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Abstract—With the increasing demand of users for person-
alized social services, social recommendation (SR) has been an
important concern in academia. However, current research on
SR universally faces two main challenges. On the one hand,
SR lacks the considerable ability of robust online data man-
agement. On the other hand, SR fails to take the ambiguity of
preference feedback into consideration. To bridge these gaps,
a deep learning-embedded social Internet of Things (IoT) is
proposed for ambiguity-aware SR (SIoT-SR). Specifically, a social
IoT architecture is developed for social computing scenarios
to guarantee reliable data management. A deep learning-based
graph neural network model that can be embedded into the
model is proposed as the core algorithm to perform ambiguity-
aware SR. This design not only provides proper online data
sensing and management but also overcomes the preference
ambiguity problem in SR. To evaluate the performance of
the proposed SIoT-SR, two real-world datasets are selected
to establish experimental scenarios. The method is assessed
using three different metrics, selecting five typical methods as
benchmarks. The experimental results show that the proposed
SIoT-SR performs better than the benchmark methods by at
least 10% and has good robustness.

Index Terms—Social IoT, social computing, deep learning,
graph neural networks.

I. INTRODUCTION

THE past decade has witnessed the rapid development of
communication networks, bringing profound changes to

society [1], [2]. Through a variety of social media platforms,
the Internet facilitates closer connections among people [3].
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Simultaneously, the continuous enrichment of spiritual and
cultural content urges people to pursue more personalized
social services [4], [33]. To meet demand, social comput-
ing has become a newly emerging research area [5]. Social
computing exploits advanced computational technologies to
deeply analyze various rules, characteristics, and patterns in
social networks to discover the hidden social needs of users
[6]. Among these areas, social recommendation (SR) is an
important area of focus [7]. SR aims to suggest appropriate
items to users by integrating the preference features of users
as well as the contextual characteristics of social networks
[8]. The most straightforward form of preference feedback is
ratings, which can reflect a preference for items [9]. As a social
network can be thought of as a heterogeneous graph network,
the contextual characteristics include information on attributes
and relations [10]. Currently, efficient social recommendations
have become the key point in the operation of social network
platforms [11], [34].

During the past few years, research related to SR has
received considerable attention globally. Accordingly, several
representative technical approaches have been proposed in
the area of SR [12]-[27]. Jiang et al. [12] inferred inter-
domain and intra-domain correlations from tagging space, and
constructed a modified matrix factorization model. Rafailidis
et al. [25] formulated the learning of both user preferences and
social influence as a joint optimization problem, so as to set
up fine-grained feature spaces. Fan et al. [27] simultaneously
captured interactions and opinions in the user-item graph, and
proposed a graph neural network for SR. As SR relies on
fruitful source data to efficiently capture social characteristics,
the main solutions used in existing research look to extend
feature spaces by inferring unknown relationships from known
relationships [10].

It can be found from related works that exploration of
effective SR remains hard. Although positive strides have been
made in the area of SR, two main challenges remain. First,
existing methods are highly reliable on offline data while train-
ing models, which is not sufficient. Large-scale online data
are required for SR as support, meaning that recommendation
models continuously adapt to time-varying contextual modes.
Second, almost all of the existing research assumes that the
preference feedback of users is clear. In other words, users
are only allowed to give one rating or grade to clearly express
their preference degrees. However, preference feedback is
influenced by multiple factors and is thus ambiguous, which
is illustrated by a typical example in Fig. 1. For a given
movie, users may have different comments on its different
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Fig. 1: An example of preference ambiguity and a rating
distribution.

components, such as the actors, story, and frame. Users
preference degrees regarding different components may be
diverse, constituting a preference distribution. Naturally, single
rating values cannot clearly reflect comprehensive preference
feedback and will surely lead to some noise during modeling.

Fortunately, the Internet of Things (IoT) acquires process
information that must be monitored through various sensors,
constructing network media that connects people, machines,
and things. Due to its resilient ability to perform data collec-
tion and arrangement, it has been utilized in many realistic
problem scenarios, producing many derivatives such as the
industrial IoT, medical IoT, and financial IoT. Hence, it can
be introduced to solve the problem in this research area via
two steps. First, a social IoT architecture is specifically de-
veloped for the issue of social recommendation, guaranteeing
a reliable source of training data. It is expected to utilize
flexible network plug-ins to replace physical sensors so that
multisource information can be acquired more conveniently.
On this basis, intelligent algorithms can be embedded into
the social IoT architecture. As is shown in Fig. 1, preference
feedback on an item can be viewed as the distribution of all the
possible rating values, rather than a single rating value. Such
multivariate prediction results in a form of rating distribution
that can be output by neural network methods. As for users and
items, their attributes and internal correlations can be encoded
via deep representation schemes, forming fine-grained feature
spaces. Thus, this paper proposes a deep learning-embedded
social IoT for ambiguity-aware social recommendations (SIoT-
SR). This proposal not only guarantees online data sensing
and management but also overcomes the preference ambiguity
problem in SR. To the best of our knowledge, this research
is the first to investigate the ambiguity-aware SR issue and
develop a deep learning-embedded social IoT for this purpose.
The main contributions of this paper can be summarized as
follows:
• It is recognized that existing research on SR still faces

two types of difficulties: online data management and
preference ambiguity.

• A deep learning-embedded social IoT architecture named
SIoT-SR is proposed for ambiguity-aware SR. The social
IoT is developed as a base of support and deep learning
is introduced to build the core algorithms.

• Experiments are conducted on real-world datasets to
evaluate the performance of the proposed SIoT-SR.

The remainder of this paper is organized as follows: Section
II introduces the problem scenarios and gives basic definitions.
In Section III, the mathematical process of the SIoT-SR is
described in detail. The experimental settings, results, and
analysis are given in Section IV. We conclude this paper in
Section V.

