

BACHELOR THESIS

A Mobile Application for Fire Risk

Notification based on Edge Computing

Authors:

Emilie Hinna Fisketjøn, Abu Tallaha Hussain, Thorbjørn Svendal

Supervisors:

Prof. Lars Michael Kristensen, Ph.D. candidate Ruben Dobler Strand

Department of Computer science, Electrical engineering, and Mathematical sciences

Western Norway University of Applied Sciences

May 23, 2022

 TITTELSIDE FOR HOVEDPROSJEKT

Rapportens tittel

A Mobile Application for Fire Risk Notification based on Edge

Computing

Dato:

23.05.2022

Forfatter(e):

Emilie H. Fisketjøn,

Abu Tallaha Hussain

Thorbjørn Svendal

Antall sider u/vedlegg: 89

 Antall sider vedlegg:7

Studieretning:

Dataingeniør, Informasjonsteknologi

Antall disketter/CD-er:0

Kontaktperson ved studieretning:

Lars Michael Kristensen

Gradering:

Ingen

Merknader:

Oppdragsgiver:

DYNAMIC

Oppdragsgivers referanse:

Oppdragsgivers kontaktperson:

Ruben Dobler Strand

Telefon:

48 35 00 63

 Stikkord:

Fire Risk

Edge Computing

DYNAMIC

 Høgskulen på Vestlandet, Fakultet for ingeniør- og natuvitskap

 Postadresse: Postboks 7030, 5020 BERGEN Besøksadresse: Inndalsveien 28, Bergen

 Tlf. 55 58 75 00 Fax 55 58 77 90 E-post: post@hvl.no Hjemmeside: http://www.hvl.no

http://www.hvl.no/

i

Preface

This bachelor project is a thesis administrated by The Department of Computer science,

Electrical engineering, and Mathematical sciences at Western Norwegian University of

Applied Sciences. This project would allow us to contribute to the DYNAMIC Research

Project which works with reducing fire disaster risk through dynamic risk assessment and

management. We chose this project because we thought it was socially beneficial and at the

same time would provide a good opportunity for us to acquire new skills in development.

We would like to thank the project supervisors Professor Lars Michael Kristensen and Ph.D.

candidate Ruben Dobler Strand for their excellent guidance and constructive feedback

throughout the project.

We would also like to express our gratitude to:

• Torgrim Log for developing the Fire Risk Model and his involvement in the project

for his input on the design and evaluating the application.

• Maria-Monika Metallinou Log for evaluating the application and the facilitation of

the user testing in Haugesund.

• Everyone else involved in user testing, such as representatives from the Fire Safety

Engineering Department at Western Norwegian University of Applied Sciences,

Haugesund Fire Brigade, Haugaland Brann og Redning, Bergen Fire Brigade, and

finally friends and family

Bergen, May 23, 2022

ii

Abstract

Authorities and other organizations may find it difficult to determine which areas are more

probable of fire. There are technologies that can predict the fire risk for specific areas, such

as MET’s forest fire index, however there is no technology available to the general population

that provides risk assessment for fire in wooden structures.

We have therefore developed a mobile application by using a cross-platform framework to

make it available for mobile phones running on different operative systems. The application's

main purpose is to monitor locations for fire risk by requesting weather data from MET and

derive fire risk by performing calculations using the weather data. The application will

provide users an overview of fire risks in wooden structures for locations they are interested

in. The application has been evaluated through user testing and performance assessments;

this has helped developing an application with a high degree of usability that meets the users'

expectations.

This thesis centres around implementing and extending the accessibility of the Fire Risk

Model which calculates fire risk based on weather conditions and is developed by the

DYNAMIC Research Project.

iii

Table of Content

Chapter 1: Introduction.. 1

1.1 The DYNAMIC Research Project... 1

1.2 Fire Risk Prediction Model ... 2

1.3 Motivation ... 2

1.4 Problem statement and objective... 3

1.5 Research Questions ... 3

1.6 Thesis structure ... 5

Chapter 2: Project Description .. 6

2.1 Project owner... 6

2.2 Related work ... 6

2.3 Initial requirements specification .. 7

2.4 Initial solution idea .. 9

2.5 Resources .. 9

Chapter 3: Project Approach ... 11

3.1 Possible cross-platform mobile frameworks ... 11

3.1.1 Flutter ... 11

3.1.2 Xamarin .. 11

3.1.3 .NET Multi-Platform App User Interface (MAUI) .. 12

3.2 Assessment of Technology Choice ... 12

3.3 Development method .. 14

3.4 Project plan .. 14

3.4.1 Pre-Project Phase.. 15

3.4.2 Development Phase .. 15

3.4.3 Testing .. 15

3.4.4 Finishing Phase .. 15

3.5 Risk management .. 16

3.6 Evaluation plan .. 16

Chapter 4: Detailed design ... 18

4.1 Use Case Diagram ... 18

iv

4.1.1 Use Case Descriptions .. 19

4.2 Domain Model... 20

4.3 Application Design Pattern ... 21

4.4 High-Level Application Software Architecture .. 22

4.5 Fire Risk .. 24

4.5.1 Fire risk benchmarking... 24

4.6 Weather Data Sources ... 25

4.6.1 The Norwegian Meteorological Institute ... 25

4.6.2 The Weather API Location Forecast Service ... 26

4.6.3 The Frost API ... 28

4.6.4 Authorization .. 32

4.7 Data Models .. 32

4.8 Service Clients... 34

4.8.1 RestSharp ... 36

4.8.2 Exception Handling .. 37

4.9 Application Flow ... 40

4.10 SQLite Database .. 41

4.11 Fire Risk Model ... 44

4.12 Graphical User Interface (Views) ... 48

4.12.1 Pages .. 48

4.12.2 Layouts ... 48

4.12.3 Views ... 49

4.12.4 Cells ... 49

4.13 Graphical User Interface Structure .. 49

4.13.1 Tab navigation ... 49

4.13.2 Items Source... 50

4.13.3 Data Template .. 50

4.13.4 Expander .. 51

4.13.5 Data Binding and Data Type.. 51

4.13.6 Fire Risk and Wind .. 52

4.13.7 Building the User Interface .. 52

4.14 Data Updates and Notifications... 54

Chapter 5: Evaluation ... 56

5.1 Evaluation method... 56

5.1.1 Fire Safety Group ... 57

v

5.1.2 Laypeople Group .. 58

5.1.3 Fire Brigade Group... 58

5.2 User testing results .. 58

5.2.1 Fire Safety Group ... 59

5.2.2 Laypeople Group .. 59

5.2.3 Fire Brigade Group... 59

5.2.4 Post evaluation ... 59

5.3 Performance evaluation ... 60

5.3.1 Data Usage ... 60

5.3.2 Storage .. 62

5.3.3 CPU and memory ... 62

5.3.4 Battery .. 65

Chapter 6: Discussion ... 67

Chapter 7: Conclusion .. 72

7.1 Research Questions Revisited ... 72

7.2 Conclusion ... 73

7.3 Future Work .. 74

Figures .. 75

Listings ... 76

Tables.. 77

Bibliography .. 78

Appendices ... 82

9.1 Gantt Chart .. 83

9.2 Risk Management .. 84

9.3 Risk Matrix .. 85

9.4 User Testing Guide.. 86

9.5 SUS results .. 87

9.6 Wireframe.. 88

vi

Terminology

DYNAMIC Reducing fire disaster risk through dynamic risk assessment and management is

an interdisciplinary research project focusing on fire risk predictions related to

wooden homes and the wildland urban interface.

FMC Fuel Moisture Content

IFD Indoor Fire Development

TTF Time To Flashover

1

Chapter 1: Introduction

Forest fires and other catastrophic fires are now typical news headlines. Many models have

been created that can predict – and so provide warnings about the risk of fires. Most of these

models cover only wildfire risk, they are primarily used by municipalities and fire brigades to

assess wildfire danger. There are approximately 300 000 annual fire-related deaths worldwide

[1], with residential fires accounting for the majority of these deaths. This demonstrates the

necessity for technologies that can notify users of fire risks in their homes, which is what this

bachelor project seeks to implement.

1.1 The DYNAMIC Research Project

This project has been undertaken in the context of the research project, Reducing fire disaster

risk through dynamic risk assessment and management (DYNAMIC). DYNAMIC is an

interdisciplinary research project at Western Norwegian University of Applied Sciences (HVL)

focusing on reducing conflagration risk, through dynamic risk predictions and management

[2]. The project emphasizes wooden home fire risk and fires in the wildland-urban interface,

herein the cultural heathland along the Norwegian west coast.

After a devastating winter fire blaze in Lærdalsøyri (Norway), on 18-19 January 2014, it was

brought to attention that cold climate fire risk in wooden homes was under-examined.

Therefore, it was seen necessary to conduct further research on this topic [3]. It was suggested

that indoor humidity could be a fire risk indicator [4]. A cold climate structural fire danger

rating system [1] was propounded and a mathematical model for predicting indoor relative

humidity and wooden fuel moisture content (FMC) was developed [5].

2

1.2 Fire Risk Prediction Model

A wooden home fire risk model was developed by Log [5]. The model predicts indoor relative

humidity and wood fuel moisture content (FMC) of indoor wooden coverings, based on

measures and predictions of outdoor relative humidity and temperature. The modelled FMC is

correlated with the time to flashover (TTF) [6]. TTF is the transition time between the growth

period to the fully developed stage in fire development, which indicates untenable conditions

[7]. TTF is typically in the order of minutes and decreases with decreasing FMC.

1.3 Motivation

The motivation underlying this bachelor project is to raise awareness of fire and mitigate the

consequences of a probable fire. This will be accomplished by notifying users for fire risk when

appropriate so that they can take preventative measures. Example of organizations that could

be interesting in having real-time access to fire risk are: The fire brigade, municipalities, and

volunteer organizations. Knowing ahead of time which places are at risk allows the appropriate

authorities to devote more resources to these places.

A major motivator for this project is the lack of consumer-grade tools for assessing fire risk.

As of today, there is no technology or product that provides real-time fire risk predictions for

wooden structures. The smoke detector is as of now the most utilized fire risk detection tool

for homes. The disadvantage of relying exclusively on this technology is that the user will have

little time to react, as the smoke detector will only react seconds before disaster.

3

1.4 Problem statement and objective

As is evident from the DYNAMIC project, there is a clearly defined societal need for access to

fire risk assessments. Several candidate fire risk models and software technology solutions

have emerged that may potentially be able to bridge the current gap, but they need to be

systematically assessed and evaluated in the context of available weather data sources (weather

measurement and forecasts).

The objective of the bachelor project is to investigate how a fire risk notification service may

be provided to users via a mobile application using an approach based on edge computing, i.e.,

where the acquisition of weather data and the fire risk computation are performed without

relying on cloud services.

1.5 Research Questions

The project is centred around the three following research questions and will be discussed in

more detail below.

RQ1: Can a user interface for a mobile application be designed capable of showing fire

risks for multiple locations and be suited for users with different background and

use cases?

RQ2: What is the impact of the fire risk computation and weather data acquisition on the

performance of the mobile device?

RQ3: What are the advantages and disadvantages of an approach based on edge

computing on mobile devices in comparison to a cloud-based solution?

4

RQ1

The desired outcome of this project is to create a mobile application that can be used as a

personal tool by the general public. This decision was made by the project owner to increase

the accessibility of the modelling results. The idea is that the application will be used daily by

users of different backgrounds, thus it must be developed in a way that appeals to the majority.

It needs to be taken into consideration how to visually present both the current fire risk and

changes to the fire risk. The final solution should be simple to use and comprehend. To achieve

this, evaluations will be conducted in which users will be asked questions about their

experience with the user interface.

RQ2

In terms of computational capability and specs, the average mobile device today is quite

advanced. When developing a mobile application such as this, one of the main concerns is how

it will affect the end user's mobile device. As a result, it will be necessary to investigate the

implications of computing fire risk directly on a mobile device. Both storage and battery

capacity need to be addressed, as an application is expected to not consume too many resources.

To address this, the technologies that will be utilized to develop the application will be

thoroughly examined, and the application's performance will be assessed on both an iOS and

an Android device.

RQ3

Both approaches have advantages and disadvantages; edge computing may be better suited for

a certain task where cloud computing is ineffective, and vice versa. The advantages and

disadvantages will be investigated in relation to the application to research whether edge

computing is a practical approach.

