

A Mobile Application for Fire Risk

Notification based on Edge Computing

System documentation

Authors:

Emilie Hinna Fisketjøn, Abu Tallaha Hussain, Thorbjørn Svendal

Supervisors:

Prof. Lars Michael Kristensen, Ph.D. candidate Ruben Dobler Strand

Department of Computer science, Electrical engineering, and Mathematical sciences

Western Norway University of Applied Sciences

May 23, 2022

 i

REVISION HISTORY

Date Version Description Author

26.04.2022 1.0 First iteration Emilie, Tallah and Thorbjørn

12.05.2022 2.0 Second iteration Emilie, Tallah and Thorbjørn

21.05.2022 3.0 Final iteration Emilie, Tallah and Thorbjørn

 ii

Table of Contents

Introduction ... 1

Architecture ... 2

Project Structure ... 3

Class Diagram .. 6

4.1 High-level class diagram .. 6
4.1.1 Services .. 7
4.1.2 Models .. 8
4.1.3 Views and ViewModels ... 9

Database Model.. 10

Server Services ... 12

6.1 The Norwegian Meteorological Institute ... 12
6.1.1 The Weather API Location Forecast Service ... 12
6.1.2 The Frost API ... 13

Security ... 15

Installation and Execution .. 16

8.1 Get started .. 16
8.1.1 Windows .. 16
8.1.2 Mac iOS ... 17

8.2 Emulator ... 18
8.2.1 Windows .. 18
8.2.2 Mac iOS ... 21

8.3 NuGet packages.. 24
8.3.1 FireGuard ... 24
8.3.2 Model (FRM) ... 25

Documentation and Source Code ... 27

9.1 Documentation: Windows .. 27

9.2 Documentation: iOS ... 28

9.3 Guide .. 30

Continuous Integration and Testing .. 31

10.1 Test methods .. 32

10.2 Run test project... 33

Bibliography ... 36

Table of Figures ... 37

1

Introduction

This document is supposed to give insight regarding the architecture and explain in-depth. It is

supposed to function as aid for developers and others who wish to continue the work. This document

contains a description of the project structure, architecture and database. Furthermore, a detailed

step by step toolchain guide will be provided for setting up the project and so on.

Link to the private GitHub repository for the mobile application:

https://github.com/selabhvl/dynamic-mobileapp

Link to the private GitHub repository for the fire risk model:

https://github.com/selabhvl/fireriskmodel-csharp

Supervisor Lars Michael Kristensen can provide access to the repositories as required.

https://github.com/selabhvl/dynamic-mobileapp
https://github.com/selabhvl/fireriskmodel-csharp

2

Architecture

The application's core components (Figure 1) are represented in purple and follows the same naming

convention as the MVVM pattern. The Views and View Models are tightly coupled, whereas Views

will trigger commands in the View Models. The View Models component can access the local

database by storing and modifying the content. The View Models uses the Services component,

which sends API requests to the Weather Data Source component to retrieve weather data. The

Services use the Models to format the weather data response to objects matching the .NET standards.

After formatting the responses, it passes the data into the Fire Risk Model (FRM) and finally

receives the fire risk calculations.

Figure 1. High level software application architecture

3

Project Structure

Figure 2 illustrates the mobile application’s project structure. The main project FireGuard

consists of Data, Models, Services, ViewModel, and View folders. The FireGuardTest

project uses the NUnit library to be able to perform Unit testing for all methods. The Model is the

project consisting of the Fire Risk Model (FRM) and FireGuard has a dependency on this

project, making it possible to access classes, interfaces, and methods.

4

Figure 2. Overview of the project structure

5

If FireGuard does not have a dependency on the Model project:

1. Right-click and Add references (Figure 3)

2. Check the Model project (Figure 4) and Select

Figure 3. How to add dependency (1/2)

Figure 4. How to add dependency (2/2)

6

Class Diagram

4.1 High-level class diagram

A high-level class diagram illustrating the different components in FireGuard, seen in Figure 5.

