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Current state and call for action 
to accomplish findability, 
accessibility, interoperability, 
and reusability of low carbon 
energy data
Valeria Jana Schwanitz1,6*, August Wierling1,6, Mehmet Efe Biresselioglu2, Massimo Celino3, 
Muhittin Hakan Demir2, Maria Bałazińska4, Mariusz Kruczek4, Manfred Paier5 & Demet Suna5

With the continued digitization of the energy sector, the problem of sunken scholarly data 
investments and forgone opportunities of harvesting existing data is exacerbating. It compounds the 
problem that the reproduction of knowledge is incomplete, impeding the transparency of science-
based targets for the choices made in the energy transition. The FAIR data guiding principles are 
widely acknowledged as a way forward, but their operationalization is yet to be agreed upon within 
different research domains. We comprehensively test FAIR data practices in the low carbon energy 
research domain. 80 databases representative for data needed to support the low carbon energy 
transition are screened. Automated and manual tests are used to document the state-of-the art and 
provide insights on bottlenecks from the human and machine perspectives. We propose action items 
for overcoming the problem with FAIR energy data and suggest how to prioritize activities.

In a seminal publication, Wilkinson et al.1 formulated the so-called FAIR principles to promote the sharing of 
data, scientific data management, and stewardship. FAIR stands for findability, accessibility, interoperability, and 
reusability of data. Our study is a response from the low carbon energy research domain to a call for action in 
this paper. Therein, the authors urge ’all data producers and publishers to examine and implement ... (the FAIR) 
principles and actively participate with the FAIR initiative ...’. We respond to this call by documenting the state-
of-the-art on FAIR data practices in our domain and suggest action items, drawing from an examination of 80 
databases representative for data flows necessary for the low carbon energy transition. Our assessment follows 
the recommendations by Wilkinson et al.2, see ’features that should be reflected’.

The FAIR Principles1 have widely been acknowledged as the way forward for improving the findability, acces-
sibility, interoperability and reusability of data across different sources and disciplines3–5. Various research com-
munities are currently discussing and testing how to implement these guiding principles6–11. Figure 1 presents 
selected milestones toward the testing and implementing of the FAIR guiding principles and efforts undertaken 
in the energy domain. Currently, very few initiatives exist among low carbon energy researchers to progress the 
state-of-the-art12–14. A key element of the implementation of FAIR data principles is the introduction of standard 
metadata information and its proper referencing. Sempreviva et al. (2017)15 pioneered the development for wind 
energy research by suggesting a taxonomy and metadata. This taxonomy intends to support open data access, 
using a cloud-based data portal. Booshehri et al.13 introduced the Open Energy Ontology (OEO), which compiles 
standards for defining energy technology concepts and related infrastructure (e.g., the concept of district heating 
and its implementation by cogeneration power plants). Independent of a specific domain, several evaluation tools 
have been developed to test the compliance of data resources with the FAIR principles and to offer guidance in 
improving the FAIR status. These tools range from checklists16–18 and 19,20 to (semi-)automated evaluators2,21–24.
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In implementing the FAIR principles, energy science faces a triple challenge. First, it is crucial to meet the 
needs of a broad range of data stakeholders, who include researchers from social sciences to engineering, energy 
and other industries, policy- and decision-makers, funding and publishing agencies, and the general public. 
While domain experts need data at high granularity, other stakeholders require information at an aggregate level. 
Data needs also differ from stakeholder to stakeholder12. For example, utility companies rely on high-resolution 
electricity demand data, while policy planners are more interested in aggregated trends in different fields. Energy 
researchers utilize a broad range of data, covering technical specifications to societal and environmental impacts. 
Notably, data not only support knowledge building and validation, but also provide important input to decide 
on pathways for the transition to a low carbon energy system25,26. Second, data in the energy system cover large 
scales in time and space, respectively ranging from picoseconds to geological age (e.g., technical dispatch vs. 
the formation of energy resources) and nanoscale to the planning horizon of humanity (e.g., unit-level con-
trol of the electricity grid vs. long-term planning of secure access to pivotal resources in respect of planetary 
boundaries)27,28. Third, a new type of agent beyond humans emerges in the energy system: automatized deci-
sion and control systems (machines) support human activity in supervising the energy infrastructure. This, in 
turn, requires that data need to become machine-actionable. Machine-actionability means that machines can 
be programmed so that they find, access, and process data—ultimately without further human interaction. The 
implications of this third challenge lead to a new perspective on an energy system with human and machine 
agents at the center15,29,30. The new perspective on the energy system is visualized in Fig. 2.

