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Abstract
We characterize all pairs of entire functions (u, ψ) for which the induced weighted superpo-
sition operator S(u,ψ) transforms one Fock space into another Fock space. Further analytical
structures like boundedness andLipschitz continuity of S(u,ψ) are described.We, in particular,
show the Fock spaces support no compact weighted superposition operator.
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1 Introduction

The theory of superposition operator has a long history in the context of real valued functions
[2]. In contrast, there have been only some studies on spaces of analytic functions which
includes Hardy spaces [6], Bergman spaces [7], Dirichlet type spaces [4], Bloch type spaces
[1, 5], and some weighted Banach spaces over the disc [3]. The goal of this note is to study
the operator on the Fock spaces Fp . We recall that Fp is the space of entire functions f for
which

‖ f ‖p =

⎧
⎪⎨

⎪⎩

(
p
2π

∫

C
| f (z)|pe− p|z|2

2 d A(z)
) 1

p
< ∞, 0 < p < ∞

supz∈C | f (z)|e− |z|2
2 < ∞, p = ∞,

where d A is the usual Lebesgue area measure on the complex plane C. The space F2 is a
reproducing kernel Hilbert space with kernel function Kw(z) = ewz . For each w ∈ C, a
calculation shows the function kw = ‖Kw‖−1

2 Kw ∈ Fp and ‖kw‖p = 1 for all p. By [10,p.
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37], for each entire function f and p �= ∞

| f (z)| ≤ e
|z|2
2

( ∫

D(z,1)
| f (w)|pe− p|w|2

2 d A(w)

)1/p

≤
(
2π

p

) 1
p

e
|z|2
2 ‖ f ‖p, (1.1)

where D(z, 1) is the disc with center z and radius 1. The same conclusion with the factor
(
2π/p

)1/p replaced by 1 holds whenever p = ∞.
In this note, we study the weighted superposition operator on Fock spaces where the

operator Sψ is covered as a particular case. Let (u, ψ) be a pair of holomorphic functions on
C. For twometric spacesH1 andH2, the weighted superposition operator S(u,ψ) : H1 → H2

is defined by S(u,ψ) f = MuSψ( f ) where Sψ f = ψ( f ) and Mu f = u f are respectively
the superposition and multiplication operators. Recently, S(u,ψ) was studied on the Bergman
and Bloch spaces [9].

The first main question now is to identify which pairs of analytic symbols (u, ψ) define
weighted superposition operators S(u,ψ) from Fp into Fq . The questions for S(u,ψ) are in
general technically more difficult than the corresponding questions for Sψ since the presence
of the multiplier u can complicate proofs and arguments. We may first begin with a simple
example that illustrates the problem at hand. Let f = α be a constant and g(z) = z. Then,
for 0 < q ≤ ∞ and a non-zero ψ ,

‖S(u,ψ) f ‖q = ‖ψ(α)u‖q = |ψ(α)|‖u‖q and ‖S(u,ψ)g‖q = ‖uψ‖q .
This shows that if S(u,ψ) maps Fp into Fq , then both u and uψ belong to Fq . On the other

hand, set for example q = 2 and consider the function h(z) = sin( z
2

2 )/z2. Then h is an
entire function which belongs to F2. To see this, observe that when |z| = r gets larger, then
|h(z)|2 � er

2
/r4 and

∫ 2π

0

∫ ∞

0
|h(reit )|2re−r2dtdr < ∞.

However, the function zh is not inF2 since |zh(z)|2re−r2 � 1/r for larger |z|. It follows that
S(z,z) fails to mapF2 into itself while it is easy to see that Sz does. This exhibits the existence
of some degree of interplay between u and ψ in defining S(u,ψ) on Fock spaces. Our next
main result provides their precise interplay.

Theorem 1.1 Let ψ and u be nonzero entire functions on C, and 0 < p, q ≤ ∞.

(i) If p ≤ q, then the following statements are equivalent.

(a) S(u,ψ) maps Fp into Fq ;
(b) Either ψ(z) = az + b for some a, b ∈ C and u is a constant or ψ is a constant and

u ∈ Fq . If u is in addition non-vanishing, then

u(z) = u(0)ea1z+a2z2 , a1, a2 ∈ C and |a2| < 1/2; (1.2)

(c) S(u,ψ) : Fp → Fq is bounded;
(d) S(u,ψ) : Fp → Fq is globally Lipschitz continuous.