5

1.6 Thesis structure

It is assumed that the reader has a technological background and some understanding of the

terms and technologies covered in this thesis.

The bachelor thesis is divided into the following chapters:

Chapter 2 delves into the project owner's background, previous work, and other resources.

This chapter will explain how these resources will benefit the project. The reader will learn

about the project's initial solution idea, constraints, and resources.

Chapter 3 covers the plan for carrying out the project. The plans for project design, evaluation,

and technology will be delved into. A technology evaluation will be conducted to determine

which technology is best suited for the project's requirements.

Chapter 4 provide the reader with a detailed description of the systems requirements, structure,

and behaviour. The mobile application's solution and design choices will be highlighted. The

reader should have a good understanding of how the application's backend and frontend

systems work after reading this chapter.

Chapter 5 delves into the evaluation. This chapter will cover the evaluation methods, a

description of the test panel, and an analysis of the evaluation results.

Chapter 6 discusses the result of the implementation and the obstacles that were encountered.

Chapter 7 concludes and summarizes the work carried out in this bachelor thesis. The reader

will learn about future work and other tasks that must be completed to ensure successful

implementation.

6

Chapter 2: Project Description

When starting this project, initial work had already been undertaken. An implementation of the

model of Log [5] has been done earlier in the context of a research affiliated with the

DYNAMIC research project [8] [9].

2.1 Project owner

The project owner is Ph.D. candidate Ruben Dobler Strand under the auspices of the

DYNAMIC research project. DYNAMIC is the largest ongoing research project within the

Fire Disasters [10] research group at HVL. The project is supported by the Norwegian

Research Council and other partners.

The Software Engineering research group [11] at HVL is also a partner in the DYNAMIC

project. Their research focus is in the areas of model-driven software engineering, concurrent

and distributed systems, software verification and testing, software quality and security, code

refactoring, and software architecture.

2.2 Related work

The DYNAMIC research project conducted a research in 2019 which led to the development

of the model of Log [5]. The model focuses on the first house catching fire, potentially

becoming a larger conflagration. The model calculates risk for fire based on the indoor relative

humidity and transient drying of wooden wall panels.

Stokkenes investigated whether the model of Log [5] could be used in real-world situations to

predict risk of conflagration using both historical weather data and forecast weather data [8].

This was the first implementation and evaluation of the model of Log [5]. A combination of

historical weather data and forecast weather data was used to achieve a more accurate model

7

which can give precise predictions. The model was evaluated using data for four different

locations: Bergen, Haugesund, Gjøvik, and Lærdal. This research concluded that the model of

Log [5] can be used to give accurate indications for fire risk using a concept such as TTF [8].

A web-based software system was developed by Halderaker and Evjenth in 2021 [9]. This is a

Java-based Cloud- and Microservice-based Software system for fire risk prediction. It contains

five components that together constitute the system. The Fire Risk Model (FRM), Fire Risk

Service (FRS), Data Harvesting Service (DHS), a front-end web application, and a middleware

enabling communication between the FRS and the front-end.

The web service was evaluated in terms of performance and accuracy. Halderaker and Evjenth

conducted an experiment that monitored the resource usage of the service. The required CPU

usage needed to calculate fire risks proved to be negligible deeming this application to be

efficient in terms of CPU performance [9]. The project also proved that weather forecast for up

to three days ahead can be reliably used. This was done by comparing fire risks using weather

forecasts and observations [9].

The main difference between this bachelor project and Halderaker and Evjenth's web-based

software system [9] is that the application developed in this project will be explicitly developed

for mobile devices. The idea of the project is to increase the availability to the fire risk

prediction technology. It is It is anticipated that this project would result in the first

implementation of the model of Log [5] available to the general public.

2.3 Initial requirements specification

The initial requirement specification for the bachelor project was to create a mobile application

that implements the fire risk model based on edge computing. Edge computing is a distributed

computing architecture that brings applications closer to data sources. The distributed system

offers an alternative way of processing data, and all decisions and computing occur on the

mobile device itself. Thus, edge computing provides immediate data analysis [12]. In this

setting, the mobile device is responsible for retrieving outdoor temperature, relative humidity,

peak wind speed, and computing fire risks.

8

Besides edge computing, cloud computing is another architecture. There is a distinction

between edge computing and cloud computing as these concepts endeavor to solve different

network infrastructure issues. Cloud computing provides an on-demand availability of

computing and storage resources [13]. The architecture provides minimum management, good

data backup, and massive storage. It will suit businesses that need a scalable solution for storing

and analyzing large amounts of data. The downside of this architecture is that it can result in

business downtime because it requires a stable internet connection and bandwidth, it can

therefore be perceived as less accessible.

The advantage of using edge computing is that the latency will be significantly reduced. The

mobile device will not have to send the data to a cloud service, but will instead perform the

calculations locally. This will lead to a faster response time and improve the customer’s overall

experience [14].

In addition to edge computing, one can consider using a proxy server that acts as a gateway

between the client application and a real server [15]. A proxy server can request and

communicate with different services on behalf of users by acting as a middleman. The proxy

can improve the performance by introducing a concept called proxy caching [16]. Proxy

caching stores content on the proxy server itself, making it possible to share resources between

users. It handles all communication with servers and caches all the requested resources.

When a user tries to access a resource, the proxy will see if a recent copy is available. It will

either deliver the data that has already been cached or it will request the data from the source,

then cache it, and finally deliver it. The main advantage of proxy caching is that it can reduce

bandwidth use. Another advantage is that it can improve website speed and reliability by

providing a point of presence for several end users [17].

Another requirement was to develop a mobile application that is cross-platform compatible.

The cross-platform concept stems from the growing necessity to generate mobile applications

that reach out to as many followers as possible. A cross-platform application will cover a wide

number of operating systems e.g., iOS, Android, and Windows. Applications written using

cross-platform technology will usually share the same codebase. This significantly reduces

both development costs and time, which allows for a quicker release.

9

2.4 Initial solution idea

Instead of employing native-platform technology, the application will be developed using

cross-platform technology. This decision was taken after evaluating project efficiency and

time. The goal is to create an application that allows users to monitor several locations for fire

risk. These locations will be treated as objects that will store information about fire risk to the

locations specified by the user.

It was suggested to display the fire risk by use of a colour bar as illustrated in Figure 1, with

the colours computed by the TTF values. The lower the TTF value, the darker the colour. The

colours in the colour bar correspond to the Norwegian forest fire index's colour system [18].

Consistency is achieved between the fire risk models by using the same colour system. It is an

attempt towards avoiding confusion and misconception when people utilize both the forest fire

index and the application.

Figure 1. Color scheme for displaying forest fire risk

2.5 Resources

The project is reliant on a collection of resources that will work together to realize the initial

solution idea. Access to the RESTful MET API is necessary to obtain weather data [19].

As mentioned in Section 2.1.2 (Previous work), a Java-based Cloud- and Microservice-based

Software system for Fire Risk Prediction was developed [9]. The software system used the

model of Log [5] which has also been fully developed and implemented using Java. The same

model altered to suit the requirement specifications will be used in this project.

The project will have access to Halderaker and Evjenth’s [9] findings through the associated

research paper. This has aided the project's progress for a variety of reasons. This project faces

10

many of the same challenges as Halderaker and Evjenth’s project. This is because many of the

challenges Halderaker and Evjenth encountered will be relevant for this project, as the system

to be developed are like the web-based software system.

Meetings that concerned all the project’s participants were held on Zoom. In addition to being

used as a digital meeting space, Microsoft Teams functioned also as a messaging and file

sharing platform for the project group, supervisor, and project owner. Meetings were also held

physically; however, due to the uncertainty regarding the Covid-19 pandemic, many meetings

were held completely digital.

A private GitHub repository was set up by the project supervisor. It was used along with

GitHub Desktop to work concurrently on the code for the application. GitHub provided version

control; this is particularly useful to manage the source code and keep track of code

modification. In the scenario of a faulty version, previous versions can quickly be accessed.

This will prevent time wasted on debugging unnecessary errors.

In the scenario of technological or other programming related problems, the project’s

supervisor Lars Michael Kristensen was contacted for guidance. The project owner Ruben

Dobler Strand was contacted when any problems occurred concerning the model of Log [5], or

theoretical understanding of fire risk calculation.

11

Chapter 3: Project Approach

There are many candidate technologies that could be used to develop a cross-platform mobile

application. An assessment had to be made regarding which technology suited the project’s

needs best.

3.1 Possible cross-platform mobile frameworks

An initial requirement set by the project owner was that the application must be compatible

with the two major mobile operating systems: Android and iOS. This criterion can be met with

a variety of technologies. However, the group opted to dig deeper into the following

frameworks: Flutter, Xamarin and .NET Multi-Platform App User Interface.

3.1.1 Flutter

Flutter is Google’s open-source user interface framework. It is used for developing a modern

and natively compiled mobile applications with only one codebase [20]. This implies that you

can build cross-platform applications using one programming language.

Flutter uses Dart as its programming language, which is an object-oriented language. The

syntax in Flutter is C-styled, implying it follows many of the same rules as other C-styled

languages. Flutter offers a massive collection of built-in widgets. It also provides a set of

animation designs, allowing developers to design an interactive application for their customers

[21].

3.1.2 Xamarin

Xamarin is an open-source platform for developing modern and responsive cross-platform

mobile applications. It is built on top of .NET, which automatically manages tasks such as

memory allocation, garbage collection and interoperability with underlying platforms [22].

12

Xamarin uses eXtensible Markup Language (XAML), a declarative markup language

developed by Microsoft. XAML is the visual presentation language for an application created

using Xamarin and related technologies. Xamarin's programming language is C#, and offers

direct invocation of Objective-C, C, C++ and Java libraries, allowing developers to use a wide

range of third-party code [22].

3.1.3 .NET Multi-Platform App User Interface (MAUI)

MAUI is an open-source framework used for developing modern and responsive cross-

platform mobile applications. MAUI is a part of the .NET platform which gives the developer

access to a wide array of features. MAUI uses XAML as its markup language. It is the language

behind the visual presentation of an application built using MAUI and associated technologies.

Microsoft describes MAUI as the evolution of Xamarin because it adds desktop app support to

the traditional iOS- and Android-focused development framework along with other

enhancements [23].

3.2 Assessment of Technology Choice

The cross-platform mobile application development frameworks introduced above have their

benefits and drawbacks, the choice boils down to preference. Flutter would be preferred by

developers who are more comfortable with Google technologies and frameworks, whilst

Xamarin or MAUI would be preferred by developers who are more familiar with Microsoft

technology.

An advantage of using Flutter would be the immediate access to the built-in widget system

[24]. The main advantage of using Xamarin or MAUI is the access to .NET technologies. It

provides the easy-to-use IDE Visual Studio. Visual Studio provides features such as a

consistent programming model and advanced profiling tools to measure system performance.

It also simplifies application deployment and maintenance [25]. Another advantage of using

.NET and associated technologies is the fact that they are easy for newcomers to adapt to,

especially if they are familiar with concepts within Object-Oriented programming.

13

The group members were also participating in a course which covers .NET and associated

technologies, this led to the narrowing of choice to either Xamarin or MAUI. These

frameworks have many similarities, such as the fact that both are based on object-oriented

languages which use C-styled syntax. This implies that many of the features using either one

of them are also available using the other.

A simple distinction between MAUI and Xamarin is that with MAUI the developer will be

working on a single project that can target Android, iOS, macOS, and Windows, whereas

Xamarin has different projects for each of the respective operating systems. Figures 2 and 3

display how a project for mobile application development would be set up using Xamarin or

MAUI.

MAUI is not the most optimal technology to use at this date. The main reason is that MAUI is

a newly released technology and there are many risks associated with using newly released

technologies. An example of this is encountering a problem that cannot be solved at the given

moment due to the lack of documentation. Aside from the lack of documentation, community

support for a newly released technology may be inferior to that of well-established technologies

like Xamarin and Flutter. These two issues are less critical for Xamarin because it has been

well tested and many of the problems can be resolved with a quick Internet search.

Figure 3. MAUI project overview Figure 2. Xamarin project overview

14

It was decided that the mobile application will be developed using Xamarin and associated

technologies. This decision was taken after assessing the project's two most significant

constraints: time and experience.