Figure 1.   Selected milestones toward the implementation and testing of FAIR guiding principles along with 
efforts undertaken in the energy domain.

Figure 2.   The energy system with human and machine agents at the center. The top layer details human actors 
in the energy sector, engaged in the production, distribution, and/or consumption of energy services. Their 
decisions and behaviors define the objectives and constraints of the energy system. This information is delivered 
through bilateral heterogeneous data bundles that are taken up by smart energy technologies to monitor and 
steer the energy system infrastructure (bottom layer).
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Three layers (top, middle, and bottom) show how the energy system is controlled and steered by these two 
types of agents, enabling the provision of energy services in demand. Energy service refers to the direct and 
indirect use of energy for heating, lighting, air-conditioning, transportation of people and goods, long-distance 
communication, and the production of clothes, houses, cars, and food, etc.31–35. The entire energy system is 
service-driven, and processes such as energy generation and distribution are analyzed and planned in the con-
text of what energy is used for36. The infrastructure for energy services delivery is more and more data-driven. 
Bidirectional flows of data provide the foundations for humans and machines to manage this infrastructure. 
The top layer, ’Decision & control by human activity’, depicts the decision and control activities in the energy 
system37. The classical boundaries between producers on the one hand and consumers on the other hand are 
thereby disappearing, making room for ’prosumers’38. The top layer also emphasizes the new, significant role 
of ICT businesses in addition to businesses involved in monitoring, operating, and managing energy service 
provision (energy businesses). The middle layer complements human control of the energy system with machine 
control by the help of ’smart energy technologies’. The support from machines to steer the energy infrastructure 
(bottom layer) depends on enabling technologies such as data-driven regulatory systems with feedback and 
adaptive behavior, infrastructure control, flagging of alerts, real-time monitoring, data-driven compliance, and 
regulation. An example is the tracking and monitoring of CO2 emissions linked to energy services provision. The 
importance of data is expected to grow further in the future with the continued digitization of the energy sector, 
in particular with the broad introduction of smart and AI-based technologies in support of decision-making 
and real-time system adaptation39,40. Moreover, algorithm-based strategies to identify technological solutions 
are increasing. An example is the automatized material selection and design without the need of expensive and/
or risky experiments41. Consequently, market opportunities for sharing data are expected to grow tremendously, 
provided that the bottlenecks for doing so are removed.

The main task of machine agents is to support the infrastructure needed to deliver energy services (bottom 
layer). This includes the extraction and harvesting of energy resources, the conversion between different forms 
of energy to useful energy, the distribution of fuels, as well as the operation and maintenance of the energy 
equipment across temporal and spatial scales. Data streams flowing between the top and the middle layer are 
input to machines in the form of signals, objective functions, and constraints. These include taxes on energy 
fuels (e.g., connected with Greenhouse Gas emissions), R&D programs, energy security targets, health and sus-
tainable development goals, as well as data security and privacy requirements. The bottom layer exchanges data 
with smart energy technologies to provide the foundations for humans and machines to manage the necessary 
energy infrastructure.

Given the above rationales to support the sharing of energy data between layers of the energy system, the 
task ahead for the energy research community is to find a domain-specific way forward to implement the FAIR 
data guiding principles. The way forward depends on a consensus in the community about the prospects of 
FAIR data for low carbon energy research. This includes, on the one hand, clarity about connected costs (time, 
person months), and on the other hand, a shared understanding about the economic and social value that lies 
in FAIR data. The collective recognition is a prerequisite for functional FAIR data markets and the establish-
ment of supporting mechanisms. How to do this is an open question to researchers and practitioners alike. As 
a first step, teams need to evaluate the costs and benefits for FAIRifying their data sets, ’allowing members of 
that community to evolve over time while realistically operating within their budgets in order to achieve their 
best FAIR performance’2. It starts with the recording of the status quo to spark discussions. Crucial for such a 
process is the evaluation of the current state of implementation of the FAIR principles in the energy domain. 
This communication aims at advancing such an evaluation with the help of evaluation tools developed by various 
initiatives. In line with Wilkinson et al.2, the point of the evaluation of the current level of FAIR implementa-
tion in the energy domain is to identify ’opportunities for improvements’ instead of seeing scores as a goal in 
themselves. Figure 2 serves as the starting point for the assessment. With its help, we choose a representative 
sample of 80 energy databases that cover the current and emerging energy system and connected data flows 
relevant for the low carbon energy transition. To test whether the choice of databases is representative of data 
flows in the energy system, we reflect the Global Energy Assessment Report42 in Fig.2. We also use established 
classification schemes for energy data to complete the picture. We do so by mapping tested databases onto key 
tasks for enabling the energy transition. Refer to the Method Section below and the Supplementary Material for 
details. For the following two reasons, we restrict ourselves to testing databases relevant for understanding the 
low carbon energy transition. First, the energy system is in a transition to a system dominated by low carbon 
technologies, and fossil fuel based technologies will be phased out. Second, the implementation of FAIR principles 
advances the transparency of transformation of the energy system and, thus, supports the public acceptance of 
the transition processes.