(ii) If p > q, then the following statements are equivalent.

(a) S(u,ψ) maps Fp into Fq ;
(b) ψ is a constant and u ∈ Fq . If u is in addition non-vanishing, then the representation

in (1.2) holds;
(c) S(u,ψ) : Fp → Fq is bounded;
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(d) S(u,ψ) : Fp → Fq is globally Lipschitz continuous.

(iii) The map S(u,ψ) : Fp → Fq cannot be compact for any pair of p and q.

The proof of Theorem 1.1 follows once we prove Lemma 2.2, Theorem 2.3, and Theorem 2.4
in the next section.

The operator S(u,ψ) reduces to Sψ and Mu when u = 1 and ψ(z) = z respectively.
Consequently, we record the following special cases of Theorem 1.1.

Corollary 1.2 Let ψ be a nonzero entire function on C and 0 < p, q ≤ ∞.

(i) If p ≤ q, then the statements: Sψ(Fp) ⊆ Fq , ψ(z) = az + b for some a, b ∈ C,
Sψ : Fp → Fq is bounded and Sψ : Fp → Fq is globally Lipschitz continuous, are all
equivalent.

(ii) If p > q, then the statements: Sψ(Fp) ⊆ Fq ,ψ = constant, Sψ : Fp → Fq is bounded,
and Sψ : Fp → Fq is globally Lipschitz continuous, are all equivalent.

(iii) Sψ : Fp → Fq cannot be compact for any pair of p and q.

Given the fact that Fp properly contains the space Fq when q < p [10,Theorem 2.10], it
should be clear that a superposition from the former to the latter is possible only via constant
functions.

Corollary 1.3 Let u be a nonzero entire function on C and 0 < p, q ≤ ∞. Then

(i) if p ≤ q, then the statements: Mu(Fp) ⊆ Fq , u = constant, Mu : Fp → Fq is bounded,
and Mu : Fp → Fq is globally Lipschitz continuous, are all equivalent.

(ii) if p > q, then Mu fails to map Fp into Fq .
(iii) Mu : Fp → Fq cannot be compact for any pair of p and q.

We close this section with a word on notation. The notion U (z) � V (z) (or equivalently
V (z) � U (z)) means that there is a constant C such that U (z) ≤ CV (z) holds for all z in
the set of a question. We write U (z) � V (z) if both U (z) � V (z) and V (z) � U (z).

2 Proof of the results

Let us first consider the following necessity condition about the superposition operator Sψ .
The proof of the lemma demonstrates an important test function that will be used in the proof
of the main result.

Lemma 2.1 Let ψ be nonzero entire function on C and 0 < p, q ≤ ∞. If Sψ maps Fp into
Fq , then ψ = az + b for some a, b ∈ C.

Proof To prove the assertion, we need to choose test function from Fp for any fixed p. Thus,
for c with 1

4 < c < 1
2 , consider the function

fc(z) = ecz
2

In view of the estimate,
∣
∣ f (z)e−|z|2/2∣∣ ≤ e(c− 1

2 )|z|2 ,

the functions fc ∈ Fp . Moreover, the Fock space norm is invariant under rotations so if
|λ| = |μ| = 1, then all functions

fλ,μ,c(z) = λecμz
2 ∈ Fp
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and have the same norm as fc which can be seen by making change of variables τ = √
μz

in the integration for p �= ∞ and in estimating the supremum norm for p = ∞. By the same
reasoning, we also observe that

‖Sψ fλ,μ,c‖q = ‖Sψ fc‖q .
Now for any w �= 0, we can find z, λ, μ ∈ C with |λ| = |μ| = 1 and

w = λecμz
2

and also that cμz2 is real and positive which implies w/λ = λw. Clearly, for large w, we
have

|z|2 = 1

c
log(λw) � log |w|

c
.

