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Abstract—This research presents a new generic deep learning1

framework for anomaly detection in the Internet of Everything2

(IoE). It combines decomposition methods, deep neural networks,3

and evolutionary computation to better detect outliers in IoE4

environments. The dataset is first decomposed into clusters,5

while similar observations in the same cluster are grouped. Five6

clustering algorithms were used for this purpose. The generated7

clusters are then trained using Deep Learning architectures.8

In this context, we propose a new recurrent neural network9

for training time series data. Two evolutionary computational10

algorithms are also proposed: the genetic and the bee swarm11

to fine-tune the training step. These algorithms consider the12

hyper-parameters of the trained models and try to find the13

optimal values. The proposed solutions have been experimentally14

evaluated for two use cases: 1) road traffic outlier detection and15

2) network intrusion detection. The results show the advantages16

of the proposed solutions and a clear superiority compared to17

state-of-the-art approaches.18

Index Terms—Internet of Everything, Intrusion Detection,19

Smart Transportation, Deep Learning.20

I. INTRODUCTION21

In this research work, we focus on the new offshoot of22

the Internet of Things (IoT), the Internet of Everything (IoE).23

The IoE extends the IoT by placing a greater emphasis on24

machine-to-machine (M2M) communication to describe more25

complex systems that can include people and processes, while26

considering intelligent connectivity and data processing. This27

concept enables the accumulation of an enormous amount28

of data. Effective processing and analysis of such Big Data,29

while challenging, will drive innovative applications in various30

fields such as cloud services [1], smart healthcare [2], smart31

buildings [3], robotics [4], and others. Anomaly detection32

refers to the process of filtering out anomalies from collected33

data. The term anomaly is general and can be used to refer34

to many problems, depending on the application erroneous35

data that may occur due to faulty sensors or during the data36

fusion process [5], road traffic outliers, or computer network37

intrusions [6], [7]. This research work is in this direction38
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and proposes a new intelligent framework to efficiently and 39

accurately identify anomalies in IoE environments. 40

Most current anomaly detection solutions in IoE [6]–[8] 41

are time consuming and have low accuracy. Deep learning 42

based solutions [6], [7] provide relatively better accuracy 43

compared to traditional solutions [8], but the improvement 44

is still limited. The main reason is that they need to build 45

a complex model with a high number of parameters to be 46

specified. For example, the recurrent neural network (RNN) [9] 47

requires a large number of states, and each state has parameters 48

that need to be set. Evolutionary computation [10] is also 49

widely studied for anomaly detection, but these solutions 50

are limited only by exploration of the observation space 51

and evaluate each observation separately. Motivated by the 52

success of decomposition, deep learning (DL) and evolutionary 53

computation in solving many real-world applications [11], 54

[12], this research proposes a hybrid framework for inferring 55

anomalies from IoE. 56

In this paper, we propose deep learning-based decompo- 57

sition and evolutionary computation framework for anomaly 58

detection networks (D2E-ADN) that aims to build targeted 59

learning models for inferring anomalies in IoE. The data 60

collected from the IoE environment is first divided into several 61

small but as independent clusters as possible, minimizing the 62

number of shared data between the clusters. The generated 63

clusters are used to train the DL models, with each cluster 64

used to train its own model. A hyperparameter optimizer is 65

also investigated to accurately find the relevant parameters of 66

the DL models. In this sense, the main contributions of this 67

work are as follows: 68

1) We propose five decomposition algorithms for clustering 69

data while extracting the relevant features from the IoE. 70

The data clusters are then identified using clustering 71

algorithms whose goal is to minimize the number of 72

the shared data between clusters. 73

2) We propose a new DL model that uses the knowledge 74

gained in the decomposition step. It is based on the 75

recurrent neural network developed for processing time 76

series data. 77

3) We propose two evolutionary computational algorithms 78

to tune the parameters of the different steps of the 79

D2E-ADN system, including the number of clusters 80

in the decomposition step, the number of epochs, the 81

learning error rate, and the activation functions for the 82

DL models. The first evolutionary computational algo- 83

rithm explores genetic optimization, while the second 84

considers the behavior of the bees in exploring the 85

possible configuration of the hyperparameters of the 86
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D2E-ADN system.87

