A

Western Norway
University of
Applied Sciences

A Mobile Application for Fire Risk
Notification based on Edge Computing

System documentation

Authors:

Emilie Hinna Fisketjgn, Abu Tallaha Hussain, Thorbjgrn Svendal

Supervisors:

Prof. Lars Michael Kristensen, Ph.D. candidate Ruben Dobler Strand

Department of Computer science, Electrical engineering, and Mathematical sciences

Western Norway University of Applied Sciences

May 23, 2022

REVISION HISTORY

Date Version Description Author
26.04.2022 1.0 First iteration Emilie, Tallah and Thorbjgrn
12.05.2022 2.0 Second iteration Emilie, Tallah and Thorbjgrn
21.05.2022 3.0 Final iteration Emilie, Tallah and Thorbjgrn

Table of Contents

(1) 1 golo (103 o] o IPTRTTERURRRT TR 1
AT CNIEBCIUIE ..o et e oot e e e e e e e e ettt e e e e e e e e et e e ee e e e e eee e 2
e 0] L1010 [ox LU SR RTPRTR 3
(O 1= T B =T | =T o USSR 6
4.1 High-level Class diagram..........ccooviiiiieiecie e 6
I O =Y oV [0 TR 7

41.2 1Y/ oo (=] E- OO TTTTROTRR 8

4.1.3 VIEWS AN VIBWIMOUEBIS ...ttt ettt ettt e e e e e ettt e e s ree ettt eeseastaeeeeeessnan 9
DY =1 o Tz LY=3 1Y/ (oo (<] FU OO 10
S VBT SBIVICES ...t e ettt e e e e et e e e ettt e e e e e e e e et e e e e e e e ee et eeeeeeeeeeeenes 12
6.1 The Norwegian Meteorological INSHTULEccocviirieiiiiiceeeeeee e 12
6.1.1 The Weather APl LOCAtION FOIECAST SEIVICEeeeieeiiieeeiee ettt r ettt e e s e e eeeeeeeeneaaas 12

B.1.2 THE FrOSE AP ..ottt e e e e ettt e e e e e e ettt et e e e eae e eteeesesareeeeeeneaaas 13

ST ToT UL | Y2 SRR 15
Installation and EXECULIONoooieieeeeeee e 16
8.1 GRE ST .. 16

< T80 R VY41 T [0V TP RRT R PROTTPI 16

8.1.2 IMIAC 100 .t et e et e e e e et e ee et e e ——eeeeeee e ———aeeeeaaaa————aaaaaaa 17

8.2] U] P10 R 18

o T VY14 T (011 PRRT 18

8.2.2 1Y (o3 1@ 1 TR TTRRRURRR 21

8.3 NUGET PACKAGES. ... vttt bbbttt bbb 24
20 R = 1 (T TU T o [P TTRR 24

8.3.2 IMOUEI (FRM) ..ottt ee e ee e ee e ees e e 25
Documentation AN SOUETCE C OO e 27
9.1 D OCUMEBNTATION: MV INOOWS ... e aeeeeeeeeesssaeesasesssesseessseseeeaeees 27
9.2 DOCUMENTALION: TOS ... oo ettt e e e e e e e e et e e e e e e e e e e e eeeeens 28
9.3 UG et e ettt e e 30
Continuous INtegration and TESTINGccouiiiiiere e 31
101 TESEMEINOUS .ottt e et e e ettt e e e e e e e et e e e e e e e e e e e 32
10.2 RUNTESE PIOJECT....ciiieiie ettt et e e et e e te e sae e e beesteeete e 33
BIDIIOGIAPNY ...ttt 36
BLIE= L] (o) T U TSSOSO 37

Introduction

This document is supposed to give insight regarding the architecture and explain in-depth. It is
supposed to function as aid for developers and others who wish to continue the work. This document
contains a description of the project structure, architecture and database. Furthermore, a detailed

step by step toolchain guide will be provided for setting up the project and so on.

Link to the private GitHub repository for the mobile application:

https://github.com/selabhvl/dynamic-mobileapp

Link to the private GitHub repository for the fire risk model:

https://github.com/selabhvl/fireriskmodel-csharp

Supervisor Lars Michael Kristensen can provide access to the repositories as required.

https://github.com/selabhvl/dynamic-mobileapp
https://github.com/selabhvl/fireriskmodel-csharp

Architecture

The application's core components (Figure 1) are represented in purple and follows the same naming
convention as the MVVM pattern. The Views and View Models are tightly coupled, whereas Views
will trigger commands in the View Models. The View Models component can access the local
database by storing and modifying the content. The View Models uses the Services component,
which sends API requests to the Weather Data Source component to retrieve weather data. The
Services use the Models to format the weather data response to objects matching the .NET standards.
After formatting the responses, it passes the data into the Fire Risk Model (FRM) and finally

receives the fire risk calculations.

=
-

Weather Data
Source

Figure 1. High level software application architecture

Project Structure

Figure 2 illustrates the mobile application’s project structure. The main project FireGuard
consists of Data,Models, Services, ViewModel, and View folders. The FireGuardTest
project uses the NUnit library to be able to perform Unit testing for all methods. The Mode1 is the
project consisting of the Fire Risk Model (FRM) and FireGuard hasadependency on this

project, making it possible to access classes, interfaces, and methods.

dynamic-mobileapp

— FireGuard
— Data
I— Database
— Models
l— FrostStation

FrostWeatherData

L
l— Location
L MetForecast

MetID
ObservationData
WindData

— Services
l— IRestService

IWeatherClient
RestServiceClient

l— WeatherClient

- ViewModel

l— BaseViewModel

l— Converters
HelpViewModel

l—MyLocationsV'\eandel
NewlocationViewModel

I— SettingsViewModel

l—HeIpPage

l— MylocationsPage
l— NewLocationPage

l— SettingsPage

e ADP

— A\ppShell

e Assemblylnfo
|— FireGuard.csproj

— FireGuard.Android

I— Assets
I— Properties
l— Resources

I— FireGuard.Android.csproj

MainActivity.cs

l— Assets.xcassets
l— Properties
l— Resources

l— AppDelegate
Entitlements.plist
FireGuard.iOS.csproj
Info.plist
Main

— FireGuardTest

Model

Figure 2. Overview of the project structure

If FireGuard does not have a dependency on the Mode1 project:

1. Right-click and Add references (Figure 3)
2. Check the Model project (Figure 4) and Select

(F]
o MUUE L. F LT ERLSKVA LUt
> FireGt * Model.WeatherData;
[FireG Build FireGuard NUnit.Framework;

» [7] Firec Rebuild FireGuard

m, FireGuard (AddingDYNAMICModel)

FireGuardTest. F|

["4 FireGt Clean FireGuard
Ea Cor Pack FireGuard
B8 Der publish {
BrF
» Add New File...