Therefore, using the estimate above and in (1.1)

|ψ(w)| = |ψ(
λecμz

2)| ≤ e|z|2/2‖Sψ fλ,μ,c‖q = e|z|2/2‖Sψ fc‖q = ‖Sψ fc‖q |w|1/2c

for sufficiently large w.
Since ‖Sψ fc‖q is a constant value and 1/2c < 2, the standard Cauchy estimates imply

that ψ is a polynomial of degree at most one as desired. ��
Next,we recall the notion of order and type of an entire function and prove onemore important
lemma. Let f be an entire function, and M(r , f ) = max|z|=r | f (z)|. The order of f is

ρ( f ) = lim sup
r→∞

log logM(r , f )

log r
.

If 0 < ρ < ∞, then the type of f is given by

τ( f ) = lim sup
r→∞

logM(r , f )

rρ( f )
.

By definition, if a function f has order ρ, then for every ε > 0

M( f , r) = O(eρ+ε)

when r → ∞. This clearly shows that any function of order less than 2 belongs to all the
Fock spaces Fp . Conversely, by [10,Theorem 2.12], every function in Fp has order at most
2, and if its order is exactly 2, it must be of type less than or equal to 1/2. In the next lemma,
we prove that if the function has no zeros, then its type can not be 1/2.

Lemma 2.2 Let 0 < p ≤ ∞ and u is a non-vanishing function in Fp. Then

u(z) = u(0)ea1z+a2z2 , a1, a2 ∈ C and |a2| < 1/2. (2.1)

Proof We argue as follows. Since u ∈ Fp , by [10,Theorem 2.12], ρ(u) ≤ 2 and if ρ(u) = 2,
it must be of type less than or equal to 1/2. On the other hand, since u is non-vanishing, it
follows from the Hadamard Factorisation Theorem that

u(z) = ea0+a1z+a2z2 = u(0)ea1z+a2z2 (2.2)

where a0, a1, a2 ∈ C and |a2| ≤ 1/2. It remains to show that |a2| = 1/2 can not happen.
Assuming to the contrary, we may simply set a2 = 1/2 (if not since the Fock space norm
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is invariant under rotation, we can find a μ with |μ| = 1 such that μa2 = 1/2 ). Then for
p < ∞

∫

C

|u(z)|pe− p
2 |z|2d A(z) = |u(0)|p

∫

C

ep
(

(a1z)+1/2
(z2))− p

2 |z|2d A(z)

= |u(0)|p
∫

R

∫

R

ep
(a1)x−p(�(a1)y+y2)dxdy

= |u(0)|p
( ∫

R

ep
(a1)xdx

)( ∫

R

e−p(�(a1)y+y2)dy

)

= ∞

as the first integral with respect to x diverges while the second integral with respect to y
converges which contradicts the assumption that u ∈ Fp .

If p = ∞, we replace the above integral argument with supremum to arrive at the same
conclusion. ��

For the sake of better exposition, we split Theorem 1.1 into two theorems below.

Theorem 2.3 Let ψ and u be nonzero entire functions on C and 0 < p < q ≤ ∞. Then if

(i) p ≤ q, then S(u,ψ) maps Fp into Fq if and only if either ψ(z) = az + b for some
a, b ∈ C and u is a constant or ψ is a constant and u ∈ Fq . In the case when u is
non-vanishing, it has the form

u(z) = u(0)ea1z+a2z2 , a1, a2 ∈ C and |a2| < 1/2. (2.3)

(ii) p > q, then S(u,ψ) maps Fp into Fq if and only if ψ is a constant and u ∈ Fq . In the
case when u is non-vanishing, it has the form in (2.3).

Proof of part (i)

The sufficiency of the condition is easy to verify. It is the necessity that may require a new
techniques which we present below. We shall first prove that if S(u,ψ) maps Fp into Fq , then
ψ(z) = az + b for some a, b ∈ C. The assumption implies u ∈ Fq as already seen before.
To this end, if u is non-vanishing, by Lemma 2.2

u(z) = u(0)ea1z+a2z2 , a1, a2 ∈ C and |a2| < 1/2. (2.4)

