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We solve the closed range problem for weighted composition operators on Fock 
spaces. The result equivalently characterizes when the operators are bounded from 
below. We give several applications of the main result related to the operators 
invertibility, Fredholm, and dynamical sampling structures from frame perspectives. 
We prove there exists no vector in the Fock space for which its orbit under the 
weighted composition operator represents a frame family. Furthermore, it is shown 
that a weighted composition operator preserves frames if and only if it preserves the 
stronger Riesz basis property. Similar results are provided for the adjoint operator.
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1. Introduction

For entire functions u and ψ, we define the weighted composition operator W(u,ψ) by W(u,ψ)f = uf(ψ) =
MuCψ where Mu and Cψ are respectively the multiplication and composition operators. The study of W(u,ψ)
traces back to 1964 with works related to isometries on Hardy spaces [7,8]. Since then, various aspects of 
the operator on several spaces of holomorphic functions have been studied; see for example [10–13,15] and 
the references given therein. In this note, we take the study further and solve the closed range problem for 
W(u,ψ) on the Fock spaces Fp. Recall that for 1 ≤ p < ∞, the spaces Fp consist of all entire functions f on 
the complex plane C for which

‖f‖pp = p

2π

∫
C

|f(z)|e− p
2 |z|

2
dA(z) < ∞

where dA denotes the Lebesgue area measure on C.
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Following the works in [10,15], the operator W(u,ψ) : Fp → Fq is bounded if and only if u belongs to the 
space Fq and

sup
z∈C

|u(z)|e 1
2 (|ψ(z)|2−|z|2) < ∞. (1.1)

It was further proved in [10] that condition (1.1) implies ψ(z) = az + b, |a| ≤ 1 and whenever |a| = 1, the 
multiplier function has the form

u = u(0)K−ab (1.2)

where Kw(z) = ewz is the reproducing kernel function. The operator is compact if and only if |a| < 1 and

lim
|z|→∞

|u(z)|e 1
2 (|ψ(z)|2−|z|2) = 0.

Furthermore, if p > q, then W(u,ψ) : Fp → Fq is bounded if and only if it is compact. This and the 
representation in (1.2) will be of further use to us in the rest of our consideration.

This note has two main parts. In the first part, we study the closed range problem for W(u,ψ) when it 
acts between Fock spaces. Theorem 1.2 provides a complete answer to this problem. We further use the 
result to identify the operators invertible and Fredholm structures. In the second part, we study some more 
applications of the result related to the operators dynamical sampling and frame preserving properties. 
We prove, in Theorem 2.2, that there exists no vector in the Fock space F2 for which its orbit under the 
weighted composition operator represents a frame family. On the other hand, the operator preserves frames 
if and only if it preserves the stronger Riesz basis property, and this happens if and only if the operator has 
a closed range. Similar results are provided for the adjoint of the operator in Theorem 2.2.

For better exposition and since the particular result is needed to prove the more general result, we may 
first dispose the case of the composition operator.

Theorem 1.1. Let 1 ≤ p, q < ∞ and Cψ : Fp → Fq be bounded and hence ψ(z) = az + b, |a| ≤ 1. Then Cψ

has a closed range if and only if either a = 0 or |a| = 1 and p = q. The closed range is given by

R(Cψ) =
{
C, a = 0
Fp, |a| = 1 and p = q.

(1.3)

Having completely identified the closed range composition operators, the question now is whether there 
exists an interplay between the multiplier function u and the composition symbol ψ to induce a nontrivial 
closed range W(u,ψ) whenever p �= q or 0 < |a| < 1. Our next main result answers this in the negative.

Theorem 1.2. Let 1 ≤ p, q < ∞ and ψ and u be entire functions on C such that u is not identically zero. If 
W(u,ψ) : Fp → Fq is bounded and hence ψ(z) = az + b, |a| ≤ 1, then W(u,ψ) has a closed range if and only 
if either a = 0 or |a| = 1, u = u(o)K−ab with u(0) �= 0, and p = q. The closed range is given by

R(W(u,ψ)) =
{
{f(b)u : f ∈ Fp}, a = 0
Fp, |a| = 1, u = u(o)K−ab with u(0) �= 0 and p = q.