Manage NuGet Packages... New Class...

Existing Files...

Reference...
Run With NuGet Packages...

F it Files from Folder...

Existing Folder...
i F Copy

Cut

Remove

New Folder...

forecasts = m|

Rename...

NET Assembly

Package

Figure 4. How to add dependency (2/2)

Class Diagram

4.1 High-level class diagram

A high-level class diagram illustrating the different components in FireGuard, seen in Figure 5.

App

database : Database
metiD : string

Database : Database

MetID : string
Database AppShell
connection :
SQLiteAsyncConnection RegisterRoute()
ViewModels \ Views \
e >
Models Services |

Figure 5. High-level class diagram

4.1.1 Services

The application requires an API layer for retrieving all weather data. The following chapter
introduces the Services components that implement the protocols defined by the Business Layer
and handle all HTTP requests to MET and Frost API.

Services consist of two interfaces, TRestServiceClient and IWeatherClient and
classes RestServiceClient and WeatherClient seen in Figure 6, which implements these

interfaces. The View Models classes heavily depends on Services.

<<interface>>
IRestServiceClient

GetWeatherForecasts()
GetNearestStation()
GetWeatherObservations()

RestServiceClient

Figure 6. Representation of the services components class diagram

<<interface>>
IWeatherClient

GetStation()
GetForecasts()
GetObservations()
UpdateFireRisk()

GetFireRiskForNewlLocation()

WeatherClient

client ; IRestServiceClient

GetFireRisk()
ConvertObservations()
ConvertForecasts()
SortByMaxWindSpeed()
SortByMaxWindGust()
RemoveNotHourlyForecasts()

4.1.2 Models

The Mode1s components act as non-visual classes that encapsulate the data and represent the app's
domain, including business and validation logic. This chapter shows the different model objects.
The FrostStation, FrostWeatherData, and MetForecast are auto generated classes by

quicktype from JSON to the respective .NET classes. The WindData acts as a placeholder class

when all wind data is retrieved from the MetForecast object. Location and Met ID acts also
as tables in the local database.

Models \

// \

‘. T~
FrostStation / k

i

\ FrostWeatherData

/ 1
Location

MetForecast

y \
WindData

MetID

Figure 7. Class diagram of the Models component

4.1.3 Views and ViewModels

Figure 8 illustrates the relations between the vView and ViewModel. The classes ending with Page
represent a page in the app. Often, each View is tightly coupled to a ViewModel with data
bindings, and these relations can be seen in the figure. AppShel1 is responsible of Initializing all
the different pages, and each page will then initialize the ViewModel. The BaseViewModel is

the base class that all the ViewModel classes implements.

AppShell

RegisterRoute()

—
/ MyLocationsPage
/ \
; | _viewModel :
v // MyLocationsViewModel
LocationDetailsPage / m - m :
/ | OnAppearing() : async voif 4 Converters
/ |

/ v v Convert() : object
L / HelpPage MyLocationsViewModel ConvertBack() : object
LocationDetailsViewModel / _viewModel : helpViewModel _selectedLocation : Location

client : IWeatherClient

OnAppearing() : void
LoadLocationld() : async void / lépiad‘:f"emsk() : async Tas:
OnDeleteLocation() : async ¥ n ocation() : async voi

void DeletelLocation() : async void
- SettingsPage \ UpdateMetID() : async void
\ GetPeriod() : string
\\ ErrorMessage() : int
\]
/
/ .
\\‘ . / o
[NewLocationPage
: SettingsViewModel HelpViewModel / 9
\\\ _viewModel : / Item : Location
N helpViewModel /
. | SubmitMetiD() : async void /
N\ /
% o /
\ f /
\ [v
NewLocationViewModel
client : IWeatherClient
\. /
\ ; OnSave : void
/ ad OnGetLocation : void
/ /
BaseViewModel /

_viewModel : helpViewModel

Figure 8. Class diagram of the Views and ViewModels

Database Model

Figure 9 shows a representation of the two tables that is being stored in the local database. Figures

10 and 11 shows Location and MetID class, and how they are utilized to be stored in the

database.
id Guid [PK] id Int [PK]
name Varchar client_id Varchar
longitude Varchar
latitude Varchar
weather station id Varchar
wind speed List<Double>
wind gust List<Double>
wind direction List<Double>
fire risk List<Int>
peak risk Int

Figure 9. Database tables; Location and Met ID

1 public class MetID

2 {

3 [PrimaryKey]

4 public int id { get; set; }

5 public string client_id { get; set; }
6 }

Figure 10. MET ID object

10

1 public class Location

2 {

3 [PrimaryKey, AutoIncrement]

4 public Guid Id { get; set; }

5 public string Name { get; set; }

6 public string Latitude { get; set; }

7 public string Longitude { get; set; }

8 public string WeatherStationID { get; set; }
9 [TextBlob("WindSpeedsBlobbed")]

10 public List<double> WindSpeed { get; set; }

11 public string WindSpeedsBlobbed { get; set; }

12 [TextBlob("WindGustSpeedsBlobbed")]

13 public List<double> WindGustSpeed { get; set; }
14 public string WindGustSpeedsBlobbed { get; set; }
15 [TextBlob("WindDirectionsBlobbed")]

16 public List<double> WindDirection { get; set; }
17 public string WindDirectionsBlobbed { get; set; }
18 [TextBlob("FireRisksBlobbed")]

19 public List<int> FireRisk { get; set; }

20 public string FireRisksBlobbed { get; set; }

21 public int PeakRisk { get; set; }

22 ¥

Figure 11. Location object

11

Server Services

6.1 The Norwegian Meteorological Institute

MET is Norway's national meteorological institute [1] and provides weather forecasts for civilians
and conducts meteorology, oceanography, and climatology research. In collaboration with the
Norwegian Broadcasting Corporation (NRK), they host the site Yr.no [2], an online weather service
that offers detailed weather forecasting. In addition to Yr.no, they provide the service MET Norway
Weather API [3]. The Weather API is an interface to a selection of data produced and made available

by MET through the URL https://api.met.no.

