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Abstract
We study the cyclic structures of theweighted composition operators and their adjoints
on the Fock space F2. A complete characterization of cyclicity which depends on the
derivative of the symbol for the composition operator and non-vanishing structure
of the weight function is provided. It is further shown that the space fails to support
supercyclic adjoint weighted composition operators. As a tool in proving our main
results, we also identified eigenvectors of the weighted composition operators in the
space which is interest of its own.
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1 Introduction

For a pair of entire functions (u, ψ) on the complex plane C, the induced weighted
composition operator W(u,ψ) maps f to u f (ψ). If u = 1, then W(u,ψ) is just the
composition map Cψ : f �→ f (ψ). On the other hand, if ψ is the identity map, then
W(u,ψ) reduces to themultiplication operatorMu : f �→ u f . Thus,W(u,ψ) generalizes
the two operators and can be written as a product W(u,ψ) = MuCψ . The theory of
weighted composition operators traces back to the sixties in the work of Forelli [6]
where it was shown that the isometries on the Hardy spaces H p whenever 1 < p < ∞
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and p �= 2 are weighted composition operators. De Leeuw [9] later showed that the
same conclusion holds on the space H1 as well. Since then, the operator has become
a natural object of study and its investigation has rapidly evolved in function related
operator theory. A number of researchers have studied the operator in various settings
expressing its spectral and topological properties in terms of the function theoretic
properties of the inducing pairs of symbols (u, ψ); see for example [2, 5, 11, 12, 16,
17] and the references therein.

In this note, we study the dynamical properties of the operators and their adjoints on
the Fock space F2. We recall that F2 consists of square integrable analytic functions
on the complex plane C with respect to the Gaussian measure dμ(z) = 1

π
e−|z|2d A(z)

where d A is the Lebesgue area measure in C. It is a reproducing kernel Hilbert space
endowed with the inner product

〈 f , g〉 =
∫
C

f (z)g(z)dμ(z),

norm ‖ f ‖2 := √〈 f , f 〉, kernel function Kw(z) = ewz and normalized kernel kw

= Kw‖Kw‖2 .

A great deal of the studies on weighted composition operators have been devoted to
characterizing boundedness and compactness spectral properties over various function
spaces. On Fock spaces, these properties have been well understood and described for
example in [11, 12, 17] and expressed in different conditions among which following
the work in [11], W(u,ψ) is bounded on F2 if and only if u belongs to the space and

sup
z∈C

|u(z)|e 1
2 (|ψ(z)|2−|z|2) < ∞. (1.1)

Furthermore, it was proved that condition (1.1) implies ψ(z) = az + b, |a| ≤ 1 and
whenever |a| = 1, the multiplier function has the special form

u = u(0)K−ab. (1.2)

Recently, Carroll and Gilmore [2], used the idea of the order of an entire function and
proved the following analogous result when u is non-vanishing and |a| < 1.

Lemma 1.1 Let ψ(z) = az + b, |a| < 1 and u be a non-vanishing entire function on
C. Then W(u,ψ) is

(i) compact on F2 if and only if u has the form

u(z) = ea0+a1z+a2z2 (1.3)

for some constants a0, a1, a2 such that |a2| <
1−|a|2

2 .
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(ii) bounded but not compact on F2 if and only if u has the form in (1.3) with |a2|
= 1−|a|2

2 and either a1 + ab = 0 or a1 + ab �= 0 and

a2 = − (1 − |a|2)(a1 + ab)2

2|a1 + ab|2 .

The representations in (1.2) and (1.3) will play important roles in the rest of our
consideration. An important feature following these representations is that there exists
an interesting interplay between u and ψ such that W(u,ψ) = MuCψ is bounded
(compact) onF2 while bothCψ and u fail to be. For example one can set u0(z) = e−z ,
ψ0(z) = z + 1, and observe that W(u0,ψ0) is bounded while both the factors remain
unbounded. The purpose of this note is to study the effect of this interplay on the
dynamical structures of W(u,ψ) and its adjoint on F2.

Recall that a bounded linear operator T on a separable Banach space H is said to
be cyclic if there exists a vector f inH for which the span of the orbit

Orb(T , f ) = {
f , T f , T 2 f , T 3 f , ...