II. SYSTEM MODEL

This research puts forward a specific social IoT to address
issues of social recommendation, especially ambiguity-based
scenarios. This section first describes the architecture of the
designed social IoT and then describes the proposed deep
learning-based recommendation algorithm that is embedded
into the social IoT.

A. Architecture of the Social IoT

To provide a resilient environment for data management
and scheduling, this research proposes a social IoT whose
architecture is illustrated in Fig. 2. The designed social IoT
contains four layers: a persistence layer, representation layer,
processing layer, and application layer. As different parts of
the social IoT, they play different roles in collaboratively
implementing social computing tasks. The main roles and
effects of these layers are as follows:
• The persistence layer is mainly responsible for some

preprocessing work on the source data, including data
acquisition, data transmission, and data cleaning. First,
the initial data can be from several sources, such as
Internet plug-ins and sensing devices. Then, the trans-
mission control protocol is set as the standard for data
transmission inside the whole social IoT. After all the
data have been stored, this layer should classify them and
complete the missing content. Only through these steps
can proper data management be realized.

• The representation layer abstracts the whole social net-
work as a hybrid social graph that contains a user
subgraph and an item subgraph. The features of the
nodes and edges inside both subgraphs can be jointly
encoded into two representative vectors separately. As
for the nodes, a unified encoding scheme is set up for all
the attribute features according to their types. Regarding
encoding edges, they are unobserved and need to be
modeled by distinguishing different types.

• The processing layer mainly implements the deep
learning-based recommendation algorithm that is embed-
ded in the social IoT. It integrates the feature vectors
encoded in the representation layer to construct the robust
recommendation model. It employs up-to-date source
data to continuously update the model parameters so
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Fig. 2: Architecture of the developed social IoT.

that the recommendation model can fit the time-varying
characteristics of social networks. In addition, the rec-
ommendation model obtained by training can be used to
predict unknown multivariant preference feedback results
of users regarding items.

• The application layer connects the core functions of
the social IoT to the final users, including platform
operators, social users, etc. It provides a content presen-
tation platform for the final users, in which application
programming interfaces with unified protocol standards
are established to give access to the final users. They can
request personalized services or research data with the
aid of the proposed social IoT.

The recommendation algorithms are embedded into the
middle two layers: the representation layer and processing
layer. The next subsection states the research problem and
describes the mathematical process in detail.

B. Workflow of SIoT-SR

Let ui (i = 1, 2, · · · , |u|) denote the set of |u| users, and let
vj (j = 1, 2, · · · , |v|) denote the set of |v| items. Each user
has the chance to express his preference feedback regarding
the items. In this research, preference feedback takes the form
of a rating distribution instead of single rating values. In
other words, the dimension of preference feedback equals the
number of possible rating values. The value of each element is
the degree to which the preference feedback is associated with
the corresponding rating value. Here, the preference feedback

is denoted as Y (τ)
i,j , which is a multidimensional vector. With

τ ranging from 1 to q, each Y (τ)
i,j is composed of q elements.

As the users are not likely to rate all the items, it is certain
that the ratings of some items for each user are absent. Given
some known preference feedback between the users and items
as historical data, this method should predict the unknown
preference feedback.

To achieve this, a mapping from features to preference
feedback is established with the aid of historical data. As-
suming that Di and Dj denote features of user ui and item
vj , respectively, this process can be denoted as:

F (Di, Dj)→ Y
(τ)
i,j , (1)

where F (·, ·) is a mapping from features to preference feed-
back and Y (τ)

i,j is a q-dimensional vector. Before determining
this mapping, all the diverse features must be encoded as
representative vectors from the perspective of graph networks.
Specifically, the whole social network is abstracted as a hybrid
graph network, which is denoted as G (E,R). E denotes the
features of all the nodes, and R denotes the features of all the
edges. G (E,R) is composed of a user subgraph SG (ui) and
an item subgraph SG (vj). The rest of this subsection briefly
introduces the encoding procedure for G (E,R).

For the user subgraph SG (ui), the users are the nodes
and their relations are the edges. As for the item subgraph
SG (vj), the items are the nodes, and their relations are the
edges. Concatenating the nodes of the two subgraphs into a
novel node set and the edges of the two subgraphs into a novel



edge set, a new composite graph network NG (U, G) can be 
formulated. Inside the network, the nodes are mainly features 
of users and items, and they can be classified i nto three 
types according to their forms. A unified e ncoding principle 
is proposed for them to transform them into representative 
vectors. Regarding user ui, all of her feature components are 
concatenated into a representative vector Ei, and all of her 
relation features are encoded as Ri,z . z is the index number 
of all the users except user ui. Similarly, for item vj , all of 
its feature components are concatenated into a representative 
vector Ej , and all of its relation features are encoded as a 
representative vector Rj,l. l is the index number of all the 
items except item vj . Then, Ei and Ej are concatenated 
into a novel representative vector Ei,j , and Ri,z and Rj,l are 
concatenated into a novel representative vector Ri,j . On this 
basis, a graph neural network (GNN) structure is formulated to 
obtain a mapping from the features to multivariant preference 
feedback results. The whole workflow o f t he p roposed SIoT-
SR is illustrated in Fig. 3.

III. DEEP LEARNING-BASED SOCIAL RECOMMENDATION

A whole social network can be viewed as a large hybrid
graph network including three types of subgraphs: a user-user
subgraph, an item-item subgraph, and a user-item subgraph.
Inside the former two subgraphs, the users and items are
regarded as nodes, and the relations among them are regarded
as edges. The latter subgraph is a combination of the other
two subgraphs, as the pairs of a user and an item are viewed
as nodes, and the relations between a user and an item are
viewed as edges. Specifically, for the whole social graph,
the nodes and edges of the three subgraphs are aggregated
into its nodes and edges. In summary, the whole feature
space in this work can be classified into two parts: the entity
subspace and relation subspace. The first two subsections
below describe the encoding of the feature space implemented
by the GNN structure. The third subsection describes the
final neural regressor structure, which outputs multivariant
preference prediction results in the form of rating distributions.