The application will use the Location forecast service [4] for a specified area and Frost [5], a REST

API for meteorological observation data.

6.1.1 The Weather API Location Forecast Service

The Weather API Location forecast service gives a weather forecast for the next nine days for the
specified geographic position based on coordinates. The forecast is based on numerous data sources
and is updated several times a day. The forecast provides hourly updates for the first two-three days,

after the third day the update frequency is changed to an interval of six hours [6].

The data comes in three endpoints: classic, complete, and compact. classic is the old XML format
and is now considered legacy, MET will not add any new parameters to this version. complete and
compact are JSON objects, where complete consists of all values and compact is a shorter version
consisting of the most used parameters. The endpoint complete included all the required data and

was therefore used [4].

An example of an HTTP GET request to the locationforecast complete endpoint:

https://api.met.no/weatherapi/locationforecast/2.0/complete.json?

lat=60.3691&1on=5.3505

12

The lat and lon parameters represent the geocoordinate's latitude and longitude. It is not
recommended to use more than four decimals by MET, the reason for this is to avoid blocking which
will provide effective caching. The parameters that are typically included in an HTTP GET request
are the following: altitude, latitude, and longitude. Longitude and latitude are the only parameters

that must be included for every request whereas altitude is optional.

6.1.2 The Frost API

Frost [5] is a RESTful API that provides free access to MET Norway's historical weather and climate
data archive. The data includes quality-controlled temperature, precipitation, and wind data
measurements. It also offers information such as metadata about the weather stations. The API is

primarily used by developers who wish to access MET’s historical data archive.

The model of Log [7] uses historical weather data to calibrate, this is done so that model can achieve
and provide more accurate predictions. To achieve the most accurate and relevant results, the
application must retrieve data from the closest weather station that stores the relevant data. Frost
has various API reference endpoints [8] which deliver different types of data. For this project,

sources and observations were used.

The sources reference [8] provides the application with the closest station. There are several
parameters to define when making a request. Relevant parameters for this application are types,

elements, and geometry.

An example of an HTTP GET request to the sources endpoint:

https://frost.met.no/sources/v0.jsonld?types=SensorSystem&element
s=alr temperature,relative humidity,wind speed&geometry=nearest (P

OINT (5.3327 60.383))

The types parameter specifies the station type, whereas SensorSystems is a station with measuring

sensors. It is also possible to choose between InterpolatedDataset and RegionDataset. The API can

13

exclude stations that do not meet the requirements by specifying the elements parameter with:

air_temperature, relative_humidity,wind_speed.

As for the geometry parameter, it specifies the geometry of a station. The geographical location is
expressed in terms of either a single point or a polygon area [9]. The syntax nearest (POINT
(lon lat)) refers to the item closest to these coordinates. If the nearest function is used, the

response will include the distance in kilometres from the reference point.

The observations reference [8] provides actual observations data from MET Norway's data storage
system. It only handles restricted data by using query parameters. The required parameters to make

a request are sources, referencetime, and elements.

An example of an HTTP GET request to the observations endpoint:

https://frost.met.no/observations/v0.jsonld?sources=SN50540&refer
encetime=2022-04-01/2022-04-

02&elements=air temperature,relative humidity,wind speed

Sources specify which station to get observations from, and referencetime implies for which time
range. The time specification [9] is based on UTC and 1SO-8601. Frost allows the distance between

the starting point of consecutive intervals to be specified explicitly.

The format the application uses to cite dates is YYYY-MM-DD. For instance, one can define a time
range by writing: 2022-04-01/2022-04-02 .

It will retrieve observations that are expressed according to the ISO-8601 format [10]. Starting from
2022-04-01T00:00:00:000Z to 2022-04-02T723:00:00:000Z.

14

Security

To gain access to the service, the user needs to create an account [11]. This can easily be done by
visiting https://frost.met.no/auth/requestCredentials.html. The user will
provide an email address to register and will be provided with a new client ID and client secret. The
email will be stored in a database managed by MET [12]. The client ID is required for free service
and fast and stable performance [13]. The client secret is only necessary for access to data that is

not available to the public.

It is optional to use Basic authentication [14] or OAuth2 [15]. When accessing confidential data, the
OAuth2 must be used, but will also work for available data. The requests relevant for this application

only need the client id, and will hereby be referred to as MET ID.

The authorization scheme for the application depends on Basic Authentication, seeing that
requesting the client's secret was unnecessary. If this shifts, the application can easily be modified
to meet those changes. The Basic Authentication scheme can be considered secure only when the
web client and server connection are secure [14]. Thus, it is safe to assume that these rules apply for
this service since MET encourages its users to utilize basic authentication. The credential is
converted to base-64 encoding before passing it into an authentication header and the format of the

header is Authorization: Basic <client ID>:<client secret>.

The application will store the user's MET ID in the local database in cleartext. When creating a
MET account and receiving the MET id, the service only requires an email from the user. This
implies that the client id is not seen as sensitive information, seeing that there is no need for a user
password. If someone gets access to another user's email, the MET ID will be easily accessible.
Therefore, the application will not secure the MET ID any further. We believe that this responsibility
lies with MET.

15

Installation and Execution

There are some distinctions between Visual Studio (windows) and Visual Studio for mac (iOS). The
following chapters will give a further explanation of the main differences and a detailed guide for

both operating systems.

