (FDR) = 24 comparisons.   

BAG diff, years Cd tvalue padjusted   

HC/NPV (n = 20/20) 
RF − 0.42  − 0.08  − 0.25 1.00e + 00  
XGB_std 1.57  0.27  0.85 7.26e-01  
XGB_opt 0.05  0.01  0.02 1.00e + 00    

HC/PSY-NV (n = 138/138) 
RF 2.91  0.47  3.69 6.60e-03 ** 
XGB_std 2.34  0.37  2.86 1.82e-02 * 
XGB_opt 2.74  0.39  3.07 1.25e-02 *   

HC/PSY-V (n = 38/38) 
RF 5.56  1.11  4.68 1.20e-03 ** 
XGB_std 4.36  0.74  3.15 1.25e-02 * 
XGB_opt 4.88  0.75  3.19 1.25e-02 *   

PSY-NV/PSY-V (n = 38/38) 
RF 1.61  0.28  1.19 5.81e-01  
XGB_std 1.55  0.26  1.08 5.81e-01  
XGB_opt 1.70  0.26  1.08 5.81e-01   
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in the neuroanatomically predicted brain-age between the PSY-V and 
PSY-NV groups. Hence, our results showing higher BAG in the PSY-V 
when compared with HC may indicate that what we captured here 
was a cumulative load of progressive brain deficits associated with 
psychosis and linked to inherent disease mechanisms as well as sec-
ondary factors including lifestyle, medication and symptom severity. 
Thus, the contribution from brain structural abnormalities associated 
with a history of violence appears to be minor. Indeed, our supple-
mentary analyses in the violence groups (PSY-V and NPV) and the 
psychosis groups (PSY-V and PSY-NV) versus HC revealed much larger 
case-control differences for the BAG due to psychosis (2.8 years) than 
due to violence (non-significant results). Additionally, we found a pos-
itive association between symptom severity in the psychosis groups 
(measured as total PANSS score) and BAG. This finding indicates a sig-
nificant impact of psychosis symptom load on the predicted brain-age 
and adds to the accumulating evidence of increased BAG as a 

vulnerability marker of disease severity (Koutsouleris et al., 2014). The 
contribution of disease related factors to brain ageing in severe mental 
disorders aligns with previous studies in schizophrenia, which found 
significant associations between BAG and clinical variables including 
global assessment of functioning scale and PANSS (Kaufmann et al., 
2019; Schnack et al., 2016). Moreover, we also found a positive asso-
ciation between DDD of antipsychotic medication and BAG in the psy-
chosis groups, thus strengthening the hypothesis of iatrogenic 
contributions to brain ageing. 

On the other hand, we can hypothesise that the observed pattern of 
higher BAG in PSY-V than PSY-NV compared with HC may point in the 
direction of more profoundly disrupted developmental trajectories 
during the critical time window in childhood and adolescence in this 
subgroup of patients. Indeed, it has been hypothesised that the neuro-
developmental abnormalities present in schizophrenia during the 
formative years may lead to deficient emotion processing and regulation 