(1.4)

As will be explained latter in the proof, the result equivalently characterizes when W(u,ψ) is bounded from 
below on Fock spaces. As a consequences of Theorem 1.2, a bounded multiplication operator Mu : Fp → Fq

has a closed range if and only if u is non-zero and p = q. Note that Mu is bounded on Fp if and only if 
u = α =constant. Thus, R(Mu) = {αf : f ∈ Fp} = Fp when α �= 0.
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Next, we consider another consequence of the result about invertible and Fredholm structures. Note that 
when |a| = 1 and u(0) �= 0, by Theorem 1.2 the operator W(u,ψ) is surjective on Fp and hence its adjoint is 
injective. Thus, we may record the following.

Corollary 1.3. Let 1 ≤ p < ∞ and ψ and u be entire functions on C. If W(u,ψ) is bounded on Fp and hence 
ψ(z) = az + b, |a| ≤ 1, then the following statements are equivalent.

(i) |a| = 1 and u = u(o)K−ab with u(0) �= 0;
(ii) W(u,ψ) is invertible. Furthermore, the inverse is itself a weighted composition operator given by

W−1
(u,ψ) = W(u1,ψ1)

where ψ1(z) = (z − b)/a and u1 = e−|b|2

u(0) Kb;
(iii) W(u,ψ) is Fredholm of index zero.

Observe that since the inverse itself is a weighted composition operator, its boundedness follows from 
(1.1).
A word on notation: the notion U(z) � V (z) (or equivalently V (z) � U(z)) means that there is a constant C
such that U(z) ≤ CV (z) holds for all z in the set of a question. We write U(z) � V (z) if both U(z) � V (z)
and V (z) � U(z).

1.1. Proof of Theorem 1.1

The case for a constant ψ is clear. Let us start by assuming that p ≤ q and 0 < |a| < 1. In this case, Cψ

is an injective map and by the Open Mapping Theorem, Cψ has a closed range if and only if it is bounded 
from below. That is, there exists ε > 0 such that for each f ∈ Fp

‖Cψf‖q ≥ ε‖f‖p.

We plan to use this equivalency to verify the claim. Assume the operator has closed range and consider the 
sequence of functions fn(z) = (z − z0)n ∈ Fp where z0 = b/(1 − a) is the fixed point of ψ. Then,

Cψfn(z) = (az + b− z0)n = anfn(z)

and hence

‖Cψfn‖q = |a|n‖fn‖q ≥ ε‖fn‖p

for some ε > 0. This together with the assumption 0 < |a| < 1 and the inclusion property in Fock spaces 
[17, Theorem 2.10] imply

|a|n = ‖Cψfn‖q
‖fn‖q

≥ ε‖fn‖p
‖fn‖q

≥ ε → 0

as n → ∞, which is a contradiction.
Next, if p > q, then Cψ : Fp → Fq is bounded if and only if it is compact. This holds if and only if 

0 < |a| < 1. It is known that a compact operator can have closed range if and only if its range is finite 
dimensional. On the other hand, since a �= 0, the operator Cψ is one-to-one and Fp is infinite dimensional. 
Consequently, the range of Cψ cannot be of finite dimensional and hence not closed.
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Let us now turn to the case when |a| = 1. For each f ∈ Fp

‖Cψf‖qq = q

2π

∫
C

|f(az)|qe− q
2 |az|

2
= ‖f‖qq (1.5)

from which the sufficiency of the condition follows. Furthermore, since for each f ∈ Fp, the function 
fa(z) := f( za ) ∈ Fp, we have the equality in (1.3). It remains to show that p < q cannot be admissible under 
closed range assumption when |a| = 1. To this end, set gn(z) = zn ∈ Fp and by (1.5)

‖Cψgn‖q = ‖gn‖q.

Using polar integration and Stirling’s formula

‖gn‖pp = p

∞∫
0

rnp+1e−pr2/2dr =
(1
p

)np/2
Γ
(np + 2

2

)
�

(n
e

)np
2 √

n. (1.6)

Now, boundedness from below implies

‖Cψfn‖q = |u(0)|e 1
2 |b|

2‖fn‖q ≥ ε‖fn‖p

for some ε > 0. This holds only if

‖fn‖q
‖fn‖p

� n
1
2q− 1

2p ≥ ε

for all n ∈ N. A contradiction arises when n → ∞.

