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a b s t r a c t

The Black–Scholes differential operator which underlies the option pricing of European
and American options is known to be degenerate close to the boundary at zero. At this
singularity, important properties of the differential operator are lost and the classical
finite difference scheme applied to this problem fails to give accurate approximations
as it is no longer monotone. In this paper novel numerical techniques based on mimetic
finite difference method are proposed for accurately pricing European and American
options. More precisely, we propose the mimetic and fitted mimetic finite difference
methods, which are techniques that preserve and conserve general properties of the
continuum operator in the discrete case. The fitted method further handles the degen-
eracy of the underlying partial differential equations (PDE). Those spatial discretization
methods are coupled with the Euler implicit method for time discretization. Several
numerical simulations are performed to demonstrate the robustness of our methods
comparing to standard fitted finite volume method for both European and American
put options.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For many decades, the financial industry has seen a surge in the valuation of derivative securities. One such derivative
ecurity is an option, which is essentially a financial contract (traded) that renders to its owner the non-obligatory right
o buy (call) or sell (put) a specified quantity of underlying assets at a fixed price (strike price) on (European option) or
efore (American option) a given date (maturity/expiry date). A closed form solution was obtained by Black and Scholes
1972) for the value of European option (V ) with constant coefficients [1–3]. They showed that the value V is governed by
he following second order parabolic differential equation with respect to time (t) and the price of the underlying stocks
x, y)

∂V
∂t

+
1
2
σ 2
1 x

2 ∂2V
∂x2

+
1
2
σ 2
2 y

2 ∂2V
∂y2

+ ρσ1σ2xy
∂2u
∂x∂y

+ r
(
x
∂V
∂x

+ y
∂V
∂y

)
− rV (x, y, t) = 0, (1)

where σ1, σ2 are the volatilities associated to the stock prices x and y, respectively, ρ is the correlation coefficient between
the two stocks and r is the interest rate.

Pricing the American option however requires that at each time step we determine both the value of the option and
whether or not it is optimal to exercise at that value1 (see [4]). This makes the valuation of an American option a free
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1 This is known as the early exercise constraint.
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oundary problem [4]. American options are known to be governed by a linear complementarity problem (LCP) involving
he Black–Scholes differential operator and a constraint on the value of the option (see [4–7]). The LCP fully encapsulates
he finance reasoning behind American options to a system of partial differential inequalities (PDIs) under appropriate final
nd boundary conditions. There is however a challenge when solving PDIs since we have to deal with the free and moving
oundary. A penalty approach was proposed, [4,8] to overcome this challenge by adding a small and continuous penalty
erm that converts the PDIs to a partial differential equation (PDE) under appropriate final and boundary conditions.
nlike PDIs, there are several tools for solving PDEs and these tools have strong theoretical backgrounds. It is therefore
referable to consider converting the PDIs to a PDE. The solution of the resulting penalized PDE is known to converge to
hat of the original problem (LCP) for both single and two assets American put option (see [4,8,9]).

However, there is, in general, no analytical solution to the resulting penalized PDE and hence numerical methods
re the only tools used to provide realistic approximations. The commonly used standard discretization technique is the
inite difference method (FDM) [5,10]. The underlying Black–Scholes differential operator is known to be degenerate at the
oundary when the stock price equals zero [11]. At this singularity, important properties of the PDE are lost. A negative
onsequence here is that the classical finite difference scheme applied to such problems is no longer monotone and
ence fails to give an accurate approximation when the stock price is small. Therefore, more sophisticated techniques
hat are adapted to handle the degeneracy must be sought. Moreover, when the stock price S is equal to the strike price
, the initial condition of the PDE has a discontinuity in its first derivative. This fact has a negative impact on the accuracy
specially when the standard finite difference or standard upwind finite difference are used (see [5, chapter 26]). Therefore,
or the spatial discretization of penalized PDE, it is suitable to construct methods that handle the degeneracy at both
, Y = 0 and the discontinuity at X, Y = K . In [12], a fitted finite volume technique for the one-dimensional Black–Scholes

PDE was proposed to solve the previous drawback. Although this method was stable, it is only first order with respect
to asset price variables. In [11] fitted numerical method based on mimetic for the one-dimensional Black–Scholes PDE
was proposed and analyzed. The scheme has been proved to be very accurate comparing the finite difference method and
the standard fitted finite volume for Europeans options. However the extension of the scheme in high dimension is not
straightforward as the diffusion part of the Black Scholes operator has a full degenerate matrix. Furthermore the American
options2 have not been investigated.

The goal of this paper is to extend the work in [11] in high dimension for both European and American options.
Comparing to [11], the contribution of this article can be summarized as follows

• Here we develop mimetic finite difference and fitted mimetic finite difference schemes for both Europeans and
American options pricing in high dimension.3

• We provide several numerical simulations to demonstrate the robustness of our methods comparing to standard
fitted finite volume method for both European and American put options.

The paper is organized as follows. In Section 2, we present briefly, the theoretical foundations for the paper. Further
n the section, we present the support operator method upon which the mimetic finite difference methods are based
or the penalized Black–Scholes PDE. In Section 3, we present our spatial discretization methods based on Mimetic finite
ifference method (MFD) and Fitted Mimetic finite difference (FMFD) to discretize the diffusion term of the Black Scholes
DE. Also in this section, we apply the so-called upwind-finite difference method to the convection term. We provide the
ull discretization of our two schemes with the standard implicit time stepping scheme. In Section 4, we present some
umerical experiments to show the accuracy of the novel schemes compared to the fitted finite volume method presented
n [12,13] for the two dimensional problems (European and American put options). A short summary of our funding is
iven in Section 5.

. Theoretical framework

We present the following standard notations which we use in this paper. For Ω ⊂ R2 and 1 ≤ p < ∞, we have
Lp(Ω) = {v :

(∫
Ω

|v(x)|pdx
)1/p

< ∞} is the space of all p-power Lebesgue measurable functions on Ω with the usual
modification of p = ∞, where v : Ω → R is seen as an equivalence class of such measurable functions. Then the inner
product for L2(Ω) is denoted by (·, ·). We equip Lp(Ω) with the norm ∥ · ∥0,p. Now for l = 0, 1, 2, . . ., we let W l

p be
the Sobolev space with norm ∥ · ∥l,p and semi-norm | · |l,p. Then for the special case of p = 2, we denote by H l(Ω) the
associated Sobolev space with the corresponding norm ∥ · ∥l. We denote H l

0(Ω) = {v ∈ H l(Ω) : Tv = v|∂Ω = 0}, where
T : H l(Ω) → Lp(∂Ω) is the trace operator. Now for any Hilbert space H(Ω) of classes of functions defined on Ω , we
denote by Lp((0, T );H(Ω)) the space defined by

Lp((0, T );H(Ω)) = {v(·, t) : v(·, t) ∈ H(Ω) a.e in (0, T ) : ∥v(·, t)∥H ∈ Lp((0, T ))} (2)

which is equipped with the norm

∥v∥Lp((0,T );H(Ω)) =

(∫ T

0
∥v(·, t)∥p

Hdt
)1/p

2 The more challenge case where no analytical solution is available even for constant coefficients.
3 Here we focus on dimension 2 as the same idea can easily be used in dimension d > 2.
2
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here ∥ · ∥H is the natural norm on H(Ω). Since (1) is known to be degenerate, we introduce a weighted inner product
n (L2(Ω))2 by (u, v)w :=

∫
Ω
(x2u1v1 + y2u2v2)dΩ , for any u = (u1, u2)T and v = (v1, v2)T ∈ (L2w(Ω))2. The corresponding

eighted L2-norm is given by

∥v∥0,w :=

√
(v, v)w =

(∫
Ω

(x2v2
1 + y2v2

2)dΩ
)1/2

.

