
Faculty of Engineering and Science

Gamification of Fjell Fortress

System Documentation

Version �1.0�

Dokumentet er basert på Systemdokumentasjon utarbeidet ved NTNU. Revisjon og tilpasninger
til bruk ved IDER, DATA � INF utført av Carsten Gunnar Helgesen, Svein � Ivar Lillehaug og Per
Christian Engdal. Dokumentet finner også i engelsk utgave.

1



Faculty of Engineering and Science

Date Version Description Author

19.05.2022 �1.0� Creating figures for architecture
and structures, as well as
explaining how these work.

Project set up, project installment,
code structure

Griffin Retzius, Simon
Vaular and Oneal
Lane

2



Faculty of Engineering and Science

Table of contents

1. Introduction 4

2. Architecture 5
2.1 Event Manager 5
2.2 xNode and Dialogue System 6

3. Project Structure 9
3.1 Project Hierarchy 9
3.2 Asset Folder 11

4. Class Diagram 13

5. Installation and Execution 15

6. Documentation 16
6.1 General Information 16
6.2 Using the dialogue system 17
6.3 Using the Event Manager 19

7. References 20

3



Faculty of Engineering and Science

1. Introduction
The main purpose of this document is to further examine and explain Fjell Festning architecture
and system documentation. The document will also discuss the game’s class diagram and
architectural models. The main purpose of the document is letting the reader understand how
the project is set up and how the main architectural concepts of Fjell are designed, these
consist of the Event System and Node Parser. Other aspects of the project will also be
discussed, for example the class diagram and NPC Handler.

Further, the system documentation will introduce some of the game's code, how the project
files are structured and how the project/game can be installed.

4



Faculty of Engineering and Science

2. Architecture
This chapter will include the relevant systems used in the game and how these are structured
with the help of figures for further explanation.

2.1 Event Manager
The Event Manager is a system built for maintaining the game’s state at all times during
runtime. The manager is a script that attaches itself to an Empty GameObject in the scene.
After the script is attached, the GameObject’s inspector makes it possible to set the Game
State to whatever the developer desires. This is done by making the GameState variable public
in the script, which lets the developer choose the state the game should start in.

In Fjell Festning, each state changes after the player has finished a dialogue. There are 12
dialogue interactions, therefore 12 states were added, as well as the “StartGame” and
“EndGame” state. This lets the developer alter the flow of the game, making decisions based
on how far the player has come in the scene.

GameObjects like the MapHandler and NPCHandlingScript subscribe to the Event Manager in
their own respected scripts. When a state changes, these GameObjects will know if a state has
changed and can check if the state that changed is necessary for their actions. If not, it will just
listen for the next state change.

The NodeParser and Gatekeeper can publish a new state, by changing the game’s state from
the player’s actions through the script attached to that GameObject. After conversing with an
interactable character, the NodeParser will determine what the state will change to. The
developer can determine the next state for a character by using the GameObjects inspector.
The script designed by the team lets the developer choose the required state needed to
converse with a character and they can also choose what the state is changed to after the
dialogue is finished.

Other GameObjects with scripts attached also listen to the Event Manager by subscribing to it.
The spitfire, group of German soldiers, and trucks all listen for a state to be changed. When the
state changes to their desired function, it will then execute the function.

5



Faculty of Engineering and Science

Figure 1� Structure of the event system, with publishers on the left, and subscribers on the
right.

2.2 xNode and Dialogue System
xNode is a system installed from the Unity Asset Store for developing the dialogue system and
was remade from scratch with the help of the xNode framework. It made it easy to create a
custom node based dialogue system where the developer can create custom nodes for a
specific task. Here, the NodeParser script is used to parse through the different nodes,
processing the data that is inside that node. The framework does not come with a premade set
of nodes, as well as it does not include a parser that parses the data. It does help the
developer with the necessary supplies to create these nodes.

The node parser script is responsible for cycling through the nodes and processing their data.
It starts by finding the node labeled start, and uses that as the starting node. The name of the
nodes determine the action to be performed. When a question node is parsed, the parser tells
the UI to show the buttons, and hide every other UI element. The buttons are then populated
so that each button represents one question. Each button is linked to a specific output port,
and fires an event when clicked, telling the parser to follow that particular output. The buttons
are then hidden.