4) We evaluate D2E-ADN by comparing its computation88

time and accuracy with basic anomaly detection al-89

gorithms in two areas: intelligent transport (detecting90

outliers in traffic flow) and network security (detecting91

intrusions). This evaluation shows that D2E-ADN out-92

performs the baseline algorithms in both runtime and93

accuracy.94

We give an outline of the remainder of this paper here.95

Section II gives an in-depth literature survey of existing96

solutions in anomaly detection. Next, in Section III, we present97

our proposed approach detailing all of its main components.98

Section IV gives our experimental analysis, discussion, and99

results. Lastly, Section V terminates our paper with some100

closing ideas.101

II. RELATED WORK102

Zhong et al. [6] proposed a hybrid DL model for intrusion103

detection in a large network. The set of relevant features is first104

extracted using the damped incremental statistics algorithm.105

Then, the autoencoder algorithm is implemented to generate106

the training data, which is finally used to train the recurrent107

neural network model. Pawar et al. [13] proposed a DL108

framework for intrusion detection in the context of video-109

based activity recognition. An intensive comparative study of110

existing traditional machine learning techniques and advanced111

DL intrusion detection algorithms was conducted. Roberto et112

al. [7] developed a model for a convolutional neural network113

to identify abnormal traffic flows. The authors also provided114

a strategy for generating the labeled data used in the learning115

process. Khan et al. [14] proposed a novel two-stage DL116

algorithm for network intrusion detection. Network traffic is117

first classified into two classes (normal vs. abnormal) based118

on a probability score, which is then used as an additional119

feature to identify normal behavior or attack classes. Jallad et120

al. [15] used long-term memory (LSTM) to identify different121

types of intrusion detection such as point anomalies, collective122

anomalies, and contextual anomalies. The solution was tested123

on a large network for several million packets using the Spark124

platform. The results confirm the usefulness of the methods125

over traditional methods such as kNN.126

Abdurrahman et al. [16] proposed a hybrid model that127

derives botnet in network. It combines convolutional networks128

and recurrent neural networks in the overall process. The129

relevant features are extracted based on a graph structure130

strategy. The extracted features are then converted into feature131

vectors and considered as training data for the hybrid recurrent132

neural convolutional network model. Garg et al. [17] devel-133

oped a model (hybrid) using the Boltzmann machine, which134

has been constrained as well as the SVM (Support Vector135

Machine) in identifying abnormal activities in social media136

(multimedia) networks. The approach uses an incremental137

strategy and includes a self-learning mechanism where the138

anomalies already detected are fed into the DL model. Pektas139

et al. [16] combined the convolutional neural network and140

the LSTM using spatiotemporal features of network flows.141

Specifically, the convolutional neural network learns the spa-142

tial features of the network, while the long-term memory143

learns the temporal features. Ujjan et al. [18] presented an 144

adaptive pooling-based sampling method to accurately infer 145

distributed denial-of-service attacks in IoT. It integrates the 146

snort intrusion detection system with the stacked autoencoder 147

DL model to optimize detection accuracy in the control plane. 148

Papamartzivanos et al. [19] developed a semi-supervised self- 149

adaptive algorithm by integrating sparse autoencoder and feed- 150

forward autoencoder to train the unlabeled data. Ferrag et 151

al. [20] provided an overview of DL -based algorithms for 152

detecting intrusions on 35 datasets. The DL models used in this 153

study are based on neural networks (convolutional, recurrent), 154

self-learning, and deep-belief networks. The detailed results 155

show that the convolutional NN performs better than the 156

models in both runtime and accuracy. Boukela et al. [21] 157

developed the modified local outlier factor to mitigate the 158

malfunction of security systems in IoT devices. This approach 159

takes into account the handling of high-dimensional data, 160

determining the reachability distance for all features of the 161

selected neighbors. Edje et al. [22] developed a clustering- 162

based algorithm for identifying fault and event outliers in 163

IoT sensors. The event outliers are considered when there are 164

problems in sensor readings. Noshouhi et al. [23] presented 165

a new machine learning-based solution for predicting fires 166

using spatiotemporal measurements. Relevant data such as 167