Figure 5. High-level class diagram

7

4.1.1 Services

The application requires an API layer for retrieving all weather data. The following chapter

introduces the Services components that implement the protocols defined by the Business Layer

and handle all HTTP requests to MET and Frost API.

Services consist of two interfaces, IRestServiceClient and IWeatherClient and

classes RestServiceClient and WeatherClient seen in Figure 6, which implements these

interfaces. The View Models classes heavily depends on Services.

Figure 6. Representation of the services components class diagram

8

4.1.2 Models

The Models components act as non-visual classes that encapsulate the data and represent the app's

domain, including business and validation logic. This chapter shows the different model objects.

The FrostStation, FrostWeatherData, and MetForecast are auto generated classes by

quicktype from JSON to the respective .NET classes. The WindData acts as a placeholder class

when all wind data is retrieved from the MetForecast object. Location and MetID acts also

as tables in the local database.

Figure 7. Class diagram of the Models component

9

4.1.3 Views and ViewModels

Figure 8 illustrates the relations between the View and ViewModel. The classes ending with Page

represent a page in the app. Often, each View is tightly coupled to a ViewModel with data

bindings, and these relations can be seen in the figure. AppShell is responsible of Initializing all

the different pages, and each page will then initialize the ViewModel. The BaseViewModel is

the base class that all the ViewModel classes implements.

Figure 8. Class diagram of the Views and ViewModels

10

Database Model

Figure 9 shows a representation of the two tables that is being stored in the local database. Figures

10 and 11 shows Location and MetID class, and how they are utilized to be stored in the

database.

 location met id

 id Guid [PK] id Int [PK]

 name Varchar client_id Varchar

 longitude Varchar

 latitude Varchar

 weather station id Varchar

 wind speed List<Double>

 wind gust List<Double>

 wind direction List<Double>

 fire risk List<Int>

 peak risk Int

Figure 9. Database tables; Location and Met ID

Figure 10. MET ID object

11

Figure 11. Location object

12

Server Services

6.1 The Norwegian Meteorological Institute

MET is Norway's national meteorological institute [1] and provides weather forecasts for civilians

and conducts meteorology, oceanography, and climatology research. In collaboration with the

Norwegian Broadcasting Corporation (NRK), they host the site Yr.no [2], an online weather service

that offers detailed weather forecasting. In addition to Yr.no, they provide the service MET Norway

Weather API [3]. The Weather API is an interface to a selection of data produced and made available

by MET through the URL https://api.met.no.

The application will use the Location forecast service [4] for a specified area and Frost [5], a REST

API for meteorological observation data.

6.1.1 The Weather API Location Forecast Service

The Weather API Location forecast service gives a weather forecast for the next nine days for the

specified geographic position based on coordinates. The forecast is based on numerous data sources

and is updated several times a day. The forecast provides hourly updates for the first two-three days,

after the third day the update frequency is changed to an interval of six hours [6].

The data comes in three endpoints: classic, complete, and compact. classic is the old XML format

and is now considered legacy, MET will not add any new parameters to this version. complete and

compact are JSON objects, where complete consists of all values and compact is a shorter version

consisting of the most used parameters. The endpoint complete included all the required data and

was therefore used [4].

An example of an HTTP GET request to the locationforecast complete endpoint:

https://api.met.no/weatherapi/locationforecast/2.0/complete.json?

lat=60.3691&lon=5.3505

13

The lat and lon parameters represent the geocoordinate's latitude and longitude. It is not

recommended to use more than four decimals by MET, the reason for this is to avoid blocking which

will provide effective caching. The parameters that are typically included in an HTTP GET request

are the following: altitude, latitude, and longitude. Longitude and latitude are the only parameters

that must be included for every request whereas altitude is optional.