6



Faculty of Engineering and Science

Figure 2� Node Parser visualization

The nodes in Fjell consist of a Start, Question, Dialogue and End node. These work together to
create a complete dialogue graph. The xNode framework also makes it possible for the
developer to add nodes and connect these via their ports in a vizual graph system. Nodes can
be added easily by the developer by right clicking the graph and selecting the desired node. It
also lets the developer add data needed inside of these nodes. Nodes can be connected by
dragging the output port towards an input port creating an edge between them.

Question nodes contain a list of questions. The amount of questions is decided in the node
graph. The node does not have an upper limit to the number of questions, but the current
parser script will only display as many questions as can fit on the UI.

A dialogue node features an audio clip field for the dialogue audio, and a field for the text
version of the dialogue. In the script these are represented as public variables. It contains a
single input and output port.

7



Faculty of Engineering and Science

Figure 3� An example dialogue graph. The graphs used in the game are typically much bigger

8



Faculty of Engineering and Science

3. Project Structure
Chapter 3 will explain and show the project's file architecture and how certain scripts and files
are structured. In the Unity Editor, a project is separated into two parts. The scene hierarchy
and the project tab folder which includes all the projects assets. This folder is the Asset folder
and will be discussed later in Chapter 3.

3.1 Project Hierarchy

The scene hierarchy is structured in a way for easy access of all GameObjects in the scene. It’s
divided into seven main parts. Global Entities, Lighting, Characters, Key Items, Objects, XR Rig
and Triggers. All GameObjects in Figure 4 act the same, where they are structured in a way
where all children are under a specific GameObject, for example the XR Origin GameObject
which has everything the player needs to be able to see, move and touch other objects.

Figure 4� Project Hierarchy in the main scene

Global Entities consist of the most important GameObjects in the scene, which include
GameObjects like the Event System, NPCHandler, Map Prefab that listens to the Event Manager

9



Faculty of Engineering and Science

with help of the Map Handler script. Other GameObjects like the base terrain generated from
the previous bachelor group are also placed here for easy access if needed.

All lighting is stored under Lighting. This part consists of a directional light and a GameObject
“CaveLighting” with all the bunker spotlighting as children.

The Characters section has all of the scenes characters in one spot. These characters are
placed as children under the Characters GameObject for better organization. Each character
also has a Meeting Handler which has the Node Parser script attached to it for the dialogue
system. The Node Parser decides which dialogue graph should be used on that character. Each
character also consists of every body part that model has.

Figure 5� Screenshot of a characters children GameObjects

Other sections like Key Items and Objects consist of all the models that are placed in the
scene. These GameObjects are everything the player can see except the terrain itself. It is
organized in such a way that it is easy to find where certain groups of objects are. For example
the gun range area where the player can fire a weapon in VR, all pallets, cables, rocks, signs,
etc. All of the GameObjects under the Prefab GameObject also have children.

10



Faculty of Engineering and Science

Figure 6� All children of the Prefab GameObject

The XR � Rig section behaves in the same way, where it consists of everything around the XR �
Rig in the beginning of the game, as well as the XR � Rig GameObject itself. The XR � Rig is
basically the player itself inside the game. Its children are the hands and the hands controllers,
camera and locomotion settings.

The final section in the hierarchy is where all the Triggers are placed. These are invisible
GameObjects in the scene that execute some predefined code that executes/triggers
something when entering or exiting the trigger’s radius. All triggers have a script made by the
team to perform a certain task.

3.2 Asset Folder
The asset folder is where all the project's assets are stored and can be seen in the Unity Editor.
The folder is where the team has organized the different assets that are used in the project.
This is the main folder used if a developer chooses to further develop the game.

11



Faculty of Engineering and Science

Figure 7� Asset folder in the Unity Editor

In Figure 7, all folders in the Asset folder are structured in a way such that it is easy to identify
where certain assets are stored. For example, the Scene and Script folder is where we store
absolutely every scene and script that is used in the game. Inside these folders are other
folders that help the developer find the code or model they are looking for. An example of this
is in Figure 8. Something one may have to take into consideration is if the developer chooses to
delete a file from the Asset Folder in the Editor, it will also be deleted where the Asset folder is
stored on the computer �Unity Documentation, 2022�.