temperature and humidity are trained, and the model attempts 168

to separate abnormal cases from normal behaviors. A refine- 169

ment process is also performed to ensure that the predicted 170

anomalies are not due to outliers. Zhang et al. [24] seeks 171

to ensure the confidentiality of Industrial Internet of Things 172

customers by combining blockchain and federated learning. 173

The fault detection system is developed to provide complete 174

verification of customer data. Lin et al. [25] developed a 175

multi-objective algorithm based on ant colony optimization 176

metaheuristics for privacy preservation in IoT environment. 177

The ant colony solution space is encoded and represented 178

by hiding sensitive information. An external archive is used 179

to preserve the extracted Pareto solutions. Chou et al. [26] 180

proposed a taxonomy of intrusion detection datasets used 181

for evaluation in the last two decades. In addition, future 182

directions are proposed by extending intrusion detection to 183

a cloud environment and creating ground truth based data in 184

real network environments. 185

From this extensive literature review, it is clear that traffic 186

anomaly detection solutions are often weak in terms of detec- 187

tion rate because the entire database must be considered during 188

the learning process. Moreover, it is not clear how to tune the 189

hyperparameters for DL models. In this work, we investigate 190

a hybrid approach that combines PSO, decomposition, and 191

CNN to efficiently find outliers and anomalies in traffic 192

databases. We use both cluster-based algorithms and swarm- 193

based approaches to tune CNN. 194

III. DEEP LEARNING-BASED DECOMPOSITION AND 195

EVOLUTIONARY COMPUTATION FOR ANOMALY 196

DETECTION NETWORK 197

A. Principle 198

Here, we present the proposed D2E-ADN framework that 199

integrates decomposition, DL, and evolutionary computational 200
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Fig. 1. Illustration of the D2E-ADN framework

optimization to identify anomalies in the data environment.201

As shown in Fig. 1, the AD2E-ADN consists of three steps:202

i) decomposition, which divides the data into clusters such203

that each cluster contains similar data. ii) DL model, whose204

goal is to apply the DL process to each cluster to identify205

local anomalies. A merging strategy is used to combine206

the local anomalies into global anomalies. iii) Evolutionary207

computation, which is used to learn the hyperparameters of the208

models of the clusters. In the following, each step is explained209

in detail.210

B. Decomposition211

The main required aim to this step is for dividing the whole212

data into k clusters, C = {C1, C2, . . . , Ck}, where each cluster213

Cs = {D(s)
1 , D

(s)
2 , . . . , D

(s)
|Cs|} is the subset of the data D. The214

overlapping data is minimized within clusters, and overlapping215

data in each and every cluster is maximized. In other words,216

using Eq. 1:217


argmin

C
|

k⋃
i=1,j=1

((Ci) ∩ (Cj))|, i ̸= j∧
argmax

C
|
C⋃
Cs

(D
(s)
i ∩D

(s)
j )|∀(i, j) ∈ [1..|Cs|]2, i ̸= j

(1)

It is necessary to use different clustering algorithms than218

in previous work [27]–[30] to minimize the number of shared219

data between clusters and maximize the number of shared data220

in each cluster. The following concepts should be introduced221

here:222

1) Similarity computation. The distance measure between223

two data Di and Dj is calculated by subtracting the224

number of shared items from the number of all items225

between Di and Dj , as given in Eq. 2.226

Dist(Di, Dj) = max(|Di|, |Dj |)− (|Di ∩Dj |) (2)

2) Centroids updating. Here, we should consider datasets227

of each cluster Ci = {D(i)
1 , D

(i)
2 , . . . , D

(i)
|Ci|}, the aim is228

to find a gravity center of this set which is also a datum.229

The centroid, µi, is computed based on the centroid230

formula developed in [31]. Each item’s frequency can231

be calculated for all the data in a cluster Ci. Data center 232

length given as li is connected to the avg. number of 233

datum within Ci, as shown in Eq. 3. 234

li =

∑|Ci|
j=1 |D

(i)
j |

|Ci|
(3)

Afterwards, the data within Ci can be sorted by fre- 235

quency, and the frequency datum li is then assigned to 236

µi, as µi = {j|j ∈ li}. 237

3) data neighborhoods. Data neighbourhoods of Di, de- 238

noted as NDi , are defined by the set of all observations 239

that are similar to Di with a given threshold ϵ. It is 240

computed as shown in Eq. 4. 241

NDi
= {Dj |Dist(Di, Dj) ≤ ϵ ∨ j ̸= i} (4)

4) Core data. Datum Di is known as core data if and only 242

if here is some minimum number of data σD, such that 243

|NDi
| ≥ σD. 244

5) Shared data determination. Upon the construction of 245

the clusters of data, the shared set has to be determined 246

of data between clusters. In Eq. 5, the shared sets for 247

data denoted as S, are defined. 248

S =

k⋃
i=1,j>i

Ci ∩ Cj , (5)