A. Encoding of the Node Features
The main goal of this subsection is to model the internal

features of all the nodes in the hybrid social graph. According
to the different subgraphs, the nodes are divided into two
types: user nodes and item nodes. The features of user n-
odes mainly refer to the personal profiles of users, denoting
information on their status and identity. The features of item
nodes mainly refer to the internal metadata of items, which
reveal the attributes and parameters of items. As the initial
profiles cannot be substituted into mathematical models for
calculation, a uniform encoding scheme is established that fits
the feature contents of different kinds of nodes. Following one
of our previously published works, all the profile attributes can
be classified into three types: the numerical type, categorical
type, and textual type. This section first lists specific feature
names for the three types of nodes, then puts forward encoding
principles for them and finally concatenates all the encoding
components into a total representative vector for node features.

Fig. 3: Workflow of the proposed SIoT-SR.

1) Feature Overview: As shown in Fig. 4, eight and ten
features are selected for users and items, respectively. Users
are relatively universal objects in social networks, as they con-
sume things or services. However, items diversify with changes
in the social scenario, as they may be movies, music, news,
etc. Here, movies are selected as example items for listing
features. Regarding other social scenarios, the corresponding
attributes can be changed accordingly. This subsection briefly
describes these features in terms of user entities and item
entities separately.

For each user entity, the categorical features include authen-
tication status and location, the numerical features include age,
registration time, user level, number of ratings, and number
of friends, and the textual features include personal tags. As
for the item entities, the categorical features include genre,
director, 1st actor, country, language, and production company,
numerical features include the year, budget, and number of
received ratings, and textual features include reviews from
users.

2) Multisource Data Encoding: Numerical data refers to
features or attributes whose contents are numerical values,
such as age. They can be employed directly for computation,
without excessive processing operations. As the value range
of numerical features is flexible, a large gap may exist among
the feature values with respect to different entities. To avoid
such issues, it is necessary to normalize the values of each
numerical feature one by one. In other words, all the numerical
values of the different entities need to be mapped to the range
[0, 1] through the following process:

Φ̄ξ =
Φmax − Φξ

Φmax − Φmin
, (2)



Fig. 4: Specification of User Features and Item Features.

where ξ denotes the index number of feature values, Φ̄ξ and Φξ
denote the normalized and initial results of the feature values,
and Φmax and Φmin denote the maximum and minimum of
all the feature values.

Categorical data refers to features or attributes whose con-
tents are one or multiple fixed values chosen from multiple
options. A typical example of such structured data is the
location, as the location a user is in is fixed out of all the
possible locations. Structured attributes or features can be
represented via one-hot encoding (OHE) which is an encoding
scheme that uses binary representations. In detail, all the
possible value choices for a feature are initially set to zero,
and the zero corresponding to the correct option is changed to
one. For a vector obtained by one-hot encoding, the number
of possible choices equals its dimension, in which the element
corresponding to the correct option is set to one. In summary,
the categorical type of data can be represented as vectors
composed of several zeros or ones, which can be expressed in
the following format: 0, 0, · · · , 0︸ ︷︷ ︸

general options

, 1

 . (3)

Textual data refers to unstructured text that can be set
arbitrarily by users without structural constraints, such as tags
or descriptions. Theoretically, there are unlimited possibilities
for the content of such attributes. To transform them into struc-
tured types that can be easily encoded, topic indicators need
to be introduced to represent unstructured text. As descriptive
texts are generally short in social networks, the Twitter-LDA
algorithm [32] is adopted to extract a topic indicator for each
piece of text. Note that the topic indicators are latent rather
than topics with clear meanings such as sports or politics.

Assuming that K topic indicators are involved, each piece
of text is assigned a topic indicator from among all K ones
of them. Then, OHE can be utilized to transform each piece
of text into a vector concerning the topic indicators. The
dimension of the vector is K, and all the K elements are the
membership degrees for the corresponding topic indicators.
The element concerning the correct topic indicator is set to
one, and the other elements are set to zero.

3) Concatenation: As shown in Fig. 4, the feature vectors
for user entities and item entities can be obtained by con-
catenating all the feature components. Let Ei and Ej denote
feature vectors for user ui and item vj , respectively. They are
represented as the following two formulas:

Ei =
[
E

(1)
i ⊕ E

(2)
i ⊕ · · · ⊕ E

(8)
i

]
(4)

Ej =
[
E

(1)
j ⊕ E

(2)
j ⊕ · · · ⊕ E

(10)
j

]
. (5)

Thus, the representative vector for a pair of entities, user ui
and item vj , is denoted as Ei,j and is computed as:

Ei,j = σ1 (WE,i · Ei +WE,j · Ej + bE) , (6)

where σ1 (·) is the sigmoid activation function, WE,i and WE,j

are weight parameters that fuse two representative vectors with
different dimensions, and bE is the bias parameter. Thus far,
the representative vector for nodes has been built.

B. Encoding of the Relation Features
The main goal of this subsection is to model external

relations among different nodes in a hybrid social graph.
From the perspective of subgraph construction, the relations
can be divided into two classes: user-user relations and item-
item relations. From the perspective of perceptibility, the
types of relations can be divided into stable relations and
potential relations. Stable relations are those that clearly exist
in social networks and can be perceived directly, such as social
relationships. Potential relations refer to those that exist latent-
ly but cannot be perceived directly. These relations include
both stable relations and potential relations. This subsection
formulates a vectorized representation for these relations and
concatenates them into a total representative vector as the
edges of the hybrid social graph.

1) User-User Relations: Let uz denote another user, differ-
ent from user ui. Enumerating i with z changing from 1 to |u|,
Ri,z denotes the set of relations among all pairs of users. This
type of relation contains two parts: one is the relationships
among friends that can be observed directly, and the other is
the latent relations among users. Therefore, the two parts are
represented as R(fri)

i,z and R(lat)
i,z .