6.1.2 The Frost API

Frost [5] is a RESTful API that provides free access to MET Norway's historical weather and climate

data archive. The data includes quality-controlled temperature, precipitation, and wind data

measurements. It also offers information such as metadata about the weather stations. The API is

primarily used by developers who wish to access MET’s historical data archive.

The model of Log [7] uses historical weather data to calibrate, this is done so that model can achieve

and provide more accurate predictions. To achieve the most accurate and relevant results, the

application must retrieve data from the closest weather station that stores the relevant data. Frost

has various API reference endpoints [8] which deliver different types of data. For this project,

sources and observations were used.

The sources reference [8] provides the application with the closest station. There are several

parameters to define when making a request. Relevant parameters for this application are types,

elements, and geometry.

An example of an HTTP GET request to the sources endpoint:

https://frost.met.no/sources/v0.jsonld?types=SensorSystem&element

s=air_temperature,relative_humidity,wind_speed&geometry=nearest(P

OINT(5.3327 60.383))

The types parameter specifies the station type, whereas SensorSystems is a station with measuring

sensors. It is also possible to choose between InterpolatedDataset and RegionDataset. The API can

14

exclude stations that do not meet the requirements by specifying the elements parameter with:

air_temperature, relative_humidity,wind_speed.

As for the geometry parameter, it specifies the geometry of a station. The geographical location is

expressed in terms of either a single point or a polygon area [9]. The syntax nearest(POINT

(lon lat)) refers to the item closest to these coordinates. If the nearest function is used, the

response will include the distance in kilometres from the reference point.

The observations reference [8] provides actual observations data from MET Norway's data storage

system. It only handles restricted data by using query parameters. The required parameters to make

a request are sources, referencetime, and elements.

An example of an HTTP GET request to the observations endpoint:

https://frost.met.no/observations/v0.jsonld?sources=SN50540&refer

encetime=2022-04-01/2022-04-

02&elements=air_temperature,relative_humidity,wind_speed

Sources specify which station to get observations from, and referencetime implies for which time

range. The time specification [9] is based on UTC and ISO-8601. Frost allows the distance between

the starting point of consecutive intervals to be specified explicitly.

The format the application uses to cite dates is YYYY-MM-DD. For instance, one can define a time

range by writing: 2022-04-01/2022-04-02.

It will retrieve observations that are expressed according to the ISO-8601 format [10]. Starting from

2022-04-01T00:00:00:000Z to 2022-04-02T23:00:00:000Z.

15

Security

To gain access to the service, the user needs to create an account [11]. This can easily be done by

visiting https://frost.met.no/auth/requestCredentials.html. The user will

provide an email address to register and will be provided with a new client ID and client secret. The

email will be stored in a database managed by MET [12]. The client ID is required for free service

and fast and stable performance [13]. The client secret is only necessary for access to data that is

not available to the public.

It is optional to use Basic authentication [14] or OAuth2 [15]. When accessing confidential data, the

OAuth2 must be used, but will also work for available data. The requests relevant for this application

only need the client id, and will hereby be referred to as MET ID.

The authorization scheme for the application depends on Basic Authentication, seeing that

requesting the client's secret was unnecessary. If this shifts, the application can easily be modified

to meet those changes. The Basic Authentication scheme can be considered secure only when the

web client and server connection are secure [14]. Thus, it is safe to assume that these rules apply for

this service since MET encourages its users to utilize basic authentication. The credential is

converted to base-64 encoding before passing it into an authentication header and the format of the

header is Authorization: Basic <client ID>:<client secret>.

The application will store the user's MET ID in the local database in cleartext. When creating a

MET account and receiving the MET id, the service only requires an email from the user. This

implies that the client id is not seen as sensitive information, seeing that there is no need for a user

password. If someone gets access to another user's email, the MET ID will be easily accessible.

Therefore, the application will not secure the MET ID any further. We believe that this responsibility

lies with MET.