where Si,j is the shared set between clusters Ci and Cj . 249

1) Naive grouping for data decomposition: For naive 250

groupings, the main aim is to be able to group data into k 251

clusters that are disjoint without the need for any processing. 252

With m datum, {D1, D2, . . . , Dm}, the first m
k datum are 253

assigned to C1, the second m
k to C2, and so until assigning 254

all that datum to the k clusters. 255

2) Hierarchical agglomerative clustering for data de- 256

composition: HAC (Hierarchical Agglomerative Clustering) 257

[27] for data decomposition which has the main aim 258

in the creation of tree-like nested structure partitions, 259

H = {H1,H2, . . . ,Hh}, of the data such that, ∀(i, j) ∈ 260

[1, . . . , k]2,∀(m, l) ∈ [1, . . . , h]2, Ci ∈ Hm, Cj ∈ Hl,m ≥ 261

l ⇒ Ci ∈ Cj ∧ Ci ∩ Cj = ∅. First, there is a starting 262

point with all data points in separate clusters. Next, we keep 263

connecting two clusters that can be agreed to be very similar 264

until we reach the point of a single cluster. We can define the 265

similarity between any two clusters Ci and Cj by determining 266

the number of common elements between them, or |Ci ∩Cj |. 267

3) K-means for data decomposition: We know that K- 268

means [28] is trying to optimize the function: J = 269∑k
j=1

∑
D′∈Cj

|D′ − µj |2, where µj is the centroid of the 270

data in Cj . A centroid is computed for each cluster, and 271

then the data are randomly distributed among k clusters. 272

Then, each datum is assigned to a cluster based on which 273

centroid is closest to it. These steps are repeated until no more 274

assignments to clusters are made, at which point the procedure 275

terminates itself. 276
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4) Bisecting k-means for data decomposition: In the bisect-277

ing k-means algorithm, when [29] decomposes the data, it does278

so using both hybrid partitioning and a divisive hierarchical279

methodology. We start with a single cluster and then split a280

cluster into 2 in each individual step, using the standard k-281

means approach. Looking more closely at the approach, the282

process of bisecting clusters can be repeated many times, with283

higher similarity achieved in the division.284

5) DBSCAN for data decomposition: In the DBSCAN285

algorithm [30], the main goal in data decomposition is to286

be able to search for clusters in each ϵ neighborhood per287

datum. Once the core data is found, DBSCAN is responsible288

for iteratively collecting all density-reachable data directly289

from the core data. This process may result in some density290

reachable clusters being merged individually. We can stop the291

process if no new data is added to a cluster.292

C. DL model293

Here is presented a new DL model for detecting anomalies294

in data. It is based on a recurrent neural network and considers295

time series as input. The input of the recurrent neural network296

is the set of clusters generated in the previous step. As a result,297

different models are generated, each of which is associated298

with a data cluster. Our model network is a (many-to-many)299

architecture. The problem of the model is binary classification,300

i.e., outputting a class label indicating whether the data is301

anomalous or not. This is done for each datum in the cluster. A302

multilayer feedforward network is applied to each data cluster,303

consisting of multiple neurons arranged in layers. Each neuron304

of layer l is connected to each neuron of layer (l − 1) with305

a certain weight. Each input datum Di−1 is connected to a306

group of neurons in the input layer. The neurons in the output307

layer are associated with the output of the model (the class308

label 1 for anomalous or 0 for normal). The goal is to reduce309

the error between the output data of the model and the ground310

truth of the data, such as:311

E(D) =

|D|∑
i=1

E(Di), (6)

where,312

E(Di) =

√√√√|Dij |∑
j=1

(Dij − D̂ij)2) (7)

The output of the mth neuron in the layer l, noted oml is313

given by Eq. 8. Note that the sum of the outputs of all neurons314

in the given layer should be between 0 and 1. Here, we have315

the following equations as:316

oml = σ(

|l−1|∑
j=1

ojl−1ω
mj
l−1 + bml ), (8)

with317
|l|∑

m=1

oml = 1, (9)

where σ(.) is the activation function, |l| is the number of318

neurons in the layer l, ojl−1 is the output of the jth neuron319

in the l − 1 layer, ωmj
l−1 is the weight value that connects the 320

neurons oml and ojl−1, and bml is the bias value associated to 321

the neuron oml . 322

At each iteration i, the updating weight rule is given as by: 323

ωmj
l−1(i) = ωmj

l−1(i− 1)− µ×Di × 2× Ei, (10)

where µ is the learning parameter rate, and, 324

Ei =

|Di|∑
j=1

(Dij − D̂ij)
2 (11)