A transition from Xamarin to MAUI must eventually be made, because Microsoft is planning

to end updates to the Xamarin mobile application development platform in November 2022

[26]. Concerning the fact that MAUI will over time replace Xamarin, the probability of having

to rewrite the Xamarin application to meet MAUI standards is seen as most improbable. The

process of migrating the application is expected to be small amounts of code changes [27].

3.3 Development method

Concepts from Agile Methodology have been used for project management. An Agile

Methodology is a way to manage a project by breaking it up into several phases. It allows

constant collaboration with stakeholders and continuous improvement for every phase since

there will be a dialogue between the developers and stakeholders for each iteration.

The Agile technique Scrum was utilized for this project. Scrum allowed continuous

communication and collaboration among the project members. Scrum describes a set of tools

and ideas that helps structure the work of the project. Scrum was well-suited for this project

because the technique laid the foundations for frequent dialogue with the project owner. Having

frequent contact was beneficial in many ways. The project owner was able to provide feedback

for each iteration and provide new ideas and other requirements if any of the current were to

change. Daily scrums are another Scrum philosophy that was used. This allowed group

members to catch up, reflect on their previous work, and plan the next iteration's work.

3.4 Project plan

The project was planned and visualized using a Gantt Chart, which may be seen in Appendix

9.1. (Gantt Chart). A Gantt Chart is a bar chart that illustrates the progress of a project and its

activities over time. The project plan is not final because it takes into account the practice of

15

adaptability. The plan can be changed during the project implementation depending on the

circumstances and new requirements from the project owner.

The plan was developed in accordance with the Scrum philosophy, which divides a project into

several phases. There were four phases to the project: (1) Pre-Project Phase; (2) Development

Phase; (3) Testing Phase; (4) Finishing Phase.

3.4.1 Pre-Project Phase

The Pre-Project Phase is where all the initial work and planning were done. All the tasks

concerning the pre-project such as developing a strategic plan, defining the initial requirements

specification, and discussing optional technologies for the initial solution idea.

3.4.2 Development Phase

The project was mainly focused on application development during this phase. This was done

to meet the defined goals. This phase included developing the application, preparing the

horizontal prototype to be presented in the Testing Phase which the project will enter

simultaneously as this phase is ongoing.

It was expected that the Development Phase would be the most time-consuming and

challenging. Therefore, the largest amount of time available for disposition was allocated to

this phase.

3.4.3 Testing

It was planned that a prototype will be ready for exhibit in this phase. Unit Testing was done

synchronously with developing the basic functions in the application, the principals of test-

driven development was central.

3.4.4 Finishing Phase

Adding final touches to the project, submitting a reflection paper and presentation of the work

were part of this phase.

16

3.5 Risk management

Various risks and countermeasures associated with the project can be seen in the Appendix 9.2

(Risk Management) and Appendix 9.3 (Risk Matrix). The risk assessments were placed in a

risk matrix to visualise and analyse the risks. The matrix is used to assess the severity of the

risks associated with this project, based on the probability of an unwanted event occurring and

its consequences. After mapping the risks, it was decided to plan countermeasures and

strategies to reduce the probability and severity. By planning how the different risks will be

handled, it was concluded that the risks were manageable. The risk plan is highly adaptable

and in continuous development. The plan will adapt based on the given circumstances so that

new risks will be addressed right away.

3.6 Evaluation plan

With the support of the project owner, who coordinated meetings with project stakeholders, an

evaluation plan was created. Different stakeholders will evaluate the application at different

stages, with the aim of securing as much varied feedback as possible.

The application was evaluated by:

• Members of the DYNAMIC Research Project, including the project owner. These

individuals have extensive knowledge of fire risk and can provide input on the

application's usability.

• A group of users with varying technological backgrounds and no expertise in the fields

of fire and risk management.

• Members of the fire brigade, ideally firefighters and fire engineers. One of the

motivations for this project as mentioned in Chapter 1 is to relieve appropriate

organizations so that they can manage their resources better. The application is expected

to be of strategic value to the fire brigade, they may there be interested in testing it

early. Their feedback on the application's flow and user interface will be essential.

17

The results from the test panel will be evaluated using the System Usability Scale (SUS) which

was created by James Brooke in 1995 [28]. It provides a survey scale that is quick and easy for

measuring the usability of a wide variety of products or services. The test panel will answer

ten questions where they can choose between five response options in a range from strongly

agree to strongly disagree.

It is planned to perform an evaluation concerning the application’s performance closer to the

end of the Testing Phase. This assessment will cover memory usage of the application, battery

usage and data usage of the application. The initial idea is to perform this evaluation by using

functions from the different operative systems to monitor resource usage of the application.

18

Chapter 4: Detailed design

The chosen design pattern will be discussed in this chapter, as well as all the components in

the High-Level Application Software Architecture. All diagrams in this chapter adhere to the

Unified Modelling Language (UML) convention and aid in the comprehension of the

application's functions.

4.1 Use Case Diagram

A Use Case Diagram is an efficient way of presenting and summarizing the possible actions

associated actors can perform. The primary actor that uses the application is simply described

as the User. The Weather Data Source and Local Database are identified as supporting actors

since they provide a service to the application. The Use Case Diagram for this project can be

seen in Figure 4 and presents the different actors and their roles in the application.

This section will include a brief description of each actor and their objectives.

• User: The User initializes the application and has the possibility to set up a profile,

view-, add-, and delete locations. A notification will be sent out should the fire risk

increase for any of the locations.

• Weather Data Source: The Weather Data Source is responsible for providing weather

data, that will be passed into the fire risk model. The only time the User will be in direct

contact with this actor is when initializing the application.

• Local Database: The Local Database offers a fully implemented data storage unit

directly on the User’s mobile device.

19

Figure 4. UML Use Case Diagram

4.1.1 Use Case Descriptions

There are three primary use cases for this application:

• Set Up Profile: The User initializes the application by setting up a profile. This implies

retrieving credentials from the Weather Data Source’s website. The User will launch

the application and be redirected to the website.

• Add Location: The User adds new locations by specifying coordinates.

• Notification: The application will notify the User if fire risks for a location increase.

20

4.2 Domain Model

A Domain Model is a diagram that depicts the relationships between entities and concepts in a

problem/application domain. The diagram assists domain specialists in gaining a solid

understanding and agreement on the system [29]. Figure 5 shows the various concepts found

within the mobile application.

Figure 5. Domain model of the application

The Domain Model has two compositions [30], one from Fire Risk Model to Fire Risk and the

other from Sensor Station to Observation. A Fire Risk, for example, cannot exist without a Fire

Risk Model. Depending on the type of weather data sought, Weather Data can be either an

Observation or a Forecast. The relationship between Fire Risk and Location states that a

Location expects Fire Risks for the next nine days.

21

4.3 Application Design Pattern

A good practice when writing application code is to follow an application design pattern. The

most popular design patterns associated with Xamarin development are the Model-View-

Controller (MVC) and Model-View-ViewModel (MVVM) patterns.

The MVVM [31] design pattern was adopted for this project. The justification for this is that

the design pattern assists in guiding the code's structure and design. It will also help to separate

the various problems. The decoupling made it possible for the project group to work on the

application in parallel because the application logic and the user interface were clearly

separated.

MVVM consists of three components as showed in Figure 6:

• View: Responsible for the layout and appearance. It does not contain any business logic

besides defining the user interface. The view is typically defined using XAML for

applications that use Xamarin.

• ViewModel: The ViewModel implements properties which are responsible for

interacting with the View component, it does so by connecting to the binding elements

in the view component. The ViewModel is also responsible for handling

communication and passing all data between the Model and the View.

• Model: The Model represents the application's domain and defines the logic of the

program. It is typically used in conjunction with services and separate projects.

Figure 6. Structure of Model-View-View Model

22

4.4 High-Level Application Software Architecture

Figure 7 shows a High-Level Application Software Architecture of the mobile application. It

shows the main components that form the application and how they interact with each other.

Figure 7. High-Level Application Software Architecture

Purple is used to represent the application's core components, which match the MVVM

pattern's naming convention. Views and ViewModels are coupled, as the Views

trigger commands in ViewModels. The ViewModels can store and edit content in the

Local database, and more information is provided in Section 4.10. (SQLite database).

The ViewModels uses Services to retrieve weather data by sending API queries to the

Weather Data Source. Models are used by Services to format weather data

responses into objects that comply with .NET standards. Services passes the data into the

Fire Risk Model and retrieves the fire risk calculations after formatting the responses.

Sequence diagrams for the use cases Add location and Notification can be seen in Figures 8

and 9. These two act as representative use cases, because the other use cases operate similarly.

23

Figure 8. Sequence diagram when a user adds a new location

The Add Location sequence diagram illustrates how the components interact when a new

location is added. The ViewModel triggers Service, which is responsible of storing the

newly created object in the database. Service oversees obtaining and translating JSON

responses to.NET objects, as well as calculating fire risks for the new location.

Figure 9. Sequence diagram for Push notification

24

The Notification use case is expected to be triggered by a timer constant, that decides when to

update fire risks for all locations. ViewModel updates the fire risks using an instance from

Service. If the fire risk increases, the mobile application will inform the user.

4.5 Fire Risk

TTF as previously mentioned is the transition time between the growth period to the fully

developed stage in fire development. It's used to present fire risk for locations, as each location

contains a list of fire risk values for the next four days, starting with today.

4.5.1 Fire risk benchmarking

The project owner created a scale to compare TTF values, as shown in Figure 10. This system

assigns a value to the different colour-coded bars, which is highly useful for comparing TTF

representations.

Figure 10. Scaling of the TTF values

The threshold for no fire risk was set at 14 minutes or higher. The white bar will be highlighted

if the TTF for a certain location is 14 or greater for the specific day. The backend logic behind

the representation of the system to present the fire risk is seen in Listing 1.

25

Listing 1. FindFireRisk determines fire risks based on the TTF value.

4.6 Weather Data Sources

The model Halderaker and Evjenth [9] implemented uses outside temperature, wind speed, and

relative humidity as input at specific time intervals. The application uses the same model and

therefore must retrieve the same data through its API requests.

4.6.1 The Norwegian Meteorological Institute

MET is Norway's national meteorological institute [32] and provides weather forecasts for

civilians and conducts meteorology, oceanography, and climatology research. In collaboration

with the Norwegian Broadcasting Corporation (NRK), they host the site Yr.no [33], an online

weather service that offers detailed weather forecasting. In addition to Yr.no, they provide the

service MET Norway Weather API [19]. The Weather API is an interface to a selection of data

produced and made available by MET through the URL https://api.met.no.

The application will use the Location forecast service [34] for a specified area and Frost [35],

a REST API for meteorological observation data.

26

4.6.2 The Weather API Location Forecast Service

The Weather API Location forecast service provides weather forecasts for the next nine days

for the specified geographic position based on coordinates. The forecast is based on numerous

data sources and is updated several times a day. The forecast provides hourly updates for the

first two-three days, after the third day the update frequency is changed to an interval of six

hours [36].

The data comes in three endpoints: classic, complete, and compact. classic is the old XML

format and is now considered legacy. complete and compact are JSON objects, where complete

consists of all values and compact is a shorter version consisting of the most used parameters.

The endpoint complete included all the required data and was therefore used [34].

An example of an HTTP GET request to the locationforecast complete endpoint:

https://api.met.no/weatherapi/locationforecast/2.0/complete.js

on?lat=60.3691&lon=5.3505

The lat and lon parameters represent the geographic position’s latitude and longitude. MET

recommends not to use more than four decimals, the reason for this is to avoid blocking which

will provide effective caching. The parameters that are typically included in an HTTP GET

request are the following: altitude, latitude, and longitude. Longitude and latitude are the only

parameters that must be included for every request whereas altitude is optional.

Listing 2 illustrates a JSON response body for the HTTP GET request. The mobile application

will retrieve the following parameters from the JSON response body:

air_temperature, relative_humidity, wind_speed, wind_speed_of_gust, and

wind_from_direction.

27

Listing 2. A JSON response body from the complete endpoint

28

4.6.3 The Frost API

Frost [35] is a RESTful API that provides free access to MET Norway's historical weather and

climate data archive. The data includes quality-controlled temperature, precipitation, and wind

data measurements. It also offers information such as metadata about the weather stations. The

API is primarily used by developers who wish to access MET’s historical data archive.