1.2. Proof of Theorem 1.2

We split the proof into three cases.
Case 1 : If ψ is a constant, then W(u,ψ)f = uf(b) for each f ∈ Fp and

R(W(u,ψ)) = {f(b)u : f ∈ Fp}.

Furthermore, any Cauchy sequence fm(b)u ∈ R(W(u,ψ)) converges to the function cu where c =
limm→∞ fm(b). Since cu ∈ R(W(u,ψ)), the range is closed as asserted.

In the rest of the proof, we assume a �= 0. In this case ψ is a bijective map on C and since u not 
identically zero, it follows from the Open Mapping Theorem and uniqueness principle for analytic functions 
that, W(u,ψ) is an injective map. Therefore, W(u,ψ) has closed range if and only if it is bounded from below. 
We plan to use this equivalency as needed below again.
Case 2 : Let us consider the case when |a| = 1. Using (1.2), for each f ∈ Fp

‖W(u,ψ)f‖qq = q|u(0)|q
2π

∫
C

|f(az + b)|qe− q
2 |az+b|2

(
|K−ab(z)|q

e−
q
2 (|az+b|2−|z|2)

)
dA(z)

= |u(0)|qe q
2 |b|

2‖f‖qq (1.7)

from which the sufficiency of the condition follows. Furthermore, u(0) �= 0. If not, u reduces to the zero 
function. Now, the equality in (1.4) is immediate since for each f ∈ Fp, the function fab defined by
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fab(z) := e−|b|2

u(0) f((z − b)/a)Kb(z),

is analytic and belongs to Fp with

‖fab‖pp = p|u(0)|−p

2πep|b|2
∫
C

|f((z − b)/a)|p|Kb(z)|pe−
p
2 |z|

2
dA(z) = |u(0)|−p

ep|b|2
‖f‖pp.

Next, we proceed to show that p < q is not admissible under the closed range assumption when |a| = 1. To 
this end, using the sequence gn(z) = zn ∈ Fp and applying (1.7)

‖W(u,ψ)gn‖q = |u(0)|e 1
2 |b|

2‖gn‖q.

Then, we argue as in the proof Theorem 1.1 to wards contradiction.
Case 3 : It remains to show W(u,ψ) has no closed range whenever 0 < |a| < 1. If W(u,ψ) is compact, then it is 
known that it can have closed range if and only if its range is finite dimensional. On the other hand, W(u,ψ)
is injective and Fp is infinite dimensional. Consequently, the range of W(u,ψ) cannot be of finite dimensional 
and hence not closed. Note that for p > q, boundedness is also equivalent to compactness. Therefore, the 
same conclusion holds. If u is a constant, then W(u,ψ) is a non-zero constant multiple of the composition 
operator Cψ. Thus, the conclusion follows from Theorem 1.1 again.

Next, assume 0 < |a| < 1, p ≤ q, and the operator is not compact. Suppose on the contrary that W(u,ψ) has 
a closed range. By defining inner product with usual dual pairing, we may apply [5, Proposition 6.4, p. 208]
to deduce that zero is not in the approximate spectrum σap(W(u,ψ)). Consequently, by [5, Proposition 4.4, p. 
359], zero is not in the left essential spectrum σel(W(u,ψ)), and hence W(u,ψ) is a left semi-Fredholm operator. 
In particular, the composition operator Cψ is left semi-Fredholm and hence 0 /∈ σl(Cψ). Furthermore, since 
W(u,ψ) is injective and bounded from below, an application of the Open Mapping Theorem gives that 
0 /∈ σp(Cψ) as well and hence Cψ has a closed range. This contradicts Theorem 1.1, and completes the 
proof.

2. Dynamical sampling with W(u,ψ) and W ∗
(u,ψ)

Having completely identified the closed range W(u,ψ) on Fock spaces, we now turn to some application of 
the result on dynamical sampling from frame perspectives. Dynamical sampling has become an active area 
of research that connects frame theory to operator theory. It deals with representations of a given frames 
{fn}∞n=0 to the form {Tnf}∞n=0 for some linear operator T defined on a given Hilbert space H where

{Tnf}∞n=0 =
{
f, Tf, T 2f, T 3f, ...