The first part is mainly related to the social relationship
status between user ui and user uz . Hence, R(fri)

i,z is actually
a one-dimensional vector with only one element to reveal the
accurate friendship between the users. It is represented as:

R
(fri)
i,z =

{
[1] , friendship exists
[0] , otherwise

(7)

The above formula shows that R(fri)
i,z equals the identity vector

if a friendship exists between user ui and user uz and that it
equals the zero vector if a friendship does not exist.



The second part is mainly determined by the feature cor-
relations between user ui and user uz . The features of the 
two users are encoded as two vectors, and their similarity is 
calculated to measure the relevance. Specifically, t he feature 
vectors for user ui and user uz are denoted as Ei and Ez . 
The correlation between them is measured as the following 
formula:

R
(lat)
i,z = φi,z · ‖Ei − Ez‖2F , (8)

where ‖·‖2F denotes the second-order Frobenius norm and φiz
is the relevance weight between user ui and user uz , computed
as [35]:

φi,z =
exp [ψu (ui&uz)/ψu (uz)]
|u|∑

γ=1
γ 6=i,z

exp [ψu (ui&uγ)/ψu (uγ)]

, (9)

where γ is the index number of the users other than users ui
and uz , ψu (uz) and ψu (uγ) count the number of items rated
by users uz and uγ , ψu (ui&uz) counts the number of items
commonly rated by users ui and uz , and ψu (ui&uγ) counts
the number of items commonly rated by users ui and uγ .

Therefore, the final relevance between users ui and uz can
be obtained through the following operation:

Ri,z =
[
R

(fri)
i,z ⊕R(lat)

i,z

]
. (10)

2) Item-Item Relations: Let vl denote another item, dif-
ferent from item vj . Enumerating j and l from 1 to |v|, Rj,l
denotes the set of relations among all pairs of items. This type
of relation is related to two types of factors: the similarity of
interactions and the latent relations among items. Neither of
them can be observed directly.

The first part is the interaction status between an item and all
the users. For a pair of items and users, an interaction occurs
between them if the user has ever rated the item and does not
occur otherwise. Regarding item vj , its interaction status can
be represented via the OHE, yielding a vector E(int)

j . This is a
|u|-dimensional vector whose elements denote the existence of
interactions between item vj and all the |u| users. An element
equals 1 if the corresponding interaction exists and 0 if the
corresponding interaction does not exist. The second part is
mainly determined by the internal features of the items. For
item vj , its features are encoded into a vector Ej , which was
mentioned previously.

Thus, the correlation vector between item vj and item vl is
calculated as:

Rj,l = φjl ·
∥∥∥[Ej ⊕ E(int)

j

]
−
[
El ⊕ E(int)

l

]∥∥∥2
F
, (11)

where ⊕ denotes the concatenation operation and φj,l denotes
the relevance weight between items vj and vl. φj,l is deter-
mined by the similarity of their received ratings. Because the
number of received ratings for each item may be different,
the ratios of the received ratings are utilized as alternatives
to direct ratings. Of all the ratings received for item vj , the
distribution ratios of all the possible rating values can be
calculated and are denoted as ϕ

(τ)
j , where τ is the index

number of possible rating values and ranges from 1 to q.

Naturally, q is the number of possible ratings. φj,l is calculated
via cosine similarity as:

φj,l =

q∑
τ=1

[
ϕ
(τ)
j · ϕ

(τ)
l

]
q∑

τ=1

√[
ϕ
(τ)
j

]2
·
q∑

τ=1

√[
ϕ
(τ)
l

]2 . (12)

Thus far, the correlation vector between items vj and vl has
been deduced.

3) Concatenation: Having calculated the relation vectors
inside two subgraphs, the user-user subgraph and item-item
subgraph, they are aggregated into representative vectors for
all pairs of a user and an item. As for the pair of user ui
and item vj , the total relevance vector for them, Ri,j , is
determined by Ri,z and Rj,l. Enumerating z and l from 1
to their maximum values, the two vectors Ri,z and Rj,l can
be aggregated into two vectors to denote the total relation
representations of user ui and item vj . This aggregation
process for the two vectors can be expressed as the following
two formulas:

Ri =
1

|u− 1|
·
|u|∑

z=1;z 6=i

tanh (ηz) ·Ri,z (13)

Rj =
1

|v − 1|
·
|v|∑

l=1;l 6=j

tanh (ηl) ·Rj,l, (14)

where tanh (ηz) and tanh (ηl) are the attention weights for
the users and items. Therefore, Ri,j is computed as:

Ri,j = σ1 (WR,i ·Ri +WR,j ·Rj + bR) , (15)

where WR,i and WR,j are the weight parameters that fuse two
representative vectors with different dimensions and bR is the
bias parameter. Hence, the representative vector for the edges
of the hybrid social graph Ri,j is obtained.

C. Recommendation

Having deduced representative vectors for the nodes and
edges of the hybrid social graph, a regressor of the GNN must
be built. However, the two representative vectors obtained
are the initial expressions that have not undergone iterative
processes. Some updating procedures must be conducted to
reoptimize them. Here, this operation is implemented through
multiple rounds of crossing iterations between the representa-
tive vectors of nodes and those of edges. As the dimension
of preference feedback equals q, the two initial represen-
tative vectors are mapped to q-dimensional matrices. The
two matrices obtained are the matrices in the initial iterative
round and will be updated for a number of rounds. The
multilayer perception (MLP) network is introduced for this
transformation from vectors to matrices, and it is represented
as:

ME
(0)
i,j = QE (Ei,j) (16)

MR
(0)
i,j = QR (Ri,j) , (17)

where QE (·) and QR (·) are two different MLPs for Ei,j and
Ri,j . Naturally, the effect of the two MLPs can be summarized



as extending the dimensions of Ei,j and Ri,j from one to q. 
Next, this subsection will describe the updating procedures 
for nodes and edges separately and formulate the objective 
function for generating multivariant preference results.