The model of Log [5] uses historical weather data to calibrate, this is done so that model can

achieve and provide more accurate predictions. To achieve the most accurate and relevant

results, the application must retrieve data from the closest weather station that stores the

relevant data. Frost has various API reference endpoints [37] which deliver different types of

data. For this project, sources and observations were used.

The sources reference [37] provides the application with the closest station. There are several

parameters to define when making a request. Relevant parameters for this application are types,

elements, and geometry.

An example of an HTTP GET request to the sources endpoint:

https://frost.met.no/sources/v0.jsonld?types=SensorSystem&elem

ents=air_temperature,relative_humidity,wind_speed&geometry=nea

rest(POINT(5.3327 60.383))

The types parameter specifies the station type, whereas SensorSystems is a station with

measuring sensors. It is also possible to choose between InterpolatedDataset and

RegionDataset. The API can exclude stations that do not meet the requirements by specifying

the elements parameter with: air_temperature, relative_humidity,wind_speed.

The geometry parameter specifies the geometry of a station. The geographical location is

expressed in terms of either a single point or a polygon area [38]. The syntax

nearest(POINT (lon lat)) refers to the item closest to these coordinates. If the

nearest method is used, the response will include the distance in kilometres from the

reference point.

29

Listing 3 illustrates a JSON response body for the HTTP GET request.

Listing 3. A JSON response body from the sources endpoint

The observations reference [37] provides actual observations data from MET Norway's data

storage system. It only handles restricted data by using query parameters. The paramteres

needed to make a request are sources, referencetime, and elements.

30

An example of an HTTP GET request to the observations endpoint:

https://frost.met.no/observations/v0.jsonld?sources=SN50540&re

ferencetime=2022-04-01/2022-04-

02&elements=air_temperature,relative_humidity,wind_speed

Sources specify which station to get observations from, and referencetime implies for which

time range. The time specification [38] is based on UTC and ISO-8601.

The format the application uses to cite dates is YYYY-MM-DD. For instance, one can define

a time range by writing: 2022-04-01/2022-04-02.

It will retrieve observations that are expressed according to the ISO-8601 format [39]. Starting

from 2022-04-01T00:00:00:000Z to 2022-04-02T23:00:00:000Z.

Listing 4 illustrates the first observation, and the elements are defined by an elementId. Other

variables to take notice of are the timeOffset and timeResolution. The variable timeOffset is the

observation time relative to midnight. For this observation, the timeOffset is PT0H, meaning

that the daily value has an observation time of 00:00 UTC. timeResolution specifies the period

between each data value. For this instance, the value is PT1H, which gives data values hourly.

31

Listing 4. A JSON response body from the observations endpoint

32

4.6.4 Authorization

To gain access to the services, the user must first create an account [40] by visiting

https://frost.met.no/auth/requestCredentials.html to request

credentials. To register, the user will need to submit an email address and will be given a new

client ID and client secret. The emails will be saved in a database managed by MET [41]. For

free service and fast and stable performance, the client ID is required [42]. The client secret is

only necessary for access to information that is not publicly available.

Basic authentication [43] and OAuth2 [44] are alternative options that can be used for

authorization. OAuth2 must be used when accessing confidential data, but it will also function

for publicly available data. The request relevant for this application only requires the client id,

and will hereby be referred to as MET ID.

The applications authorization mechanism relies on Basic Authentication, considering the

client's secret was unnecessary. If this changes, the application can easily be modified. The

Basic Authentication scheme is considered secure when the web client and server connection

are secure [43]. Since MET encourages its customers to use basic authentication, it is safe to

assume that these criteria apply to this service. Before providing the credential into an

authentication header, it is transformed to base-64 encoding, with the format:

Authorization: Basic <client ID>:<client secret>.

4.7 Data Models

The Models components act as non-visual classes that encapsulate the data and represent the

application's domain, including business and validation logic [31]. This chapter will show the

different model objects and how they are utilized.

An overview of the different classes listed in the Models component can be seen in Figure

11, The FrostStation, FrostWeatherData, and MetForecast were auto generated

classes using quicktype [45]. They were transformed from JSON objects to .NET classes.

33

Figure 11. A representation of classes in the Models component

The Fire Risk Model requires that the weather data is retrieved from the JSON response

bodies into standard C# code before it can be processed. Observation is a data model that

exists within the Fire Risk Model project. The Observation objects parameters

DateTime, Temperature, Humidity, and WindSpeed can be seen in Listing 5.

Listing 5. The Observation object from the Fire Risk Model project

The Location object consists of three lists for handling wind data: List<double> WindSpeed,

List<double> WindGustSpeed and List<double> WindDirection as seen in Listing 6.

34

Listing 6. Representation of the Location object

4.8 Service Clients

The following chapter introduces the Services components that implement the protocols

defined by the Business Layer and handle all HTTP requests to MET and Frost API [46].

Services consist of two interfaces, IRestServiceClient and IWeatherClient

and classes RestServiceClient and WeatherClient seen in Figure 12, which

implements these interfaces.

Figure 12. A representation of classes in the Services component

35

All API handling is controlled by the IRestServiceClient shown in Listing 7.

GetNearestStation retrieves the nearest station that stores air temperature, relative

humidity, and wind speed based on coordinates. The GetWeatherObservations uses the

station information, MET ID, and a period to request observations from Frost.

GetWeatherForecasts is responsible for retrieving all weather forecasts that the Fire

Risk Model uses to predict the actual fire risk that the application displays.

Listing 7. IRestServiceClient’s methods

IWeatherClient seen in Listing 8 handles all communication between the ViewModel,

IRestServiceClient, and the Fire Risk Model. The decision behind introducing a

second interface was to uphold the principle of loose coupling. GetStation,

GetForecasts, and GetObservations all use an instance of the

IRestServiceClient for retrieving weather data.

Listing 8. IWeatherClient’s methods

36

4.8.1 RestSharp

RestSharp [47] is a C# specific HTTP client library with synchronous and asynchronous

methods for calling remote resources over HTTP. The library handles the deserialization and

serialization of responses and construction of request URI using several arguments, such as

query, path, form, or body.

RestSharp includes authenticators for basic HTTP Authorization headers [48]. Listing 9 (line

7) reveals the HttpBasicAuthenticator that takes a MET ID and an empty string (as

the password). The Authenticator auto generates a base64 encoded string and passes it into the

request's header.

Listing 9. GetWeatherObservations method from the RestServiceClient class

A request instance with the resource path is declared in Listing 9 (line 8). Sources,

referencetime, and elements are added to the request URI before the client sends requests to

the API, using the ExecuteGetAsync<FrostWeatherData> method. If the response is

successful, the method will return a FrostWeatherData object.

37

4.8.2 Exception Handling

Exception handling is an efficient way to pass error messages to the user and alert them when

something goes wrong. It is crucial to handle all exceptions properly, as they might cause

problems if left unhandled.

To properly handle an exception, one will organize the code in the form of try-catch blocks.

The class that initially asks for weather data is responsible for handling all exceptions. All these

classes are representatives of the ViewModel. Listing 10 (lines 5-13) shows how a try-catch

block is used while requesting weather observations to handle possible exceptions. The class

uses an instance from IWeatherClient. The WeatherClient also uses try-catch blocks,

as seen in Listing 11, and will only throw the exception further up the chain to the initial class

(line 12).

Listing 10. NewLocationViewModel’s method OnSave handles an exception.

38

Listing 11. WeatherClient’s method GetObsrvations

The IRestService client has the sole responsibility of throwing new Exceptions, as seen

in Listing 9 (line 16). Should the IsSuccessful property be false, the request will be

unsuccessful. The StatusCode property provides the generated error code from the API [49]

and is included when the exception is thrown to the WeatherClient. The method

ExecuteGetAsync<FrostWeatherData> in Listing 11 (lines 14-17) is an instance of

RestResponse<T>, which offers valid information properties to retrieve the error response

from the API [50].

By following these principles, the program will handle all exceptions properly. Hence, the

ViewModel can notify the user if any errors occur. Should the user provide an invalid MET

ID, the application will not be able to retrieve weather data from the API. The API will block

the request and respond with the error status code 401 Unauthorized. The ErrorMessage

method determines what type of error was thrown and alerts the user with an explanation, as

seen in Listing 12 and Figure 13.

39

Listing 12. Representation of the ErrorMessage method

Figure 13. The error message when a user has submitted an invalid MET ID

40

4.9 Application Flow

State machine diagrams are often used to describe and display objects that are state-dependent.

It illustrates the execution flow from one state to the next and records the system behavior

based on the multiple states the application can be in [51] .

As seen in Figure 14, the user will from the initial state at launch land on the View My Locations

page. The user can from this page navigate to the different pages based on which action they

wish to perform. The final state is after the user closes the application.

Figure 14. State machine diagram to display the flow.

41

4.10 SQLite Database

A local database was used to store data since it was necessary for a user to be able to track the

fire risk of multiple Locations. Additionally, the user's unique MET ID is saved for quick

access when retrieving data from the APIs.

SQLite [52] is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. SQLite reads and writes directly to ordinary

files. Furthermore, it offers access to a fully operating database with tables, indices, triggers,

and views obtained in a single disk file. SQLite generally runs faster the more memory that is

provided. Nevertheless, performance is usually quite good, even in low-memory environments.

The file format is cross-platform, thus an excellent option when working with Xamarin as it

allows the mobile application to load and save Locations in shared code [53].

The SQLite NuGet Façade was firstly installed and then a database wrapper class was created.

The Database class located in the Data component seen in Figure 15 centralizes all query

logic and simplifies the management of database initialization. It upholds all database logic

from the rest of the application and will make refactoring and expanding simpler if the

application grows.

Figure 15. A representation of the class in the Data folder

The SQLite .NET library provides a simple Object Relational Map (ORM) that allows storing

different objects and retrieving them without writing any SQL statements.

The SQLite-Net extension [54] was used for storing lists in a single column. The extension

provides attributes for specifying the relationships. Text blobbed properties can be used to store

objects like Lists. The property is serialized into a text property when saved and deserialized

when retrieved. The only requirement is to declare a string property where the serialized object

42

is stored. It acts as a JSON-based serializer, and an example of the Location object was

shown in Listing 6 (lines 9-20).

A single database connection is used, this is demonstrated in Listing 13 (line 7) which shows

the instantiating of a new SQLiteAsyncConnection. This object provides a singleton

instance which ensures a single database connection. This offers better performance and is

more stable compared to opening and closing multiple connections throughout an application

session. The connection utilizes the tables with the CreateTableAsync method if they do

not already exist (lines 8-9).

Listing 13. The Database class.

43

The ReadOperations and WriteOperations are part of the SQLite-Net extension

library and do not modify or override any method behaviour of SQLite.Net. It provides

methods that the connection can use to handle the specified relationships. The extension will

determine how each element will be handled and stored in the database tables, for reference,

see Table 1.

Table 1. Representation of the location and MET ID tables

The View Models classes are responsible for handling all database logic. Listing 14 shows how

the NewLocationViewModel uses the database connection (line 19) and provides the

SaveLocationAsync with a Location before storing it in the database. This can be seen

in the async method OnSave, which is triggered when a user adds a new Location.

 location met id

 id Guid [PK] id Int [PK]

 name Varchar client_id Varchar

 longitude Varchar

 latitude Varchar

 weather station id Varchar

 wind speed List<Double>

 wind gust List<Double>

 wind direction List<Double>

 fire risk List<Int>

 peak risk Int

44

Listing 14. Method to save a location to the database.

4.11 Fire Risk Model

A translation of the model of Log [5] was done from Java to C# by the group’s supervisor Lars

Michael Kristensen. This was done so that the model can be used along with the other

components which have been developed using C#.

According to Stokkenes' research [8], using historical data to correctly calibrate the model of

Log [5] gave the most accurate fire risk predictions. It was also concluded that the model

predicted inaccurate fire risks when weather forecasts were provided in an interval of six hours.

Therefore, the application will only use the fire risk for the first four days.

The mobile application has a dependency on the Fire Risk Model and will therefore be

able to utilize specific type classes, methods, and the interface IFireRisk seen in Listing

15. The fireRiskFactorsFrom, fireRiskTtf, and interpolateObservations

are methods that were already accessible from the interface.