}
is the orbit of a function f ∈ H under T . A family (fj), j ∈ I of vectors in a Hilbert space H is a frame if 
there exist positive constants A and B such that for any f ∈ H

A‖f‖2
H ≤

∑
j∈I

|〈f, fj〉H|2 ≤ B‖f‖2
H. (2.1)

The constants A and B are called the lower and upper bounds of the frame respectively. It is called a tight 
frame when A = B and a normalized tight frame whenever A = B = 1. Ever since introduced by Duffin and 
Schaeffer [6] in 1952 as a tool to study some problems in nonharmonic Fourier series, the theory of frame 
has found numerous applications in engineering, mathematics, and signal processing and data compression. 
Frames are generalizations of bases and their main advantage stems from the fact that a frame can be 
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designed to be redundant while still providing a reconstruction formula for each vector in the space. Thus, 
identifying methods that generate new frames has been an interesting problem in the development of frame 
theory. A special type of frame is Riesz basis. A family (fj), j ∈ I of vectors in a Hilbert space H is a Riesz 
basis if it is complete and there exist constants 0 < A ≤ B < ∞ such that for any cj ∈ �2(I)

A
∑
j∈I

|cj |2 ≤
∥∥∥∥∑

j∈I

cjfj

∥∥∥∥
2

H
≤ B

∑
j∈I

|cj |2.

The following lemma connects closed range operators and dynamical sampling.

Lemma 2.1. Let H be a Hilbert space and T be a bounded linear operator on H. If {Tnf}∞n=0 is a frame for 
some f ∈ H, then

(i) T is surjective.
(ii) ‖(T ∗)ng‖H → 0 as n → ∞ for all g ∈ H.

Part (i) follows from a simple argument namely that if the orbit of f is a frame, then for each h ∈ H
there exists sequence (cn) such that

h =
∑
n=1

cnT
nf = T

(∑
n=1

cnT
n−1f

)
.

As a consequence, the operator has a closed range which interestingly links us with Theorem 2.2 for the 
case of weighted composition operator on F2. The proof of part (ii) is available in [2].
For a better insight, we may first consider the problem with a bounded composition operator Cψ and verify 
that {Cn

ψf}∞n=0 cannot be a frame for any choice of f in F2. To observe this, note that if 0 < |a| < 1, then 
Cψ is compact and hence the conclusion follows once from [4]. On the other hand, if |a| = 1 and hence 
b = 0, then

lim
n→∞

‖C∗n
ψ Kz‖2 = lim

n→∞
‖Kψn(z)‖2 = lim

n→∞
e

1
2 |a

nz|2 = e
1
2 |z|

2
> 0

from which the assertion follows by Lemma 2.1. Thus, there exists no function f in F2 for which its orbit 
under the composition operator represents a frame family. The orbit of any vector f under W(u,ψ) has 
elements of the form

Wn
(u,ψ)f = f(ψn)un, un =

n−1∏
j=0

u(ψj) (2.2)

for all nonnegative integers n and ψ0 is the identity map. This shows that the product of weighted com-
position operators is another weighted composition operator with symbol (un, ψn). The formula in (2.2)
further displays a kind of interplay between the functions ψ and u and generates interest to ask whether 
the interplay results in dynamical sampling property for the weighted composition operators in contrast 
to the unweighed case. Disappointing enough, this is not the case either as seen in the next Theorem. We 
recall that the adjoint of a weighted composition operator on F2 is not necessarily a weighted composition 
operator [16]. Thus, an operator and its adjoint can have quite different dynamical structures but not in 
this case.

Theorem 2.2. Let W(u,ψ) be bounded on F2. Then neither {Wn
(u,ψ)f}∞n=0 nor {(W ∗

(u,ψ))nf}∞n=0 can be a 
frame for any choice of f in F2.
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Proof. Let ψ(z) = az + b, |a| ≤ 1 and suppose there exists an f in F2 such that {Wn
(u,ψ)f}∞n=0 is a frame. 

Then by Lemma 2.1, the operator has a closed range. An application of Theorem 1.2 ensures that |a| = 1
and u = u(o)K−ab with u(0) �= 0. Using the adjoint property W ∗

(u,ψ)Kw = u(w)Kψ(w) and a repeated 
iteration gives

W ∗n
(u,ψ)Kw = u(z)Kψn(w).