Suppose for the purpose of contradiction that ψ is not linear. Then there exists a sequence
wn ∈ C such that |wn | → ∞ as n → ∞ and |ψ(wn)| ≥ n|wn |2 for n ∈ N. Arguing as in
the proof of Lemma 2.1, for each wn �= 0, we can find zn, λn, μn ∈ C with |λn | = |μn | = 1
and

wn = λne
cμn z2n (2.5)

and also that cμnz2n is real and positive. We may further pick a sparse subsequence of zn such
that the discs D(zn, 1) are mutually disjoint. Now, for q < ∞, applying the operator to the
sequence

fc,λn ,μn (z) = λne
cμn z2
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and eventually invoking the estimate in (1.1),
∫

C

|Su,ψ fc,λn ,μn (z)|qe− q
2 |z|2d A(z) =

∫

C

|u(z)|q |ψ(λne
cμn z2 |qe− q

2 |z|2d A(z)

≥
∞∑

n=1

∫

D(zn ,1)
|u(z)|q |ψ(wn)|qe− q

2 |z|2d A(z)

�
∞∑

n=1

|u(zn)|q |ψ(wn)|qe− q
2 |zn |2 ≥

∞∑

n=1

nq |u(zn)|qe2cqμn z2n− q
2 |zn |2 . (2.6)

We consider two separate cases depending on whether the multiplier function u has zeros or
not in C. If u is non-vanishing, by (2.4) and (2.6)

∫

C

|Su,ψ fc,λn ,μn (z)|qnqe− q
2 |z|2d A(z) �

∞∑

n=1

|ea0+a1zn+a2z2n |q |e2cqμn z2n− q
2 |zn |2 . (2.7)

Now, if a2 = 0, then we may chose c in the interval
( 3
8 ,

1
2 ) such that 2c − 1

2 > 0. Thus, the

last sum in (2.6) diverges. On the other hand, if 0 < |a2|, then wemay chose c in
( 1
4 + |a2|

2 , 1
2 )

such that

2c − 1

2
> 2

(
1

4
+ |a2|

2

)

− 1

2
= |a2| > 0

and hence the sum in (2.6) still diverges. This is a contradiction and hence ψ(z) = az + b
for some a, b ∈ C in this case.
Next, assume that u has zeros and analyze the case when the sequence zn in the sum (2.6)
could belong to the zero set of u. Let us for example assume that u is a polynomial. Then
there exist positive constants C and R such that for |u(z)| ≥ C for |z| ≥ R. It follows that

‖S(u,ψ) f ‖qq = q

2π

∫

C

∣
∣u(z)Sψ f (z)

∣
∣qe− q

2 |z|2d A(z)

≥ Cq q

2π

∫

{z∈C:|z|≥R}
∣
∣Sψ f (z)

∣
∣qe− q

2 |z|2d A(z).

By Lemma 2.1, the last integral above is finite only when ψ(z) = az + b.
Now if infinitely many z′ns belong to the zero set of u such that last sum in (2.6) converges,

then we keep changing our choice of the constant c in the interval (1/4, 1/2) above until the
convergence is not possible. We explain how this can done below. From (2.5) and since c has
uncountably many possible values in the said interval, we collect all these values to see that

{
1√
c

log(wn/λn)

μn
: (c, n) ∈ (1/4, 1/2) × N

}

is uncountable. As known, an entire function can not have uncountable zero set. Taking this
into account, we can choice the sequence zn in such a way that it does not belong to the zero
set of u when n → ∞.

Now, if u has order less than 2, then every choice of c in the interval (1/4, 1/2) gives that
the sum in (2.6) diverges. On the other hand, if ρ(u) = 2 and its type, τ(u), is less than 1/2,
then we can still choice c in the interval ( τ(u)

2 + 1
4 ,

1
2 ) such that sum in (2.6) diverges. Thus,

it remains to consider the extremal case when

|u(zn)| � e− 1
2 |zn |2 (2.8)
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as n → ∞. To this end, setting the expression in (2.8) in (2.6)

∫

C

|Su,ψ fc,λn ,μn (z)|qe− q
2 |z|2d A(z) �

∞∑

n=1

nq |u(zn)|qe2cqμn z2n− q
2 |zn |2

�
∞∑

n=1

nq |u(zn)|qe2cqμn z2n−q|zn |2 (2.9)

holds for all c in (1/4, 1/2). Letting c → 1
2 , we note that the sum in (2.9) converges onlywhen

the sequence {nq :∈ N} is summable, which is a contradiction again, and henceψ(z) = az+b
for some constants a, b ∈ C.