Results
We assess a corpus of 80 databases that is representative of data flows that are pivotal for the low carbon energy 
transition. The selection of these databases is guided by Fig. 2. In addition, an ontology developed from the Global 
Energy Assessment Report42 was used. The proof of representativeness is described in the Supplementary Mate-
rial. We assess the compliance of the selected databases with the FAIR guiding principles using an automated 
assessment tool2. Figure 2 summarizes the results, sorting the compliance of databases with the 22 FAIR maturity 
indicators implemented by Wilkinson in the ’FAIR maturity evaluation service’2. Quoting the information from 
the website44, the maturity indicator ’authentication and authorization of metadata’, e.g., tests ’metadata GUID 
(global unique identifier) for the ability to implement authentication and authorization in its resolution protocol’, 
whereas the indicator ’data identifier persistence’ reports on a ’metric to test if the unique identifier of the data 
resource is likely to be persistent’.
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We find that most of the energy databases allow the authentication and authorization of metadata, use open 
free protocol for metadata retrieval, and incorporate unique identifiers. 72 out of 80 databases are compliant, 
see bottom of Fig. 2. At the same time, none of the tested databases achieves persistence of metadata and data 
identifiers (top of Fig. 2). A general observation is also that the majority of databases poorly comply with the 
FAIR maturity indicators. This echoes findings from a similar screening of databases performed by the project 
EOSC-Nordic45. Contrary to our study, this analysis has a geography focus on repositories from Nordic countries 
and is not domain-specific.

Two thirds of the databases do not fulfill 15 out of 22 indicators. This highlights the urgency to improve 
the FAIR state of energy (meta)-data and stresses the general lack of machine-actionability. Without machine-
actionability, opportunities in harvesting data for society will not materialize.

In addition to machine assessments, 30 of the 80 databases were also evaluated manually using the ARDC 
self-assessment tool46, among others. As documented in the Supplementary Material, we detect a large spread of 
results in the manual assessments of the same databases by different researchers. The largest spread was found 
for the assessment of the interoperability of data. This underscores, first, a strong degree of subjectivity in the 
assessments, originating from the different disciplinary background and data governance proficiency of the 
analyst. Secondly, a shared understanding about what makes data FAIR is lacking. Furthermore, the comparison 
of automated and manual assessments allows us to contrast the machine and human perspectives on FAIR evalu-
ations in the energy domain. To this end, the original weighing of answers to the ARDC assessment questions 
has been transferred to the machine-actionable FAIR maturity test (refer to the Supplementary Material for the 
details). Figure 3 shows the stylized results of this comparison for each of the FAIR guiding principles (findability, 
accessibility, interoperability, and reusability). We abstain from reporting assessment scores to focus on observed 
gaps and the room for improvement (see Wilkinson et al. 20192).

A tendency is that machine assessments score lower than manual assessments with the exception of the 
interoperability criteria where the results are mixed. This tendency has also been observed in a recent FAIR 
assessment of databases from the World Data Center for Climate47. A reason for the overall lower scoring by 
machines is that the assessment is strictly binary—either the test is fully compliant or not at all. In contrast, 
the manual assessment allows for nuances, but they are subject to interpretation by the user. We also find that 
metadata do not point to and identify the data they are describing. Most websites are designed to solely cater 
to a human data selection process. Moreover, many providers of data offer interfaces to data and not the data 
themselves. In these cases, the design is not suitable for machine access. Examples include drop-down menus 
or hover boxes for value selection. Accessibility to (meta-)data is mostly impeded because metadata are not 
persistent. Among the bottlenecks for Findability are missing metadata pointers, long-term and stable access to 
data, and searchability of (meta-)data. At the same time, we do not observe lower scores for both machine and 
manual assessments. The same observation holds for the Accessibility criteria. The simple reason behind it is a 