By (1.2), for all n ∈ N

‖W ∗n
(u,ψ)Kw‖2 = |u(w)|‖Kψn(w)‖2 = |u(w)|e 1

2
(
|w|2+

∣∣ b(1−an)
1−a

∣∣2+2�(anw b(1−an)
1−a )

)

≥ |u(w)|e 1
2 |w|2e

|b|2
|1−a|2 −2 |w||b|

|1−a| = |u(0)|e−abw+ |b|2
|1−a|2 −2 |w||b|

|1−a| > 0. (2.3)

Similarly for a = 1, since u(0) �= 0

‖W ∗n
(u,ψ)Kw‖2 = |u(w)|‖Kψn(w)‖2 = |u(0)|e−bw+ 1

2
(
|w|2+|nb|2+2n�(wb)

)
→ ∞ (2.4)

as n → ∞. Now, by (2.3), (2.4) and part (ii) of Lemma 2.1, we arrive at a contradiction. Therefore, the 
assertion in the theorem is valid for W(u,ψ).

The proof for the adjoint operator is similar but need a computation with iterates of W(u,ψ) applied in 
a suitably selected sequence of functions. First note that by the Closed Range Theorem and Lemma 2.1, 
if {(W ∗

(u,ψ))nf}∞n=0 is a frame, then |a| = 1 and u(0) �= 0. We begin with the case a = 1 and hence 
ψj(z) = z + jb. Using (2.2), Wn

(u,ψ)f = unf(ψn) where

un(z) = u(0)n
n−1∏
j=0

K−b(z + jb) = u(0)ne−b
∑n−1

j=0 (z+jb) = u(0)ne−bnz− |b|2
2 n(n−1).

It follows that

un = u(0)ne−
|b|2
2 n(n−1)K−nb.

We may now consider a sequence hm(z) = e
−m|b|2

2
u(0)m and compute

‖Wn
(u,ψ)hm‖2 =

∣∣u(0)e
|b|2
2
∣∣n−m

e−
|b|2
2 n2‖K−nb‖2 =

∣∣u(0)e
|b|2
2
∣∣n−m

for all n, m ∈ N. In particular when n = m

‖Wn
(u,ψ)fn‖2 = 1 (2.5)

for all n ∈ N. On the other hand, if a �= 1 and |a| = 1, then ψj(z) = ajz + b1−aj

1−a . By using (2.2) again 
un(z) = u(0)nehn(z) where

hn(z) := −ab

n−1∑
j=0

(
ajz + b

1 − aj

1 − a

)
= −abz

1 − an

1 − a
− a|b|2n

1 − a
+ a|b|2(1 − an)

(1 − a)2 .

Thus, we have

un = u(0)ne−
a|b|2n
1−a + a|b|2(1−an)

(1−a)2 K−ab 1−an

1−a
.
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Now, considering a constant sequence of functions gm(z) =
(

e
a|b|2
1−a

u(0)

)m

, we have

‖Wn
(u,ψ)gm‖2 �

∣∣u(0)e−
a|b|2
1−a

∣∣n−m∥∥K−ab 1−an

1−a

∥∥
2 �

∣∣u(0)e−
a|b|2
1−a

∣∣n−m

for all n, m ∈ N. In particular when n = m

‖Wn
(u,ψ)gn‖2 � 1 (2.6)

for all n ∈ N. Now by (2.5), (2.6) and part (ii) of Lemma 2.1, we have a contradiction again. Therefore, 
{(W ∗

(u,ψ))nf}∞n=0 can not be a frame for any f ∈ F2. �
Theorem 2.2 can be alternatively proved using part (i) of Lemma 2.1 and some results from linear 

dynamics of weighted composition operators. We preferred to use the above approach since it in addition 
shows how part (ii) of Lemma 2.1 is a highly restrictive condition. It even fails tests with sequences of 
constant functions and reproducing kernel in the space.