Next, we set ψ(z) = az + b and show that u is necessarily a constant function whenever
a �= 0. Aiming to argue in the contrary, assume that u is not a constant. Then we can pick
a sparse sequence wn such that |u(wn)| → ∞ as n → ∞ and that the discs D(wn, 1) are

mutually disjoint. For each positive ε, observe that the function gε(z) = e
z2
2+ε ∈ Fp for all

p. Then we can find a sequence μn such that |μn | = 1 and μnw
2
n are real and positive for

sufficiently large n. Setting hε,μn (z) = e
μn z2

2+ε − b
a and eventually applying (1.1)

‖S(u,ψ)hε,μn‖qq = q

2π

∫

C

∣
∣S(u,ψ)hε,μn (z)

∣
∣qe− q

2 |z|2d A(z)

= q

2π
|a|q

∫

C

∣
∣u(z)hε,μn (z)

∣
∣qe− q

2 |z|2d A(z)

≥ q

2π
|a|q

∞∑

n=1

∫

D(wn ,1)

∣
∣u(z)hε,μn (z)

∣
∣qe− q

2 |z|2d A(z)

≥ q

2π
|a|q

∞∑

n=1

|u(wn)|qe
(

q
2+ε

− q
2

)
w2
n

for all ε > 0. Letting ε → 0, we observe that the sum diverges, which is again a contradiction.
For q = ∞, we may simply replace the integral above by the supremum norm and argue

to arrive at the same conclusion. This completes the proof of part (i).

Proof of part (ii)

The sufficiency of the condition is clear again. Let p > q . Then as already proved above
in the first part, ψ(z) = az + b is a necessary condition for S(u,ψ) to map Fp into Fq

independent of the size of p and q . Assume that a �= 0 and for any f ∈ Fp , consider the
function fb = f − b

a ∈ Fp and observe
∥
∥S(u,ψ) fb

∥
∥
q = |a||α|‖ f ‖q

Then, our conclusion follows from the fact that Fp\Fq is non-empty [10,Theorem 2.10] and
|a||α| �= 0 and completes the proof of Theorem 2.3.

Theorem 2.4 Let ψ and u be nonzero entire functions on C and 0 < p, q ≤ ∞. If S(u,ψ)

maps Fp into Fq , then it is bounded and globally Lipschitz continuous. But S(u,ψ) cannot be
compact.
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75 Page 8 of 10 T. Mengestie

Proof Clearly, f ψ is a constant and u ∈ Fq , then S(u,ψ) : Fp → Fq is bounded. Thus, lets
dispose the sufficiency of the condition when ψ(z) = az + b and u = α. Consider f ∈ Fp

and compute

‖S(u,ψ) f ‖qq = q

2π

∫

C

∣
∣u(z)(a f (z) + b)

∣
∣qe− q

2 |z|2d A(z)

≤ q

2π
|2α|q

(
|a|q

∫

C

| f (z)|qe− q
2 |z|2d A(z) +

∫

C

|b|qe− q
2 |z|2d A(z)

)

= |2α|q |a|q‖ f ‖qq + |2α|q |b|q ≤ |2α|q |a|q‖ f ‖qp + |2α|q |b|q < ∞
where the second inequality follows from [10,Theorem 2.10].

Next, let us show that the spaces support no compact weighted superposition operators.
Aiming to arrive at a contradiction, let S(u,ψ) : Fp → Fq be compact and hence ψ(z) =
az+b for some complex numbera, b andu = α orψ = b andu ∈ Fq . The sequence kw ∈ Fp

is bounded and converges to zero uniformly on compact subsets of C when |w| → ∞.
Applying the operator to kw and eventually (1.1)

∥
∥S(u,ψ)kw

∥
∥
q ≥ |akw(w) + b||α|e−|w|2/2 = |a + be−|w|2/2||α|

and
∥
∥S(u,ψ)kw

∥
∥
q → 0 as |w| → ∞ only when a = 0. It follows that

∥
∥S(u,ψ)kw

∥
∥
q = |b||α|‖1‖q → 0

as |w| → ∞ only if b = 0 which contradicts that ψ is nonzero.
If a = 0 and u ∈ Fq is non-zero, the same conclusion follows easily.
It remains to show that S(u,ψ) : Fp → Fq is globally Lipschitz continuity. Since the

case for p > q is trivial, we assume p ≤ q . An application of Theorem 2.3 gives that
ψ(z) = az + b and u = α �= 0 or ψ = b and u ∈ Fq . If a = 0, then the conclusion follows
easily. Thus, assume a �= 0 and hence u = α �= 0. For f , g ∈ Fp