8.1 Get started

8.1.1 Windows

Visual studio 2022

https://visualstudio.microsoft.com/vs/

1. Download Visual Studio and open
2. Press Modify (figure 12)

Visual Studio Installer

Available

Developer News

) Visual Studio Professional 2019 Preview [m_Modify
L aunch
NET Conf is back again this year and will be
More ~
o) Visual Studio Professional 2019 Update
. inch ed to AL
0 Update available More = e
le introduc; d
Nee k
u L Type here to search

Figure 12. How to download Visual Studio (1/2)

3. Choose the Workloads tab folder and scroll down to Mobile & Gaming.
4. Check the Mobile development with .NET (Xamarin) (figure 13)

16

https://visualstudio.microsoft.com/vs/

CEERS ELEY CIRCRIENENECRGERUG M) 19 Preview — 16.3.0 Preview 3.0

Workloads Individual components Language packs Installation locations

Installation details

> Visual Studio core editor
v Mobile development with .NET
Included
v Xamarin

Mobile & Gaming (4)

Mobile development with .NET

Build cross-platform applications for iOS, Android or

Windows using Xamarin. v NET Framework 4.7.2 development tools
v C# and Visual Basic
v IntelliCode

Game development with Unity

Create 2D and 3D games with Unity, a powerful cross- Optional

platform development environment. Android SDK setup (AP level 28)

Mobile development with C++
Build cross-platform applications for iOS, Android or
Windows using C++

Game development with C++
Use the full power of C+ + to build professional games
newarad bu NirartY Linraal ar Carncld
Location
C:\Program Files (x86)\Microsoft Visual Studio\2019\Preview
Total space required 0KB

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Studio. This Il whi = |
software is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing. you also agree to those licenses. Install while downloading Close

Figure 13. How to download Visual Studio (2/2)

8.1.2 MaciOS

Choose between Visual studio for mac 2019

https://visualstudio.microsoft.com/vs/mac/

or 2022 Preview

https://visualstudio.microsoft.com/vs/mac/preview/

Download and open the Visual studio for mac file and check off .NET core, Android, and iOS.
(Figure 14)

17

https://visualstudio.microsoft.com/vs/mac/
https://visualstudio.microsoft.com/vs/mac/preview/

@ Visual Studio for Mac Installer

What would you like to install?

{ @ NET Core

l i0S

B macOS (Cocoa)

Cance . . 40 MB 10 downios Install and Update

Figure 14. How to download Visual Studio for mac

Then, open App Store and download Xcode:
https://apps.apple.com/no/app/xcode/id497799835?7mt=12

We also recommend following this tutorial for setting up Xamarin and getting started with
developing:
https://www.youtube.com/watch?v=JH8ekY JrFHs&list=PL do4fOcmZ00U10SXt2W58pu2L 0v2d
OW-1&index=1

8.2 Emulator

To be able to run Xamarin apps it’s required to install an emulator. Running an iPhone (i0S)
emulator on a Windows machine is not supported. For Mac iOS, one can choose between Android

and iPhone. The following chapter will give a brief tutorial on how to install the different emulators.

8.2.1 Windows

1. After installing Visual Studio, open a project
2. Tools -> Android -> Android SDK Manager... (Figure 15)

18

https://apps.apple.com/no/app/xcode/id497799835?mt=12
https://www.youtube.com/watch?v=JH8ekYJrFHs&list=PLdo4fOcmZ0oU10SXt2W58pu2L0v2dOW-1&index=1
https://www.youtube.com/watch?v=JH8ekYJrFHs&list=PLdo4fOcmZ0oU10SXt2W58pu2L0v2dOW-1&index=1

o ! Get Tools and Features... }
!
l Android » | O Android Device Manager..
oS LSl W SDK Manager...
Archive Manager... @ Android Device Monitor...
‘@ Connect to Database.. ¥ Device Log.
"8 Connect to Server... B Android Adb Command Prompt...

Restart Adb Server

Code Snippets Manager... Ctri+K Ctri+B

Choose Toolbox Items...
NuGet Package Manager
Create GUID
External Tools...
Command Line
Import and Export Settings...

Customize...

a Options..

Figure 15. How to download Android Emulator for Windows (1/6)

3. Choose between many different Android SDK’s. It is not required to have all installed.
(Figure 16)

}DUg JesT ANayZe IOOIS LXENSIONS WINGOW Mesp SeArTN (LT ~ Appe
(®) Android SDKs and Tools - o x [gB%
Platforms | Tools
Check or uncheck items to install or remove
Name APl Level Version Size Status
‘ @ [®) Android 9.0 - Pie 28 1G8
@ [®] Android 8.1 - Oreo 7 723 M8
@ [Android 8.0 - Oreo 2
@ [] Android 7.1 - Nougat 25
@ [T] Android 7.0 - Nougat 24
® [T] Android 6.0 - Marshmallow 23
@ [] Android 5.1 - Lollipop 2
@ [T] Android 5.0 - Lollipop 21
@ [T] Android 44.87 - Kit Kat + Wear support 20
| @ [Android 44 - Kit Kat 19
@ [7] Android 43 - Jelly Bean 18
@ [] Android 4.2 - Jelly Bean 17
| @ [CJ Android 4.1 - Jelly Bean 16
@ [] Android 4.0.3 - Ice Cream Sandwich 15
@ [T] Android 4.0 - Ice Cream Sandwich 14
@ [Android 3.2 - Honeycomb 13
@ [J Android 3.1 - Honeycomb 2
@ [Android 30 - Honeycomb n J
10 -

Figure 16. How to download Android Emulator for Windows (2/6)

4. Go to Tools and install the Android Emulator (Figure 17). Android Emulator is the tool set

that makes it possible to run the app on the computer

19

Android SDKs and Tools < — a X

Platforms | Tools
Check or uncheck items to install or remove.