}

is dense in H. Such an f is called a cyclic vector for T . The operator is hypercyclic
if the orbit itself is dense, and T is supercyclic with vector f if the projective orbit

C. Orb(T , f ) = {
λT n f , λ ∈ C, n = 0, 1, 2, ...

}

is dense. These dynamical properties of T depend on the behaviour of its iterates
T n = T ◦ T ◦ T ◦ ... ◦ T − n times. For detailed background, one may consult the
monograph [1].

It is worth noting that identifying cyclic and hypercyclic operators has been a
subject of great interest partly because they play central role in the study of other
operators. More specifically, it is known that every bounded linear operator on an
infinite dimensional complex separable Hilbert space is the sum of two cyclic oper-
ators [18]. Interestingly, this result holds true with the summands being hypercyclic
operators [1,p.50]. In [13], we reported that there exists no supercyclic (and hence
hypercyclic) composition operator on Fock spaces. On the other hand, the orbit of any
vector f under W(u,ψ) has elements of the form

Wn
(u,ψ) f = f (ψn)

n−1∏
j=0

u(ψ j ) (1.4)

for all nonnegative integers n and ψ0 is the identity map. This shows that the product
of weighted composition operators is another weighted composition operator with
symbol (un, ψn) where

un =
n−1∏
j=0

u(ψ j ). (1.5)
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The formula in (1.4) further displays a kind of interplay between the functions ψ and
u and generates interest to ask whether the interplay results in hypercyclic, supercyclic
or cyclic weighted composition operators and their adjoints on the Fock space as it
did for example on the boundedness and compactness structures. The result in [13]
was extended later in [14] for the weighted composition operators asserting that the
interplay between the additional multiplier function u and ψ has failed to make any
projective orbit dense enough in F2. This result was also obtained in [2]. The first
question is then what happens to this structure for the adjoint of the operators. Note
that the adjoint W ∗

(u,ψ) of a bounded weighted composition operator W(u,ψ) on F2
satisfies

〈W(u,ψ) f , g〉 = 〈 f ,W ∗
(u,ψ)g〉

for all f , g ∈ F2. We recall that the adjoint of a weighted composition operator on
F2 is not necessarily a weighted composition operator. Indeed, L. Zhao and C. Pang
[19] proved that for pairs of entire functions u1, ψ1 and u2, ψ2 from F2, the relation
W ∗

(u1,ψ1)
= W(u2,ψ2) holds if and only if

ψ1(z) = az + b, u1(z) = dKc(z), ψ2(z) = az + c, and u2(z) = dKc(z)

where a, b, c and d are constants such that d �= 0 and either |a| < 1 or |a| = 1 and c+
ab = 0. Thus, an operator and its adjoint can have quite different dynamical structures.
An example is the multiplication operator on Hardy spaces which the operator fails to
be hypercyclic while the structures are different for its adjoint as can be seen [1,p.26].
Let us now show that the space F2 fails to support supercyclic adjoint weighted
composition operators either.

Theorem 1.2 Let u and ψ be analytic maps on C such that W ∗
(u,ψ) is bounded on F2.

Then W ∗
(u,ψ) cannot be supercyclic on F2.

The proof of the result is presented in Sect. 2.1. Given the absence of supercyclic
W(u,ψ) and W ∗

(u,ψ) on the space F2, the next natural question is what happens to the
weaker cyclicity properties for the two classes of operators. Clearly, supercyclicity is
a much stronger property than cyclicity. We now state the main result of our article
which effectively answers the above question. The proof will be presented in several
statements in the next section.

Theorem 1.3 Let u and ψ(z) = az + b, |a| ≤ 1 be analytic maps on C such that
W(u,ψ) is bounded on F2. Then the following statements are equivalent.

(i) W(u,ψ) is cyclic on F2;
(ii) u is non-vanishing and ak �= a for all positive integers k ≥ 2;
(iii) W ∗

(u,ψ) is cyclic on F2.

The equivalency of statements (i) and (ii) is proved in Theorem 2.4 while that of (ii)
and (iii) is proved in Theorem 2.5. The theorem asserts that a weight function cannot
have zeros if the corresponding induced weighted composition operator or its adjoint
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admits a cyclic vector. Furthermore, the cyclicity of W(u,ψ) or its adjoint requires that
the iterates of the derivative of the symbol ψ(z) = az+b to be pairwise distinct. This
is indeed the condition required for the cyclicity of the composition operator [13].
It means that every nonzero multiplier function makes it possible for the weighted
operator to inherent the same cyclic structure as the unweighted case. We note also
that the cyclicity condition clearly restricts ψ to be a nonconstant function.