45

Listing 15. IFireRisk’s methods

To ease the transition when coupling the mobile application and Fire Risk Model, the

method FireRiskTtf was created and can be seen in Listing 16. FireRiskTtf computes

the fire risk based on a list of Observation objects spaced an hour apart and the method

computeFireRiskResult returns a FireRiskResult which includes the variables:

RelativeHumidityModelStep[], TimeToFlashover[], and an Observation.

Listing 16. IFireRisk’s method FireRiskTtf

The SortByHighestTtf method in Listing 17, is used to sort the list of

TimeToFlashover objects and can be seen in Listing 18. SortByHighestTtf groups

all measurements based on date and filter out the highest timeToFlashoverInMinutes for each

day.

46

Listing 17. The method SortByHighestTtf

Listing 18. TheGetFireRisk method fron the WeatherClient class

The GetFireRisk method shown in Listing 19 is responsible of retrieving the fire risk.

This is done by using an instance of the Interface IFireRisk from the Fire Risk

Model. GetFireRiskForNewLocation and UpdateFireRisk seen in Listings 20

and 21 are part of the IWeatherClient. These methods are tightly coupled to the Fire

Risk Model and uses the GetFireRisk method to fetch fire risk.

Listing 19. TheGetFireRisk method fron the WeatherClient class

47

Listing 20. WeatherClient’s method GetFireRiskForNewLocation

Listing 21. WeatherClient’s method UpdateFireRisk

48

4.12 Graphical User Interface (Views)

A well-designed user interface is a vital part of all computer systems [55]. The user interface

must be easy to use and understand to provide a good user experience. There are many uses for

the application; for example, the fire brigade or municipality can use it to manage their

resources. To provide this service, the application must be practical and user-friendly to ensure

higher productivity and efficiency.

The UI consists of Xamarin controls. The controls are divided into four groups: Pages, Layouts,

Views, and Cells. A UI for a single Page can consist of one Page with different combinations

of Layouts, Views, and Cells.

4.12.1 Pages

Pages represent the device's screen and hold all the content that will be displayed. Pages can

be divided into various types for different purposes. A Content Page is used in the application

since it is a simple control that has a single Layout and its child controls. A Xamarin Forms

application is often made up of multiple Pages that can be navigated between, and each

represents different content.

4.12.2 Layouts

Layouts work as a container for Views and occasionally other Layouts. They're mostly used to

size and position the child elements. Some Layouts only allow for one child control, while

others allow for several child controls as well as positioning options [56]. There are several

Layouts in the application, but the most popular are Stack Layout, Scroll View, Frame, and

Grid.

The Stack Layout stacks the child controls in the desired order (horizontal or vertical). A Scroll

View holds one child and allows scrolling. The Frame Layout holds one child and surrounds it

with a border. A Grid Layout positions children in defined cells and rows.

49

4.12.3 Views

Views are UI elements such as buttons, labels, and sliders. Depending on their intended usage,

the controls can be divided into several categories. Views for presentation, Views that initiate

commands, and Views for setting values are some examples. The Views for presentation are

responsible for the visual presentation of objects, like text, figures, and images. Views that

initiate commands are typically buttons or search bars and when these are clicked, they can be

assigned to tasks and execute them. Views for setting values are check boxes, sliders, and entry

fields. These controls are responsible of collecting data from the user and sends it to the

backend of the application.

4.12.4 Cells

Cells are specialized elements used for items in a table that describes how each item in a list

should be rendered. The cell functions as a template for creating visual elements. They are used

exclusively in List Views and Table Views [57].

4.13 Graphical User Interface Structure

It was decided that the application will display the peak Indoor Fire Development (IFD) and

peak wind for all Locations. IFD is a measurement of how quickly a fire spreads within a

wooden structure, based on relative humidity. Combining the IFD with the wind conditions is

thought to give the user a complete picture of the fire risk.

4.13.1 Tab navigation

Navigating in the application happens through a menu that is always visible on the bottom of

the screen. The mobile application’s menu has one button for each of the available pages and

indicates which page the user is currently on by being highlighted with a different colour. In

Figure 16, the navigation menu is visible, displaying the available pages and the currently

viewed page.

50

Figure 16. MyLocationsPage with closed and open expander(s)

4.13.2 Items Source

The application presents a list of user-defined Locations. Since the size and values of these

lists can vary depending on the user's input, the application must construct visual UI objects

for each Location dynamically. The application accomplishes this by binding the list to the

Layout. Using the ItemsSource property of the Layout control, as the Layout is responsible of

displaying. The Layout holds a Data Template that defines how a Location should appear

on the screen, and the application constructs an object for each Location in the list.

4.13.3 Data Template

A Data Template is commonly used when displaying data from a list of objects [58]. The Data

Template offer a way to write code that will be applied to all the objects in the list, to handle

the case where the number of items in the list can vary.

51

4.13.4 Expander

The purpose of the application is to give the users an overview of the fire risk for the upcoming

days. To satisfy this purpose, the Expander Control from Xamarin Community Toolkit is used.

The Expander consists of a header and a body where the header is always visible, and the body

is displayed or hidden by tapping the header [59]. As seen in Figure 16 (image 1), the header

contains the name of the Location, the highest measured fire risk, and wind values for the

coming days. The body contains more detailed information about individual fire risk and wind

values for each day. Figure 16 (image 2) shows what the Expander looks like when the user

has tapped the header to reveal the body.

4.13.5 Data Binding and Data Type

Xamarin uses Data Type and Data Binding to connect the values of the Location objects to

the UI objects. The Data Type specifies the UI object's type, which determines values the child

controls can bind to. The Data Type of the CollectionView (line 1) in Listing 22 is set to a

Location. The Data Type binding allows the Label's Text property to be bound to the

Location’s Name property, which becomes the visible text in the UI (line 4).

Listing 22. MyLocationsPage.xaml

52

4.13.6 Fire Risk and Wind

The fire risk is displayed using four columns containing seven colours, as seen in Figure 16

(image 2). The columns are built using rectangles and the fire risk is displayed by adding a

Frame to the corresponding rectangle with the use of Data Binding. The information is

displayed within the Frame. The Wind is represented in a similar way, with four columns

containing text indicating the date, an arrow that rotates in the direction of the wind, and text

describing the wind speed and wind gust.

4.13.7 Building the User Interface

The design is built using a Content Page that holds a Scroll View. There is a Collection View

inside the Scroll View which binds to the list of saved Locations. One graphical object is

generated for each Location using a Data Template. The graphical objects are built using

an Expander that holds several Views. Figure 17 shows an overview of how the different

Controls are combined to create the graphical objects and Listing 23 shows a simplified section

of the code behind the graphical objects.

Figure 17. The UI and description of the different Controls

53

Listing 23. A simplified code section from MyLocationPage

The Triangle that represents the Peak IFD is created using a Polyline, an Ellipse and a Line

(lines 15 – 20). The WindArrow (lines 21 – 25) is made with a Polyline that rotates using a

Data Binding to the Location’s measured wind. The Labels in WindArrow are the text

displaying wind speeds and Peak Wind. The View (Image) in Figure 17 rotates to illustrate

that the graphical object is expendable.

54

4.14 Data Updates and Notifications

The mobile application is entirely responsible for keeping the fire risks up to date. This

approach reduces the traffic towards the MET servers and avoids unnecessary requests as the

system is automated. Per the findings of Halderaker and Evjenth [9], fire risk should be updated

every sixth hour. This pattern will serve as the foundation for the application's notification

system. The mobile application will have new fire risk data available every six hours as long

as the application is opened. This will ensure that the user always has the newest information

about the fire risk. To accomplish this, the onResume method in App.xaml.cs will run a

check whenever the application is reopened after being backgrounded. Listing 24 demonstrates

the use of the onResume which checks whether the fire risk has been updated in the last six

hours, if not, the fire risk will be updated.

Listing 24 simplified representation of the OnResume method from App.xaml.cs

55

The application holds a DateTime object which stores information about when the data was

last updated, this will be checked by OnResume. The application will store information in

DateTime using the onSleep method seen in Listing 25. Should there be need for data

update, the application will request Locations from the database and weather data from the

MET servers to calculate the updated fire risks. After having updated the data, the DateTime

object will be updated to hold information about the date and time when it was last updated.

Figure 18 shows a notification after the fire risk has been updated, where two Locations

have had an increase in fire risk.

Listing 25 simplified representation of the OnSleep method from App.xaml.cs

Figure 18. Notification of increased fire risks for two locations

56

Chapter 5: Evaluation

The performance and usability of the mobile application were assessed through testing done

by different groups of users. The user testing took place in Bergen and Haugesund since

members of the user groups lived there. The SUS scale was used to further assess the evaluation

results.

5.1 Evaluation method

Prior to the evaluation, a plan was created that described the schedule and guidelines of how

the application is going to be tested. Many of the essential functions, such as retrieving weather

data and doing actual fire risk predictions were missing from the application. Instead, dummy

data was utilized to simulate how the application would look with the functions.

During the evaluation, each user group was given a case in which they were instructed to add

three new locations: Bergen, Stavanger, and Haugesund. This can be seen in Appendix 9.4

(User Testing Guide). Users were provided geographical coordinates for the cities and were

required to utilize the Get My Location function to acquire coordinates for the city they were

in.

After the evaluation, the users replied to a SUS questionnaire consisting of ten questions related

to the application’s usability. Each question had five response options where the user picked a

suitable response option, based on their experience with the application. The response options

related to the application can be seen in Figure 19 ranging from one to five, where 1 indicates

Strongly disagree and 5 Strongly agree.

57

Figure 19. SUS sample statement

The results from the survey will be assessed using the curved grading scale [60], shown in

Table 2. The grading scale is used to grade the score of the users, which indicates A for superior

performance and F for failing performance [61]. The complete results can be seen in Appendix

9.5 (SUS results).

Table 2. Curved Grading Scale for SUS

5.1.1 Fire Safety Group

As part of the evaluation-plan, the application was evaluated in Haugesund where it took place

at the HVL campus on the 19th of April 2022. The application was evaluated here by a selected

group of people with expertise in the areas of fire safety and contingency management. Some

of them are also members of the DYNAMIC research group.

 Grade SUS score

 A+ 84.1 – 100

 A 80.8 – 84.0

 A- 78.9 – 80.7

 B+ 77.2 – 78.8

 B 74-1 – 77.1

 B- 72.6 – 74.0

 C+ 71.1 – 72.5

 C 65.0 – 71.0

 C- 62.7 – 64.9

 D 51.7 – 62.6

 F 0 – 51.6

58

5.1.2 Laypeople Group

The application was tested in Bergen by a selected group of people with no experience in the

fields of fire safety and risk management.

5.1.3 Fire Brigade Group

The application was tested by members of Fire Brigades in Bergen and Haugaland. It was tested

by two different Fire Brigades that operate in the Haugaland region, the local Fire Brigade in

Haugesund and Haugaland Brann og Redning (HBRE) which operates intermunicipal. The

application was evaluated by people with varied backgrounds in the Fire Brigades, including

fire fighters, fire safety engineers, and fire analysts.

5.2 User testing results

The post-evaluation feedback differed depending on which group was testing the application.

There were numerous proposals for improvements and new ideas for the application. The

average impression of the application was good, but there were still some suggestions for

improvement and other feedback:

• Change the landing page to the help page at first launch

• Clear instructions on the first page

• Add a homepage with the name of the application

• Give the user a validation when data is submitted

• Change the direction of the wind symbol to match peak wind of the associated day

• Make the graphs for the risk display 10% wider and 10 % higher

• Provide an explanation of the graphs and the colours on the help page

• Change the colours on the tabs, they were difficult to see

• Make it clearer which day is today in the risk display

• Add more information on the help page

• Add a guide on how to share location for the “get my location” function, in the scenario

of someone cancelling at first and wanting to undo

• Add yesterday’s graph at the risk display, so that the user can compare

59

• Some preferred a website over an application

• Remove the need for a MET ID.

• The use of TTF was unclear

• Add pre-defined locations only by specifying the name of a location (e.g., Bergen)

5.2.1 Fire Safety Group

The Fire Safety Group had a test panel of five people and an average score of 84 which maps

to the grade C+. The person with the highest score had a score of 95 which maps to the grade

A+ and the lowest was 70 which maps to the grade C.

5.2.2 Laypeople Group

The Laypeople Group had a test panel of 11 people and an average score of 65,7 which maps

to the grade C. The person with the highest score had a score of 80 which maps to the grade A-

and the lowest was 50 which maps to the grade F.