16

Installation and Execution

There are some distinctions between Visual Studio (windows) and Visual Studio for mac (iOS). The

following chapters will give a further explanation of the main differences and a detailed guide for

both operating systems.

8.1 Get started

8.1.1 Windows

Visual studio 2022

https://visualstudio.microsoft.com/vs/

1. Download Visual Studio and open

2. Press Modify (figure 12)

Figure 12. How to download Visual Studio (1/2)

3. Choose the Workloads tab folder and scroll down to Mobile & Gaming.

4. Check the Mobile development with .NET (Xamarin) (figure 13)

https://visualstudio.microsoft.com/vs/

17

Figure 13. How to download Visual Studio (2/2)

8.1.2 Mac iOS

Choose between Visual studio for mac 2019

https://visualstudio.microsoft.com/vs/mac/

or 2022 Preview

https://visualstudio.microsoft.com/vs/mac/preview/

Download and open the Visual studio for mac file and check off .NET core, Android, and iOS.

(Figure 14)

https://visualstudio.microsoft.com/vs/mac/
https://visualstudio.microsoft.com/vs/mac/preview/

18

Figure 14. How to download Visual Studio for mac

Then, open App Store and download Xcode:

https://apps.apple.com/no/app/xcode/id497799835?mt=12

We also recommend following this tutorial for setting up Xamarin and getting started with

developing:

https://www.youtube.com/watch?v=JH8ekYJrFHs&list=PLdo4fOcmZ0oU10SXt2W58pu2L0v2d

OW-1&index=1

8.2 Emulator

To be able to run Xamarin apps it’s required to install an emulator. Running an iPhone (iOS)

emulator on a Windows machine is not supported. For Mac iOS, one can choose between Android

and iPhone. The following chapter will give a brief tutorial on how to install the different emulators.

8.2.1 Windows

1. After installing Visual Studio, open a project

2. Tools -> Android -> Android SDK Manager… (Figure 15)

https://apps.apple.com/no/app/xcode/id497799835?mt=12
https://www.youtube.com/watch?v=JH8ekYJrFHs&list=PLdo4fOcmZ0oU10SXt2W58pu2L0v2dOW-1&index=1
https://www.youtube.com/watch?v=JH8ekYJrFHs&list=PLdo4fOcmZ0oU10SXt2W58pu2L0v2dOW-1&index=1

19

Figure 15. How to download Android Emulator for Windows (1/6)

3. Choose between many different Android SDK’s. It is not required to have all installed.

(Figure 16)

Figure 16. How to download Android Emulator for Windows (2/6)

4. Go to Tools and install the Android Emulator (Figure 17). Android Emulator is the tool set

that makes it possible to run the app on the computer

20

Figure 17. How to download Android Emulator for Windows (3/6)

5. Go back to the main menu -> Tools -> Android -> Android Device Manager (figure 18)

Figure 18. How to download Android Emulator for Windows (4/6)

6. Press +New and set up an Android simulator (Figure 19). Press Create, and the simulator

will start downloading (Figure 20).

21

Figure 19. How to download Android Emulator for Windows (5/6)

Figure 20. How to download Android Emulator for Windows (6/6)

8.2.2 Mac iOS

To set up an emulator for Visual Studio for Mac, it is required to have Xcode installed.

1. Open Xcode -> Create new project -> Document App (Figure 21) -> (Figure 22)

22

Figure 21. How to set up iOS simulator for Mac (1/4)

Figure 22. How to set up iOS simulator for Mac (2/4)

2. When Xcode is open -> Window -> Devices and Simulators

On the left hence side, there should be various simulator options available, if not press the +

button and create one (Figure 23)

23

Figure 23. How to set up iOS simulator for Mac (3/4)

3. Restart Visual Studio for Mac, and all the various simulators should be available in the

Debug menu (Figure 24)

Figure 24. How to set up iOS simulator for Mac (4/4)

24

8.3 NuGet packages

Both operating systems can follow the same step-by-step guide for downloading all NuGet

packages.