The adjoint of a bounded composition operator on the Fock space is not necessarily a composition 
operator. As proved in [3, Lemma 2], for ψ = az + b, the adjoint of Cψ is rather a weighted composition 
operator where the weight function is a reproducing kernel, namely that C∗

ψ = W(Kb,φ) where φ(z) = az. 
From this and Theorem 1.2, we conclude the following.

Corollary 2.3. Let Cψ be bounded on F2. Then neither {Cn
ψf}∞n=0 nor {(C∗

ψ)nf}∞n=0 can be a frame for any 
choice of f in F2.

2.1. Frame preserving W(u,ψ) and W ∗
(u,ψ)

The results above have revealed that there exists no function f ∈ F2 for which its orbits under the 
operator W(u,ψ) or its adjoint represents a frame for the space. A related question has been to identify 
conditions under which the operator preserves frame property. Recall that a bounded operator preserves 
frame when it maps frames into frames in the underlying space. In this section we answer the question and 
to prove the corresponding result need the following from [1,11,14].

Proposition 2.4. Let T be a bounded linear operator on a Hilbert space H. Then T preserves

(i) frames on H if and only if T ∗ is bounded below on H, and the latter happens if and only if T is 
surjective on H.

(ii) tight frames if and only if there exists a positive constant λ such that ‖T ∗f‖H = λ‖f‖H for all f ∈ H.
(iii) normalized tight frames if and only if T ∗ is an isometry in H.

Now we are able to prove the following result on frame preserving weighted composition operator and its 
adjoint.

Theorem 2.5. Let W(u,ψ) be bounded on F2 and hence ψ(z) = az+ b, |a| ≤ 1. Then the following statements 
are equivalent.

(i) W(u,ψ) preserves frame;
(ii) |a| = 1 and u = u(0)K−ab with u(0) �= 0;
(iii) W ∗

(u,ψ) preserves frame;
(iv) W(u,ψ) preserves Riesz bases;
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(v) W ∗
(u,ψ) preserves Riesz bases.

Proof. The equivalency of the statements in (i), (ii) and (iii) directly follows from Proposition 2.4, Theo-
rem 1.2 and the Closed Range Theorem. Thus, we only need to prove (i) ⇔ (iv) and (ii) ⇔ (v). Now (iv) 
implies (i) follows trivially as all Riesz basis are frames and applying Proposition 2.4. Thus, we proceed to 
show the converse statement. In [9], it was proved that a frame (fj), j ∈ I is a Riesz bases if and only if it
is ω independent. That is if

∑
j∈I

cjfj = 0

for some sequence of scalars (cj), then cj = 0 for all j ∈ I. In view of this, suppose (fj), j ∈ I is a Riesz 
basis and

∑
j∈I

cjW(u,ψ)fj = 0.

Note that since a Riesz basis is a frame, if W(u,ψ) preserves a Riesz basis, then by Theorem 1.2, |a| = 1, 
u(0) �= 0 and u = u(0)K−ab. Taking these necessary conditions into account,

∑
j∈I

cjW(u,ψ)fj =
∑
j∈I

cju(0)K−abfj(ψ) = u(0)K−ab

∑
j∈I

cjfj(ψ) = 0

if and only if
∑
j∈I

cjfj(ψ) = 0. (2.7)

Furthermore, since ψ(z) = az + b, a �= 0 interpolates all points in the complex plane, the relation in (2.7)
holds only if

∑
j∈I

cjfj = 0

from which cj = 0 for all j since (fj) is a Riesz basis.
Next, we show that (ii) and (v) are equivalent. Assuming (ii), for two functions f and g in F2, the given 

condition and change of variable imply

〈
W ∗

(u,ψ)f, g
〉

=
〈
f,W(u,ψ)g

〉
= 1

π

∫
C

f(z)u(0)g(az)e−|z|2dA(z) =
〈
u(0)CΦf, g

〉

where Φ(z) = z/a. Therefore

W ∗
(u,ψ)f = u(0)CΦf. (2.8)

Suppose now that (fj), j ∈ I is a Riesz basis and
∑
j∈I

cjW
∗
(u,ψ)fj = 0.