2 Proof of theMain Results

The fixed point behaviour of the map ψ(z) = az + b plays an important role in
determining the cyclic structure of a bounded weighted composition operator and its
adjoint. Thus, in the rest of the manuscript we denote by z0 such a fixed point where
z0 = b/(1 − a) for a �= 1, and z0 = 0 for a = 1 and b = 0.

Let us now identify eigenvectors of the weighted composition operators which will
be used to prove our main results apart from being interest of its own.

Lemma 2.1 Let u and ψ be analytic functions on C, and W(u,ψ) be bounded on F2
and hence ψ(z) = az + b with |a| ≤ 1. Let u be non-vanishing on C. Then for all
m ≥ 0, the sequence

fm(z) =
{

(z − z0)me
ab
a−1 z |a| = 1, a �= 1

(z − z0)meh(z), 0 < |a| < 1

where

h(z) = a1
1 − a

(z − z0) + 2a2z0
1 − a

(z − z0) + a2
1 − a2

(z − z0)
2 (2.1)

a1, a2 as in Lemma 1.1 constitutes a sequence of eigenvectors for W(u,ψ). In this case

{u(z0)a
m,m ∈ N0} ⊂ σp(W(u,ψ))

where σp(W(u,ψ)) refers to the point spectrum of W(u,ψ).

Proof For |a| = 1 and a �= 1, we apply the representation of the weight function in
(1.2) and compute

W(u,ψ) fm(z) = u(0)K−ab(z) fm(az + b) = u(0)am(z − z0)
me

ab
a−1 (az+b)

= u(0)ame
a|b|2
a−1 fm(z) = u(z0)a

m fm(z)

which also implies that u(z0)am represents a sequence of eigenvalues in this case.
When 0 < |a| < 1, observe that because of the condition in Lemma 1.1, the

sequence of functions fm belong to the space F2. Then applying the same lemma, we
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may rewrite the weight function as

u(z) = ea0+a1z+a2z2 = u(z0)e
−(a0+a1z0+a2z20)+a0+a1z+a2z2

= u(z0)e
a1(z−z0)+2a2z0(z−z0)+a2(z−z0)2 .

Next, for m ≥ 0,

W(u,ψ) fm(z) = u(z) fm(az + b) = u(z0)a
m(z − z0)

meg(z)+h(az+b)

where g(z) = a1(z − z0) + 2a2z0(z − z0) + a2(z − z0)2.
Now, a simple computation shows that

g(z) + h(az + b) = h(z).

Therefore

W(u,ψ) fm = u(z0)a
m fm . (2.2)

The relation in (2.2) implies u(z0)am is a sequence of eigenvalues in this case as well
and completes the proof. ��

2.1 Proof of Theorem 1.2

First we mention that if W ∗
(u,ψ) is supercyclic, then u cannot vanish in the complex

plane. The same conclusion holds with the weaker cyclicity property. A proof for this
will be given once later in Theorem 2.5. Thus, we can assume that u is non-vanishing
in this proof and apply Lemma 2.1 as needed.
Since W(u,ψ) is bounded, we set ψ(z) = az + b, |a| ≤ 1 and consider two different
cases.

Case 1: Let |a| < 1. Then by Lemma 2.1, it follows that the set

{
u(z0)a

m, m ∈ N0
}

(2.3)

is contained in the point spectrum of the adjoint of W ∗
(u,ψ), σp(W(u,ψ)). On the other

hand, by [1,Proposition 1.26] the point spectrumof the adjoint of a supercyclic operator
is either empty or

σp(W(u,ψ)) = {λ} (2.4)

for a single number λ �= 0. By (2.3), the point spectrum is nonempty. Thus, it suffices
to show that the point spectrum contains at least two elements. First observe that if
u(z0) = 0, then zero belongs to the point spectrum and contradicts (2.4) and hence
the operator is not supercyclic.
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Assume that a = 0 and hence ψ(z) = b. Then the relation in (1.4) implies

(W(u,ψ))
n f (z) = f (b)u(b)n .