During the transition from the k-th round to the (k + 1)-th 
round, the updating of the representative vector for nodes is
expressed by the following formula:

ME
(k+1)
i,j = σ2

[
ME

(k)
i,j + αi,j ·H(k)

i,j

]
, (18)

where σ2 (·) is the sigmoid activation function, H(k)
i,j is the

hidden state at the k-th round, and αi,j is the transition weight
for the pair of user ui and item vj . The hidden state H(k)

i,j can
be calculated via:

H
(k)
i,j = σ1

{
WH ·

[
ME

(k)
i,j ⊕MR

(k)
i,j

]
+ bH

}
, (19)

where WH is the weight parameter and bH is the bias
parameter.

Similarly, the updating of the representative vector for the
edges is expressed through the following formulas:

MR
(k+1)
i,j = σ2

[
MR

(k)
i,j + βi,j ·D(k)

i,j

]
(20)

D
(k)
i,j = σ1

{
WD ·

[
ME

(k)
i,j · Ui,j +MR

(k)
i,j · U

′
i,j

]
+ bD

}
,

(21)
where Ui,j and U ′i,j are the transition matrices that unify the
dimensions of the two vectors ME

(k+1)
i,j and MR

(k+1)
i,j , WH

is the weight parameter and bH is the bias parameter.
After all K rounds of updating procedures, two representa-

tive matrices ME
(K)
i,j and MR

(K)
i,j are obtained. As they both

originated from two initial representative vectors, two inverse
MLPs must be defined to compress ME

(K)
i,j and MR

(K)
i,j

into two one-dimensional vectors. The inverse transformation
process can be represented as:

E
(K)
i,j = Q̃E

[
ME

(K)
i,j

]
(22)

R
(K)
i,j = Q̃R

[
MR

(K)
i,j

]
, (23)

where Q̃E (·) and Q̃R (·) are two different inverse MLPs
for ME

(K)
i,j and MR

(K)
i,j . They can be utilized directly for

outputting the multivariant preference feedback results.
It is assumed that the dimension of the preference feedback

results is q and that the index number of each dimension is τ .
In other words, τ ranges from 1 to q. As for the pair of user
ui and item vj , the τ -th dimension of the preference feedback
results is represented as:

Ŷ
(τ)
i,j =

1

1 + exp
[
T

(τ)
i,j

] (24)

and T (τ)
i,j is computed as:

T
(τ)
i,j = λ1 ·w(τ)

1 ·
[
E

(K)
i,j

]T
+ λ2 ·w(τ)

2 ·
[
R

(K)
i,j

]T
+ b1, (25)

where w
(τ)
1 and w

(τ)
2 are the τ -th weight components with

respect to the nodes and edges, b1 is the bias parameter, and
λ1 and λ2 are trade-off parameters that sum to 1. Naturally, the

TABLE I: Statistics of the experimental datasets

Attribute Douban Netflix
Number of Users 12309 31052
Number of Items 17547 12463

Number of Ratings 963514 2785357
Number of Social Links 127531 567570

Number of Attributes of Each Item 10 10
Number of Attributes of Each User 8 8

Rating Density 0.446% 0.720%
Social Density 0.084% 0.059%

above two formulas refine each dimension of the preference
feedback results to the range of (0, 1). Enumerating τ from 1
to q, the sum of all the Ŷ (τ)

i,j values should equal 1. Thus, it
is assumed that the normalization operation has been carried
out before obtaining Ŷ (τ)

i,j . In other words, all the elements of
Ŷ

(τ)
i,j satisfy the following condition:

q∑
τ=1

Ŷ
(τ)
i,j = 1. (26)

The real preference feedback results are denoted as Y (τ)
i,j .

The learning goal of this work can be summarized as mini-
mizing the distance between Y

(τ)
i,j and Ŷ

(τ)
i,j . For the pair of

user ui and item vj , the fundamental objective function for
this purpose is formulated as:

S
(τ)
i,j = λ3 ·

∥∥∥Ŷ (τ)
i,j − Y

(τ)
i,j

∥∥∥2
F

+ λ4 ·
[∥∥∥w(τ)

1

∥∥∥2
F

+
∥∥∥w(τ)

2

∥∥∥2
F

]
,

(27)
where λ3 and λ4 are the trade-off parameters used to adjust the
weights of the two parts. Similarly, their sum is 1. Extended
to all the pairs of users and items, the total objective function
is formulated as:

min

|u|∑
i=1

|v|∑
j=1

{
λ5 ·

[
q∑

τ=1

S
(τ)
i,j

]
+ λ6 · ‖Θ‖2F

}
, (28)

where Θ denotes the set of all the parameters except w(τ)
1 and

w
(τ)
2 , λ5 and λ6 are trade-off parameters used to adjust the

weights of the two parts, and their sum equals 1. Finally, the
stochastic gradient descent (SGD) method [31] is selected as
the optimizer to obtain approximate solutions for the above
objective function. Let Ω denote the set of all the parameters,
which is expressed as:

Ω =
{

Θ, w
(τ)
1 , w

(τ)
2

}
. (29)

Therefore, the SGD process can be expressed abstractly as:

Ω(t+1) = Ω(t) − a ·

[
λ5 ·

q∑
τ=1

∂S
(τ)
i,j

∂Ω(t)
+ 2λ6 ·Θ

]
, (30)

where t is the index of the iterative rounds and a is the learning
rate.

IV. EXPERIMENTS AND ANALYSIS

This section presents the detailed process of evaluating the
performance of the proposed SIoT-SR on three real-world
datasets of social networks.
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(d) ManD@C results under a proportion of training data of 70%

Fig. 5: EucD@C and Man@C results on the Douban dataset.