Figure 8� Example of how each folder is structured

12



Faculty of Engineering and Science

4. Class Diagram
The Event Manager controls the game's state. The event manager's state can be accessed
and changed by other components. The event manager will notify other components that are
subscribed to it that the state has changed, and what the new state is. Other components can
declare a function to be run in the event of a state change. A component can also check the
current state without waiting for an update.

The NodeParser is responsible for handling interactions with NPCs. Every dialogue interaction
has a NodeParser instance. The PlayerSensor component activates the notebook, and starts a
selected NodeParser’s dialogue when the player is near an interactable NPC. A dialogue can
only be started if the game is in the correct game state. There are in total 14 game states.

The notebook is a GameObject that contains the UI elements for the dialogue system,
including text, buttons and visual effects. These are controlled through the NodeParser
components.

The MapHandler component listens for changes in game state and updates the map
GameObject accordingly. The map always points to the next interactable NPC.

The NPCHandler component is the script primarily responsible for hiding and showing NPCs
depending on the game's state. Every character could have their individual event listeners for
game state changes, and react accordingly. However having it all in one script makes it easier
to manage, and lowers the amount of subscribers to the event system. Over the course of
development, the NPC handler was extended to handle more objects than just NPCs. The
NPCHandler script has references to transforms, audio, animations and scripts. You can drag
the GameObjects into the NPC Handlers inspector which has the references that are needed to
execute the code inside the script.

The class diagram displayed in figure 9, shows the connections between the most important
components. GameObjects are in the diagram displayed as gray containers with components
within them. All components are attached to GameObjects, but only components where
GameObject methods are used are displayed in the diagram. A common use of these methods
are to activate and deactivate the object.

What was difficult when creating the class diagram for the main systems used is that in Unity
or game development in general, it is complicated creating a class diagram. There are a lot of
scripts for a lot of different GameObjects in the scene which have a specific task to execute
when needed. This makes it difficult to pinpoint which classes are relevant for the main system.

13



Faculty of Engineering and Science

Figure 9� Modified class diagram of the most central features.

14



Faculty of Engineering and Science

5. Installation and Execution
In order to run the game, the Oculus App must be installed. The app will ask which VR headset
the user is using and the app will start to configure. If the Open XR Runtime is set to SteamVR,
the user must run the SteamVR program from Steam. The Oculus App is necessary for the VR
headset to connect to the PC the game is running from.

When connecting the VR headset with the computer, the user has two options. The first option
is through the Oculus Air Link. Here the user must connect the headset via the internet and run
the headset in Developer Mode. The other option is with an Oculus Link Cable, which connects
the Oculus VR headset with the computer. For better performance and less input delay, a Link
Cable is recommended for a better user experience.

As of today, the application is not downloadable from any game platform. The user must unzip
a given zip file which includes the build of the game. From the team’s understanding, the final
build of the game will be sent to any school requesting to use the game. When unzipped, the
user can then run the .exe file included in the project folder. If the user was able to configure
the VR Headset correctly and the game is running, the user should be able to see the game
through the headset and play as intended.

Figure 10� Showing where to find the .exe file

15



Faculty of Engineering and Science

6. Documentation

6.1 General Information
The code is documented within the scripts as well as through helpful headers and tooltips you
can access when hovering over the different settings and references in the inspector. This is
done through Unity’s inspector customization tags. Figure 11 shows what some of these tags
look like inside of a script. The RequireComponent tag above the class name is there to ensure
the GameObject has the required Components. Unity prevents anyone from removing the
required component without removing the script that depends on it. When adding a script with
requirements Unity will automatically add the appropriate components.

Figure 11� Header and tooltip tags describing the different references.

In the inspector the references are divided under different headers. A tooltip describing the
reference or setting further is displayed when hovering above it. Figure 12 displays what the
NodeParser looks within the inspector when hovering above one of the required references.

16



Faculty of Engineering and Science

Figure 12� The NodeParser component as viewed in the inspector window, hovering above the
graph reference

6.2 Using the dialogue system
Creating a new dialogue graph can be done by right clicking in any folder. In the pop up menu
click Create � Dialogue Graph. This will open the dialogue graph in a new window.

Figure 13� Pop up menu for creating a new dialogue graph.