5.2.3 Fire Brigade Group

The Fire Brigade Group had a test panel of six people and an average score of 64,2 which maps

to the grade C-. The person with the highest score had a score of 85 which maps to the grade

A+ and the lowest was 42,5 which maps to the grade F.

5.2.4 Post evaluation

Several users had difficulties getting started with the application. They had troubles knowing

what to do at certain times, and what was happening because of the lack of response from the

application. A function to alert the user when actions were submitted was missing. This

impacted the overall user experience because many users wasted time navigating back and

forth trying to resubmit the MET ID in the hopes of receiving a response from the application.

Questions about the need for a MET ID were frequently asked by the user groups. Many users

expressed concerns that the use of MET ID makes the application more difficult to use. They

complained that navigating back and forth to MET's website to get the MET ID is cumbersome,

and that as a result, less people will use the application.

60

Several users complained that TTF's meaning was difficult to understand, that it was complex,

and that it was hard to relate TTF to the coloured bar charts. IFD was introduced because of

this.

5.3 Performance evaluation

Different performance tests were performed on the application to assess Data Usage, Storage,

CPU, Memory, and Battery. All the evaluations for iOS have been conducted on an iPhone XS

running iOS 15.4.1 and the evaluations for Android have been conducted on a Samsung Galaxy

S10 running Android 12.

5.3.1 Data Usage

An experiment was done to evaluate the application's Data Usage. The purpose of this

experiment was to see if data usage increases in a linear relationship with the locations. The

research started with creating a location, the data usage for updating the fire risks was measured

on both devices. The results showed that the difference between the two operating systems was

minimal:

• The application when run on the iPhone consumed 165 KB of data

• The application when run on the Samsung Galaxy consumed 177 KB of data

It was decided to use an average of 171 for the further assessment of the data usage. This was

decided because the difference in data used per request was minimal between an iPhone and a

Samsung Galaxy. Further research regarding requests were conducted using the iPhone since

the difference concerning data usage was minimal. A function was made using the average data

usage per request as seen below. This function finds out how much mobile data the application

uses to perform four updates for n number of locations. Four updates were chosen for this

experiment, this is because the data will be updated four times a day if the application is used

as intended.

𝑓(𝑛) = 4 × 𝑛(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑡𝑎 𝑢𝑠𝑎𝑔𝑒)

61

The purpose of this function is to compare its output with experimental results to evaluate

whether the data usage increases linearly or not. The experimental results will be derived from

a mobile device running the application.

Four updates on the mobile device for one location took 666 KB as seen through point A. Point

B shows 2 MB data consumed for three locations, point C shows 3,1 MB data consumed for

five locations, point D shows 4,4 MB data consumed for seven locations and point E shows

6,7 MB of data consumed for ten locations. The plotted points can be seen in Figure 20. The

difference between the plotted points and the function is minimal. This means that the function

can be used as a representative function for the data usage, as it shows that the data usage

increases linearly.

Figure 20. The expected and actual data usage plotted in a graph

666

2000

3100

4400

6700

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12

D
at

a

Locations

Data usage

1 3 5 7 10Location Locations Locations Locations Function for average data usageLocations

62

5.3.2 Storage

The size of the application on the iPhone was measured to be 44.6 MB, the Documents & Data

is measured to be around 254 kB. The Documents & Data alternated around 70-80 kB when

new Locations were added or deleted.

The application was measured to consume 51.7 MB on the Samsung Galaxy. The data was 123

kB and increased by 8kB whenever a new location was added.

In comparison to similar apps for various operating systems, the application size, including

data, is larger [62]. While many of the applications are designed specifically for one operating

systems, this application is cross-platform. Extra libraries and other extensions will be included

in the application's file packages to ensure cross-platform compatibility. Another factor is the

use of edge computing, which could mean that there will be more code because the mobile

device will be doing all the computational work.

5.3.3 CPU and memory

The application’s CPU and memory usage on the iPhone was measured using the iOS debugger

in Apple’s developer tool; Xcode. The application was launched and Xcode was then attached

to the application’s process. The debugger showed statistics of the phone’s CPU and memory

usage while the process ran.

As seen in Figure 21, the application reached a peak of 50% CPU usage during the profiling.

The number may seem high, but 50% implies that the application was using half of the

processing power of one core, out of six possible cores. This essentially means the application

used 1/12th of the CPU’s processing power at its peak. When the screenshot was taken, the

application used 32% of the CPU, other processes used 131%, and 437% of the CPU’s

processing power was left free. When no actions were made in the app, the CPU usage was at

0%.

63

Figure 21. The application’s CPU usage on an iPhone XS

The application’s memory usage is displayed in Figure 22. The memory usage hovered around

129MB, with a peak at 131.3MB which was about 3.4% of the available memory on the iPhone.

Profiling can only be done on applications that allow profiling. New released application

usually has this setting off. This led to using a source for further profiling which has

documented statistics about the average RAM usage on iOS and Android devices [63]. The

mean RAM usage for an iOS application was 146.6MB, according to the source [63]. This

shows that the mobile application’s RAM usage is right below average.

Figure 22. The application’s memory usage on an iPhone XS

64

The application’s RAM and CPU usage for the Samsung Galaxy was measured using Android

Studio’s profiling tool. The Android Profiler was used to assess the signed apk file generated

by Visual Studio.

The CPU usage for the Samsung Galaxy was around 40% on launch as seen in Figure 23. The

usage was at 0% when the application was idle. Performing actions caused the CPU usage to

spike for a couple of seconds while it made changes and re-rendered. The CPU usage was

measured out of 100%, meaning the application used 2/5 of the total CPU processing power at

its peak. This still leaves 3/5 of the CPU available for other unrelated tasks.

The RAM usage on the Samsung Galaxy was slightly higher than the RAM usage the iPhone,

but as seen in the article, higher RAM usage was expected [63]. The results from the article

showed that the mean RAM usage of an Android application was 302.7MB [63]. As seen in

Figure 23 the peak RAM usage on the Samsung Galaxy was around 320MB which is slightly

above average.

Figure 23. Android CPU and RAM profiling results on a Samsung Galaxy s10

65

5.3.4 Battery

The battery usage of the application had to be evaluated to as a part of the performance

evaluation. Three locations were monitored for ten days, and the data was updated four times

per day. This test could not be performed on an Android device because the group could not

get access to one for ten days. The iPhone's battery use was 2%, with screentime of one hour

and 11 minutes.

Xcode was used to track the application's energy usage on the iPhone. Energy usage evaluation

includes an assessment of Network, CPU, GPU, Location services, and Background services

[64]. The application’s energy usage proved to be low. The energy usage increased barely when

a new location was added. As no background tasks were implemented, the Background energy

usage was zero. This corresponds with the fact that no activities were implemented in the

application that would run in the background. An overview of the application’s energy usage

can be seen in Figure 24.

Figure 24. Energy usage of the application running on iPhone XS

66

An energy usage evaluation was also done for the Samsung Galaxy using Android Studio's

application profiling tool. The energy usage can be seen in Figure 25. There are noticeable

spikes in energy usage when the locations were created and updated.

Figure 25. Android energy usage profiling results on a Samsung Galaxy s10

67

Chapter 6: Discussion

The project progressed mostly according to plan, however there were some deviations from the

plan. The deviations were mostly due to revisions and some of the activities taking longer than

anticipated.

The project plan served as an excellent reminder for many of the activities, and to complete the

scheduled activities within the deadlines. Due to the project group's lack of experience,

determining the duration of the various phases for the project plan was difficult. During the

creation of the project plan, it was anticipated that the development phase would be the most

difficult and time-consuming. This was the case because many of the problems encountered

during this phase were connected to instantiating and configuring the various components.

Many of the deviations happened due to inexperience, and this was the group's first time

working on a project of this scale. Another reason for many of the deviations was that several

members of the group contracted covid-19 at the same time, which temporarily halted the

progress. As a result, many of the scheduled activities had to be postponed. Meetings were held

as planned during this time, but accordingly with the covid-19 regulations. This was not a

problem because meetings were already partially digital, allowing the project owner to attend

from Haugesund.

The project emphasized an approach where continuous dialogue with the project owner was

held in addition to using principles from Scrum. Following Scrum's iterative and incremental

process principles helped deliver a result that was aligned with the project owner's expectations.

A consequence of using Scrum was that many of the phases and activities' deadlines were

difficult to meet. New approaches to many of the activities were discussed during the meetings.

Some of them were picked because they proved to better than the already decided ones.

The project owner was mostly clear when expressing his wishes for the application, but some

freedom of choice was also given. Prototypes in the form of drawings were shown to the group.

68

These prototypes served as a starting point for the application's GUI design. The first prototype

was sent by the project owner after the group presented the wireframe which can be seen in

Appendix 9.6 (Wireframe). The prototype for the GUI can be seen in Figure 26 (image 1), the

prototype for the final iteration can be seen in Figure 26 (images 2 and 3).

Figure 26. Various prototype proposals from the project owner

The group’s interpretation of the prototypes is seen in Figure 27. In addition to presenting risk

for fire, it was decided that the application will also give the user an overview of the wind speed

and wind direction. This is because the wind is crucial information for determining how the

fire will evolve. It was decided to include a link to yr.no which directs the user to the weather

page for the same coordinates as the location. This will save the users time if they are interested

in the weather for the specific location while maintaining the application’s status as an

application fir fire risk predictions for homes.

69

Figure 27. The evolution of FireGuard

The feedback from the evaluation revealed inconsistencies in the GUI. The original plan was

to present fire risks with TTF, but many users misinterpreted this. As a result, the term IFD

was introduced. The assumption is that IFD is a more generic phrase since it can be understood

by the majority and easier to relate with the coloured bars. This can be seen in Figure 27 (image

4).

Many users complained having a tough time getting started with the app. They were unsure

about what to do next after launching the application. This revealed that the application was

not as simple as first anticipated. Changes were made in the application to give users feedback

and instructions; the intention was to simplify the application. A guide to getting started as seen

in Figure 28 (image 1), and a verification message after submitting the MET ID as seen in

Figure 28 (image 2) were added.

70

Figure 28. Changes made in the application to give users feedback

Scheduling of data fetches was not implemented as initially planned. This concept's

implementation turned out to be more complex and time-consuming than anticipated. The fire

risk was supposed to be updated every six hours automatically in the background. Since

scheduling background tasks proved to be a much larger and time-consuming task, an

alternative approach was implemented. This approach was elaborated in Section 4.14 (Data

Updates and Notifications).

The weather data sources MET, and Frost have documents describing the terms of use [65]

[66] and state that one must not cause unnecessary traffic when utilizing their services and

emphasize the importance of respecting their guidelines. They continue stressing that mobile

applications should not directly use client-to-API connections, but instead use a local proxy

server that can cache data and add authentication details for requests. Implementing a proxy

server combined with caching would handle all communications with the Frost and MET API

servers and cache all the requested weather data. This would reduce the requests and stress on

71

MET’s servers. Using a proxy server would also eliminate the requirement for users to obtain

their own MET ID.

During the coupling of the model and the mobile application, it was observed that the Fire

Risk Model was producing inaccurate results. Several attempts were made to debug the

issue together with the project owner, since the group members’ understanding of the model

was limited. It was decided that the debugging will be continued in the Finishing Phase together

with the project owner and hopefully determine the model’s irregular behavior.

Many adjustments would be made if the project was to be re-implemented. The project plan

would be developed to be more realistic concerning the uncertainties when the project plan was

developed. The group has gotten a more realistic perception of how a project plan should be

developed and a better perception of how much time the different phases take.

The coupling of the Fire Risk Model with the mobile application would also be done

earlier in a re-implementation of the project. Coupling the Fire Risk Model with the

mobile application could have saved the project group a lot of time as other stakeholders could

have helped investigating the problem. There was not enough time for this process when the

problem was first discovered. The problems with the Fire Risk Model were not expected

as it has successfully been implemented to give correct fire risk predictions in a project earlier

[9].

72

Chapter 7: Conclusion

In this bachelor thesis, it has been investigated how a fire risk notification service may be

provided to users via a mobile application using edge computing. The objective was to conduct

research into an approach where all acquisitions of weather data and fire risk computation were

performed directly on a mobile device.

7.1 Research Questions Revisited

In this section, the research questions will be reconsidered and put into context of the results

obtained.