Fig. 3. Group comparison of BAG in HC vs violence controlled for psychosis (a) and psychosis controlled for violence (b). Both distributions and means are shown. 
The right most lines indicated by the dark blue (a) and dark red (b) show means without controlling for psychosis (a) and violence (b). Asterisks on the right side 
indicate significant results (multiple comparisons corrected), with p <.001 being marked as 3 asterisks. Distributions for HC are shown in gray. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Relationship between PCL-R (a), total PANSS (b) scores and average of BAGs from 3 different models. The PCL-R scores increase with decreasing BAG, while 
PANSS total scores have an opposite pattern. Both relations are significant after controlling for diagnosis (DX) and participant’s age. Abbreviations: BAG – brain age 
gap, DX – diagnosis, NPV – violent offenders without psychosis, PSY-V – violent offenders with psychosis, PSY-NV – non-violent psychosis patients, PCL-R – Psy-
chopathy Checklist-revised, PANSS – Positive and Negative Syndrome Scale. 
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as well as impaired integration and transfer of emotional input to higher 
cognitive brain regions and result in disruptive, aggressive behaviour 
(Hodgins, 2017; Hodgins and Klein, 2017). Indeed, widespread neuro-
anatomical deficits in schizophrenia patients with a history of violence 
compared with non-violent schizophrenia patients have been demon-
strated, with most consistent neuroimaging findings showing volumetric 
reductions in orbitofrontal and anterior cingulate cortex (Fjellvang 
et al., 2018; Hoptman et al., 2014; Kumari et al., 2009). Additionally, a 
recent DTI-study from our group has reported a brain-wide pattern of 
reduced white matter integrity in psychosis patients with a history of 
violence when compared with non-violent psychosis patients (Tesli 
et al., 2021) in a subject sample overlapping with the current study. 

One can speculate that higher brain-age in psychosis patients with a 
history of violence may be a product of an intricate interplay of the 
neurodevelopmental component, disorder-related processes, as well as 
the complex aggression phenotype (comorbidity with antisocial per-
sonality disorder and psychopathy). Given the inherent heterogeneity of 
violent and aggressive behaviour, it may be the case that we were not 
able to capture its unique influence on the neuroanatomical brain-age, 
despite operationalisation of violence according to the MacArthur 
criteria (Monahan et al., 2000), which unambiguously delineates the 
phenotype of interest to severe cases of trait violence. However, the 
significant associations between brain-age and psychopathy scores 
indicate that psychopathy traits may serve as a more specific proxy for 
the impact of antisocial behaviour on brain-age. Indeed, psychopathy 
scores in combination with anterior cingulate cortex reactivity (Aharoni 
et al., 2013) and age at release (Steele et al., 2015) have been shown to 
predict re-arrest among adult offenders. In our study, we found a similar 
level of psychopathy scores in the violent offenders with and without 
psychosis. These scores, in turn, were negatively associated with BAGs. 
This apparent reverted pattern of brain ageing effect associated with 
psychopathy traits may be understood in terms of a maturation delay 
linked to aberrant neurodevelopment and manifested by a deviant 
behavioural and cognitive profile (De Brito et al., 2021). Indeed, psy-
chopathy is a syndrome characterised by widespread structural abnor-
malities in multiple brain networks (Johanson et al., 2019) involved in 
attention (Larson et al., 2013), emotional responsiveness (Viding and 
McCrory, 2019) as well as reinforcement-based decision making (De 
Brito et al., 2013). As demonstrated in a preliminary report by (Kiehl 
et al., 2018) inclusion of brain-age measures together with PCL-R scores 
and other sociodemographic variables improves prediction of re- 
offending, and outperforms the use of chronological age. Further, in 
this study, reduced grey matter volumes of inferior frontal and anterior 
temporal regions were the strongest predictors of brain-age (Kiehl et al., 
2018). In our study, one of the most important structural features that 
contributed to the brain age prediction was thickness of the superior 
frontal cortex. The structural deficits in the superior-frontal regions have 
been shown to be involved in impulse control (Hu et al., 2016) as well as 
reward-based learning (Costa et al., 2016). Given the direction of the 
association (higher psychopathy score – lower brain-age), we can 
speculate that the driving process here may be linked to brain maturity 
delay manifested by volumetric and thickness abnormalities, as sup-
ported by imaging literature in youth samples exhibiting disruptive 
behaviour problems and callous-unemotional traits (De Brito et al., 
2009; Yang et al., 2015). 