A simple calculation shows that any non zero function g in the space such that g(b) =
0 is orthogonal to the projective orbit of f under W ∗

(u,ψ). Thus, W
∗
(u,ψ) cannot be

supercyclic in this case either. On the other hand, if a �= 0, then the set in (2.3) contains
infinitely many elements and contradicts (2.4) and hence W ∗

(u,ψ) is not supercyclic.

Case 2 It remains to show the case for |a| = 1. This is rather immediate as
u = u(0)K−ab, by Theorem 3.2 of [11], W(u,ψ) is a constant multiple of a unitary
operator and hence normal. Since the adjoint of a normal operator is normal, W ∗

(u,ψ)

is also normal. Then, our conclusion follows from a result of Hilden and Wallen [8]
and completes the proof.

2.2 CyclicWu,Ã andW∗
(u,Ã)

Having proved that no supercyclicW ∗
u,ψ is supported on the Fock space, we now study

the weaker cyclicity property. We may first recall that even if an operator is cyclic on
Hilbert space, its adjoint does not necessarily have to be cyclic. If both an operator
and its adjoint are cyclic, they do not necessarily have to share the same cyclic vector.
But for special types of operators, normal operators, the following interesting result
holds.

Lemma 2.2 Let T be a normal operator on a Hilbert spaceH. Then f ∈ H is a cyclic
vector for T if and only if it is a cyclic vector for its adjoint T ∗.

The proof of the lemma is contained in [10,p.74] which was also referred to as a
solution to problem 164 in Halmos’ problem book [7].

Lemma 2.3 Let u andψ(z) = az+b, |a| = 1 be analytic maps onC such that W(u,ψ)

is bounded on F2. If am = a for some m ≥ 2 and u(z0) �= 0, then both W(u,ψ) and
W ∗

(u,ψ) are not cyclic on F2.

Proof Let us first show that W(u,ψ) is not cyclic and consider three different cases.

Case 1: a �= 1. In this case, we may first set ψz0(z) = z − z0 and claim that the
weighted composition operator induced by (kz0 , ψz0) is an isometric bijective map on
F2 with inverse W(k−z0 ,ψ−1

z0 )
. To this claim, for every f ∈ F2

‖W(kz0 ,ψz0 ) f ‖22 = 1

π

∫
C

|kz0(z)|2| f (z − z0)|2e−|z|2d A(z)

= 1

π

∫
C

| f (z − z0)|2e−|z−z0|2
(

|kz0(z)|2e|z−z0|2−|z|2
)
d A(z)

= 1

π

∫
C

| f (z − z0)|2e−|z−z0|2d A(z) = ‖ f ‖22.
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This shows that the operator is a linear isometry and hence satisfies the injectivity
condition W−1

(kz0 ,ψz0 )W(kz0 ,ψz0 ) = I . See also [20, Proposition 2.38] for this isometry.

On the other hand, for each f ∈ F2

W(kz0 ,ψz0 )W(k−z0 ,ψ−1
z0 )

f (z) = kz0(z)k−z0(z − z0) f (z) = f (z)

which also shows that W(kz0 ,ψz0 )W
−1
(kz0 ,ψz0 ) = I , and hence the claim.

Next, using z0 = b/(1 − a) and (1.2) for every f ∈ F2 we compute

W
(k−z0 ,ψ−1

z0 )
W(u,ψ)W(kz0 ,ψz0 ) f (z)

= k−z0(z)u(ψ−1
z0 (z)))kz0(ψ(ψ−1

z0 (z)) f (ψz0(ψ(ψ−1
z0 (z))))

= k−z0(z)u(0)K−ab(z + z0)kz0(az + b + az0) f (az) = u(z0)C�0 f (z)

where C�0 the composition operator induced by the symbol �0(z) = az. This shows
that W(u,ψ) is similar to the composition operator C�0 up to a scalar multiple. Since

u(z0) = u(0)e
a|b|2
a−1 �= 0, the constant multiplier above is non-zero. Moreover, since

cyclicity is similarity invariant, it suffices to show that C�0 is not cyclic whenever
am = a for some m ≥ 2. But this follows immediately from [13,Theorem 2.5]. Thus,
W(u,ψ) is not cyclic. On the other hand, since the operator W(u,ψ) is normal in this
case [11], its adjoint is also normal and hence the conclusion for W ∗

(u,ψ) follows from
Lemma 2.2.