Once the dialogue graph is open, you can right click to add nodes. The Start Node is needed in
order for the Node Parser to understand where to start. In order for the appropriate state to be
updated at the end of the dialogue, the graph must also end in an end node. Multiple nodes
can be connected to the same end node, or to separate ones. The nodes can be connected by
dragging the exit port to an entry port. In a question node, make sure to use as many exit ports
as there are questions, starting with “exit1” for question 1.

Figure 14� An example dialogue graph. Right click to add nodes from the list of nodes.

Custom nodes can be created by right clicking any folder, and from the pop up menu navigate
to Create > xNode � Add Node. For information on how to program custom nodes, we
recommend checking out the xNode github page �Siccity, 2021�. Alternatively use one of the

17



Faculty of Engineering and Science

nodes created for this project as a baseline. The NodeParser will have to be modified in order
for the parser to use the new nodes data. This can be done by adding a case within the
NodeParser’s switch statement for the new node's name. We recommend using our previous
nodes as a baseline should this be appropriate.

Figure 15� Switch statement containing the logic for the different node types.

The character's interaction is in our case composed of three different objects. One being the
character itself. Another being an object that contains the NodeParser and the audio source,
and a third object acting as a trigger, activating the Notebook and the NodeParser as the
player steps within its radius.

Figure 16� The three objects are children of a parent object

When the NodeParser is added to a GameObject, all references need to be set. These include
the input action that the player has to perform to skip the dialogue, the dialogue graph for that
particular interaction, the UI elements and what state the dialogue requires and results in.
These can be set through the inspector. The NodeParser component can be added to any
object, however since scripts do not run on inactive objects we recommend not adding it to any
object that is meant to be disabled during the course of gameplay.

18



Faculty of Engineering and Science

Figure 17� The Node Parser component when added to a GameObject.

6.3 Using the Event Manager
Using the Event Manager is a simple process. The event manager is using the singleton
pattern. The methods are static and can be accessed from any script.

Subscribing to the event manager does not require an instance of it. You can subscribe to it
from another script by using EventManager.OnGameStateChanged += yourMethod;. To
increase performance, remember to unsubscribe when it is no longer needed. This is done
using EventManager.OnGameStateChanged -= yourMethod;.

Figure 18� Subscribing and unsubscribing to the state change event.

When subscribing to the OnGameStateChanged event, you need to specify a function to be
executed when the event is triggered. This function takes the new GameState as a parameter.
Using an if or switch statement allows you to perform logic on specific GameStates.

19



Faculty of Engineering and Science

Figure 19� Example implementation of the state change on the subscribers side.

In some instances it might be more appropriate to check the state in between state changes. In
the Node Parser, to make sure the game state matches the requirement, the current state is
fetched. To check the current game state, use EventManager.instance.state.

Figure 20� Using the EventManager’s state to validate dialogue requirement

6.4 Script Overview
This subchapter will contain an overview of the custom scripts and a brief explanation about
what they do.

- NodeParser.cs
See chapter 6.2

- PlayerSensor.cs
Trigger that starts NPC interaction. Interacts with NodeParser

- PlayerTrigger.cs
General purpose trigger. Functions to execute can be added through the inspector

- EventManager.cs
See chapter 6.3

- NPCHandlingScript.cs
The NPCHandlingScript.cs is the script primarily responsible for hiding and showing
NPCs depending on the game's state. It is subscribed to the Event Manager and listens
if a state has changed. A switch statement determines which code block should be
executed depending on what state the game is in.

- MapHandler.cs
Handles the maps. Switches marker the next dialogue interaction upon game state
change.

- CharacterHelper.cs
Controls several aspects of the player character model. Shrinks the player collider
according to the camera's position, allowing players to crouch under obstacles. Also
handles footstep sounds.

- FootSteps.cs

20



Faculty of Engineering and Science

Picks an appropriate sound clip according to the terrain underneath the player and
plays it.

- TerrainDetector.cs
Detects the terrain texture beneath the player and returns the index of that texture's
position in the terrain textures. Used by FootSteps to determine the correct sound.

- HandScript.cs
Hides the hands when holding objects.

- HandController.cs
Detects when holding objects and using HandScript hides the hands.

- OffsetMover.cs
Moves an object with another only with a specified offset. The offset and the target
object can be set through the inspector.