Hence the space of all weighted square-integrable functions is defined as

L2w(Ω) := {v ∈ (L2(Ω))2 : ∥v∥0,w < ∞}.

It is very clear with the use of standard arguments that the pair (L2w(Ω), (·, ·)w) is a Hilbert space (cf., for example [14]).
hen we can finally define the following weighted Sobolev space

H1
0,w(Ω) :=

{
v : v ∈ L2(Ω), ∇v ∈ L2w(Ω) and v|∂ΩD = 0

}
,

here ∂ΩD is the Dirichlet boundary condition part of ∂Ω . Then we define the weighted inner product on H1
0,w(Ω) by

·, ·)H := (·, ·) + (·, ·)w , which is equipped with the norm

∥v∥1,w =
[
∥v∥

2
0 + ∥∇v∥

2
0,w

]1/2
.

.1. The continuous problem

In this subsection, we provide the linear complementarity problem (LCP), for two underlying assets (x, y), which is
ell known to govern American put options [4,8]. For V (x, y, t), the LCP is given by⎧⎨⎩

LV (V (x, y, t) − V ∗(x, y)) = 0, a.e. in Ω × (0, T )
V (x, y, t) − V ∗(x, y) ≥ 0, a.e. in Ω × (0, T )

LV ≥ 0, a.e. in Ω × (0, T )
(3)

here V ∗ is the payoff function which is defined as

V ∗(x, y) = max (K − (α1x + α2y), 0) ,

nd K is the agreed strike price at expiry date T , and

LV = −
∂V
∂t

−
1
2
σ 2
1 x

2 ∂2V
∂x2

−
1
2
σ 2
2 y

2 ∂2V
∂y2

− ρσ1σ2xy
∂2u
∂x∂y

− r
(
x
∂V
∂x

+ y
∂V
∂y

)
+ rV (x, y, t), (4)

here Ω = (0, X) × (0, Y ), is the truncated domain, r is the interest rate, and α1, α2 are the weights associated to the
ssets x and y, respectively. The boundary conditions and the final condition are given by

V (0, y, t) = g1(y, t), y ∈ (0, Y ), t ∈ [0, T ],

V (x, 0, t) = g2(x, t), x ∈ (0, X), t ∈ [0, T ],

V (X, y, t) = 0, V (x, Y , t) = 0
(5)

V (x, y, T ) = V ∗(x, y). (6)

The functions g1 and g2 are given and provide suitable boundary conditions. Typically, we determine g1(·, ·) by solving
the one-dimensional American put option problem.

2.1.1. Reformulated problem
In [4,8] the LCP was reformulated for convenience during theoretical analysis. We write the LCP in conservative form

to facilitate the theoretical analysis into a variational form. The variational forms have been extensively studied in [15].
The well-posedness here is studied in a truncated domain Ω = [0, X] × [0, Y ], where we have assumed that X ≫ K and

≫ K [8,15]. Let V0 be a twice differentiable function satisfying the boundary and final conditions in (5)–(6). Using the
ransformation

u(x, y, t) = eβt (V0 − V ) , (7)

he problem (3) then becomes⎧⎨⎩
Lu(x, y, t) ≤ f ,

u(x, y, t) − u∗(x, y, t) ≤ 0,
(Lu − f ) (u(x, y, t) − u∗(x, y, t)) = 0,

(8)

where L is the conservative differential operator given by

Lu = −u − ∇ · K∇u + bu + cu = f (u), (9)
t ( )

3
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K =

(
k11 k12
k21 k22

)
=

(
1
2σ

2
1 x

2 1
2ρσ1σ2xy

1
2ρσ1σ2xy 1

2σ
2
2 y

2

)
=

(
k11 0
0 k22

)
+

(
0 k12
k21 0

)
= K1 + K2,

b =

(
b1
b2

)
=

(
rx − σ 2

1 x −
1
2ρσ1σ2x

ry − σ 2
2 y −

1
2ρσ1σ2y

)
, c = 3r − (σ 2

1 + σ 2
2 + ρσ1σ2), and β := σ 2

1

nd

f (x, y, t) = eβtLV0, u∗
= eβt (V0 − V ∗

)
,

ith boundary and final conditions

u(0, y, t) = 0 = u(X, y, t), for all t ∈ [0, T ], y ∈ [0, Y ],

u(x, 0, t) = 0 = u(x, Y , t), for all t ∈ [0, T ], x ∈ [0, X].

and

u(x, y, T ) = u∗(x, y, T ).

Note that any positive constant may be used for β .

2.1.2. Power penalty method
Now by adding a penalty term to the LCP (3) yields

LVλ + λ
[
V ∗

− Vλ

]1/k
+

= 0 (10)

with (5)–(6), or

Luλ + λ
[
u∗

− uλ

]1/k
+

= f (x, y, t), (x, y) ∈ Ω (11)

with boundary and final conditions

uλ(0, y, t) = 0 = uλ(X, y, t), t ∈ [0, T ], y ∈ [0, Y ],

uλ(x, 0, t) = 0 = uλ(x, Y , t), t ∈ [0, T ], x ∈ [0, X]

uλ(x, y, T ) = u∗(x, y, T ).

Where in (11), uλ is the penalized solution of the reformulated problem, Vλ is the penalized solution in (3), k > 0 is

the power of the penalty term and λ > 1 is the penalty parameter. When k =
1
2
, the penalty approach corresponds to

quadratic penalty approach. The case for k = 1 is however standard in literature. For k > 1, we have the so-called
ower-order penalty approach [4,8]. Using the same arguments as in [4,8], (11) is well-posed.

heorem 1. Suppose that [4, Assumption 2.13] and the assumptions in [4, Lemma 2.9] are fulfilled. Then, there exists a constant
> 0, independent of u, uλ, λ such that

∥u − uλ∥L∞(0,T ;L2(Ω)) + ∥u − uλ∥L2(0,T ;H1
0,ω(Ω)) ≤

C
λk/2 , (12)

here k is the power penalty using in (11).

roof. The proof can be found [4,8]. □

emark 1. It is important to note here that, without loss of generality, we are only considering the simplest model where
he coefficients are constant. Furthermore, note that (10) becomes (1) with λ = 0, which is the Black–Scholes equation
or the European option. In the sequel of this paper, we will replace uλ by u to ease the notation.

.2. Support operator method

Details on characterization and motivation of mimetic finite difference method can be found in [11,16–19]. Now, for
he purposes of an illustration, we reconsider as in [11] the following diffusion equation

− ∇ · (K∇u(x, y)) = f , (x, y) ∈ Ω ⊂ R2 (13)

ith boundary condition

u(x, y) = 0, (x, y) ∈ ∂Ω,
4
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here K > 0 is a bounded invertible matrix function of (x, y)4 and f could be a forcing function. Then we define an
operator A : H → H , by

Au = −∇ · (K∇u(x, y)), (x, y) ∈ Ω (14)

with properties

(Au, v)H = (u,Av)H , (Au, u)H > 0, F = f . (15)

That is (13) becomes

Au = F. (16)

Then (13) can be rewritten as the following first-order system{
∇ · w = F

w = −K∇u, (17)

which is equivalent to

w − Gu = 0, Dw = F, (18)

where the operators G and D are defined as{ Gu = −K∇u on Ω

Dw = ∇ · w on Ω

A = DG
(19)

Let H = L2(Ω) be the space of scalar functions u that are smooth on the Ω equipped with inner product

(u, v)H =

∫
Ω

uvdΩ, u, v ∈ H, (20)

and H =
(
L2(Ω)

)2 equipped with inner product

(w, z)H =

∫
Ω

(K−1w, z)dΩ, w, z ∈ H =
(
L2(Ω)

)2
. (21)

The inner product (21) is weighted by the inverse of K. Thus, (·, ·) is the standard inner product of R2. Note that the
following properties are fulfilled [19–21]

(Dw, u)H = (w,Gu)H (22)
(Dw, 1)H = 0, (23)

where 1 is the constant function with value 1. The properties (22)–(23) are the important properties of the continuum
operators that we want our discrete operators in the next section to mimic.