At the end of the learning step, different models will be 325

designed, and one for each cluster, Ci. We define a local 326

ranking vector Ranki by applying a learning model Mi on 327

the cluster Ci, denoted Ranki = Mi(Ci). The process of the 328

global ranking of the data D is performed as follows: 329

1) Compute the score of each Dj , say Score(Dj). 330

2) Sort the scores of the data, D, in an ascending order. 331

3) Retrieve the top anomalous according to the scores of 332

D. 333

D. Evolutionary Computation 334

In this section, we can show the process by which we 335

can determine the optimal set for the D2E-ADN approach to 336

finding the set of hyperparameters. Here we can define a set 337

of hyperparameters given by HP = {HP1,HP2, . . . ,HPr}. 338

Here r is defined as the total number of hyperparameters. Each 339

HPi can be represented in a set of possible values for a given 340

hyperparameter. Moreover, we define our configuration space 341

CS such that we can say that the set of possible configurations 342

where each configuration can be represented as a vector in 343

the possible values for all hyperparameters HP . Thus, the 344

hyperparameter problem for optimization has the main goal 345

of finding an optimal configuration that provides the highest 346

accuracy for both the regression and classification rates. We 347

can also say that the size of the configuration space can depend 348

on the number of possible values of the hyperparameters. We 349

can use Eq. 12 such that: 350

|CS| =
r∏

i=1

|HPi|. (12)

Here we can clearly see that the configuration space can 351

be very large. For example, if only 1, 000 possible values 352

per epoch parameter and 100 per error rate and 1, 000 for 353

the number of bounding boxes (i.e. CNN) are considered, 354

then the configuration space could be as large as 100 million. 355

Therefore, we need to be able to avoid exhaustive search 356

approaches as they are inappropriate for this type of problem. 357

To solve this problem, evolutionary computational algorithms 358

need to be explored. In the following, we discuss the main 359

components of such approaches. 360

1) Population Initialization: Considering the initial pop- 361

ulation represented as pop size, the individuals must be 362

distributed over the configuration space CS . This allows ex- 363

ploration of different configurations and coverage of most 364

regions in CS . When generating the initial population, we 365
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can start the process by generating a random individual that366

can represent a configuration CS . This individual can then367

generate pop size− 1 individuals, keeping in mind that each368

new individual can be dissimilar to the already generated369

individuals. The dissimilarity of two configurations can be370

easily determined by the distance between the configurations371

of the individuals in question. We can also say that the372

initial population, given as P , should be able to maximize373

the diversification function using the Eq. 13.374

Diversify(P) =

|P|∑
i=1

|P|∑
j=1

Distance(CSi, CSj), (13)

where we note here that Distance(CSi, CSj) is defined as375

the distance between ith, and jth individuals configurations,376

respectively.377

2) Crossover: For the generation of any new offspring, we378

must ensure that the steps as follows are applied:379

• A crossover point is generated at random which ranges380

from 1 to r, creating a left side and right side split.381

• left side of first individual can be transferred to left side382

of first offspring. However, right side of first individual383

can be copied to right side of second offspring.384

• left side for second individual can be copied to left side385

for second offspring. Moreover, right side of second386

individual can be copied to right side of first offspring.387

3) Mutation: The diversification of the search is increased388

by a mutation operation. By itself, the technique consists only389

in randomly changing the parameter values for each config-390

uration. Once a random mutation point has been generated,391

which can range from 1 to r, future mutation point values can392

be generated using the crossover operator.393

4) Local Search: The local search tool starts with the394

individuals of the population and returns the neighbors. The395

neighbors are defined by updating the number of a parameter396

to the current setting. This process is repeated for all individ-397

uals of the population, with a high number of repetitions.398

5) Fitness Function: As mentioned earlier, the D2E-ADN399

approach aims to jointly maximize the regression and clas-400

sification ratios. With this in mind, a multicriteria function401

is proposed to be used when evaluating individuals from the402

populations as in Eq. 14.403

Fitness(CSi) =
α× CR(CSi) + β ×RR(CSi)

2
. (14)