TABLE II: CheD@C results under different proportions of training data on the Douban
dataset.

Method 60% of Data for Training 70% of Data for Training
CheD@3 CheD@5 CheD@8 CheD@3 CheD@5 CheD@8

Social-MF 0.1700 0.1600 0.1800 0.1700 0.1400 0.1800
Trust-MF 0.1900 0.1800 0.1600 0.1500 0.1200 0.1400

Trust-SVD 0.1200 0.1500 0.1400 0.1300 0.1300 0.1600
Auto-Rec 0.1000 0.0900 0.1200 0.1200 0.1400 0.1300
GNN-SoR 0.0800 0.0800 0.0900 0.1000 0.1100 0.1100
SIoT-SR 0.0700 0.0900 0.1000 0.0800 0.0700 0.1000

A. Datasets

The construction of the experimental scenarios is derived
from two publicly available datasets that are commonly used
for such purposes: Douban and Netflix. The initial datasets,
as well as some preprocessing operations, are described as
follows:

Douban: Douban Movie 1 is a Chinese online community
where users can discuss comments and share preferences about
movies. The Douban dataset was collected from such websites
by researchers to assist in investigating SoR and is updated at
least once a year. The dataset contains not only the ratings of
users on items but also rich information on the item attributes

1https://movie.douban.com/

that can be exploited to generate correlation information. In
addition, the dataset contains social relationship information
that can be used in scenarios of SoR. To remove useless data,
users with fewer than three ratings are filtered out.

Netflix: Founded in 1997 and located in Los Angeles,
Netflix is an online video rental provider that mainly provides
large numbers of Netflix DVDs and delivers them free of
charge. Netflix set up a data mining prize in 2006 and has
released approximately one hundred million ratings of users
for movies since then. Currently, the Netflix dataset has been
the most successful and commonly used in the area of RS. As
the full dataset is too large, we filter out items receiving fewer
than five ratings and users with fewer than five rating records.
To determine the attribute correlations of the items, we follow
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(d) ManD@C results under a proportion of training data of 70%

Fig. 6: EucD@C and Man@C results on the Netflix dataset.

the preprocessing method in [11] and extract metadata from
the IMDb website. To address the lack of social information
in the Netflix dataset, we randomly assign social relationships
to some user pairs with a proportion of approximately 15%.

The statistics of the postprocessed datasets are listed in
TABLE I.

B. Experimental Settings

The data of each dataset are divided into two parts: a
training set and a testing set. The former set is assumed to
be historical records and is thus used for training models.
The latter set is viewed as real data occurring in the future
and is adopted to testify the efficiency of the recommendation
results. The predicted preference feedback is compared with
the real preference feedback to measure the effect of the
prediction results. For the preference feedback, a major issue
that needs to be addressed is how to transform single rating
values into rating distributions. Here, a random number-based
scheme is proposed to implement this transformation. For each
preference feedback, the distribution value of the selected
rating value is randomly set to a number drawn from a
uniform distribution within the range [0.7, 0.9]. Then, the
distribution values of the other (q − 1) rating values are set
randomly, making the sum of all the distribution values equal
to 1. Because all the preference feedback takes the form

of rating distributions, it measures the distance between the
predicted rating distributions and the real rating distributions.
To measure the distance between two distributions, four dif-
ferent measurement metrics are introduced, which are briefly
described as follows:

a) Euclidean distance:: This is a universal metric to
measure the distance between two multivariant vectors in
Euclidean space and is abbreviated as EucD.

b) Manhattan distance:: This is utilized to indicate the
sum of the absolute wheelbases of two points in a standard
coordinate system and is abbreviated as ManD.

c) Chebyshev distance:: This is a metric to measure
the distance between two multivariant vectors by computing
the maximum value of the absolute value difference, and is
abbreviated as CheD.

d) Correlation distance:: This is a criterion that mea-
sures the degree of dependence between two vectors with equal
dimensions and is abbreviated as CorD.

e) Mean absolute error:: This is the average absolute
value of the deviation between the predicted vectors and real
vectors and is abbreviated as MAE.

f) Mean-square error:: This is a metric to measure the
difference between the predicted vectors and real vectors and
is abbreviated as MSE.

The recommendation size, denoted as C, refers to the num-
ber of items that are recommended to users. The C suggested



TABLE III: CorD@C results under different proportions of training data on the
Douban dataset.

Method 60% of Data for Training 70% of Data for Training
CorD@3 CorD@5 CorD@8 CorD@3 CorD@5 CorD@8

Social-MF 0.7534 0.7217 0.7762 0.7208 0.7469 0.7731
Trust-MF 0.6894 0.6623 0.7155 0.6305 0.6604 0.6712

Trust-SVD 0.6028 0.6157 0.5930 0.5619 0.5806 0.6008
Auto-Rec 0.4997 0.4964 0.5101 0.4850 0.4637 0.4505
GNN-SoR 0.4210 0.4878 0.4529 0.3873 0.3951 0.4042
SIoT-SR 0.3146 0.3351 0.3572 0.3016 0.3239 0.3310

TABLE IV: CheD@C results under different proportions of training data on the Netflix
dataset.

Method 60% of Data for Training 70% of Data for Training
CheD@3 CheD@5 CheD@8 CheD@3 CheD@5 CheD@8

Social-MF 0.1800 0.1900 0.1700 0.1900 0.1700 0.1600
Trust-MF 0.1400 0.1600 0.1700 0.1600 0.1700 0.1500

Trust-SVD 0.1500 0.1300 0.1500 0.1600 0.1500 0.1600
Auto-Rec 0.1100 0.1000 0.1100 0.1300 0.1200 0.1000
GNN-SoR 0.0800 0.0900 0.1000 0.0900 0.1000 0.1000
SIoT-SR 0.0800 0.0700 0.0900 0.0800 0.0600 0.0800

TABLE V: CorD@C results under different proportions of training data on the Netflix
dataset.