3. Mimetic finite difference and fitted-mimetic finite difference methods for options pricing

Let us first build a mimetic finite difference method to discretize the diffusion part of our continuous problem (11). As
we mentioned earlier, the corresponding discrete operators will mimic the properties (22)–(23). In general, the mimetic
methods are applied on unstructured meshes [22]. Here a rectangular mesh will be used and without loss of generality,
the domain Ω = [0, X]× [0, Y ] is divided into (Nx + 1)× (Ny + 1) non-overlapping intervals T = (Ii × Ij)0≤i≤Nx+1,0≤i≤Ny+1,
such that Ii = (xi, xi+1), i = 0, 1, . . . ,Nx, with 0 = x0 < x1 < · · · < xNx+1 = X and Ij = (yj, yj+1), j = 0, 1, . . . ,Ny, with
0 = y0 < y1 < · · · < yNy+1 = Y . We set hxi = xi+1 − xi, with hx = max

0≤i≤(Nx+1)
hxi and hyj = yj+1 − yj, with hy = max

0≤j≤(Ny+1)
hyj .

Now, we define the following mid-points xi− 1
2

=
xi + xi−1

2
, xi+ 1

2
=

xi + xi+1

2
for i = 1, . . . ,Nx, yj− 1

2
=

yj + yj−1

2
nd yj+ 1

2
=

yj + yj+1

2
for j = 1, . . . ,Ny. We also set x

−
1
2

= x0, xNx+
3
2

= xNx+1, y−
1
2

= y0 and yNy+
3
2

= yNy+1. Now for
i = 0, 1, . . . ,Nx + 1, we set lxi = xi+1/2 − xi−1/2, lx = max

0≤i≤(Nx+1)
lxi . We also set lyj = yj+1/2 − yj−1/2 for j = 0, 1, . . . ,Ny + 1,

ly = max
0≤j≤(Ny+1)

lyj . Furthermore, we set x
−

1
2

= x0 and xNx+
3
2

= xNx+1.5 Similarly, y
−

1
2

= y0 and yNy+
3
2

= yNy+1.6 Note the

family (Ωi × Ωj)0≤i≤Nx+1,0≤i≤Ny+1 is another partition of Ω with Ωi = (xi− 1
2
, xi+ 1

2
) and Ωj = (yj− 1

2
, yj+ 1

2
). We will call this

he dual partition of the family (Ii × Ij)0≤i≤Nx+1,0≤i≤Ny+1 (see Fig. 1).

4 A material property tensor in engineering sciences.
5 Function evaluation at x

−
1
2

or xNx+
3
2

is understood as evaluation at x0 = 0 or at xNx+1 = X .
6 Function evaluation at y or y is understood as evaluation at y = 0 or at y = Y .
−
1
2 Ny+

3
2

0 Ny+1

5
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Fig. 1. Fitted mimetic grid T in blue and its dual partition in green.

3.1. Discrete inner products

We define discrete analogs of the two continuous inner products (20) and (21) which use a quadrature rule on each
cell to approximate the integrals. Let HC and HC denote the discrete spaces of discrete scalar and vector functions for
H = L2(Ω) and H = (L2(Ω))2 respectively, in the partition T . Then the discrete L2 norm defined in HC is given by

(U, V )HC =

Nx+1∑
i=0

Ny+1∑
j=0

lxi lyjUi,jVi,j. (24)

Since the discrete information for fluxes are located at the cell centers, we adopt the midpoint rule for the inner
product (21). Let the cartesian components of the tensor K be given by Kxx, Kxy = Kyx, Kyy. Then, (K−1)xx, (K−1)xy =

(K−1)yx, (K−1)yy are the associated cartesian components of the tensor K−1, the inverse of K. For any vectors, W, Z, we
represent their components as W = (Wx,Wy) and Z = (Zx, Zy).(

K−1W, Z
)

= (K−1)xxWxZx + (K−1)yyWyZy. (25)

For simplicity, we choose the following,

Wx
i+ 1

2 ,j
= Wi+ 1

2 ,j, Wy
i,j+ 1

2
= Wi,j+ 1

2
, Zx

i+ 1
2 ,j

= Zi+ 1
2 ,j, Zy

i,j+ 1
2

= Zi,j+ 1
2
.

he discrete (L2(Ω))2 norm defined in HC is given by

(W, Z)HC =

Nx+1∑
i=0

Ny+1∑
j=0

hxihyj

[
(K−1

xx )i+ 1
2 ,jWi+ 1

2 ,jZi+ 1
2 ,j + (K−1

yy )i,j+ 1
2
Wi,j+ 1

2
Zi,j+ 1

2

]
(26)

ote that in HC and HC, for the computation adjoint relationships and entries of matrices corresponding to the discrete
perators, the following standard inner products are introduced

[U, V ]HC =

Nx∑
i=1

Ny∑
j=1

Ui,jVi,j, U, V ∈ HC, (27)

[W, Z]HC =

Nx∑
i=1

Ny∑
j=1

[
Wi+ 1

2 ,jZi+ 1
2 ,j + Wi,j+ 1

2
Zi,j+ 1

2

]
. (28)

e furthermore note that, in HC and HC, the two inner products are linked by

(U, V )HC = [MU, V ]HC , (W , Z)HC = [SW, Z]HC (29)

here M and S are coefficients, please see [20,21] for more information.
6
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3

d

d

W

W

.2. The discrete divergence and discrete flux

In this section, we present the discrete version of the divergence operator D. The resulting discrete divergence is
enoted by D. Then the discrete flux is given by

(DW )i,j =

(
Wi+ 1

2 ,j − Wi− 1
2 ,j

lxi
+

Wi,j+ 1
2

− Wi,j− 1
2

lyj

)
i = 0, 1, . . . ,Nx + 1, j = 0, 1, . . . ,Ny + 1. (30)

Then it is easy to check that

(DW , 1)HC = 0. (31)

This is the divergence property of the discrete divergence D which mimics the continuous divergence in (23). Here we

set G = −K∇ with K =

(
k11 0
0 k22

)
, a 2×2 diagonal matrix tensor. In this case therefore, K−1

=

⎛⎜⎝
1
k11

0

0
1
k22

⎞⎟⎠. Now, we

etermine the discrete version of G denoted by G that mimics the continuous version of the properties we have already
mentioned. In fact, G should satisfy the following property

(DW ,U)HC = (W , GU)HC. (32)

e then expand (32) as below,

Nx+1∑
i=0

Ny+1∑
j=0

Ui,j(DW )i,jlxi lyj =

Nx+1∑
i=0

Ny+1∑
j=0

(
K−1
xx

i+ 1
2 ,j

Wi,j+ 1
2
Wi+ 1

2 ,j(GU)i+ 1
2 ,j

)