We note here that,404

• CSi can be defined as the configuration of ith individual405

in population.406

• CS(CSi) can be defined as the classification ratio of407

D2E-ADN algorithm using CSi.408

• RR(CSi) can be defined as the regression ratio of D2E-409

ADN algorithm using Ci. We note here that RR(CSi)410

can be set to 0 for RNN use.411

• α and β can be defined as 2 user parameters that are set412

between 0.0 and 1.0.413

Using the above operations, 2 algorithms are proposed for414

the hyperparameter optimization methods. In the first case, a415

genetic approach is used, and in the second case, a swarm 416

optimization method is used. It is shown that both approaches 417

are efficient when used with large populations. 418

TABLE I
PERCENTAGE (%) OF THE SHARED DATA OF THE CLUSTERING STEP FOR

THE D2E-ADN FRAMEWORK

Dataset naive HAC kmeans bisecting DBSCAN
grouping kmeans

Odense 42 40 5 7 30
Beijing 40 39 9 11 31

ICSX2012 39 37 7 18 24
CICIDS2017 45 31 8 10 21

6) Genetic Algorithm: The initial population of individuals 419

of size pop size is first randomly generated. Each individual is 420

constructed with respect to the initialization of the population. 421

Then, the crossover, mutation, and local search operators are 422

applied to generate configurations from CS . To maintain the 423

same size of the population, all individuals are evaluated using 424

the fitness function and only the first pop size individuals (in 425

terms of quality) are left while the others are removed. The 426

identical procedure is continued until the predefined maximum 427

number of iterations is reached. 428

TABLE II
DETECTION RATIO OF THE DL STEP FOR THE D2E-ADN FRAMEWORK

Dataset Epochs Epochs Epochs
100 1,000 10,000

Odense 0.65 0.70 0.70
Beijing 0.70 0.72 0.72

ICSX2012 0.70 0.73 0.73
CICIDS2017 0.71 0.72 0.72

TABLE III
FITNESS COMPUTING OF THE EVOLUTIONARY COMPUTATION STEP FOR

THE D2E-ADN FRAMEWORK

Dataset Genetic Algorithm Bees Swarm Optimization
Odense 0.78 0.79
Beijing 0.77 0.80

ICSX2012 0.80 0.79
CICIDS2017 0.81 0.79

7) Bees Swarm Optimization Algorithm: First, a bee 429

searches for a good feature configuration. After this initial 430

configuration is found, a set of configurations SearchArea 431

in the search space using Eq. 13. Each individual particle 432

viewed from the SearchArea is the starting point for the search. 433

After a local search process is complete, each individual bee 434

passes its ”best visited” configuration to all neighboring bees 435

using a table known as Dance. In the Dance table, a stored 436

configuration then becomes the next reference for the next 437

iteration. To ensure that no cycles occur, each new reference 438

configuration is added to a tab list that must never be used 439

as a starting reference again. If, after several iterations, it is 440

determined that the swarm does not improve its configuration, 441

the diversification criterion is introduced to avoid trapping the 442

local optimum. Usually, the diversification criterion consists 443

of a distant configuration that is not stored in the tabu list. 444

The algorithm usually ends when the optimal version is found 445

or a maximum number of iterations is reached. 446
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IV. EXPERIMENTAL EVALUATION447

Several experiments were conducted to validate the useful-448

ness of the proposed framework using two real case studies.449

The first is urban traffic anomalies used in intelligent trans-450

portation and the second is intrusion detection for securing451

World Wide Web technologies. Evaluation measures include452

detection accuracy using the F-measure [32] and runtime.453

All experiments were implemented on a 128 − bit Core i9454

processor with UBUNTU 20 and 32GB from RAM used in455

conjunction with a GPU device, an NVIDIA Tesla C2086 with456

534 CUDA cores (16 multiprocessors with 64 cores each) and457

a clock speed of 2.15GHz. There is 3.2GB of global memory,458

59.15KB of shared memory, and a warp size of 64. Both the459

CPU and GPU use single precision.460

A. Datasets461

Urban Traffic Anomaly Detection: Two real urban traffic462

datasets were used: i) The first was obtained from Odense463

Municipality (Denmark)1. This is a set of lines containing464

information about the detection of cars and their locations. The465

flows were observed between 1st January 2017 and 30th April466

2018 and consist of more than 12 million cars and bicycles.467

ii) The second one is from the Beijing traffic flow and was468

retrieved from Beijing City Lab2. It consists of more than 900469

million traffic flow values during two months in one place.470

The anomalies in these two datasets are the set of traffic flows,471

which may be a single traffic value or a sequence of traffic472

values in a given time window.473

Intrusion Detection: Many intrusion detection datasets,474

such as KDD and DARPA, have been widely used over the past475

two decades. However, these datasets are outdated and do not476

reflect current security attacks in modern computer networks,477

which are characterized by the emergence of IoT-generated478

traffic. The ISCX2012 3 data were recently generated to reflect479

current attack scenarios on networks. They consist of seven480

days of real malicious and normal network activity. The nor-481

mal network traffic is generated by normal operations, while482

the attack scenarios are performed with human assistance483

to minimize misunderstandings with normal network traffic.484

There are four different attack options such as penetrating the485

network from inside, Hypertext Transfer Protocol Denial of486

Service, Distributed Denial of Service using botnets and Brute487

Force Secure Shell. The second data used is CICIDS2017488

[33], which contains labeled network flows in CSV format.489

They were collected over a five-day period and include some490

cutting-edge attack scenarios such as brute force file transfer491

protocol, brute force secure shell, denial of service attack, web492

attack, infiltration, and botnet.493

B. D2E-ADN Parameter Setting494

1) Decomposition: The first experiment aims to evaluate,495

on different datasets, the quality of the following decomposi-496

tion algorithms: intuitive grouping, HAC, k-means, bisecting497

1https://www.odense.dk/
2https://www.beijingcitylab.com/
3http://www.unb.ca/cic/datasets/index.html.
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Fig. 2. Runtime in seconds of D2E-ADN versus state-of-the art urban traffic
anomaly detection algorithms