Method 60% of Data for Training 70% of Data for Training
CorD@3 CorD@5 CorD@8 CorD@3 CorD@5 CorD@8

Social-MF 0.6670 0.6849 0.6937 0.6562 0.6481 0.6869
Trust-MF 0.5874 0.6011 0.5995 0.5766 0.5952 0.6103

Trust-SVD 0.4891 0.5251 0.5146 0.4964 0.5058 0.5226
Auto-Rec 0.4270 0.4493 0.4516 0.4885 0.5029 0.5152
GNN-SoR 0.3857 0.4061 0.4058 0.4127 0.4358 0.4261
SIoT-SR 0.3185 0.3362 0.3514 0.3346 0.3762 0.3909

items are the top C items in the list. This metric is closely re-
lated to the other metrics. For example, MAE@C denotes the
MAE value obtained when the top C items are recommended
to users. To verify the superiority of the proposed SIoT-SR
compared to general social recommendation methods, several
classical approaches for this purpose are selected as baselines.
Similar to one of our previously published studies [10], the
first four classical methods for SR are selected as Social-MF
[28], Trust-MF [13], Trust-SVD [29] and Auto-Rec [30]. In
addition, another GNN-based method that is proposed by our
research team, named GNN-SoR [10], is selected as a baseline.
Brief descriptions can be found in the corresponding literature.
Among the five methods, the first three are based on conven-
tional statistical learning theory, and AutoRec and GNN-SoR
utilize deep learning theory to construct models. Note that
all the baseline methods address preference feedback only
in the form of single values. However, preference feedback
takes the form of rating distributions in SIoT-SR. To unify
the dimensions of preference feedback, these methods are
specifically implemented for preference feedback in the form
of rating distributions. In particular, they can be employed to
generate all the dimension values one by one. For each piece

of preference feedback, normalization operations need to be
carried out on all the calculated distribution values, ensuring
that their sum equals 1. Then, the predicted rating distributions
are compared with the real rating distributions to measure the
performance of SIoT-SR.

All the experiments are carried out in a deep learning
working station with a 28-core CPU, 256-GB RAM, and a
GPU (RTX-2080-Ti). The proposed Deep-PR is implemented
with the assistance of TensorFlow 2. The index number k
in Eq. (18) ranges from 1 to K, which is set as 10 in this
work. Initially, λ1 and λ2 in Eq. (25) are both set to 0.5, λ3
and λ4 in Eq. (27) are set to 0.6 and 0.4, and λ5 and λ6 in
Eq. (28) are set to 0.55 and 0.45. The learning rate of SIoT-SR
is initially set to 0.001 and may be changed multiple times
during experiments. As for Twitter-LDA algorithm involved
in the SIoT-SR, setting of its major parameters utilize the
setting in [32]. The parameters in the baselines are set to their
default values and are omitted here due to text limitations.
The recommendation size C is set to 3, 5, and 8. Considering
the number of recommended results, the proportion of training
data is set to 60% and 70%.

2http://tensorflow.google.cn/
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Fig. 7: MAE@C and MSE@C results on the Douban dataset.
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Fig. 8: MAE@C and MSE@C results on the Netflix dataset.

C. Results and Analysis

This subsection presents two groups of experiments to
reveal the efficiency and stability of the proposed SIoT-SR.

1) Efficiency: When the recommendation size is set to 3,
5, and 8, the EucD@C results and ManD@C results under
different recommendation sizes on the two datasets are as
shown in Figs. 5 and 6. Both figures contain four subfigures,
among which the first two are the EucD@C results concerning
the two proportions of training data and the other two are the
Man@C results concerning the two proportions of training
data. In each subfigure, the X-axis represents the recommen-
dation size C as it changes from 3 to 8, and the Y-axis
represents the values of the metrics. The results obtained on
the Douban dataset fluctuate greatly, and those on the Netflix
dataset fluctuate little. As for the performance comparison,
the first two methods perform relatively worse, the next three
are relatively better, and the other three deep learning-based
methods achieve better results. Of all these approaches, the
proposed SIoT-SR always performs better than the baselines.
Even compared with two proper baselines, Auto-Rec and
GNN-SoR, the proposed SIoT-SR still shows an improvement
of at least 10%. The EucD@C results are approximately

10% better than those on the Douban dataset and 15% better
than those on the Netflix dataset. The ManD@C results are
approximately 12% better than those on the Douban dataset
and 18% better than those on the Netflix dataset.

TABLES II and IV list the CheD@C results and CorD@C
results on the Douban dataset under different proportions of
training data. TABLES III and V list the CheD@C results
and CorD@C results on the Netflix dataset under different
proportions of training data. Each table has two clusters of
data, corresponding to the results obtained under training data
proportions of 60% and 70%. Each cluster has six lines that
correspond to the results of the six methods and three rows
that correspond to the results concerning the three different
recommendation sizes. It can be observed from the four tables
that the two deep learning-based methods perform better than
the other methods and that the proposed SIoT-SR performs
better than all the baseline methods. Concerning the CheD@8
results in TABLE II, SIoT-SR performs no better than GNN-
SoR, which is a special example. But the overall tendency is
that SIoT-SR shows the best performance.