RQ1: Can a user interface for a mobile application be designed capable of showing fire

risks for multiple locations and be suited for users with different background and

use cases?

The developed application’s user interface has been assessed at different stages through user

testing by people with different backgrounds. The comprehensibility of the user interface was

the primary focus. The user testing showed that the application’s user interface was not as

simple as first anticipated. The feedback from the evaluation was used to further develop the

application with a user interface capable of showing fire risk notifications for multiple locations

that meets the users’ standards with a high degree of usability.

73

RQ2: What is the impact of the fire risk computation and weather data acquisition on the

performance of the mobile device?

The developed application has low impact on the mobile device's performance. The application

used expected amounts of RAM and CPU on both iOS and Android, leaving much of the

device’s processing power available for other activities. The application has no background

processes running; meaning it has no effect on the device's performance while it is closed.

RQ3: What are the advantages and disadvantages of an approach based on edge

computing on mobile devices in comparison to a cloud-based solution?

An approach based on edge computing has several advantages. The fire risk will be available

on the mobile device until the next request without the need of an internet connection. Another

advantage is processing speed; accessing the fire risk takes less time because it is stored locally

on the device.

The weather data that the application fetches is lost after being processed by the mobile device,

which is a disadvantage of edge computing. Another disadvantage is the increased traffic

towards MET's servers, because of all data retrieval being done by the mobile devices. A cloud-

based solution would have used a cloud service dedicated to retrieving, processing, and storing

data available to all devices. Instead of requesting data on their own, other devices would use

the cloud service to obtain data.

7.2 Conclusion

Several experiments were conducted to evaluate the application's usability and performance.

According to the results of the SUS survey and the overall perception of the test-panel, the

application is better suited for some individuals and organizations with a particular interest in

the domain of fire risk, such as fire brigades, volunteer organizations and municipalities.

74

Based on the Objective and Problem Statement, the group concluded that a mobile application

utilizing edge computing would be a good way of providing a fire risk assessment service to

the general public. The solution would be reliable and fast, and the impact on the device´s

performance would be minimal. The initial idea was that the mobile device would be

responsible of performing weather data acquisition on its own. Through research, it was

discovered that MET and Frost APIs terms of use [65] [66] would not allow this as a long term

solution. The application cannot be released in its current state; however, a proxy-caching

server could be used to solve this problem.

7.3 Future Work

The project's future work will consist of further developing the application. During the

evaluation, the project received many helpful suggestions and other feedback that might be

used to improve the application. Because of the project's limited time, it was impossible to

properly address all the feedback. Suggestions that have not been addressed had a lesser priority

than those that were evaluated. The suggestions were prioritized based on the time it would

take to implement and relevance to the project. The remaining suggestions can be reassessed

and if found useful implemented to the application.

Before the application can be released to the public, a proxy server must be added. This is

necessary to provide a smooth user experience. Without a proxy server the application might

create unnecessary traffic towards the MET servers and possibly denying them from

performing their other services.

The problems of scheduling background data updates that was encountered during the project

can be handled to allow notifications without the need of opening the app every six hours. The

Nuget package Shiny.Jobs may be a viable option to develop a function that fills this need [67].

Shiny provides a cross platform interface that manages scheduling of jobs for Xamarin

applications. Although the background tasks cannot be set at specific times, it allows some

control over when the data updates by checking when the job was last run.

75

Figures

FIGURE 1. COLOR SCHEME FOR DISPLAYING FOREST FIRE RISK ... 9

FIGURE 2. XAMARIN PROJECT OVERVIEW ... 13

FIGURE 3. MAUI PROJECT OVERVIEW... 13

FIGURE 4. UML USE CASE DIAGRAM ... 19

FIGURE 5. DOMAIN MODEL OF THE APPLICATION .. 20

FIGURE 6. STRUCTURE OF MODEL-VIEW-VIEW MODEL ... 21

FIGURE 7. HIGH-LEVEL APPLICATION SOFTWARE ARCHITECTURE ... 22

FIGURE 8. SEQUENCE DIAGRAM WHEN A USER ADDS A NEW LOCATION 23

FIGURE 9. SEQUENCE DIAGRAM FOR PUSH NOTIFICATION ... 23

FIGURE 10. SCALING OF THE TTF VALUES .. 24

FIGURE 11. A REPRESENTATION OF CLASSES IN THE MODELS COMPONENT 33

FIGURE 12. A REPRESENTATION OF CLASSES IN THE SERVICES COMPONENT 34

FIGURE 13. THE ERROR MESSAGE WHEN A USER HAS SUBMITTED AN INVALID MET ID 39

FIGURE 14. STATE MACHINE DIAGRAM TO DISPLAY THE FLOW. .. 40

FIGURE 15. A REPRESENTATION OF THE CLASS IN THE DATA FOLDER 41

FIGURE 16. MYLOCATIONSPAGE WITH CLOSED AND OPEN EXPANDER(S) 50

FIGURE 17. THE UI AND DESCRIPTION OF THE DIFFERENT CONTROLS 52

FIGURE 18. NOTIFICATION OF INCREASED FIRE RISKS FOR TWO LOCATIONS.............................. 55

FIGURE 19. SUS SAMPLE STATEMENT ... 57

FIGURE 20. THE EXPECTED AND ACTUAL DATA USAGE PLOTTED IN A GRAPH............................ 61

FIGURE 21. THE APPLICATION’S CPU USAGE ON AN IPHONE XS .. 63

FIGURE 22. THE APPLICATION’S MEMORY USAGE ON AN IPHONE XS .. 63

FIGURE 23. ANDROID CPU AND RAM PROFILING RESULTS ON A SAMSUNG GALAXY S10 64

FIGURE 24. ENERGY USAGE OF THE APPLICATION RUNNING ON IPHONE XS 65

FIGURE 25. ANDROID ENERGY USAGE PROFILING RESULTS ON A SAMSUNG GALAXY S10 66

FIGURE 26. VARIOUS PROTOTYPE PROPOSALS FROM THE PROJECT OWNER 68

FIGURE 27. THE EVOLUTION OF FIREGUARD .. 69

FIGURE 28. CHANGES MADE IN THE APPLICATION TO GIVE USERS FEEDBACK 70

https://hvl365.sharepoint.com/sites/Gruppe8-BachelorIB3/Delte%20dokumenter/General/Final%20report%20and%20attachements/Final%20report.docx#_Toc104147450
https://hvl365.sharepoint.com/sites/Gruppe8-BachelorIB3/Delte%20dokumenter/General/Final%20report%20and%20attachements/Final%20report.docx#_Toc104147451

76

Listings

LISTING 1. FINDFIRERISK DETERMINES FIRE RISKS BASED ON THE TTF VALUE. 25

LISTING 2. A JSON RESPONSE BODY FROM THE COMPLETE ENDPOINT 27

LISTING 3. A JSON RESPONSE BODY FROM THE SOURCES ENDPOINT .. 29

LISTING 4. A JSON RESPONSE BODY FROM THE OBSERVATIONS ENDPOINT 31

LISTING 5. THE OBSERVATION OBJECT FROM THE FIRE RISK MODEL PROJECT 33

LISTING 6. REPRESENTATION OF THE LOCATION OBJECT .. 34

LISTING 7. IRESTSERVICECLIENT’S METHODS .. 35

LISTING 8. IWEATHERCLIENT’S METHODS.. 35

LISTING 9. GETWEATHEROBSERVATIONS METHOD FROM THE RESTSERVICECLIENT CLASS 36

LISTING 10. NEWLOCATIONVIEWMODEL’S METHOD ONSAVE HANDLES AN EXCEPTION. 37

LISTING 11. WEATHERCLIENT’S METHOD GETOBSRVATIONS .. 38

LISTING 12. REPRESENTATION OF THE ERRORMESSAGE METHOD .. 39

LISTING 13. THE DATABASE CLASS... 42

LISTING 14. METHOD TO SAVE A LOCATION TO THE DATABASE. ... 44

LISTING 15. IFIRERISK’S METHODS .. 45

LISTING 16. IFIRERISK’S METHOD FIRERISKTTF .. 45

LISTING 17. THE METHOD SORTBYHIGHESTTTF... 46

LISTING 18. THEGETFIRERISK METHOD FRON THE WEATHERCLIENT CLASS 46

LISTING 19. THEGETFIRERISK METHOD FRON THE WEATHERCLIENT CLASS 46

LISTING 20. WEATHERCLIENT’S METHOD GETFIRERISKFORNEWLOCATION 47

LISTING 21. WEATHERCLIENT’S METHOD UPDATEFIRERISK .. 47

LISTING 22. MYLOCATIONSPAGE.XAML ... 51

LISTING 23. A SIMPLIFIED CODE SECTION FROM MYLOCATIONPAGE .. 53

LISTING 24 SIMPLIFIED REPRESENTATION OF THE ONRESUME METHOD FROM APP.XAML.CS 54

LISTING 25 SIMPLIFIED REPRESENTATION OF THE ONSLEEP METHOD FROM APP.XAML.CS 55

77

Tables

TABLE 1. REPRESENTATION OF THE LOCATION AND MET ID TABLES 43

TABLE 2. CURVED GRADING SCALE FOR SUS .. 57

78

Bibliography

1. Metallinou, M.-M. and T. Log, Cold Climate Structural Fire Danger Rating

System? Challenges, 2018. 9(1): p. 12.
2. Reducing fire disaster risk through dynamic risk assessment and management

(DYNAMIC) 2021 7. february 2021, 15:11; Available from:

https://app.cristin.no/projects/show.jsf?id=2495578.

3. Log, T., Cold climate fire risk; A case study of the Lærdalsøyri Fire, January

2014. Fire technology, 2016. 52(6): p. 1825-1843.
4. Log, T., Indoor relative humidity as a fire risk indicator. Building and

Environment, 2017. 111: p. 238-248.

5. Log, T., Modeling Indoor Relative Humidity and Wood Moisture Content as a

Proxy for Wooden Home Fire Risk. Sensors, 2019. 19(22): p. 5050.

6. Kraaijeveld, A., Burning Rate and Time to Flashover in Wooden ¼ scale
Compartments as a Function of Fuel Moisture Content. 2016: p. 6.

7. Karlsson, B., & Quintiere, J. G, Enclosure Fire Dynamic 2000: CRC Press

LLC.

8. Stokkenes, S., Implementation and Evaluationof a Fire Risk Indication Model.
2019, The University of Bergen.

9. Halderaker, E.D., & Evjenth, A, Development and Evaluation of a Software

System for Fire Risk Prediction. 2021, Western Norway University of Applied

Sciences

10. HVL. Fire Disasters. 2021; Available from:
https://www.hvl.no/en/research/group/fire-disasters/.

11. HVL. Software Engineering. 2021; Available from:

https://www.hvl.no/en/research/group/software-engineering/.

12. Bigelow, S.J., What is edge computing? Everything you need to know.

techtarget, 2021.
13. Gupta, J. What are the pros and cons of cloud computing? 2016; Available

from: https://www.znetlive.com/blog/pros-and-cons-of-cloud-computing/.

14. IBM. What is edge computing? ; Available from:

https://www.ibm.com/cloud/what-is-edge-computing.

15. Mamalgaha, L. What is a Proxy Server? 2019; Available from:
https://medium.com/@lakshanmamalgaha/what-is-a-proxy-server-

f0a6f685fba8.

16. Gibb, R. What is Proxy Caching? 2016; Available from:

https://blog.stackpath.com/proxy-caching/.

17. IBM. Caching Proxy. 2022; Available from:
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=overview-caching-proxy.

18. Meterologisk-Institutt. Skogbrannfare. Available from:

https://skogbrannfare.met.no.

19. Meterologisk-Institutt. WeatherAPI. Available from: https://api.met.no.

https://app.cristin.no/projects/show.jsf?id=2495578
https://www.hvl.no/en/research/group/fire-disasters/
https://www.hvl.no/en/research/group/software-engineering/
https://www.znetlive.com/blog/pros-and-cons-of-cloud-computing/
https://www.ibm.com/cloud/what-is-edge-computing
https://medium.com/@lakshanmamalgaha/what-is-a-proxy-server-f0a6f685fba8
https://medium.com/@lakshanmamalgaha/what-is-a-proxy-server-f0a6f685fba8
https://blog.stackpath.com/proxy-caching/
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=overview-caching-proxy
https://skogbrannfare.met.no/
https://api.met.no/

79

20. Thomas, G. What is Flutter and Why You Should Learn it in 2020. 2019.

21. Clark, J. Flutter vs Dart - Which is better? ; Available from:
https://blog.back4app.com/flutter-vs-dart/.

22. What is Xamarin?, in Microsoft Documentation. 2021, Microsoft.

23. Ramel, D., With .NET MAUI Delayed, Xamarin.Forms Remains Mobile Dev

Option in .NET 6, in Visualstudiomagazine. 2021.