Case 2: a = 1 and b = 0. Then a simple computation shows that for any f ∈ F2,

Wm
(u,ψ) f = f u(0)m

asserting that all the elements in the orbit are scalar multiplies of the vector f . Any
vector g in F2 orthogonal to f is also orthogonal to the closed linear span of its orbit
underW(u,ψ). Thus, it suffices to show that there exists such a non-zero g. To this end,
since S = span{ f } is a closed subspace of F2, the projection operator P : F2 → S is
continuous. Then for f1 ∈ F2\S, the function

g = f1 − P f1 ∈ S⊥

and orthogonal to the linear span of the orbit.

Case 3 a = 1 and b �= 0. Then, by a result of [11], the operator W(u,ψ) is normal
and hence not cyclic. If it were cyclic, then a classical result of Von Neumann [15]
implies that the operator has simple spectrum. On the contrary, by [16,Theorem 3.1],
the spectrum of W(u,ψ) is the set

{
z ∈ C : |z| = |u(0)|e |b|2

2
}
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which is not simple. By Lemma 2.2, the adjoint operator is not cyclic either, and
completes the proof. ��

Theorem 2.4 Let u and ψ(z) = az + b, |a| ≤ 1 be analytic maps on C such that
W(u,ψ) is bounded onF2. Then W(u,ψ) is cyclic onF2 if and only if u is non-vanishing
and ak �= a for all positive integers k ≥ 2.

Proof We may first proof the necessity of the condition. If the operator is cyclic and
u(w) = 0 for some w ∈ C, then using (1.5),

un(w) = u(w)

n−1∏
j=1

u(ψ j (w)) = 0

for all n ∈ N0. This shows that the orbit of any function f ∈ F2 underW(u,ψ) contains
only functions that vanish at w which obviously extends to the closed linear span of
the orbit. This is a contradiction.

For |a| = 1, the necessity of the condition ak �= a for all positive integers k ≥ 2
readily follows from Lemma 2.3.

To prove the sufficiency, we argue as follows. Observe that since the polynomials
are dense in F2, the closed linear span of gm(z) = (z − z0)m is dense. Then by
an interesting result of [?], the closed linear span of (gmg) is also dense for every
non-vanishing function g ∈ F2. Thus, setting in particular

g(z) =
{
e

ab
a−1 z |a| = 1, a �= 1

eh(z), 0 < |a| < 1

where h is as in (2.1), it follows from the above and Lemma 2.1 that the operator
W(u,ψ) has eigenvectors ( fm = ggm) with pairwise distinct eigenvalues u(z0)am .
Furthermore, the linear span of the vectors fm is dense in F2. Then, by a result of K.
Clancey and D. Rogers [4,Lemma 4 and Theorem 3], the operator is cyclic and indeed
has a dense set of cyclic vectors. ��

Theorem 2.5 Let u and ψ(z) = az + b, |a| ≤ 1 be analytic maps on C such that
W ∗

(u,ψ) is bounded on F2. Then W ∗
(u,ψ) is cyclic on F2 if and only if ak �= a for all

positive integers k ≥ 2 and u is non-vanishing.

Proof Necessity The necessity of the condition ak �= a for all positive integers k ≥ 2
follows from Lemma 2.3.

Let us show that u is non-vanishing. If |a| = 1, then by (1.2), u vanishes at a
point if and only if u is the zero function which obviously implies that the operator is
not cyclic. On the other hand, ψ can not be a constant since ak �= a. Thus, we may
assume 0 < |a| < 1 andW ∗

(u,ψ) is cyclic with a cyclic vector f . Aiming to argue in the
contrary, suppose that u vanishes at w. Then since the reproducing kernels are dense
in the space, there exists a sequence smf = ∑m

j=1 a j Kz j → f as m → ∞ where one
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of the z′j s can be chosen in such a way that

ψ i (z j ) = ai z j + b(1 − ai )