The current findings should be interpreted in light of several limi-
tations related to the design as well as sample characteristics. First, the 
application of a cross-sectional design to study brain-age makes any 
inferences regarding the incremental contribution of disease related 
processes versus the presence of inherent neurodevelopmental compo-
nents associated with accelerated ageing challenging to address, 
particularly in light of the complex violence phenotype. Secondly, in 
similarity to other studies investigating brain-age in severe mental dis-
orders, we were unable to differentiate between specific disease mech-
anisms from the impact of early life influences, lifestyle factors, and 
medication. Regarding possible residual confounding, we did not 

control the analyses for illicit substance or alcohol use. As individuals in 
both violence groups were institutionalised at the time of data collection 
(high security prison and psychiatry wards) they did not have, at least in 
theory, access to illicit substances or alcohol. However, given the impact 
of lifestyle factors on brain-age (Bittner et al., 2021), previous substance 
abuse might have affected the obtained results, particularly in the vio-
lent offenders with psychosis. Third, we had a limited number of sub-
jects in the PSY-V and NPV groups. Nevertheless, the size of our violent 
psychosis group matches previous imaging studies investigating 
violence in schizophrenia (Del Bene et al., 2016). Moreover, to ensure 
that our findings were robust to overfitting we applied three different 
brain-age models and the results based on these three models converged 
(Supplementary Table T1). Fourth, not all the individuals in the violent 
psychosis group had the endurance to undergo the whole clinical pro-
tocol and we lacked PCL-R data for several participants. Thus, caution 
should be exercised when interpreting the results on the association 
between psychopathy scores and BAG. 

Another important issue which merits attention is related to the 
obtained prediction accuracy. While the model fit was comparable to 
other studies which used FreeSurfer atlas based parcellation features 
(Beheshti et al., 2022), the performance was poorer compared to voxel- 
wise T1w based BAG studies (Bashyam et al., 2020; Beheshti et al., 2018; 
Beheshti et al., 2020). It can be speculated that this difference may 
partly be explained by the application of voxel-wise features versus 
summary statistics based on FreeSurfer atlases and parcellation pro-
cedures. Additionally, we cannot exclude the possibility that the dif-
ferences in analysis pipelines and algorithms used may have contributed 
to the obtained estimates. Finally, accuracy of age prediction has been 
shown to depend on sample characteristics, including age range and 
sample size (de Lange et al., 2022). 

Finally, while feature importance patterns showed a high agreement 
between models, some variance present in the obtained patterns could 
be explained by the difference in how each algorithm builds its pre-
diction. XGBoost proceeds iteratively, with new trees that predict the 
residuals or errors of prior trees are combined with previous trees to 
make the final prediction. On the other hand, random forest is an 
ensemble of decision trees that builds multiple decision trees and av-
erages them to obtain a more accurate and stable prediction. Impor-
tantly, random forest adds some randomness when building individual 
trees, i.e., uses only a subsample of available features, thus increasing 
robustness and decreasing chances of overfitting. Hence, more features 
are involved in brain age prediction when applying random forest 
compared to XGBoost. Also, as a consequence, the performance of 
random forest was poorer as compared with XGBoost models. 

5. Conclusions 

In summary, we report higher BAG in individuals with psychosis 
(with and without a history of violence) when compared with HC. 
Additionally, positive associations between psychosis symptoms scores 
and BAG, albeit no significant differences in BAG between violent and 
non-violent psychosis group suggest larger impact of symptom load than 
trait violence on brain-age. Further, negative associations between 
psychopathy scores and BAG in violent individuals (with and without 
psychosis) may indicate neuromaturation delay in individuals high on 
psychopathy traits. As structural, functional and diffusion measures 
convey different information related to brain health and ageing, future 
studies should combine larger datasets with multi-modal brain features 
to map neural age in violence and psychosis with higher accuracy. 
Additionally, given the complex interplay between structural brain 
development and phenotypic trajectories of violence, psychosis and 
psychopathy, future research should employ prospective longitudinal 
design to be able to disentangle contribution of disease specific and 
neurodevelopmental factors. In the long-term perspective, 
neuroimaging-based estimation of brain-age in individuals with a his-
tory violence and psychopathy traits may enhance our understanding of 
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neurobiological mechanisms at work. 
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