Name Version Size Status

@ Android SDK Tools

[Android SDK Platform-Tools 2802 10MB Installed
@ (W) Android SDK Build Tools
| Andeod mudotor 28025 _3ssw8_esabed |
@ [] uos
@ [J NOK
@ [Extras

[V] SOK Patch Applier v4 1 1MB Installed

Figure 17. How to download Android Emulator for Windows (3/6)

5. Go back to the main menu -> Tools -> Android -> Android Device Manager (figure 18)

w Project Build Debug Test Analyze]ﬂilools Extensions Window Help Search (Ctrl+Q)
i Get Tools and Features... AppZ.Android '77’ N\d’gd!m
Android D mwomungu_
oS * | @4 Android SDK Manager...
Archive Manager... | @ Android Device Monitor...
@ Connect to Database... i u Device Log...
"B Connect to Server... | M Android Adb Command Prompt...
| Restart Adb Server

[Tl Code Snippets Manager... Ctri+K Ctri+8

Choose Toolbox Items...

NuGet Package Manager
Create GUID

External Tools...

Command Line
Import and Export Settings...

Customize...

Q Options...

Figure 18. How to download Android Emulator for Windows (4/6)

6. Press +New and set up an Android simulator (Figure 19). Press Create, and the simulator
will start downloading (Figure 20).

20

hw.camera.back

o) hw.camera. front

hw.cpu.ncore
hw.dPad

hw.gps
Name: | Pixel 2 Oreo 8.1 - API 27
hw.gpu.mode

Base Device: Pixel 2 (+ Store) 2 hw, keyboard

Processor: x86 v hw.lcd.density

hw.lcd.height

os: = v
Oreo 8.1 AR 27 bw. lcd.width

"'_ Google APts hw.mainKeys
Google Store
L By hw.ramSize
hw.sdCard

hu sansars arianrarion

Value Details
26 disk.dataPartition.size ®
v Data partition size.
v Default: 0
Specifies the size of the user data
v partition in bytes. If size is a simple
7 integer, it specifies the size in bytes. You
can also specify the size in kilobytes,
virtualscene megabytes, and gigabytes by sppending

K. M. or G to size. The minimum size is
9M and the maximum size is 1023G.

Figure 19. How to download Android Emulator for Windows (5/6)

@l Android Device Manager

Pixel 2 Oreo 8.1 - API 27

Oreo 8.1

APl 27

Figure 20. How to download Android Emulator for Windows (6/6)

8.2.2 Mac iOS

1080 x 1920
420 dpi

Creating.

To set up an emulator for Visual Studio for Mac, it is required to have Xcode installed.

1. Open Xcode -> Create new project -> Document App (Figure 21) -> (Figure 22)

21

Choose a template for your new project:

Multiplatform ios macO0S watchOS tvOS DriverKit Other

Application

Document App e Augmented Swift Playgrounds
Reality App App

Sticker Pack App iMessage App Safari Extension
App

amework & Library

Framework Static Library Metal Library

Cancel

Figure 21. How to set up iOS simulator for Mac (1/4)

Choose options for your new project:

Product Name: MyApp
Team: Emilie Hinna Fisketjen (Personal Team)

Organization Identifier: | com.xamarin|
Bundle Identifier:

Interface: = Storyboard

Language: = Objective-C

Include Tests

Previous

Figure 22. How to set up i0S simulator for Mac (2/4)
2. When Xcode is open -> Window -> Devices and Simulators

On the left hence side, there should be various simulator options available, if not press the +

button and create one (Figure 23)

22

iPad mini (6th generation)

i0S 1 E240) ¥ Show as run destination
M Pad mini (6th generation)

Identifier: ES6C2101-28D5-4ADA-AB88-13F314CC3C70

Devices | Simulators

iPad (9th generation)
iPad Air (5th generati..
iPad Pro (9.7-inch)

iPad Pro (11-inch) (3r..

watchOS Identifier
iPad Pro (12.9-inch) (

iPad mini (6th genera...

iPhone 8

iPhone 8 Plus
iPhone 11

iPhone 11 Pro
iPhone 11 Pro Max
iPhone 12

iPhone 12 Pro
iPhone 12 Pro Max
iPhone 12 mini
iPhone 13

iPhone 13 Pro
iPhone 13 Pro Max

iPhone 13 mini

@i

Figure 23. How to set up i0S simulator for Mac (3/4)

3. Restart Visual Studio for Mac, and all the various simulators should be available in the
Debug menu (Figure 24)

> [FireGuard.iOS > Debug >

iPhone SE (3rd generation) iOS 15.4
iPhone 13 Pro Max iOS 15.4
» [m] FireGuard (AddingDYNAMICModel) iPhone 13 Pro iOS 15.4

>[4 FireGuard iPhone 13 mini i0S 15.4

> _; FireGuard.Android iPhone 13i0S 15.4

> [[] FireGuard.ios iPhone 12 Pro Max iOS 15.4

> [FireGuardTest iPhone 12 Pro iOS 15.4

> [] Model iPhone 12 mini i0S 15.4
iPhone 12 i0S 15.4
iPhone 11 Pro Max iOS 15.4
iPhone 11 Pro iOS 15.4
iPhone 11i0S 15.4
iPod touch (7th generation) iOS 15.4
iPhone 8 Plus iOS 15.4
iPhone 8 iOS 15.4
iPad Air (5th generation) iOS 15.4
iPad mini (6th generation) iOS 15.4
iPad (9th generation) iOS 15.4
iPad Pro (12.9-inch) (5th generation) iOS 15.4
iPad Pro (11-inch) (3rd generation) iOS 15.4
iPad Pro (9.7-inch) iOS 15.4

[Solution

Figure 24. How to set up i0S simulator for Mac (4/4)

23

8.3 NuGet packages
Both operating systems can follow the same step-by-step guide for downloading all NuGet

packages.