+

Nx+1∑
i=0

Ny+1∑
j=0

(
K−1
yy

i,j+ 1
2

Wi,j+ 1
2
(GU)i,j+ 1

2

)
hxihyj . (33)

hich then leads to

Nx+1∑
i=0

Ny+1∑
j=0

Ui,j

{(
Wi+ 1

2 ,j − Wi− 1
2 ,j

lxi
+

Wi,j+ 1
2

− Wi,j− 1
2

lyj

)}
lxi lyj

=

Nx+1∑
i=0

Ny+1∑
j=0

(
K−1
xx

i+ 1
2 ,j

Wi+ 1
2 ,j(GU)i+ 1

2 ,j + K−1
yy

i,j+ 1
2

Wi,j+ 1
2
(GU)i,j+ 1

2

)
hxihyj . (34)

Then grouping the terms of (34), we have,

Nx+1∑
i=0

Ny+1∑
j=0

[
lyjUi,j − K−1

xx
i+ 1

2 ,j
hxihyj (GU)i+ 1

2 ,j

]
Wi+ 1

2 ,j −

Nx+1∑
i=0

Ny+1∑
j=0

lyjUi,jWi− 1
2 ,j +

Nx+1∑
i=0

Ny+1∑
j=0

[
lxiUi,j − K−1

yy
i,j+ 1

2

hxihyj (GU)i,j+ 1
2

]
Wi,j+ 1

2
−

Nx+1∑
i=0

Ny+1∑
j=0

lxiUi,jWi,j− 1
2

= 0. (35)

Then we can rewrite the terms as follows

Nx+1∑
i=0

Ny+1∑
j=0

[
lyjUi,j − K−1

xx
i+ 1

2 ,j
hxihyj (GU)i+ 1

2 ,j

]
Wi+ 1

2 ,j −

Nx+1∑
i=1

Ny+1∑
j=0

lyjUi,jWi− 1
2 ,j

−

Ny+1∑
j=0

lyjU0,jW−
1
2 ,j +

Nx+1∑
i=0

Ny+1∑
j=0

[
lxiUi,j − K−1

yy
i,j+ 1

2

hxihyj (GU)i,j+ 1
2

]
Wi,j+ 1

2

−

Nx+1∑
i=0

Ny+1∑
j=1

lxiUi,jWi,j− 1
2

−

Nx+1∑
i=0

lxiUi,0Wi,− 1
2

= 0. (36)
7
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Now, re-indexing any terms with i − 1
2 to i + 1

2 , and j − 1
2 to j + 1

2 , and making using of the fact that hNx = 0 and
Ny = 0, then (36) becomes

Nx∑
i=0

Ny+1∑
j=0

[
−lyj (Ui+1,j − Ui,j) − K−1

xx
i+ 1

2 ,j
hxihyj (GU)i+ 1

2 ,j

]
Wi+ 1

2 ,j −

Ny+1∑
j=0

lyjU0,jW−
1
2 ,j

+

Nx+1∑
i=0

Ny∑
j=0

[
−lxi (Ui,j+1 − Ui,j) − K−1

yy
i,j+ 1

2

hxihyj (GU)i,j+ 1
2

]
Wi,j+ 1

2
−

Nx+1∑
i=0

lxiUi,0Wi,− 1
2

+

Ny+1∑
j=0

lyjUNx+1,jWNx+
3
2 ,j +

Nx+1∑
i=0

lxiUi,Ny+1Wi,Ny+
3
2

= 0. (37)

his technique is done to fully concentrate the fluxes at the (i, j)thnode to enhance the mimicking property at that node.
We further note here that, (37) holds for all U in HC such that U0,j = UNx+1,j = 0 and Ui,0 = Ui,Ny+1 = 0. Hence solving
for (GU)i+1/2,j gives

(GU)i+ 1
2 ,j = −

([ lyjk11i+ 1
2

hxihyj

]) (
Ui+1,j − Ui,j

)
; i = 0, . . . ,Nx, j = 0, . . . ,Ny + 1. (38)

and solving for (GU)i,j+1/2,

(GU)i,j+ 1
2

= −

([ lxik22j+ 1
2

hyjhxi

]) (
Ui,j+1 − Ui,j

)
, i = 1, . . . ,Nx, j = 1, . . . ,Ny + 1. (39)

Let Ah be the discrete diffusion operator obtained by forming the composition of the discrete divergence and gradient
operator D and G respectively. This by construction, D : HC → HC and G : HC → HC is given by Âh : HC → HC .

3.3. Mimetic finite difference scheme for penalized American option

In this section, we aim to discretize penalized American option problem (11). The mimetic finite difference method will
be used for the diagonalized diffusion term (see K1 below), while the central difference is used to approximate the other
diffusion term (see K2 below), and the first order upwind-finite difference scheme for the convection terms. Remember
that for simplicity we have set uλ = u, then we have⎧⎪⎨⎪⎩

−
∂u
∂t

+ Dw − ∇ · [K2∇u + bu] + cu + λ[u∗
− u]1/k+ = f (x, y, t)

Gu := w = −K1∇u
A = DG,

(40)

here

K1 =

(
k11 0
0 k22

)
=

( 1
2σ

2
1 x

2 0
0 1

2σ
2
2 y

2

)
, K2 =

(
0 k12
k21 0

)
=

(
0 1

2ρσ1σ2xy
1
2ρ12σ1σ2xy 0

)
,

b =

(
b1x
b2y

)
=

(
(r − σ 2

1 −
1
2ρσ1σ2)x

(r − σ 2
2 −

1
2ρσ1σ2)y

)
, c = 3r − (σ 2

1 + σ 2
2 + ρσ1σ2).

We then partition Ii := (0, X) into Nx + 1 and Ij := (0, Y ) into Ny + 1 subintervals respectively, with dual partitions as
e did for the elliptic problems. Then we have that,

Ui,j ≈ U(xi, yj, t), lxi = xi+1/2 − xi−1/2, lyj = yj+1/2 − yj−1/2, hxi = xi+1 − xi, hyj = yj+1 − yj,

or i = 0, 1, . . . ,Nx and j = 0, 1, . . . ,Ny. Let us set wi+ 1
2 ,j :=

wi+1,j − wi,j

2
, wi− 1

2 ,j :=
wi,j − wi−1,j

2
, wi,j+ 1

2
:=

wi,j+1 − wi,j

2
,

i,j− 1
2

:=
wi,j − wi,j−1

2
. We can easily see that wi,j ≈ w(xi, yj, t), for i = 0, 1, . . . ,Nx and j = 0, 1, . . . ,Ny.