8.3.1 FireGuard

Frameworks

• NETStandard.Library – 2.1.0

The project needed to be set to a lower framework version when coupling FireGuard and Models in

the same project solution.

• Newtonsoft.Json

• RestSharp

• Sqlite-net-pcl

• SQLiteNetExtensions

• SqLteNetExtensions.Async

• Xamarin.CommunityToolkit

• Xamarin.Essentials

• Xamarin.Forms

Figure 25. NuGet packages in FireGuard

25

Installation Guide (example for RestSharp):

1. Right click on the project Solution FireGuard

2. Click on Manage NuGet Packages…

3. Browse – Search – “RestSharp” – Add Package (Figure 26)

4. Repeat for all NuGet packages

Figure 26. How to download NuGet packages

8.3.2 Model (FRM)

Frameworks

• NETStandard.Library – 2.1.0

NuGet Packages

• Newtonsoft.Json

26

Figure 27. NuGet packages in Model (FRM)

27

Documentation and Source Code

The following chapter will explain how to autogenerate all documentations to a single XML file

from Visual studio [16].

9.1 Documentation: Windows

1. On the solution explorer window, right-click the project and click Properties.

2. Go to Build tab and Output.

3. Check of the “XML documentation file:” and choose the autogenerated files path (Figure

28).

4. Run the solution and view the documentation.

Figure 28. How to generate the documentation XML file on Windows

28

9.2 Documentation: iOS

1. Right click on the project and choose Options (Figure 29)

Figure 29. How to generate the documentation XML file on Mac (1/3)

2. Go to the Build drop down menu and Compiler (Figure 30).

3. Go down to Errors and Warnings and check of the “Generate XML documentation:”

29

Figure 30. How to generate the documentation XML file on Mac (2/3)

4. Run the project and redirect to the file and view the XML documentation (Figure 31).

Figure 31. How to generate the documentation XML file on Mac (3/3)

30

9.3 Guide

Both operating systems can follow the same guide for creating documentations for new methods

and classes.

All implemented methods should have written documentation to make it manageable for other

developers to continue implementing any systems. To auto-generate documentation tags for a

method, simply type “///”, as seen In Figure 32 [17].

Figure 32. How to auto-generate documentation tags

When the method is hoovered over, the written documentation will be displayed (see Figure 33).

Figure 33. The written documentation can be seen when method is hoovered over

31

Continuous Integration and Testing

Tests for both FireGuard and Fire risk model projects were created, seen in Figure 34. The

library NUnit was utilized when creating the test project.

Figure 34. Representation of the FireGuardTest project

To test methods that depend on actual weather data, it was decided to set up mock data sets that

could be used. FrostWeatherData and MetForecasts consist of JSON representations.

MockData class consist of methods for retrieving data from the representation.

32

10.1 Test methods

FireRiskModelTest class consists of the following test methods:

- MockDataTest : test that the reading of the JSON file was successful

- FireRiskTtfTest: test that the fire risk model provides fire risk results

- GetHourlyObservationstest: test the RemoveNotHourlyForecasts, which

determine the time jump from hourly to every sixth hour and removes all future forecasts.

- SortByMinTtfTest : test that the method SortByMinTtf groups the time to flashover

by date, and retrieves the lowest ttf value and returns a list

- FindFireRiskTest: test if the method calculates the fire risk correctly based on the ttf

benchmarking

MockData class consists of the following test methods:

- Classes to retrieve weather data from JSON files

- Observations and ForecastObservations: retrieves data from the JSON file and

convert the data to Observation objects

- ConvertObservations and ConvertForecasts: converts the weather data to

Observations data

- RemoveNotHourlyForecasts: determine where the forecasts time jump is, and

remove all future forecasts from the list.