k-means and DBSCAN. This is determined by the percentage 498

of separation data between clusters/groups, while high quality 499

is reflected by low values of this percentage. The number of 500

clusters was varied from 1 to 50 for the Naive Grouping and 501

k-means algorithms, and the ϵ value was varied from 1 to 10 502

for the DBSCAN algorithm. In this experiment, the optimal 503

parameter values for each clustering method are used and 504

are shown in Table I. Note that the number of clusters 5 505

for intuitive clustering, 7 for k-means and bisecting k-means, 506

12 for HAC, and ϵ for DBSCAN was set to 4. The number 507

of separation data with the best parameter values for each 508

database is presented. The results show that k-means and 509

bisecting k-means provide better decomposition into records 510

compared to the other three algorithms. These results can be 511

explained by the fact that k-means and bisecting k-means 512

are pure partitioning, i.e., both algorithms are oriented to the 513

centroids representing the data of the same cluster. DBSCAN, 514

on the other hand, is inspired by computing neighborhoods 515

to represent dense regions. Consequently, it is conceivable 516

that two datasets are comparable and belong to the two 517

closest clusters. In the following tests, we use the k-means 518

decomposition technique of our framework. 519

2) Performance of DL Model: Here, we are concerned with 520

computing the quality of the DL step of 1) the convolutional 521

neural network for urban traffic anomaly detection and 2) the 522

https://www.odense.dk/
https://www.beijingcitylab.com/
http://www.unb.ca/cic/datasets/index.html.
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Fig. 3. Accuracy of D2E-ADN versus the state-of-the art urban traffic
anomaly detection algorithms

recurrent neural network for intrusion detection. The quality523

is determined by the detection rate, which is the ratio between524

the number of detected outliers and the number of all outliers.525

If you vary the number of epochs of the network from 100526

to 10, 000, Table II shows that the detection rate of both527

algorithms increases up to 1, 000 and then converges at this528

value. The reason for these results is that the weights of both529

models became stable after 1, 000 iterations. Therefore, the530

best epochs for both algorithms are 1, 000, which is used in531

the rest of the experiments.532

3) Evolutionary Computation: In this part, the quality of533

the evolutionary computational step in genetic algorithms534

and bee swarm optimization is evaluated. This quality is535

determined by the best value of the fitness calculation of the536

final population.537

By varying the number of individuals/bees from 1 to 100538

and the maximum number of iterations from 1 to 100, the best539

parameter values for each evolutionary computation algorithm540

are used in this experiment and listed in Table III. Note that the541

number of individuals and the maximum number of iterations542

are 35 and 47, respectively, for the genetic algorithm, while the543

number of bees and the maximum number of iterations are 43544

and 59, respectively, for the swarm optimization algorithm.545

The results show that the genetic algorithm is better for546

intrusion detection and the bee swarm optimization is better547
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Fig. 4. Runtime in seconds of D2E-ADN versus the state-of-the art intrusion
detection algorithms

for urban anomaly detection. In the remaining experiments, 548

we used the genetic algorithm for intrusion detection and the 549

bee swarm optimization for urban traffic anomaly detection. 550

C. Results for Urban Traffic Anomaly Detection 551

In this experiment, we compare the performance of the D2E- 552

ADN algorithm with TEGPAM [8], and CNN [34], as baseline 553

urban traffic anomaly detection algorithms. 554

1) Runtime: In Fig. 2, the running time in seconds of D2E- 555

ADN is shown in comparison to the baseline algorithms. It 556

shows that the running time of the three algorithms increases 557

with the percentage of data. For 10% of data, all algorithms 558

require less than 200 seconds to identify outliers and more 559

than 350 seconds to process the entire data. The results also 560

show the superiority of our approach compared to the other 561

two algorithms, with a difference of more than 100 seconds for 562

processing the entire data. These results were obtained thanks 563

to the efficient combination of the convolutional neural net- 564

work with the decomposition algorithms in deriving anomalies 565

from the urban traffic data. 566

2) Accuracy: In Fig. 3, the F-measure of the D2E-ADN is 567

shown in comparison with the baseline algorithms. It shows 568

that the F-measure increases with the percentage of data in the 569

three algorithms. Most importantly, it shows the clear superior- 570

ity of D2E-ADN with an advantage of more than 15 points in 571
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processing the whole data. These results are obtained thanks to572