8.3.1 FireGuard

Frameworks

e NETStandard.Library —2.1.0

The project needed to be set to a lower framework version when coupling FireGuard and Models in
the same project solution.

e Newtonsoft.Json

e RestSharp

e Sqlite-net-pcl

e SQLiteNetExtensions

e SgLteNetExtensions.Async

e Xamarin.Community Toolkit

e Xamarin.Essentials

e Xamarin.Forms

v [C] FireGuard
B3 Connected Services
v Dependencies
v Frameworks
(@) NETStandard.Library
v B3 NuGet
‘® Acr.UserDialogs -
‘D Newtonsoft.Json
> '@ RestSharp - 107

> @ sqlite-net-pcl
> '® SQLiteNetExtensions - 2.1.0
> '@ SQLiteNetExtensions.Async — 2.1.0

> @ Xamarin.CommunityToolkit — 2.0.2

> '@ Xamarin.Essentials - 1.7.3

‘® Xamarin.Forms - 5.0.0.2401

S8 Droio

Figure 25. NuGet packages in FireGuard

24

Installation Guide (example for RestSharp):
1. Right click on the project Solution FireGuard
2. Click on Manage NuGet Packages...
3. Browse — Search — “RestSharp” — Add Package (Figure 26)
4. Repeat for all NuGet packages

Q RestSharp

Browse Installed Updates
RestSharp 107.3.0 R‘estSharp
Simple REST and HTTP API Client Simple REST and HTTP API Client

License Project Page

FubarCoder.RestSharp.Portable.HttpClient 0. ID: RestSharp

arp port to PC John Sheehan, Andrew Young, Alexey Zimarev and RestSharp...
Published: 11/02/2022
FubarCoder.RestSharp.Portable.Core .0. Downloads: 130 277 640
yre RestSharp.Portable library Dependencies:
System.Text.Json (>= 5.0.0)

RestSharp.Newtonsoft.Json

RestSharpSigned

FubarCoder ReatSharn Portable Version: 107.3.0 (latest stable)

Package source: = nhuget.org < Include prereleases Add Package

Figure 26. How to download NuGet packages

8.3.2 Model (FRM)

Frameworks
e NETStandard.Library —2.1.0
NuGet Packages

¢ Newtonsoft.Json

25

v [C] Model
Connected Services
v B3 Dependencies

v B3 Frameworks

@ NETStandard.Library - 2.1.0
v B3 NuGet
‘D Newtonsoft.Json - 13.0.1

Figure 27. NuGet packages in Model (FRM)

26

Documentation and Source Code

The following chapter will explain how to autogenerate all documentations to a single XML file
from Visual studio [16].

9.1 Documentation: Windows

1. On the solution explorer window, right-click the project and click Properties.

2. Go to Build tab and Output.

3. Check of the “XML documentation file:” and choose the autogenerated files path (Figure
28).

4. Run the solution and view the documentation.

Configuration: | Active (Debug) < Platform: |Active (Any CPU)
Errors and warning!
Warning level 4 -
Suppress warnings: ‘1?01-1?02]
Treat wamings as errors
O None
O an
(@) Specific warnings: -NU1605
Output
Output path: Browse...
XML documentation file: 'namic-mobileapp\FireGuard\FireGuard\FireGuard.xml

‘Generate serialization assembly: On

Advance: d..

Figure 28. How to generate the documentation XML file on Windows

27

9.2 Documentation: i0OS

1. Right click on the project and choose Options (Figure 29)

v [] FireGuard
Ba Connec Build FireGuard

> B8 Depend Rebuild FireGuard
B Data Clean FireGuard
BB Models Pack FireGuard
B8 Service pyblish
B IRest
m IWear Add
[} Restc Manage NuGet Packages...
B weat
B ViewMc
B Views
App.xar Run With
AppShe
[Assemt
[Getting Copy
[C] FireGuard gyt

Git

| FireGuarc Remove
v [} FireGuard
Ba Connec
B3 Depend Unload Project
B FireRisk
B Service
@ Frost Tools
[Metr. Analyze Source

[Mock Findin Files...

Rename...

Show in Finder

[Rests Open in Terminal
B weat
B Viewmc Edit Project File
[Tests Options
] Model

Refresh

Figure 29. How to generate the documentation XML file on Mac (1/3)

2. Go to the Build drop down menu and Compiler (Figure 30).
3. Go down to Errors and Warnings and check of the “Generate XML documentation:”

28

Project Options — FireGuard

v General Compiler

Main Settings

Platform Target: = Any CPU
v Build

Generate overflow checks
/* General

] configurations Enable optimizations

@ Compiler

@ Assembly Signing

- Errors and Warnings
& Output

v Warning Level:

Configurations Suppress warnings: 1701;1702
P Default

Treat warnings as errors
+ Source Code

) . « Generate XML documentation:
E3 .NET Naming Policies
[2 Code Formatting FireGuard.xml

@B XAML Document

Figure 30. How to generate the documentation XML file on Mac (2/3)

4. Run the project and redirect to the file and view the XML documentation (Figure 31).

FireGuard.deps.json <?xml version="1.0"7>
FireGuard.dll ‘d°c:assemb1y>
FireGuard.pdb <name>FireGuard</name>
</assembly>
FireGuard.xml <members>
<member
Model.dll name="M:FireGuard.Data.Databas
Model.pdb e.GetLocationsAsync'>
<summary>
ref Get all Locations
</summary>
<returns>Retun a
List of Locations </returns>
</membe r>

Services

FireGuard.xml
XML Document - 16 KB

Figure 31. How to generate the documentation XML file on Mac (3/3)

29

9.3 Guide

Both operating systems can follow the same guide for creating documentations for new methods

and classes.

All implemented methods should have written documentation to make it manageable for other

developers to continue implementing any systems. To auto-generate documentation tags for a

method, simply type “///, as seen In Figure 32 [17].

Figure 32. How to auto-generate documentation tags

When the method is hoovered over, the written documentation will be displayed (see Figure 33).

Test();

fc m void WeatherClient.Test() cas

This is a test documentation

Timg

Figure 33. The written documentation can be seen when method is hoovered over

30

Continuous Integration and Testing

Tests for both FireGuard and Fire risk model projects were created, seen in Figure 34. The

library NUnit was utilized when creating the test project.

] FireGuard.iOS
v [} FireGuardTest

Connected Services
v [B3 Dependencies
> B} Frameworks
v B3 NuGet
> ‘@ Microsoft.NET.Test.Sdk - 17.2.0
‘D Newtonsoft.Json - 13.0.1
> @ Nunit - 3.13.3
‘D Nunit3TestAdapter - 4.2.1
> B3 Projects
v [FireRiskModel
E}; FireRiskModelTest.cs
v B Services
FrostWeatherData.json
MetForecast.json
MockData.cs
RestServiceClientTest.cs
WeatherClientTest.cs
v B ViewModels
Tests.cs

Figure 34. Representation of the FireGuardTest project

To test methods that depend on actual weather data, it was decided to set up mock data sets that
could be used. FrostWeatherData and MetForecasts consist of JSON representations.