24. Karasavvas, T. Why Flutter is the most popular cross-platform mobile SDK.
2022; Available from: https://stackoverflow.blog/2022/02/21/why-flutter-is-

the-most-popular-cross-platform-mobile-sdk/.

25. D, C., .NET Core, .NET Framework, Xamarin – The “WHAT and WHEN to use

it”. 2016, Microsoft: Microsoft DevBlogs.

26. Ewbank, K. Microsoft Will Replace Xamarin Forms With MAUI .NET 2021
[cited 2022 08.03.2022]; Available from: https://www.i-

programmer.info/news/89-net/14762-microsoft-will-replace-xamarin-forms-

with-maui-net.html.

27. Microsoft. Migrate your app from Xamarin-Forms. 2021; Available from:

https://docs.microsoft.com/en-us/dotnet/maui/get-started/migrate.
28. Brooke, J.B. SUS: A 'Quick and Dirty' Usability Scale. 1996.

29. Gibbs, M. Domain Modeling: Definition & Examples 2017; Available from:

https://study.com/academy/lesson/domain-modeling-definition-examples.html.

30. Bandarupalli, K. Domain Model Using UML. 2009; Available from:
https://www.techbubbles.com/softwarearchitecture/domain-model-using-uml/.

31. Britch, D., Enterprise Application Patterns using Xamarin. Forms. 2017,

Microsoft Press, A Division of Microsoft Corporation, One Microsoft Way ….

32. Meterologisk-Institutt. About the Norwegian Meteorological Institute. 2017

2020; Available from: https://www.met.no/en/About-us/About-MET-Norway.

33. Yr.no. Facts about Yr. Available from: https://hjelp.yr.no/hc/en-

us/sections/115001514149-About-us.

34. Meterologisk-Institutt, Locationforecast.

35. Meterologisk-Institutt. What is Frost? . Available from:

https://frost.met.no/index.html.
36. Yr.no. Location Forecast. Available from: https://developer.yr.no/featured-

products/forecast/.

37. Meterologisk-Institutt. API REFERENCE. Available from:

https://frost.met.no/api.html.

38. Meterologisk-Institutt. API Concepts. Available from:
https://frost.met.no/concepts2.html.

39. Wikipedia. ISO 8601. 2022; Available from:

https://en.wikipedia.org/wiki/ISO_8601.

40. Meterologisk-Institutt, Request New Client Credentials.

41. Meterologisk-Institutt. MET’s Privacy Policy Statement. 2017 2021; Available
from: https://www.met.no/en/About-us/privacy.

42. Meterologisk-Institutt. Authentication. Available from:

https://frost.met.no/authentication.html.

https://blog.back4app.com/flutter-vs-dart/
https://stackoverflow.blog/2022/02/21/why-flutter-is-the-most-popular-cross-platform-mobile-sdk/
https://stackoverflow.blog/2022/02/21/why-flutter-is-the-most-popular-cross-platform-mobile-sdk/
https://www.i-programmer.info/news/89-net/14762-microsoft-will-replace-xamarin-forms-with-maui-net.html
https://www.i-programmer.info/news/89-net/14762-microsoft-will-replace-xamarin-forms-with-maui-net.html
https://www.i-programmer.info/news/89-net/14762-microsoft-will-replace-xamarin-forms-with-maui-net.html
https://docs.microsoft.com/en-us/dotnet/maui/get-started/migrate
https://study.com/academy/lesson/domain-modeling-definition-examples.html
https://www.techbubbles.com/softwarearchitecture/domain-model-using-uml/
https://www.met.no/en/About-us/About-MET-Norway
https://hjelp.yr.no/hc/en-us/sections/115001514149-About-us
https://hjelp.yr.no/hc/en-us/sections/115001514149-About-us
https://frost.met.no/index.html
https://developer.yr.no/featured-products/forecast/
https://developer.yr.no/featured-products/forecast/
https://frost.met.no/api.html
https://frost.met.no/concepts2.html
https://en.wikipedia.org/wiki/ISO_8601
https://www.met.no/en/About-us/privacy
https://frost.met.no/authentication.html

80

43. IBM. HTTP basic authentication. 2022; Available from:

https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-
authentication.

44. auth0. What is OAuth 2.0? ; Available from: https://auth0.com/intro-to-

iam/what-is-oauth-2/.

45. quictype. Convert JSON into gorgeous, typesafe code in any language.

Available from: https://quicktype.io.
46. Strizic, M. MVVM architecture: a step-by-step guide. 2017; Available from:

https://decode.agency/article/mvvm-architecture-a-step-by-step-guide/.

47. RestSharp. Introduction. 2022; Available from:

https://restsharp.dev/intro.html#introduction.

48. RestSharp. Authenticators. 2022; Available from:
https://restsharp.dev/authenticators.html#basic-authentication.

49. Meterologisk-Institutt. HTTP status codes 2020; Available from:

https://api.met.no/doc/StatusCodes.

50. RestSharp. Error handling. 2022; Available from: https://restsharp.dev/error-

handling.html.
51. javaTpoint. UML State Machine Diagram. Available from:

https://www.javatpoint.com/uml-state-machine-diagram.

52. SQLite. About SQLite Available from: https://www.sqlite.org/about.html.

53. Docs, M. Xamarin.Forms Local Databases. 2021; Available from:
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-

cloud/data/databases#feedback.

54. TwinCoders. SQLite-Net Extensions. 2018; Available from:

https://bitbucket.org/twincoders/sqlite-net-extensions/src/master/.

55. Debbie Stone, C.J., Mark Woodroffe, User Interface Design and Evaluation.

2005: Elsevier.

56. David Britch, D.C., Craig Dunn, Justin Johnson, Timo Salomäki, Charles

Petzold, Xamarin.Forms Layouts. 2021.

57. David Britch, D.C., Justin Johnson, Nick Schonning, Craig Dunn, Chares

Petzold, Xamarin.Forms Cells, in Microsoft Documentations. 2021, Microsoft.
58. David Britch, D.C., Nick Schonning, Craig Dunn, Charles Petzold, Creating a

Xamarin.Forms DataTemplate, in Microsoft Documentation. 2021, Microsoft.

59. Gerald Versluis, A.M., David Britch, Xamarin Community Toolkit Expander.

2021.

60. Lewis, J.R. and J. Sauro, Item benchmarks for the system usability scale.
Journal of Usability Studies, 2018. 13(3).

61. Sauro, J. 5 Ways to Interpret a SUS Score. 2018.

62. Shafi, A., Do you know the average Android and iOS app file size? 2020.

63. Sims, G. Apple vs Android RAM management: Who does it better? 2022;

Available from: https://www.androidauthority.com/apple-vs-android-ram-
management-3100032/.

64. Apple. Measure Energy Impact with Xcode. 2016; Available from:

https://developer.apple.com/library/archive/documentation/Performance/Conce

ptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html.

https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-authentication
https://www.ibm.com/docs/en/cics-ts/5.4?topic=concepts-http-basic-authentication
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://quicktype.io/
https://decode.agency/article/mvvm-architecture-a-step-by-step-guide/
https://restsharp.dev/intro.html#introduction
https://restsharp.dev/authenticators.html#basic-authentication
https://api.met.no/doc/StatusCodes
https://restsharp.dev/error-handling.html
https://restsharp.dev/error-handling.html
https://www.javatpoint.com/uml-state-machine-diagram
https://www.sqlite.org/about.html
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases#feedback
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/data/databases#feedback
https://bitbucket.org/twincoders/sqlite-net-extensions/src/master/
https://www.androidauthority.com/apple-vs-android-ram-management-3100032/
https://www.androidauthority.com/apple-vs-android-ram-management-3100032/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html

81

65. Meterologisk-Institutt. Terms Of Use Available from:

https://frost.met.no/termsofuse2.html.
66. Aalberg, G., Terms of Service 2020.

67. Ritchie, A., Background Jobs - Shiny Style. 2019.

https://frost.met.no/termsofuse2.html

82

Appendices

83

9.1 Gantt Chart

View in PDF:

https://drive.google.com/file/d/1f8rVZuLYKO0Se7RJHEoiEgzE2YHvVO4I/view

https://drive.google.com/file/d/1f8rVZuLYKO0Se7RJHEoiEgzE2YHvVO4I/view

84

9.2 Risk Management

85

9.3 Risk Matrix

86

9.4 User Testing Guide

87

9.5 SUS results

1. I think that I would like to use FireGuard frequently.

2. I found FireGuard unnecessarily complex.

3. I thought FireGuard was easy to use.

4. I think that I would need the support of a technical person to be able to use FireGuard

5. I found the various functions in FireGuard were well integrated.

6. I thought there was too much inconsistency in FireGuard.

7. I would imagine that most people would learn to use FireGuard very quickly.

8. I found FireGuard very cumbersome to use.

9. I felt very confident using FireGuard.

10. I needed to learn a lot of things before I could get going with FireGuard.

88

9.6 Wireframe

	Chapter 1: Introduction
	1.1 The DYNAMIC Research Project
	1.2 Fire Risk Prediction Model
	1.3 Motivation
	1.4 Problem statement and objective
	1.5 Research Questions
	1.6 Thesis structure

	Chapter 2: Project Description
	2.1 Project owner
	2.2 Related work
	2.3 Initial requirements specification
	2.4 Initial solution idea
	2.5 Resources

	Chapter 3: Project Approach
	3.1 Possible cross-platform mobile frameworks
	3.1.1 Flutter
	3.1.2 Xamarin
	3.1.3 .NET Multi-Platform App User Interface (MAUI)

	3.2 Assessment of Technology Choice
	3.3 Development method
	3.4 Project plan
	3.4.1 Pre-Project Phase
	3.4.2 Development Phase
	3.4.3 Testing
	3.4.4 Finishing Phase

	3.5 Risk management
	3.6 Evaluation plan

	Chapter 4: Detailed design
	4.1 Use Case Diagram
	4.1.1 Use Case Descriptions

	4.2 Domain Model
	4.3 Application Design Pattern
	4.4 High-Level Application Software Architecture
	4.5 Fire Risk
	4.5.1 Fire risk benchmarking

	4.6 Weather Data Sources
	4.6.1 The Norwegian Meteorological Institute
	4.6.2 The Weather API Location Forecast Service
	4.6.3 The Frost API
	4.6.4 Authorization

	4.7 Data Models
	4.8 Service Clients
	4.8.1 RestSharp
	4.8.2 Exception Handling

	4.9 Application Flow
	4.10 SQLite Database
	4.11 Fire Risk Model
	4.12 Graphical User Interface (Views)
	4.12.1 Pages
	4.12.2 Layouts
	4.12.3 Views
	4.12.4 Cells

	4.13 Graphical User Interface Structure
	4.13.1 Tab navigation
	4.13.2 Items Source
	4.13.3 Data Template
	4.13.4 Expander
	4.13.5 Data Binding and Data Type
	4.13.6 Fire Risk and Wind
	4.13.7 Building the User Interface

	4.14 Data Updates and Notifications

	Chapter 5: Evaluation
	5.1 Evaluation method
	5.1.1 Fire Safety Group
	5.1.2 Laypeople Group
	5.1.3 Fire Brigade Group

	5.2 User testing results
	5.2.1 Fire Safety Group
	5.2.2 Laypeople Group
	5.2.3 Fire Brigade Group
	5.2.4 Post evaluation

	5.3 Performance evaluation
	5.3.1 Data Usage
	5.3.2 Storage
	5.3.3 CPU and memory
	5.3.4 Battery

	Chapter 6: Discussion
	Chapter 7: Conclusion
	7.1 Research Questions Revisited
	7.2 Conclusion
	7.3 Future Work

	Figures
	Listings
	Tables
	Bibliography
	Appendices
	9.1 Gantt Chart
	9.2 Risk Management
	9.3 Risk Matrix
	9.4 User Testing Guide
	9.5 SUS results
	9.6 Wireframe