Figure 3.   Number of databases complying with FAIR maturity indicators as operationalized in Wilkinson 
et al.2,43 that test 13 of 15 FAIR principles. The results are based on machine-actionability tests for 80 databases 
that are representative of data flows for low carbon energy research. None of the tested databases achieves 
persistence of metadata and data identifiers. Internal linking of metadata with the help of identifiers is equally 
problematic.
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selection bias—we study databases that are findable and accessible—at least through a website. This would change 
if a scalable, automated test, as suggested by Wilkinson et al. 20192, existed (or even crawling websites to find 
assessment candidates). Reusability is an issue because machines do not find license information, even if avail-
able for humans (hence the binary scoring results for machines). For Interoperability to work, data would need 
a much better standardized description of what they are about. A good example is the approach proposed for the 
smart grid by Huang et al. 201748. We also find that Interoperability is assessed most differently from the human 
and machine perspective (Fig. 3). A lack observed from a human point of view is that only islands of standard-
ized knowledge representation and terminology exist; even less often are they interlinked, which would allow 
for the navigation of data and metadata from one field of expertise to the next. From the machine perspective, a 
standardization of vocabularies along with the pointers to its place of definition is indispensable. For example, 
while ”Kilowatt hour” bears a meaning to users of energy data, machines need a semantic definition as, e.g., 
provided by QUDT49, an organization promoting the interoperability of data and the specification of information 
structures through industry standards for units of measure, quantity kinds, dimensions, and data types. In this 
case, ’unit:KiloW-HR’ is defined via the uniform resource identifier ’http://​qudt.​org/​vocab/​unit/​KiloW-​HR’. The 
problem is that semantic definitions are still scarce, little known, and even less often implemented.

Finally, we report that energy databases differ greatly in content, size, layout, and formats. Databases can 
store instrument readings such as metering data, data on price developments in the energy markets, and mate-
rial composition of the electricity grid. This heterogeneity of energy data presents a grand challenge for scaling 
up database assessments. In sub-domains such as energy statistics, standards already exist50. Also, information 
exchange about electric power system components is regulated by the Common Information Model51, a standard 
set by the International Electrotechnical Commission, to allow standardized interfaces for software applications. 
A lot can be gained by, e.g., agreeing on common data formats as well as having well-defined, machine-actionable 
references to fundamental concepts and terms used in the energy sector. However, for the energy system as a 
whole, the current routines and tools are not up to the task, making the energy domain an excellent test-bed for 
improvements in this direction.

Discussion
The results disclose the difficulty of translating the FAIR guidance principles into domain-specific applications, 
as current FAIR data practices in the energy domain are still in its infancy. Although the low carbon energy 
community has started efforts of FAIRifying energy data, platforms and tools are not yet fit to be integrated into 
the workflows of research teams. Most importantly, machine-actionability is not given at large.

This study is the first to assess and document FAIR data practices in the energy domain. We test 80 databases 
that are representative of data flows in the energy system with the help of manual and machine-based assessments. 
The comparison offers several novel insights, suggesting how to move forward in and with the community. We 
recommend the following action items for the energy domain (in order of priority): 

1.	 Create institutions or networks that can function beyond single project and which are responsible for defining 
domain-specific, machine-actionable standards. Institutional anchoring of metadata and domain-specific 
vocabulary can increase trust and confidence into the uptake of the work of pioneers and investments into 
FAIR work-flows. Another task for these institutions or networks could be to coordinate the future energy 
data space12,52. This data space should serve as an entry point to FAIR data tools, workflows, and semantic 
web-services specific to the energy domain, besides ensuring interoperability with data spaces of other 
domains.

2.	 Our findings show that both manual, as well as automated FAIR assessment tools, lead to divergent recom-
mendations on improving the FAIR status of databases. In order to provide the community with meaning-
ful tools and to foster confidence in the outcome of the evaluation results, it is necessary to harmonize the 
tools. The FAIR Data Maturity Model put forward by the Research Data Alliance is a step forward in this 
direction53.

3.	 Approach the overall lack in understanding of how to implement machine-actionability through demon-
strated use cases in the energy domain. Using a simple structured dataset, a blueprint can be developed 
to show how to enable machine-actionability. The use case illustrates how to assign persistent identifi-
ers to (meta)data, link to existing standards, and assign licenses and access rights. The encouragement of 
peer-reviewed publications of such blueprints also addresses the incentive problem for investing into FAIR 
research data.

4.	 Harvest low-hanging fruits by placing emphasis on the implementation of persistent identifiers for (meta-)
data. Several repositories are offering these services.

5.	 Promoting and educating FAIR energy data stewards. The technical expertise and the resources needed to 
FAIRify energy data is out of reach for energy researchers. Even if assessment tools are available to support 
self-assessment of research data, the cycle of developing, assessing, and improving data documentation is 
out of scope for daily activities. In particular, the task of FAIRifying data connected to research publications 
should not be outsourced to the researchers.