It can be preliminarily concluded from previous experiments
that the proportion of training data has little influence on
the experimental results. Thus, the proportion of training data



3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Recommendation size

 

Le
ar

ni
ng

 r
at

e

0.139

0.14

0.141

0.142

0.143

0.144

0.145

(a) EucD@C results

3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Recommendation size

 

Le
ar

ni
ng

 r
at

e

0.34

0.36

0.38

0.4

0.42

0.44

0.46

(b) ManD@C results

3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Recommendation size

 

Le
ar

ni
ng

 r
at

e

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

(c) CheD@C results

3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Recommendation size

 

Le
ar

ni
ng

 r
at

e

0.32

0.325

0.33

0.335

0.34

0.345

0.35

(d) CorD@C results

3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Recommendation size

 

Le
ar

ni
ng

 r
at

e

0.061

0.0615

0.062

0.0625

0.063

0.0635

0.064

(e) MAE@C results

3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Recommendation size

 

Le
ar

ni
ng

 r
at

e

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
x 10

−3

(f) MSE@C results

Fig. 9: Parameter sensitivity results for the proposed SIoT-SR.

can be fixed at 60% in regard to the metrics MAE@C and
MSE@C. Fig. 7 shows the MAE@C results and MSE@C
results on the Douban dataset, and Fig. 8 shows the MAE@C
results and MSE@C results on the Netflix dataset. Both of
them have two subfigures, corresponding to the MAE@C
results and MSE@C results, respectively. Each subfigure has
three clusters of columns that correspond to the three differ-
ent recommendation sizes: 3, 5, and 8. It can be naturally
observed from these figures that SIoT-SR shows nearly the
best performance in terms of all the scenarios of parameter
settings. These methods seem to have better performance on
the Netflix dataset than the Douban dataset. This phenomenon
may be attributed to the fact that the Netflix dataset is a purer
dataset and is more suitable for social computing tasks.

There are three reasons for the above results. First, SIoT-SR
regards preference feedback as rating distributions rather than
single rating values. This is the main novelty that distinguishes
it from previous SR methods as well as its main advantage
compared with others. Second, a deep representation strategy
is introduced into the SIoT-SR to endow it with a stronger fea-
ture expression ability. With this property, the recommendation
efficiency can be further improved. Thirdly, the whole social
network is abstracted as a hybrid social graph, and the newly
proposed GNN theory is introduced when establishing feature
spaces. This insight can be used to extract more potential and
latent relations within social networks so that the feature space
in this method can be more fine-grained. The joint effect of
the above three features contributes to the improvement of our
proposal compared with the baseline methods.

2) Robustness: The main purpose of this subsection is to
explore the robustness of the proposed SIoT-SR by testing

its parameter sensibility. Specifically, when a combination of
parameter settings change within certain ranges, the fluctuation
tendency of the experimental results is visualized. If the exper-
imental results do not fluctuate with great parameter changes,
the corresponding method has proper robustness because it is
not susceptible to parameter changes and has good stability.
In this work, the combination of parameters is selected as the
learning rate and recommendation size. The learning rate is
set to four different values: 0.001, 0.002, 0.003 and 0.005.
The recommendation size is set to three different values: 3,
5, and 8. Naturally, their combinations yield a total of twelve
situations. Of the two datasets, the more representative Netflix
dataset is selected as the main experimental environment. The
proportion of training data is set to 60%. In addition, only the
performance of SIoT-SR itself is evaluated, without comparing
it with others. The metrics are the six evaluation distance
metrics. The parameter sensitivity results of SIoT-SR are
demonstrated in Fig. 9. This figure is composed of six subfig-
ures that correspond to the results of the six evaluation metrics.
Inside each subfigure, the X-axis denotes the recommendation
size as it changes from 3 to 8, while the Y-axis denotes the
learning rate as it changes from 0.001 to 0.005. All the blocks
in color display metric values under different situations of
the parameter settings. The smaller the chromaticity difference
between two blocks, the less the performance of the algorithm
is affected by the parameter change. It can be seen from
these subfigures that fluctuation of the metric values in each
subfigure is quite gentle, demonstrating the proper stability
of the proposed SIoT-SR. Fluctuations that are not too great
occur with changing parameters. These experimental results
can be attributed to two reasons. On the one hand, as rating



distributions instead of single rating values are introduced 
as the forms of preference feedback, more comprehensive 
preference features can be obtained. Through such operations, 
the proposed SIoT-SR is not easily influenced by noise or error 
from ambiguous preference feedback. On the other hand, the 
whole feature space is divided into two subspaces, and deep 
representations are adopted to encode them. Through its strong 
abilities of feature abstraction and extraction, this scheme can 
produce more robust feature spaces, which in turn promote 
the stability of the recommendation models. The collaborative 
effect of the above two reasons leads to better performance.

V. CONCLUSION

Social networks have been widely regarded as an indis-
pensable part of human society. Among the most typical 
problems of social network analysis, social recommendation 
is well worth investigation. However, current research on SR 
faces two challenges: a lack of online data management and 
ignorance of preference ambiguity. Undoubtedly, current cir-
cumstances have greatly limited the progress of approaches for 
SR. To deal with these drawbacks, this paper proposes SIoT-
SR, a deep learning-embedded social Internet of Things. First, 
a social IoT architecture is specifically developed for social 
computing scenarios to guarantee reliable data management. 
Then, a deep learning-based graph neural network model that 
can be embedded into the social IoT is proposed as the core 
algorithm to obtain ambiguity-aware SR. The design of the 
social IoT addresses the online data management issue, the 
utilization of rating distributions as preference feedback pro-
vides novel insights for the construction of recommendation 
models, and deep learning improves the modeling efficiency. 
Empirically, two real-world datasets are selected to establish 
experimental scenarios. Six different metrics and five typical 
methods are selected for assessment. The experimental results 
show that the proposed SIoT-SR performs better than the 
benchmark methods by at least 10% and that it has proper 
parameter sensitivity.

It is also noted that this work has some limitations. In 
particular, the label space is assumed to be a distribution of 
all the possible label values. The label enhancement operation 
brings novel insights regarding recommendation methods but 
may also lead to some noise. In real-world scenarios, a label 
space in the form of distributions is not easy to obtain. To 
deal with this challenge, a label adaptation scheme is naturally 
required. Additionally, reducing the noise brought by the label 
adaptation operation is a significant issue. These points are the 
primary future directions for our research team.
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