That is the discrete mimetic operators (prime and derived) are given by

(Dw)i,j =

wi+ 1
2 ,j − wi− 1

2 ,j

lxi
+

wi,j+ 1
2

− wi,j− 1
2

lyj
, i = 0, . . . ,Nx + 1, j = 0, . . . ,Ny + 1, (41)

and

(GU)i+ 1
2 ,j = −

([ lyjk11i+ 1
2

h h

]) (
Ui+1,j − Ui,j

)
, i = 0, . . . ,Nx, j = 0, . . . ,Ny + 1, (42)
xi yj

8
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f

w

w

c

T

(GU)i,j+ 1
2

= −

([ lxik22j+ 1
2

hxihyj

]) (
Ui,j+1 − Ui,j

)
, i = 0, . . . ,Nx, j = 0, . . . ,Ny + 1. (43)

Now using this the following ordering for the grid, i.e. zi,j = (i − 1) × Nx + j, for i = 1, . . . ,Nx, and j = 1, . . . ,Ny we
have that

Uh = (U1,1,U1,2, . . . ,U1,Ny , . . . ,UNx,1,UNx,2, . . . ,UNx,Ny )
T . (44)

Then the discrete operator Âh is given by

ÂhUh[zi,j] = (DGU)h =

(GU)i+ 1
2 ,j − (GU)i− 1

2 ,j

lxi
+

(GU)i,j+ 1
2

− (GU)i,j− 1
2

lyj

=

−

( lyjk11i+ 1
2

hyj

)
Ui+1,j − Ui,j

hxi
+

( lyjk11i− 1
2

hyj

)
Ui,j − Ui−1,j

hxi−1

lxi

+

−

( lxik22j+ 1
2

hxi

)
Ui,j+1 − Ui,j

hyj
+

( lxik22j− 1
2

hxi

)
Ui,j − Ui,j−1

hyj−1

lyj

(45)

or i = 1, . . . ,Nx, j = 1, . . . ,Ny, or

ÂhUh[zi,j] = αi,jUi+1,j + βi,jUi,j+1 + γi,jUi,j + Γi,jUi−1,j + δi,jUi,j−1 (46)

here

αi,j =

[
−lyjk11i+ 1

2

hyjhxi lxi

]
, βi,j =

[
−lxik22j+ 1

2

hyj lyjhxi

]
, Γi,j =

[
−lyjk11i− 1

2 ,j

lxihxi−1hyj

]

γi,j =

[ lyjk11i+ 1
2

hxihyj lxi
+

lyjk11i− 1
2

lxihxi−1hyj
+

lxik22j+ 1
2

hyi lyjhxi
+

lxik22j− 1
2

lyihyi−1hxi

]
, δi,j =

[
−lxik22j− 1

2

hyjhyj−1hxi

]
.

(47)

Also from (40) we have that

−∇ · (K2∇u + bu) = −
[
∇x(k12∇yu) + ∇y(k21∇xu) + ∇x(b1xu) + ∇y(b2yu)

]
= −

[
(k12 + k21)∇xyu + (

1
2
ρσ1σ2x + b1x)∇xu + (

1
2
ρσ1σ2y + b2y)∇yu + (b1 + b2)u

]
,

(48)

here ∇x =
∂

∂x
, ∇y =

∂

∂y
and ∇xy =

∂2

∂x∂y
.

Applying the central difference to the mixed diffusion term, and the first order upwind finite difference method
onvection term of (48), we have that

(k12 + k21)∇xyu ≈ (k12 + k21)i,j

[
Ui+1,j+1 − Ui−1,j+1 − Ui+1,j−1 + Ui−1,j−1

4hxihyj

]
, (49)

(
1
2
ρσ1σ2 + b1

)
x∇xu ≈

(
r − σ 2

1

) [xi+1/2Ui+1,j − xi−1/2Ui,j

hxi

]
, (50)

and (
1
2
ρσ1σ2 + b2

)
y∇yu ≈

(
r − σ 2

2

) [yj+1/2Ui,j+1 − yj−1/2Ui,j

hyj

]
. (51)

o simplify our scheme, we assume without loss of generality that σ 2
1 ≤ r and σ 2

2 ≤ r , and therefore

−∇ · (K2∇u + bu) + cu ≈ −(k12 + k21)i,j

[
Ui+1,j+1 − Ui−1,j+1 − Ui+1,j−1 + Ui−1,j−1

4hxhy

]
−
(
r − σ 2

1

) [xi+1/2Ui+1,j − xi−1/2Ui,j

h

]
−
(
r − σ 2

2

) [yj+1/2Ui,j+1 − yj−1/2Ui,j

h

]
+ rUi,j.

(52)
xi yj

9
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o

N

R

Then we have that,

B̂hUh[zi,j] = −
(k12 + k21)i,j

4hxihyj
Ui+1,j+1 +

(k12 + k21)i,j
4hxhyj

Ui−1,j+1 +
(k12 + k21)i,j

4hxihyj
Ui+1,j−1

−
(k12 + k21)i,j

4hxihyj
Ui−1,j−1 +

[((
r − σ 2

1

)
xi−1/2

hxi

)
+

((
r − σ 2

2

)
yj−1/2

hyj

)
+ r

]
Ui,j

+

((
r − σ 2

1

)
xi+1/2

hxi

)
Ui+1,j +

((
r − σ 2

2

)
yj+1/2

hyj

)
Ui,j+1

(53)

r

B̂hUh[zi,j] = Πi,jUi+1,j+1 + Λi,jUi−1,j+1 + Υi,jUi+1,j−1 + ηi,jUi−1,j−1 + χi,jUi,j + ζi,jUi+1,j + εi,jUi,j+1 (54)

where

Πi,j = −
(k12 + k21)i,j

4hxihyj
, Λi,j =

(k12 + k21)i,j
4hxihyj

, Υi,j =
(k12 + k21)i,j

4hxihyj
, ηi,j = −

(k12 + k21)i,j
4hxihyj

,

χi,j = −

[
1
hxi

((
r − σ 2

1

)
xi
)
+

1
hyj

((
r − σ 2

2

)
yj
)
− r

]
, ζi,j =

1
hxi

((
r − σ 2

1

)
xi
)
,

εi,j =
1
hyj

((
r − σ 2

2

)
yj
)

(55)

ow from (46) and (54), we have that

ĈhUh[zi,j] = ÂhUh[zi,j] + B̂hUh[zi,j] = Πi,jUi+1,j+1 + Λi,jUi−1,j+1 + Υi,jUi+1,j−1 + ηi,jUi−1,j−1
+(γi,j + χi,j)Ui,j + (αi,j + ζi,j)Ui+1,j + (βi,j + εi,j)Ui,j+1 + Γi,jUi−1,j + δi,jUi,j−1

(56)

for all i = 1, 2, . . . ,Nx and j = 1, 2, . . . ,Ny.
Now using the transformation t = T − t , we have⎧⎨⎩ −

dUh

dt
+ ĈhUh + λ

[
U∗

h − Uh
]1/k
+

= fh(t), ∀t ∈ [0, T ],

Uh(0) = U∗

h

(57)

3.4. Fitted mimetic finite difference scheme

The Black–Scholes differential operator is known to be degenerate towards the boundary and hence special techniques
are required to handle the degeneracy [4,12,23]. In [12,23], the authors proposed a so-called fitted scheme to tackle the
degeneracy of the PDE. In this section near x = 0 (i = 1) and y = 0 (j = 1), the sum of the diffusion and convection
flux is approximated using the fitted scheme. Far from x = 0 (i > 1) and y = 0 (j > 1) however, the diffusion flux and
convection flux will be approximated as in the previous section using respectively, the standard mimetic finite difference
and the upwind finite difference method. This combination will yield our novel scheme called the fitted mimetic finite
difference scheme. As the case (i > 1, j > 1) is already covered in the previous section, we will only focus on the cases
(i, j = 1), (i = 1, j > 1) and (i > 1, j = 1).