Using (2.8) and u(0) �= 0, this holds if and only if
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∑
j∈I

cjfj(Φ) = 0. (2.9)

Furthermore, since Φ is a nonconstant, (2.9) holds only if

∑
j∈I

cjfj = 0,

which implies cj = 0 for all j as asserted.
Conversely, suppose W ∗

(u,ψ) preserves Riesz bases. Since Riesz bases are frames again, by Proposition 2.4, 
W ∗

(u,ψ) is bounded from below and hence has closed range. So statement (ii) follows from Theorem 1.2 and 
Closed Range Theorem. �

Now we apply the preceding result and prove the following on tight frames.

Theorem 2.6. Let ψ and u be nonzero entire functions on C and the operator W(u,ψ) is bounded on F2 and 
hence ψ(z) = az + b, |a| ≤ 1. Then

(i) W(u,ψ) preserves
(a) tight frames on F2 if and only if |a| = 1, b = 0 and u = u(0) �= 0.
(b) normalized tight frames on F2 if and only if |a| = 1, b = 0, u = u(0) and |u(0)| = 1.

(ii) W ∗
(u,ψ) preserves tight frames on F2 if and only if W(u,ψ) does.

(iii) W ∗
(u,ψ) preserves normalized tight frames on F2 if and only if W(u,ψ) does.

Theorem 2.6 and Theorem 2.5 provide interesting descriptions of the conditions required by W(u,ψ) or 
its adjoint to preserve various forms of frame properties. All of the conditions are different and depend on 
the special required property to be preserved.

Proof. (i) a) By Theorem 2.5, we have |a| = 1 and hence u(z) = u(0)K−ab and |u(0)| > 0. By Proposition 2.4, 
the operator preserves tight frame if and only if there exists a positive number λ such that ‖W ∗

(u,ψ)f‖2
2 =

λ‖f‖2
2 for all functions f ∈ F2. In particular for f = Kw

‖W ∗
(u,ψ)Kw‖2

2 = |u(0)|2‖Kψ(w)‖2
2 = λ‖Kw‖2

2

and therefore,

|u(0)|2e|aw+b|2−|w|2 = |u(0)|2e2�(awb) = λ

for all w ∈ C. This holds only if b = 0 and which further gives λ = |u(0)|. Therefore, u(z) = u(0) is a 
constant.

Conversely, using (2.8)

‖W ∗
(u,ψ)f‖2

2 = 1
π

∫
C

|u(0)|2|f(z/a)|2e−|z|2dA(z) = |u(0)|2‖f‖2
2. (2.10)

Therefore, by Proposition 2.4, the operator preserves tight frame with λ = |u(0)|.
(b) By Proposition 2.4, the operator preserves normalized tight frame if and only if ‖W ∗

(u,ψ)f‖2
2 = ‖f‖2

2
for all functions f ∈ F2. From this and part (i), we observe that the additional necessity λ = |u(0)| = 1
holds. Setting |u(0)| = 1 in (2.10), the sufficiency follows.
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To prove the statements in (ii)and (iii), first note that if W ∗
u,ψ preserves tight frames, then by Proposition 2.4

and Theorem 2.5

‖W(u,ψ)Kw‖2 = |u(0)|‖Kw−ab‖2 = λ‖Kw‖ (2.11)

for some λ > 0 and all w ∈ C. Setting the norms of the corresponding kernel expressions, we observe that 
(2.11) holds for all w ∈ C only if b = 0 and λ = |u(0)|. The rest of the proof goes as in part (i) with little 
modifications. �

For the composition operator, our results can be simplified to the following series of equivalent statements.

Corollary 2.7. Let ψ be nonzero entire function on C and the composition operator Cψ is bounded on F2
and hence ψ(z) = az + b, |a| ≤ 1 and b = 0 whenever |a| = 1. Then the following statements are equivalent.

(i) Cψ preserves frames on F2;
(ii) Cψ preserves tight frames on F2;
(iii) Cψ preserves normalized tight frames on F2;
(iv) |a| = 1;
(v) Cψ preserves Riesz basis on F2;
(vi) C∗

ψ preserves frames on F2;
(vii) C∗

ψ preserves tight frames on F2;
(viii) C∗

ψ preserves normalized tight frames on F2;
(ix) C∗

ψ preserves Riesz basis on F2.

Unlike the conditions in Theorem 2.5, the corresponding conditions in Corollary 2.7 do not depend on 
the required specific frame properties to be preserved.
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