RestServiceClientTest class consists of the following test methods:

- GetForecastTest: test for retrieving forecasts from met

- GetNearestStationTest: test for retrieving the nearest station based on coordinates

- GetWeatherDataTest: test for retrieving observations from the nearest station for a

given period

WeatherClientTest class consists of the following test methods:

- SortByMaxWindSpeedTest: the method groups the weather data by date, and

determine the maximum wind speed value for each day

33

- SortByMaxWindGustTest: test if the method sorts the wind gust and direction correctly

Tests class consists of the following test methods:

- GetPeriodTest: test if the period string is generated correctly

10.2 Run test project

The following chapter will explain how to set up the test project and get everything up and running.

These are the required NuGet packages (Figure 35):

Figure 35. The required NuGet packages for FireGuardTest project

The RestServiceClientTest consists of tests to check if the request was successful.

Most of the methods depend on weather data, therefore it was decided to create a mock data set.

This can be found in the MockData class that uses the two JSON files to retrieve data.

To use the mock data, the user needs to specify the file path, because it will vary (Figure 36).

A detailed description how to retrieve the full path is given below.

34

Figure 36. The MetForecastData method

To find the full path on Mac:

Figures 37, 38, and 39 provides a step-by-step guide for retrieving the files full path.

Figure 37. How to retrieve the full path on Mac (1/3)

35

Figure 38. How to retrieve the full path on Mac (2/3)

Figure 39. How to retrieve the full path on Mac (3/3)

Copy and paste the file path into the MockData class Directory.SetCurrentDirectory

(……)

If the developer wants to directly work with weather data from the API, methods in

IRestService and IWeatherClient can be utilized.

To find the full path on Windows:

Right-click on JSON file and choose Copy Full Path and paste into MockData class.

36

Bibliography

1. Meterologisk-Institutt. About the Norwegian Meteorological Institute. 2017 2020;

Available from: https://www.met.no/en/About-us/About-MET-Norway.

2. Yr.no. Facts about Yr. Available from: https://hjelp.yr.no/hc/en-

us/sections/115001514149-About-us.

3. Meterologisk-Institutt. WeatherAPI. Available from: https://api.met.no.

4. Meterologisk-Institutt, Locationforecast.

5. Meterologisk-Institutt. What is Frost? . Available from:

https://frost.met.no/index.html.
6. Yr.no. Location Forecast. Available from: https://developer.yr.no/featured-

products/forecast/.

7. Log, T., Modeling Indoor Relative Humidity and Wood Moisture Content as a

Proxy for Wooden Home Fire Risk. Sensors, 2019. 19(22): p. 5050.

8. Meterologisk-Institutt. API REFERENCE. Available from:
https://frost.met.no/api.html.

9. Meterologisk-Institutt. API Concepts. Available from:

https://frost.met.no/concepts2.html.

10. Wikipedia. ISO 8601. 2022; Available from:
https://en.wikipedia.org/wiki/ISO_8601.

11. Meterologisk-Institutt, Request New Client Credentials.

12. Meterologisk-Institutt. MET’s Privacy Policy Statement. 2017 2021; Available

from: https://www.met.no/en/About-us/privacy.

13. Meterologisk-Institutt. Authentication. Available from:
https://frost.met.no/authentication.html.

14. IBM. HTTP basic authentication. 2022; Available from:

https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-authentication.

15. auth0. What is OAuth 2.0? ; Available from: https://auth0.com/intro-to-iam/what-

is-oauth-2/.
16. Stokkenes, S., et al., Validation of a Predictive Fire Risk Indication Model using

Cloud-based Weather Data Services. Procedia Computer Science, 2021. 184: p.

186-193.