1 − a
= w

for some i ≥ 1. A computation with the adjoint property gives

W ∗
(u,ψ)Kz = u(z)Kψ(z)

which implies

W ∗n
(u,ψ)s

m
f =

m∑
j=1

a ju(z j )
n−1∏
i=1

u(ψ i (z j ))Kψn(z j ) → W ∗n
(u,ψ) f

asm → ∞. This implies that the orbit of f underW ∗
(u,ψ) contains only a finite number

of elements and its linear span can not be the whole space F2.
Sufficiency If |a| = 1, then the result follows from Lemma 2.2 and Theorem 2.4
since both W(u,ψ) and W ∗

(u,ψ) are normal operators. Thus, we proceed to verify the
sufficiency for the case when 0 < |a| < 1. We may first assume that b = 0 and
exhibit that Kz, z �= 0 is a cyclic vector for W ∗

(u,ψ). Now, fix a vector f ∈ F2 that
is orthogonal to the orbit of Kz under W ∗

(u,ψ). We claim that f should be the zero
function. To see this, note that for every m

0 = 〈 f , W ∗m
(u,ψ)Kz〉 = 〈Wm

(u,ψ) f , Kz〉

= Wm
(u,ψ) f (z) = f (amz)

m−1∏
j=0

u(a j z). (2.5)

By assumption, u is non-vanishing on C and hence (2.5) holds only if for all m

f (amz) = 0. (2.6)

Now, since |a| < 1, the sequence amz → 0 as m → ∞ for every z ∈ C. Therefore,
the relation in (2.6) holds only if f vanishes on the null sequence amz. It follows that
f is the zero function as asserted.
It remains to consider the case when b �= 0 and hence z0 �= 0. In this case we may

set ψ1(z) = az,

u1(z) = u(z + z0)

‖K−z0‖22
e−z0z+z0(az+az0+b)

and observe that ψ1(0) = 0 and u1(0) = u(z0). A straightforward calculation shows
that

W(u2,ψ2)W(u,ψ)W
−1
(u2,ψ2)

= W(u1,ψ1) (2.7)
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and W−1
(u2,ψ2)

= W(u3,ψ3) where u2(z) = k−z0(z), ψ2(z) = z + z0, u3 = kz0 , and
ψ3(z) = z − z0. It follows that the weighted composition operators W(u1,ψ1) and
W(u,ψ) are similar and so does their adjoints. Thus, our conclusion follows from the
first case and completes the proof of the sufficiency. ��

2.3 The Composition Operator and its Adjoint

The adjoint of a bounded composition operator on the Fock space is not necessarily a
composition operator. As proved in [3,Lemma 2], for ψ = az + b, the adjoint of Cψ

is rather a weighted composition operator where the weight function is a reproducing
kernel, namely thatC∗

ψ = W(Kb,φ) whereφ(z) = az. It follows from this, Theorem 1.2
and [14,Theorem2.1]( see also [2,Theorem5.1]) neither the composition nor its adjoint
can be supercyclic on F2.

The cyclicity property of C∗
ψ is described below by an exact the same condition as

that of the composition operator itself.

Corollary 2.6 Let Cψ be bounded on F2, that is ψ(z) = az + b, |a| ≤ 1 and b = 0
whenever |a| = 1. Then the following statements are equivalent.

(i) Cψ is cyclic on F2;
(ii) ak �= a for each positive integer k ≥ 2;
(iii) C∗

ψ is cyclic on F2.

Note that since C∗
ψ = W(Kb,φ) and Kb is non-vanishing, the equivalency of statement

(ii) and (iii) follows from Theorem 2.4. As a special case of Lemma 2.1, we observe
that the sequence gm(z) = (z − z0)m,m ∈ N0 represents eigenvectors for Cψ with
corresponding eigenvalues am . It follows from the assumption am �= a thatCψ has set
of eigenvectors with corresponding distinct eigenvalues am . Furthermore, the linear
span of such vectors is dense in F2. Then, by a result of K. Clancey and D. Rogers
[4,Lemma 4 and Theorem 3] the operator has a dense set of cyclic vectors.

We close this section with a remark on the dynamics of the multiplication operator
on the Fock space. Unlike the composition operator, a boundedmultiplication operator
onF2 cannot be cyclic. It is known that themultiplication operatorMz f = z f is cyclic
on the disc algebra since

span{Orb(Mz, 1)} = span{1, z, z2, ...}

is dense in the algebra A(D). But the operator Mz is not even defined on the Fock
space F2. In fact only constant multipliers are admissible on Fock spaces.
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