3.4.1. Case I (i, j = 1)
We need to approximate the flux at x1/2 and y1/2 with the fitted finite volume method to handle the degeneracy

of the Black–Scholes differential operator. Indeed, to find a new approximation at (DW )1,1, we require the fluxes at
(x 1

2
, y1), (x 3

2
, y1) and (x1, y 1

2
), (x1, y 3

2
), i.e. (GU) 1

2 ,1, (GU) 3
2 ,1, (GU)1, 12 and (GU)1, 32 respectively. Now integrating (40) across

1,1 = [x 1
2
, x 3

2
] × [y 1

2
, y 3

2
] we have

−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∂u
∂t

dxdy −

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇x ·
(
k11∇xu + k12∇yu + b1xu

)
dxdy

−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇y ·
(
k21∇xu + k22∇yu + b2yu

)
dxdy

+

∫ x 3
2

x 1

∫ y 3
2

y 1

[
cu + λ[u∗

− u]1/k+ − f (t)
]
dxdy = 0. (58)
2 2

10
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nd using the midpoint rule, to approximate the first and last terms of (58), we obtain

−R1,1
dU1,1

dt
−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇x ·
(
k11∇xu + k12∇yu + b1xu

)
dxdy

−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇y ·
(
k21∇xu + k22∇yu + b2yu

)
dxdy

+R1,1[cU1,1 + λ[U∗

1,1 − U1,1]
1/k
+ − f1,1(t)] = 0, (59)

here R1,1 = lx1 ly1 is the area of a control volume around the point (x1, y1), with Ux1,y1 = U1,1, U∗
x1,y1 = U∗

1,1 and
fx1,y1 = f1,1. Let us define the following

Φ(u) :=
1
2
σ 2
1 x∇xu + (r − σ 2

1 − ρσ1σ2)u = a1x∇xu + b1u (60)

nd

Ψ (u) :=
1
2
σ 2
2 y∇yu + (r − σ 2

2 − ρσ1σ2)u = a2y∇yu + b2u, (61)

where a1 =
1
2σ

2
1 , a2 =

1
2σ

2
2 , and b1, b2 are as already defined. Then the second term of (59) can be approximated by

−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇x ·
(
k11∇xu + k12∇yu + b1xu

)
dxdy = −

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇x ·
(
xΦ(u) + k12∇yu

)
dxdy

≈ ly1 [xΦ(u) + k12∇yu]
⏐⏐(x 3

2
,y1)

(x 1
2

,y1)
, (62)

nd the third term of (59) can be approximated by

−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇y ·
(
k21∇xu + k22∇yu + b2yu

)
dxdy = −

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇y · (yΨ (u) + k21∇xu) dxdy

≈ lx1 [yΨ (u) + k21∇xu]|
(x1,y 3

2
)

(x1,y 1
2
) . (63)

ow we have

[xΦ(u)]
(x 3

2
,y1)

(x 1
2

,y1)
= x3/2Φ 3

2 ,1(u) − x1/2Φ 1
2 ,1(u). (64)

ote here that the problem is not at (x3/2, y1) and hence using (38), x3/2Φ(u)|x3/2,y1 can be approximated as

x3/2Φ(u)|x3/2,y1 ≈ (−GU)3/2,1 + b1x3/2U1,1

=

[ ly1k11 3
2

hx1hy1

]
U2,1 +

[
b1x3/2 −

ly1k11 3
2

hx1hy1

]
U1,1.

et us now consider x1/2Φ(u)|x1/2,y1 using the fitted technique [12,23]. We consider the following two-point boundary
alue problem:

(a1x∇xv + b1v)′ = C1, x ∈ (0, x1) (65)
v(0, y1) = U0,1, v(x1, y1) = U1,1, (66)

here C1 is an unknown constant to be determined. Integrating (65) once, we have that

a1x∇xv + b1v = C1x + C2

ow, using the condition v(0, y1) = U0,1, we have that C2 = b1U0,1 and hence

Φ0(u) := a1x∇xv + b1v = C1x + b1U0,1. (67)

ollowing [12], we have

(Φ(v))|x1/2,y1 = (a1x∇xv + b1v)x1/2,1 =
1
2
[(a1 + b1)U1,1 − (a1 − b1)U0,1]. (68)

hen (67) reduces to

v = (U − U )x/x , x ∈ [0, x ]. (69)
1,1 0,1 1 1
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hen from (64) and (68), we have that

[xΦ(u)]
(x 3

2
,y1)

(x 1
2

,y1)
≈

[ ly1k11 3
2

hx1hy1

]
U2,1 +

[
b1x3/2 −

ly1k11 3
2

hx1hy1

]
U1,1 −

x1/2
2

[(a1 + b1)U1,1 − (a1 − b1)U0,1]. (70)

e follow a similar argument as before and establish that (63), can be approximated as

[yΨ (u)]
(x1,y 3

2
)

(x1,y 1
2
) ≈

[
lx1k221
hy1hx1

]
U1,2 +

[
b2y3/2 −

lx1k221
hy1hx1

]
U1,1 −

y1/2
2

[(a2 + b2)U1,1 − (a2 − b2)U1,0]. (71)

emember that from (59), we have

−∇x ·
(
Φ(u) + k12∇yu

)
− ∇y · (Ψ (u) + k21∇xu) + cu

= −D
[(

Φ(u) + k12∇yu
)
+ (Ψ (u) + k21∇xu)

]
+ cu. (72)

hen considering by definition that D is approximated by D, we obtain[
−∇x ·

(
Φ(u) + k12∇yu

)
− ∇y · (Ψ (u) + k21∇xu) + cu

]
|x1, y1 ≈

−

(
x3/2Φ 3

2 ,1(u) −

x 1
2

2
[(a1 + b1)U1,1 − (a1 − b1)U0,1]

)
lx1

+ cU1,1

−k121,1

[
U2,2 − U2,0 − U0,2 + U0,0

]
2hx1hy1

−

(
y3/2Ψ1, 32

(u) −

y 1
2

2
[(a2 + b2)U1,1 − (a2 − b2)U1,0]

)
ly1

,

(73)

=

−

([ ly1k11 3
2

hy1

]
U2,1 − U1,1

hx1
−

x 1
2

2
[(a1 + b1)U1,1 − (a1 − b1)U0,1]

)
lx1

−

[
k121,1
2hx1hy1

] [
U2,2 − U2,0

]

−

[
k121,1
2hx1hy1

] [
U0,0 − U0,2

]
−

( lx1k22 3
2

hx1

U1,2 − U1,1

hy1
−

y 1
2

2
[(a2 + b2)U1,1 − (a2 − b2)U1,0]

)
ly1

+ cU1,1,

where U1,0,U2,0,U0,2,U0,1 and U0,0 are solutions obtained from the 1D problem. Now remember that zi,j = (i − 1)Nx + j
or UH = (U1,1,U1,2, . . . ,U1,Ny , . . . ,UNx,1,UNx,2, . . . ,UNx,Ny )

T ,
Then have that

CHUH [z1,1] = −

[
k121,1
2hx1hy1

]
U2,2 −

[ ly1k11 3
2

hx1 lx1hy1

]
U2,1 −

[ lx1k22 3
2

ly1hx1hy1

]
U1,2

+

[ ly1k11 3
2

hx1 lx1hy1
+

lx1k22 3
2

ly1hx1hy1
+

x 1
2

2lx1
(a1 + b1) +

y 1
2

2ly1
(a2 + b2) + c

]
U1,1.