‖S(u,ψ) f − S(u,ψ)g‖qq = ‖au f − aug‖q = |aα|‖ f − g‖q ≤ |aα|‖ f − g‖p

where the last inequality follows from the inclusion property. This shows that S(u,ψ) is
globally Lipschitz continuous with constant |aα|. ��

2.1 Remark

In the remainder of this section, we present alternative proofs for the necessity in Theorem 2.3
when

(i) q = ∞
(ii) 2 = p < q < ∞
(iii) q < p < ∞ and u is non-vanishing.

The proof is interest of its own as it shows how the zero sets and uniqueness sets in Fock
spaces play important roles in the study of weighted superposition operators. Unfortunately,
a complete characterization of such sets are still an open problem as far as we know. Some
necessary and sufficient conditions can be read in [10,Chapter 5].

(i) We consider the square lattice in the complex plane

	 = {
ωmn = √

π(m + in) : m, n ∈ Z
}
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Weighted superposition operators on Fock spaces Page 9 of 10 75

where Z denotes the set of all integers. As known the Weierstrass σ -function associated to
	 is defined by

σ(z) = z
∏

(m,n)�=(0,0)
(m,n)∈Z2

(

1 − z

ωmn

)

exp

(
z

ωmn
+ z2

2ω2
mn

)

.

Furthermore, it is known that 	 is the zero set for σ and by [10,Lemma 5.6], σ ∈ F∞ but
not in any of the other Fock spaces Fp . Aiming to argue in the contrary, suppose now that
u �= 0 and ψ is not a constant. Since S(u,ψ) maps F∞ into Fq , the function

F = S(u,ψ)σ − ψ(0)u = uψ(σ) − ψ(0)u ∈ Fq .

Now since ψ is not a constant, the function F is non-zero and vanishes on 	. On the other
hand, by [10,Lemma 5.7], 	 is a uniqueness set for Fq for all q �= ∞ which implies that
F = 0. This is contradicts the fact that F �= 0. Therefore, ψ is a constant.

(ii) We consider the set � = 	 − {0}. As shown in [10,p.204], � is a uniqueness set for
F2. Indeed, the function g(z) = σ(z)/z belongs to Fp if and only if p > 2. Now to argue as
above, assume ψ is not a constant and hence

G(z) = S(u,ψ)g − ψ(0)u = uψ(g) − ψ(0)u ∈ F2

is non-zero and vanishes on �, but � is a uniqueness set for F2. Thus, G = 0 resulting a
contradiction again.

(iii) For a positive number R, we consider the following modified lattice

	R = {
ωmn : m, n ∈ Z

}

where

ωmn =
{

zmn, if n �= 0 or n = m = 0√
π

(
m + Rm

|m|
)
, if n = 0 and m �= 0

Then the modified Weierstrass function associated to 	R is given by

σR(z) = z
∏

(m,n)�=(0,0)
(m,n)∈Z2

(

1 − z

ωmn

)

exp

(
z

ωmn
+ z2

2z2mn

)

.

Now if we choose R to be a number such that 1
p < R < 1

q , then as shown in the proof of
[8,Theorem 1.1], the function σR ∈ Fp and σR constitutes a zero set for Fp while it fails to
be a zero set for Fq .

Now to argue as in the previous two cases, assume u ∈ Fq is non-vanishing and ψ not a
constant. Then

H = S(u,ψ)σa,R − ψ(0)u = uψ(σ) − ψ(0)u ∈ Fq

is non constant and vanishes only on the set	R . It follows that 	R is a zero set forFq which
is a contradiction.
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1. Alvarez, V., Márquez, M., Vukotić, D.: Superposition operators between the Bloch space and Bergman
spaces. Ark. Mat. 42, 205–216 (2004)

2. Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge
(1990)
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