MockData class consist of methods for retrieving data from the representation.

31

10.1 Test methods

FireRiskModelTest class consists of the following test methods:

- MockDataTest : test that the reading of the JSON file was successful

- FireRiskTtfTest: testthat the fire risk model provides fire risk results

- GetHourlyObservationstest: test the RemoveNotHourlyForecasts, which
determine the time jump from hourly to every sixth hour and removes all future forecasts.

- SortByMinTtfTest :testthat the method SortByMinTt f groups the time to flashover
by date, and retrieves the lowest ttf value and returns a list

- FindFireRiskTest: test if the method calculates the fire risk correctly based on the ttf

benchmarking

MockData class consists of the following test methods:

- Classes to retrieve weather data from JSON files

- Observations and ForecastObservations: retrieves data from the JSON file and
convert the data to Observation objects

- ConvertObservations and ConvertForecasts: converts the weather data to
Observations data

- RemoveNotHourlyForecasts: determine where the forecasts time jump is, and

remove all future forecasts from the list.

RestServiceClientTest class consists of the following test methods:

- GetForecastTest: test for retrieving forecasts from met
- GetNearestStationTest: test for retrieving the nearest station based on coordinates
- GetWeatherDataTest: test for retrieving observations from the nearest station for a

given period

WeatherClientTest class consists of the following test methods:

- SortByMaxWindSpeedTest: the method groups the weather data by date, and

determine the maximum wind speed value for each day

32

- SortByMaxWindGustTest: testif the method sorts the wind gust and direction correctly

Tests class consists of the following test methods:

- GetPeriodTest: test if the period string is generated correctly

10.2 Run test project

The following chapter will explain how to set up the test project and get everything up and running.

These are the required NuGet packages (Figure 35):

Browse Installed Updates

Microsoft.NET.Test.Sdk

The MSbuild targets and properties for building .NET test
projects.

Microsoft.NET.Test.Sdk 17.20
The MSbuild targets and properties for building .NET test projects.

License Project Page

Newtonsoft.Json 13.01

1D: Microsoft.NET.Test.Sdk
Author: Microsoft
g Published: 11/05/2022
NUnit 3133 b
» . o) Downloads:
Dependencies:
Microsoft.TestPlatform.TestHost (>= 17.2.0)
NUnit3TestAdapter 4.21 Microsoft.CodeCoverage (>= 17.2.0)

t3 adapter f Sl A

Package source: ~nuget.org Include prereleases Uninstall Package

Figure 35. The required NuGet packages for FireGuardTest project

The RestServiceClientTest consists of tests to check if the request was successful.

Most of the methods depend on weather data, therefore it was decided to create a mock data set.

This can be found in the MockData class that uses the two JSON files to retrieve data.

To use the mock data, the user needs to specify the file path, because it will vary (Figure 36).

A detailed description how to retrieve the full path is given below.

33

; MockData

MetForecast MetForecastData()

Directory.SetCurrentDirectory(@"/Users/emilieh.fisketjon/GitHub/IB3/Untitled/FireGuardTe
StreamReader reader = new StreamReader("MetForecast.json");
'ring jsonString = reader.ReadToEnd();

Figure 36. The MetForecastData method

To find the full path on Mac:

Figures 37, 38, and 39 provides a step-by-step guide for retrieving the files full path.

Connected Services
> B Dependencies
> Il FireRiskMode
v [Services

FrostWeath
MetForecas
MockData.c Git
RestService
B weatherClic
v [ViewModels

Open With

Exclude from Project

Copy
Cut
Delete

[Tests.cs
("] Model

Rename...
Show in Finder

Build Action
Quick Properties
Properties

Refresh

Project saved.

Figure 37. How to retrieve the full path on Mac (1/3)

34

B FrostWeatherData.json {
"tvpe": "Feature'
|! MetFore
Open &
MockDa:

Open With
RestSen i

Weather Move to Bin

Get Info

Rename

Compress “MetForecast.json”
Duplicate

ELCWNIES

Quick Look

Copy

Figure 38. How to retrieve the full path on Mac (2/3)

MetForecast.json

General:

Kind: JSON Document
Size: 142 536 bytes (143 KB on disk)
Where: Macintosh HD » Users »

emilieh.fisketjon » GitHub » IB3 »
Untitled » FireGuardTest »
Services

Created: Thursday, 5 May 2022 at 15:17
Modified: Thursday, 5 May 2022 at 15:17

Stationery pad
Locked

Figure 39. How to retrieve the full path on Mac (3/3)

Copy and paste the file path into the MockData class Directory.SetCurrentDirectory

If the developer wants to directly work with weather data from the API, methods in

IRestService and IWeatherClient can be utilized.

To find the full path on Windows:

Right-click on JSON file and choose Copy Full Path and paste into MockData class.

35

Bibliography

1. Meterologisk-Institutt. About the Norwegian Meteorological Institute. 2017 2020;
Available from: https://www.met.no/en/About-us/About-MET-Norway.

2. Yr.no. Facts about Yr. Available from: https://hjelp.yr.no/hc/en-
us/sections/115001514149-About-us.

3. Meterologisk-Institutt. WeatherAPI. Available from: https://api.met.no.

4. Meterologisk-Institutt, Locationforecast.

5 Meterologisk-Institutt. What is Frost? . Available from:
https://frost.met.no/index.html.

6. Yr.no. Location Forecast. Available from: https://developer.yr.no/featured-
products/forecast/.

7. Log, T., Modeling Indoor Relative Humidity and Wood Moisture Content as a
Proxy for Wooden Home Fire Risk. Sensors, 2019. 19(22): p. 5050.