(74)

.4.2. Case II (i = 1, j > 1)
Again, we approximate the flux along x1/2 and yj, j > 1 with the fitted finite volume method to handle the degeneracy.

he integrating (40) across R1,j = [x 1
2
, x 3

2
] × [yj− 1

2
, yj+ 1

2
], and following a similar argument as is case 1, we have

−R1,j
dU1,j

dt
−

∫ x 3
2

x 1
2

∫ y
j+ 1

2

y
j− 1

2

∇x ·
(
k11∇xu + k12∇yu + b1xu

)
dxdy

−

∫ x 3
2

x 1
2

∫ y
j+ 1

2

y
j− 1

2

∇y ·
(
k21∇xu + k22∇yu + b2yu

)
dxdy

+R1,j[cU1,j + λ[U∗

1,j − U1,j]
1/k
+ − f1,j(t)] = 0, (75)

here R1,j = lx1 lyj is the area of a control volume around the point (x1, yj), j > 1. We approximate the second and third
erms of (75) by

−

∫ x 3
2

x 1

∫ y
j+ 1

2

y 1

∇x ·
(
k11∇xu + k12∇yu + b1xu

)
dxdy ≈ ly1 [xΦ(u) + k12∇yu]

⏐⏐(x 3
2

,yj)

(x 1
2

,yj)
, (76)
2 j− 2

12
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a

T

nd

−

∫ x 3
2

x 1
2

∫ y 3
2

y 1
2

∇y ·
(
k21∇xu + k22∇yu + b2yu

)
dxdy ≈ lx1 [yΨ (u) + k21∇xu]|

(x1,y
j+ 1

2
)

(x1,y
j− 1

2
) . (77)

ote that our focus here will be to apply the fitted scheme to (76). The standard mimetic, central difference and the first
rder upwind will be used to approximate the terms of (77).
Recall that

[xΦ(u)]
(x 3

2
,yj)

(x 1
2

,yj)
= x3/2Φ 3

2 ,j(u) − x1/2Φ 1
2 ,j(u). (78)

and hence using (38), x3/2Φ(u)|x3/2,yj can be approximated as

x3/2Φ(u)|x3/2,y1 ≈ (−GU)3/2,j + b1x3/2U1,j

=

[ lyjk11 3
2

hyjhx1

]
U2,j +

[
b1x3/2 −

lyjk11 3
2

hyjhx1

]
U1,j.

o find the approximation for x1/2Φ(u)|x1/2,yj using the fitted technique, we consider again the following two-point
oundary value problem:

(a1x∇xv + b1v)′ = C1, (x, y) ∈ (0, x1) × (0, Y ) (79)
v(0, yj) = U0,j, v(x1, yj) = U1,j, (80)

here C1 is an unknown constant to be determined. Then following the arguments [12], we have

(Φ(v))|x1/2,yj = (ax∇xv + bv)x1/2,j =
1
2
[(a1 + b1)U1,j − (a1 − b1)U0,j], (81)

Again following that the divergent operator D is approximated by D, we can approximate the flux in (75)

D [Φ(u) + Ψ (u)] |x1,yj ≈ −
1
lx1

(
x3/2Φ(u)| 3

2 ,j −
x 1

2

2
[(a1 + b1)U1,j − (a1 − b1)U0,j]

)
−

1
lyj

(
(GU)1,j+ 1

2
− (GU)1,j− 1

2
+ b2yj+ 1

2
Ui,j+1 − b2yj− 1

2
Ui,j

) (82)

nd

−∇ · [K2∇u] |x1,yj ≈ −

[
k211,j

U2,j+1 − U0,j+1 + U2,j−1 + U0,j−1

2hx1hyj

]
(83)

[
D [Φ(u) + Ψ (u)] |x1,yj

]
− ∇ · [K2∇u]

⏐⏐
x1,yj

≈

−

([ lx1k22j+ 1
2

hx1

]
U1,j+1 − U1,j

hyj
−

[ lx1k22j− 1
2

hx1

]
U1,j − U1,j−1

hyj−1

)
lyj

+ cU1,j

−

(
b2yj+ 1

2
Ui,j+1 − b2yj− 1

2
Ui,j

)
lyj

−

[
k211,j

U2,j+1 − U0,j+1 + U2,j−1 + U0,j−1

2hx1hyj

]
.

(84)

hen we have

CHUH [z1,j] = −

[
k121,j
2hx1hyj

]
U2,j+1 −

[ lyjk11 3
2

hyjhx1 lx1

]
U2,j −

[
k121,j
2hx1hyj

]
U2,j−1

−

[ lx1k22j+ 1
2

hx1hyj lyj
+

b2yj+ 1
2

lyj

]
U1,j+1 +

[ lx1k22j− 1
2

lyjhyj−1hx1

]
U1,j−1

+

[ lyjk11 3
2

h h l
+

lx1k22j+ 1
2

h h l
+

lx1k22j− 1
2

h h l
+

x 1
2

2l
(a1 + b1) +

b2yj− 1
2

l
+ c

]
U1,j.

(85)
yj x1 x1 x1 yj yj x1 yj−1 yj x1 yj

13
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.4.3. Case III (i > 1, j = 1)
This case follows similarly to the previous case. Hence we have that

CHUH [zi,1] = −

[
k12i,1
2hxihy1

]
Ui+1,2 −

[ lxik22 3
2

hy1hxi ly1

]
Ui,2 −

[
k12i,1
2hxihy1

]
Ui−1,2

−

[ ly1k11i+ 1
2

hy1hxi lxi
+

b1xi+ 1
2

lxi

]
Ui+1,1 +

[ ly1k11i− 1
2

lxihxi−1hy1

]
Ui−1,1

+

[ lxik22 3
2

hxihy1 ly1
+

ly1k11i+ 1
2

hy1hxi lxi
+

ly1k11i− 1
2

hy1hxi−1 lxi
+

y 1
2

2ly1
(a2 + b2) +

b1xi− 1
2

lxi
+ c

]
Ui,1.

(86)

ow combining the mimetic approximation of (57) at (xi, yj), i > 1, j > 1, with (74), (85) and (86), yields our novel
cheme called the fitted mimetic finite difference method. Therefore for

UH = (U1,1,U1,2, . . . ,U1,Ny , . . . ,UNx,1,UNx,2, . . . ,UNx,Ny )
T ,

using the transformation t = T − t , we need to solve in the case of the fitted mimetic method the following system,⎧⎪⎨⎪⎩
dUH

dt
+ CHUH + F (UH , t) = 0, t ∈ [0, T ],

UH (0) = U∗

H

F (UH , t) = λ
[
U∗

H − UH
]1/k
+

− fH (t),

(87)

where⎧⎪⎨⎪⎩
CHUH [z1,1], is as given in (74)

CHUH [z1,j], j > 1, is as given in (85)
CHUH [zi,1], i > 1, is as given in (86)
CHUH [zi,j] = ĈhUh[zi,j], i > 1, j > 1

(88)

with zi,j = (i − 1) × Nx + j.

3.5. Time discretization using standard implicit schemes

We subdivide the time interval [0, T ] in M subdivisions. That is, 0 = t0 < t1 < · · · < tM = T , such that
t = tm+1 − tm, for m = {0, 1, . . . ,M}. We adopt the stable time discretization method mostly used, that is the Euler-
-methods for (57) and (87) representing the semi-discrete solutions for the standard mimetic finite difference method
nd the fitted mimetic finite difference method, respectively, and is given by⎧⎨⎩ Um+1

h − Um
h

∆t
= θ

(
ĈhUm+1

h + F (Um+1
h , tm+1)

)
+ (1 − θ )

(
ĈhUm

h + F (Um
h , tm)

)
Uh(0) = U∗

h , 0 < θ ≤ 1,
(89)

and ⎧⎨⎩ Um+1
H − Um

H

∆t
= θ

(
CHUm+1

H + F (Um+1
H , tm+1)

)
+ (1 − θ )

(
CHUm

H + F (Um
H , tm)

)
UH (0) = U∗

H , 0 < θ ≤ 1,
(90)

he scheme (89) is order 2 in time when θ = 1/2 and order 1 if θ ̸= 1/2.