6.	 Reverse the trend to prioritize the development of (graphical) user interfaces that prohibit the access to 
raw data. The assessments revealed that these interfaces are designed for human users only and are hardly 
machine-actionable.

http://qudt.org/vocab/unit/KiloW-HR
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Methods
Assessing the state of FAIRness across low carbon energy research data relies on two basic steps: I) to define a 
corpus of relevant data and II) to apply a FAIR evaluation methodology to this body. While the methodology 
can be developed independently of the energy domain to some extent, the systematic and comprehensive com-
pilation of the data corpus is a domain-specific task. Using the corpus of relevant energy databases, assessment 
tools were applied to understand the overall compliance with the FAIR guiding principles, as well as issues 
concerning each of the four principles. In our assessment of energy databases, we follow the 9 features of the 
community-driven approach as suggested in Wilkinson et al.2: We carry out a number of assessment approaches, 
including automated assessments, assessments informed by the crowd (by drawing from a series of discussions 
about databases and FAIR gaps observed in the energy community, see Wierling et al. 202112), and through 
intensive discussions within the group of authors of this publication. We also use a range of tools to assess the 
same databases. Most importantly, we abstain from a fixation on the assessment cores, which is why we do not 
report any score in the final figures. Instead, we embrace the idea that ’an intrinsic value’ of scores is absent. 
Rather, assessment should be used as guidance to draw conclusions for the way forward in improving the status 
quo of FAIR implementation in the domain.

We compile and select 80 databases representative of data flows in the energy system (Fig. 1). We test how 
representative our choice is with the help of an ontological concept based on Fig. 1, reflecting the importance 
of data flows in the energy system. The ontology draws from the Global Energy Assessment Report42 and estab-
lished classification schemes for energy data, such as the Standard International Energy Product Classification 
by UNSTATS and IRES50, the Global Change Master Directory Keywords54, JEL classification Codes55, and the 
European Science Vocabulary56. Table 3 in the Supplementary Material presents the 80 databases vis-a-vis key 
concepts. When choosing the databases, additional care has been taken to ensure a wide spread across hosts of 
databases (incl. general purpose repositories, institutional repositories—public and private, single databases, 
and data sets, incl. data sets published as supplementary material to scientific publications). The uptake of the 
FAIR principles has been rapid, leading at the same time to manifold interpretations and, consequently, various 
assessment frameworks and metrics. Certainly, it is a very active area of research. Given the aforementioned 
role of automated services in the future energy system, an assessment of the machine-actionability of databases 
is of particular interest. Naturally, this can be best tested with an algorithmic framework. Indeed, the plethora 
of FAIRness claims and assessment tools led to stating the FAIR principle more precisely on the one hand57, and 
the development of automated tools on the other hand2,21,24,58.

We review available FAIR data assessment tools for manual and machine use. A overview of existing tools is 
available at the website fairassist.org. We select the ARDC DAIR data self-assessment tool46 for manual assess-
ment and the FAIR indicator maturity test2,44 as one of the two available machine-actionable tests. The other 

Figure 4.   Stylized comparison of manual vs. machine assessments.
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one is the rapidly evolving F-UJI test21. A recently published third semi-automated assessment tool24 is specific 
for life sciences and therefore not considered in our context. The rationale for our choice of the ARDC FAIR 
data assessment tool is that it aligns with the FAIR principles and has a good balance between technical and 
non-technical questions (22 questions). The test allows scoring comparable to the machine test (12 tests) and 
was the only one available when this study was started. Although both tools have their own set of test questions, 
a mapping between them is possible at the level of each of the FAIR principles. The Supplementary Material 
details the approach and connected scores (Table 5).

30 assessments were carried out manually, while 80 tests are machine-based. The rationale for this is that we 
were already able to identify systematic patterns and adding more examples would not have led to a different 
picture. The number of assessed databases has been decided with the emergence of generalizable patterns for the 
state-of-the-art. Note also that manual assessment was carried out before and after a briefing on how to assess, 
with the intention of detecting the amount of subjectivity of tests. Figure 4 shows the example for the interoper-
ability criteria, for others see the Supplementary Material.

The Supplementary Material provides further methodological details (Section 2), results from manual tests 
(Section 3.2), results from machine tests (Section 3.3, spreadsheet) and aggregate scores for the comparison 
(Section 3.1).

Data availability
Supplementary Material—Machine tests (spreadsheet) https://doi.org/10.5281/zenodo.5577964. Supplementary 
Material—detailed description of the adopted methodology, results of manual and machine tests (Text document) 
https://doi.org/10.5281/zenodo.5578111.

Code availability
There is no code associated with this study.
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