8. Meterologisk-Institutt. APl REFERENCE. Available from:
https://frost.met.no/api.html.

9. Meterologisk-Institutt. APl Concepts. Available from:
https://frost.met.no/concepts2.html.

10. Wikipedia. ISO 8601. 2022; Available from:
https://en.wikipedia.org/wiki/ISO_8601.

11. Meterologisk-Institutt, Request New Client Credentials.

12. Meterologisk-Institutt. MET’s Privacy Policy Statement. 2017 2021; Available
from: https://www.met.no/en/About-us/privacy.

13. Meterologisk-Institutt. Authentication. Available from:
https://frost.met.no/authentication.htmi.

14. IBM. HTTP basic authentication. 2022; Available from:
https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-authentication.

15. auth0. What is OAuth 2.0? ; Available from: https://auth0.com/intro-to-iam/what-
Is-oauth-2/.

16. Stokkenes, S., et al., Validation of a Predictive Fire Risk Indication Model using
Cloud-based Weather Data Services. Procedia Computer Science, 2021. 184: p.
186-193.

17. Recommended XML tags for C# documentation comments. 2022.

36

https://www.met.no/en/About-us/About-MET-Norway
https://hjelp.yr.no/hc/en-us/sections/115001514149-About-us
https://hjelp.yr.no/hc/en-us/sections/115001514149-About-us
https://api.met.no/
https://frost.met.no/index.html
https://developer.yr.no/featured-products/forecast/
https://developer.yr.no/featured-products/forecast/
https://frost.met.no/api.html
https://frost.met.no/concepts2.html
https://en.wikipedia.org/wiki/ISO_8601
https://www.met.no/en/About-us/privacy
https://frost.met.no/authentication.html
https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-authentication
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://auth0.com/intro-to-iam/what-is-oauth-2/

Table of Figures

Figure 1. High level software application architeCturecccoveieiieieece e 2
Figure 2. Overview Of the Project STTUCIUIEcciiiiiiiei e 4
Figure 3. How to add dependencCy (1/2)cocueeeeiieie e ettt ne e 5
Figure 4. How to add dependencCy (2/2)coueieeieeie ettt 5
Figure 5. High-1evel Class diagram ... 6
Figure 6. Representation of the services components class diagramccoccvvveveeieiienecieeseennnn, 7
Figure 7. Class diagram of the Models COMPONENt.............cocvoiiiiiii i 8
Figure 8. Class diagram of the Views and VIEWMOEIS............cccooiiiiiiiiiiiiiceccee e 9
Figure 9. Database tables; Location and Met ID...........ccccoeiieiiiieieese e 10
Figure 10. MET ID ODJECT.....uviiiiie ettt sttt e e nneens 10
Figure 11. LOCALION OBJECTc..oviieiiiii e 11
Figure 12. How to download Visual StUdIO (1/2)cceeueiieiieieciee e 16
Figure 13. How to download Visual StUdio (2/2)cceiueiieiiiieceee e 17
Figure 14. How to download Visual Studio fOr MAaC..........ccccvieiiiiiiiiiccce e, 18
Figure 15. How to download Android Emulator for Windows (1/6)..........ccccevevviieeneeiesieeseenene 19
Figure 16. How to download Android Emulator for Windows (2/6)..........c.ccceeveieeieiiesie e 19
Figure 17. How to download Android Emulator for WIindows (3/6)cccecvereiienenienienieeinennns 20
Figure 18. How to download Android Emulator for Windows (4/6).........ccccceveveiieiieeiesieeseeinenes 20
Figure 19. How to download Android Emulator for Windows (5/6)..........ccccceeveieeieiieiie e 21
Figure 20. How to download Android Emulator for Windows (6/6)ccccceererenienieninneienen, 21
Figure 21. How to set up i0OS simulator fOr Mac (1/4)cooveiiieiiieiiseeeee e, 22
Figure 22. How to set up i0S simulator for Mac (2/4)cooveoviieieeieee e 22
Figure 23. How to set up 10S simulator for Mac (3/4) ..o, 23
Figure 24. How to set up i10OS simulator TOr Mac (4/4)coooiiiiiiiieiieeieee e, 23
Figure 25. NuGet packages in FIFEGUAIT...........c.coiiiiieiieiiie e 24

37

Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.

Figure 309.

How to download NUGEet PACKAGEScccueeiiiiiiieiiiiiec e 25
NuGet packages in Model (FRM) ..o 26
How to generate the documentation XML file on Windows...........cccccevvviveiieeiesinennn, 27
How to generate the documentation XML file on Mac (1/3)cocoovvevveveiieieeieiein, 28
How to generate the documentation XML file on Mac (2/3)cccoevevveieiieieiiniien, 29
How to generate the documentation XML file on Mac (3/3) ...cccoceveiiieieiiiiniiien 29
How to auto-generate documentation tagsS.........cccvveiireeiie e e 30
The written documentation can be seen when method is hoovered over 30
Representation of the FireGuardTeSt PrOJECT.........ccevvvrereririeiinieeee e, 31
The required NuGet packages for FireGuardTest Projectccccceveveeveevieiieveernenne 33
The MetForecastData Method..........c.cooiiiiiiiiiee e 34
How to retrieve the full path on Mac (1/3)coveieiiie e 34
How to retrieve the full path on Mac (2/3)ccoveeieiiiieeee e 35
How to retrieve the full path on Mac (3/3) ...ooveeiiiiii e 35

38

	Introduction
	Architecture
	Project Structure
	Class Diagram
	4.1 High-level class diagram
	4.1.1 Services
	4.1.2 Models
	4.1.3 Views and ViewModels

	Database Model
	Server Services
	6.1 The Norwegian Meteorological Institute
	6.1.1 The Weather API Location Forecast Service
	6.1.2 The Frost API

	Security
	Installation and Execution
	8.1 Get started
	8.1.1 Windows
	8.1.2 Mac iOS

	8.2 Emulator
	8.2.1 Windows
	8.2.2 Mac iOS

	8.3 NuGet packages
	8.3.1 FireGuard
	8.3.2 Model (FRM)

	Documentation and Source Code
	9.1 Documentation: Windows
	9.2 Documentation: iOS
	9.3 Guide

	Continuous Integration and Testing
	10.1 Test methods
	10.2 Run test project

	Bibliography
	Table of Figures