. Numerical tests

In this section, we run numerical simulations on a 8 GB 1600 MHz DDR3, Macbook Pro (13-inch, Mid 2012). We will
onsider two tests. The first test will be for pricing the European put option and the second test will be for pricing the
merican put option.

.1. European put options

For the first test, we consider the case when the penalty parameter λ = 0 in (10). Indeed, this case corresponds to
he solution of the European put option. As remarked earlier, there exits a closed form solution to the Black–Scholes PDE
14
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w
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Table 1
Table showing the two-dimensional L2-relative error for the various spatial discretization methods for the
European option. By fitting the data for fitted finite volume method, we found that the order of convergence
in space is 0.99. This order confirms the theoretical result in [12].
N Fitted finite volume error Mimetic FDM error Fitted mimetic FDM error

10 × 10 0.1095 0.0061 0.0056
15 × 15 0.0733 0.0059 0.0055
30 × 30 0.0369 0.0057 0.0053
50 × 50 0.0222 0.0057 0.0053
75 × 75 0.0148 0.0056 0.0052
100 × 100 0.0111 0.0056 0.0052

T = 1, r = 0.1, K = 1 Xmax = Ymax = 4K , σ1 = σ2 = 0.2, ρ = 0.4, α1 = α2 = 0.5, ∆t = T/100.

Table 2
Table showing CPU time (in seconds) for the various spatial discretization methods for the European option.
N Fitted FV CPU time Mimetic FDM CPU time Fitted Mimetic FDM CPU time

10 × 10 0.751 0.744 0.326
15 × 15 1.314 1.126 0.583
30 × 30 3.211 2.699 1.951
50 × 50 6.944 6.733 5.492
75 × 75 15.211 14.944 12.749
100 × 100 30.013 27.110 26.271

T = 1, r = 0.1, K = 1 Xmax = Ymax = 4K , σ1 = σ2 = 0.2, α1 = α2 = 0.5, ∆t = T/100.

hen the coefficients are constant, and this is given in [1] as below

U(s1, s2, K , T ) = Ke−rT
(
1 − M(−y1 + σ1

√
T , −y2 + σ2

√
T ; ρ)

)
− s1e−rTM(y1, d; ρ1) − s2e−rTM(y2, −d; ρ2) (91)

where

d =

ln(s1/s2) +

(
b1 − b2 +

σ 2
1

2

)
T

σ
√
T

,

y1 =

ln(s1/K ) +

(
b1 +

σ 2
1

2

)
T

σ
√
T

, y2 =

ln(s2/K ) +

(
b2 +

σ 2
2

2

)
T

σ
√
T

,

σ =

√
σ 2
1 + σ 2

2 − ρσ1σ2, ρ1 =
σ1 − ρσ2

σ
, ρ2 =

σ2 − ρσ2

σ

and

M(a, b; ρ) =
1

2π
√
1 − ρ2

∫ a

−∞

∫ a

−∞

exp
(
x2 − 2ρxy + y2

2(1 − ρ2)

)
dxdy. (92)

ndeed, to compute the relative error, we use the L2-norm given by

Error =

√∑Nx
i=1
∑Ny

j=1 hxihyj (Ui,j − Uanalytic
i,j )2√∑Nx

i=1
∑Ny

j=1 hxihyj (U
analytic
i,j )2

, (93)

where Ui,j and Uanalytic
i,j are respectively the numerical solution and the analytical solution at (xi, yj) (see Fig. 2).

From Table 1, we can observe the accuracy of the mimetic methods comparing to the finite volume method. The
table further shows the importance of the fitted scheme as the fitted mimetic scheme outperforms the standard mimetic
scheme. Furthermore, we present the CPU timings in seconds of all the methods. From Table 2, we see that the
computational timings for the methods are quite close. This is due to the fact that the matrix representation of all the
methods are similar.

4.2. American put options

Since American options in general have no analytical solution even when the Black–Scholes operator has constant
parameters, in our case, we choose the fitted mimetic scheme as the reference solution. Our motivation of choosing the
15
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e

Fig. 2. The analytical solution of the European put option is given in (a) while the corresponding numerical solution based on mimetic numerical
is given in (b).

fitted mimetic scheme as reference solution is based on the fact that the fitted scheme seems to be more accurate than the
other schemes as we have seen in the previous test for European option. The fitted mimetic method is therefore used as
an analytical solution. The relative error is computed as shown in the table below: We can observe from Table 3 that the
mimetic method remain superior to the fitted finite volume method [23] for pricing American put option problem. Note
that we have used the Newton method with tolerance tol= 10−7, to solve at each iteration the non-linear full discrete
quations in (89) and (90) with θ = 1, with initial guess Um. Remember that [U∗m

− Um
]
1/k

= max
{
[U∗m

− Um
]
1/k, 0

}
,
h h h + h h

16
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Table 3
This table shows the two-dimensional L2-relative error for the various spatial discretization methods for the
American put option. By fitting the data for the Mimetic method, we found that the order of convergence in
space is 1.08. This order might be 2 if the second order upwinding technique [24] is used to approximate the
convection term.
N Fitted Finite Volume Error Mimetic FDM Error

10 × 10 0.1428 0.0241
20 × 20 0.1058 0.0052
30 × 30 0.0711 0.0033
50 × 50 0.0698 0.0022
75 × 75 0.0592 0.0018
85 × 85 0.0600 0.0017
100 × 100 0.0570 0.0016

T = 1, r = 0.1, K = 1, X = Y = 4K , σ1 = σ2 = 0.2, ρ = 0.4, α1 = α2 = 0.5, tolerance (tol) = 10−7, ϵ =

10−4, ∆t = T/100, and penalty parameters: λ = 100, k = 2.

Table 4
This table shows the CPU timings (in seconds) for the spatial discretization methods for the American put option.
N Fitted Finite Volume CPU time (s) Mimetic FDM CPU time (s)

10 × 10 0.369 0.352
20 × 20 0.714 0.688
30 × 30 1.826 1.721
50 × 50 11.935 11.529
75 × 75 15.881 14.672
85 × 85 19.769 18.948
100 × 100 28.951 26.869

T = 1, r = 0.1, K = 1, X = Y = 4K , σ1 = σ2 = 0.2, ρ = 0.4, α1 = α2 = 0.5, tolerance (tol) = 10−7, ϵ =

10−4, ∆t = T/100, and penalty parameters: λ = 100, k = 2.

that is for ϵ > 0, we have

[U∗m
h − Um

h ]
1/k
+ =

{
[U∗m

h − Um
h ]

1/k, if U∗m
h − Um

h ≥ ϵ

0, otherwise. (94)

he CPU timings of the methods are shown in the Table 4 below:

. Conclusion

In this paper, we have provided the mimetic and fitted mimetic finite difference methods to approximate the two
imensional degenerate Black–Scholes differential operator governing option pricing. We have presented the support
perator method which underlies the construction of the standard mimetic finite difference method and novel fitted
imetic finite difference method. Indeed, to handle the degeneracy of near the boundary at zero of the Black–Scholes
ifferential operator, we have proposed the fitted scheme. The novel combined scheme (fitted mimetic finite difference
ethod) has out-performed the standard mimetic and fitted finite volume methods when numerical experiments were
onducted for European and American options.
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