- GatekeeperBehaviour.cs
Controls the interaction with the Gatekeeper NPC. This interaction is fundamentally
different from the others, and for that reason is independent of the NodeParser.

- ClipPlayer.cs
Used to hold and play multiple AudioClips. Requires an AudioSource on the same
GameObject. A list of AudioClips can be set through the inspector and played through
scripts using the Play(int index) method.

- Follow.cs
Used to make an object follow another smoothly. The object will also always point
upwards. Used to make visual effects move with notebook without rotating with it, and
prevents janky movement.

- FollowTargets.cs
Similar to Follow.cs, but cycles through a list of targets that can be set through the
inspector. Used in the project to make characters switch between looking at different
GameObjects.

- Highlighter.cs
Used to highlight objects. Starts and stops an animation specified through the
inspector window. An item can automatically stop highlighting after a given time. This
time can also be set through the inspector.

- HitDetection.cs
Executes a function apon colliding with an object with the specified tag. Both the tag
and the function can be selected through the inspector. Example use case is glass
bottles shattering upon hitting the ground.

- SimpleShoot.cs
Script used to determine a pistol's audio, animation and bullet count. Each part of the
script can be changed through the inspector.

- Grenade.cs
Grenade script can be attached to any object in the scene and will act as a grenade.
The script has an audio source and clip, as well as an explosion effect. The timer can
also be set from when the grenade hits the ground until it explodes, making the grande
seem more realistic.

- JuglerGoal.cs
Used to start the truck animation when Jugler walks into it. It also scales the character
down such that the player won't be able to see the GameObject. It also destroys the
GameObject the script is attached to when Jugler has entered the trigger. This is for
not triggering the script again when Jugler is walking into it.

- UniversalFadeScript.cs

21



Faculty of Engineering and Science

Used to fade in and fade the canvas that is in front of the player’s camera. Here, one
can change the color the canvas should fade in or fade out to, as well as the time it
takes to fade.

- CarCameraFollow.cs
Adds the transform of the XR Camera to the taxi’s transform. This script is useful for
positioning the camera on the taxi such that when it moves, the camera will move with
it.

- PlaneTruckTrigger.cs
A script attached to a non - visible GameObject that plays the truck animation, as well
as all three spitfire animations when exited. It is placed in the cave and becomes active
after the player has conversed with Lewis Adams.

- FirstSceneChange.cs
Script that starts a timer when the game is loaded, it will then start the fadeIn method
from the UniversalFadeScript which makes the canvas go from transparent to black. It
also changes the scene when the fadeIn method has finished.

- OutroSceneChange.cs
Works similar to the FirstSceneChange.cs, however it has some code which is different
which makes it so the code can’t be generalized. The script does the opposite of what
the FirstSceneChange.cs script does. OutroSceneChange.cs also exits the program
after a fixed time (when the video has finished).

- GermanSpawn.cs
The script is subscribed to the Event Handler and executes some code when the
desired event has been changed. The code being executed is setting the German
soldiers as active which makes them visible in the scene after a state has been
changed.

- SpitfireSpawn.cs
Spawns a spitfire and starts an animation when the correct event has been changed. It
is subscribing to the Event Manager.

- SimpleGravity.cs
This script was in the end not used. Designed to move objects to the ground without
rotating. Used as an attempt to avoid a bug with objects falling through ground.

- MineTrigger.cs
Used as a trigger for determining when a player is on a mine. When the player exits the
mine, an audio will be played as well as a visual effect. There is also a transform for
knowing where the player will respawn when the explosion happens. It also has the
reference to the player so the script can change the position accordingly.

- BasketballScript.cs
The script is a trigger that gives extra time if the player is able to throw the basketball in
the basketball hoop.

22



Faculty of Engineering and Science

7. References

References

Siccity. �2021, October 4�. Home · Siccity/xNode Wiki · GitHub. GitHub. Retrieved May 19, 2022,

from https://github.com/Siccity/xNode/wiki

Unity Documentation. �2022, May 15�. Manual: Importing assets. Unity � Manual. Retrieved May

20, 2022, from https://docs.unity3d.com/Manual/ImportingAssets.html

23

https://github.com/Siccity/xNode/wiki
https://docs.unity3d.com/Manual/ImportingAssets.html