17. Recommended XML tags for C# documentation comments. 2022.

https://www.met.no/en/About-us/About-MET-Norway
https://hjelp.yr.no/hc/en-us/sections/115001514149-About-us
https://hjelp.yr.no/hc/en-us/sections/115001514149-About-us
https://api.met.no/
https://frost.met.no/index.html
https://developer.yr.no/featured-products/forecast/
https://developer.yr.no/featured-products/forecast/
https://frost.met.no/api.html
https://frost.met.no/concepts2.html
https://en.wikipedia.org/wiki/ISO_8601
https://www.met.no/en/About-us/privacy
https://frost.met.no/authentication.html
https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-authentication
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://auth0.com/intro-to-iam/what-is-oauth-2/

37

Table of Figures
Figure 1. High level software application architecture ... 2

Figure 2. Overview of the project structure .. 4

Figure 3. How to add dependency (1/2) .. 5

Figure 4. How to add dependency (2/2) .. 5

Figure 5. High-level class diagram ... 6

Figure 6. Representation of the services components class diagram .. 7

Figure 7. Class diagram of the Models component ... 8

Figure 8. Class diagram of the Views and ViewModels ... 9

Figure 9. Database tables; Location and Met ID ... 10

Figure 10. MET ID object ... 10

Figure 11. Location object .. 11

Figure 12. How to download Visual Studio (1/2) ... 16

Figure 13. How to download Visual Studio (2/2) ... 17

Figure 14. How to download Visual Studio for mac... 18

Figure 15. How to download Android Emulator for Windows (1/6) .. 19

Figure 16. How to download Android Emulator for Windows (2/6) .. 19

Figure 17. How to download Android Emulator for Windows (3/6) .. 20

Figure 18. How to download Android Emulator for Windows (4/6) .. 20

Figure 19. How to download Android Emulator for Windows (5/6) .. 21

Figure 20. How to download Android Emulator for Windows (6/6) .. 21

Figure 21. How to set up iOS simulator for Mac (1/4) ... 22

Figure 22. How to set up iOS simulator for Mac (2/4) ... 22

Figure 23. How to set up iOS simulator for Mac (3/4) ... 23

Figure 24. How to set up iOS simulator for Mac (4/4) ... 23

Figure 25. NuGet packages in FireGuard.. 24

38

Figure 26. How to download NuGet packages ... 25

Figure 27. NuGet packages in Model (FRM) ... 26

Figure 28. How to generate the documentation XML file on Windows ... 27

Figure 29. How to generate the documentation XML file on Mac (1/3) .. 28

Figure 30. How to generate the documentation XML file on Mac (2/3) .. 29

Figure 31. How to generate the documentation XML file on Mac (3/3) .. 29

Figure 32. How to auto-generate documentation tags... 30

Figure 33. The written documentation can be seen when method is hoovered over 30

Figure 34. Representation of the FireGuardTest project ... 31

Figure 35. The required NuGet packages for FireGuardTest project ... 33

Figure 36. The MetForecastData method .. 34

Figure 37. How to retrieve the full path on Mac (1/3) .. 34

Figure 38. How to retrieve the full path on Mac (2/3) .. 35

Figure 39. How to retrieve the full path on Mac (3/3) .. 35

	Introduction
	Architecture
	Project Structure
	Class Diagram
	4.1 High-level class diagram
	4.1.1 Services
	4.1.2 Models
	4.1.3 Views and ViewModels

	Database Model
	Server Services
	6.1 The Norwegian Meteorological Institute
	6.1.1 The Weather API Location Forecast Service
	6.1.2 The Frost API

	Security
	Installation and Execution
	8.1 Get started
	8.1.1 Windows
	8.1.2 Mac iOS

	8.2 Emulator
	8.2.1 Windows
	8.2.2 Mac iOS

	8.3 NuGet packages
	8.3.1 FireGuard
	8.3.2 Model (FRM)

	Documentation and Source Code
	9.1 Documentation: Windows
	9.2 Documentation: iOS
	9.3 Guide

	Continuous Integration and Testing
	10.1 Test methods
	10.2 Run test project

	Bibliography
	Table of Figures