the efficient combination of the convolutional neural network573

with the evolutionary computation in the optimization of the574

hyperparameters. Thus, finding the appropriate parameters for575

learning the network can significantly improve the detection576

rate of outliers.577

D. Results for Intrusion Detection578

This part compares D2E-ADN with HELAD [6] and Im-579

CNN [35], as two baseline algorithms for network intrusion580

detection.581
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Fig. 5. Accuracy of D2E-ADN versus state-of-the art intrusion detection
algorithms

1) Runtime: Fig. 4 shows the runtime in seconds of D2E-582

ADN, HELAD, and ImCNN on ICSX2012 and CICIDS2017583

datasets. The results show that the runtime of the three584

algorithms increases with the percentage of data. This has585

significant implications, e.g., all algorithms require less than586

250 seconds to identify an anomaly from 10% of the data, but587

more than 550 seconds to process the entire data. The results588

also show the superiority of the proposed approach (D2E-589

ADN) compared to the other two algorithms, with a difference590

of more than 150 second for processing the whole data. These591

results are obtained thanks to the efficient combination of the592

recurrent neural network with the decomposition algorithms593

in deriving anomalies from the urban traffic data. Any RNN594

that learns from homogeneous data can significantly increase 595

the performance in detecting outliers. 596

2) Accuracy: The F-measure of D2E-ADN compared with 597

the baseline algorithms (HELAD and ImCNN) is shown in Fig. 598

5. The results show that the F-measure of the three algorithms 599

increases with the percentage of data. They also reveal the 600

superiority of D2E-ADN, which offers the advantage of more 601

than 12 points for processing the whole data. These results are 602

obtained thanks to the efficient combination of the recurrent 603

neural network with the evolutionary computation in the 604

optimization of the hyperparameters of our algorithm. 605

V. CONCLUSION 606

In this work, we studied the problem of anomaly detec- 607

tion in IoE and proposed a combination of decomposition, 608

deep neural networks and evolutionary computation to find 609

anomalies from the dataset. In our approach, the dataset is 610

first decomposed into similar clusters using different types of 611

clustering algorithms. The clusters are then trained using an 612

extended recurrent neural network. To perform the training 613

step efficiently, two evolutionary computation algorithms are 614

proposed to take the hyper-parameters of the trained models 615

and try to find the optimal ones. Several experiments in the 616

form of two case studies for two different IoE applications 617

show the advantages of the proposed solution compared to the 618

basic approaches. In perspective, we plan to explore other data 619

representations such as trajectories. We also plan to propose a 620

parallel version that explores high-performance computing to 621

increase the performance of the proposed solution and train 622

the data clusters simultaneously. In addition, the current work 623

can be extended to other subsets of the digital IoT world. 624

Although IoE is a recent development, other areas within IoT 625

can be explored using the concepts presented in this paper. For 626

example, both the Internet of Vehicles (IoV) and the Internet 627

of Smart Infrastructures (III) could be a future home for the 628

research presented here. In this context, in addition to the 629

datasets used here, other novel datasets can be used to further 630

test and refine the work already done. 631
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[19] D. Papamartzivanos, F. G. Mármol, and G. Kambourakis, “Introducing699

deep learning self-adaptive misuse network intrusion detection systems,”700

IEEE Access, vol. 7, pp. 13 546–13 560, 2019.701

[20] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep702

learning for cyber security intrusion detection: Approaches, datasets, and703

comparative study,” Journal of Information Security and Applications,704

vol. 50, p. 102419, 2020.705

[21] L. Boukela, G. Zhang, M. Yacoub, S. Bouzefrane, S. B. B. Ahmadi, and706

H. Jelodar, “A modified lof-based approach for outlier characterization707

in iot,” Annals of Telecommunications, vol. 76, no. 3, pp. 145–153, 2021.708

[22] A. E. Edje, S. M. Abd Latiff, and H. W. Chan, “Enhanced non-709

parametric sequence-based learning algorithm for outlier detection in710

the internet of things,” Neural Processing Letters, vol. 53, no. 3, pp.711

1889–1919, 2021.712

[23] M. R. Nosouhi, K. Sood, N. Kumar, T. Wevill, and C. Thapa, “Bushfire713

risk detection using internet of things: An application scenario,” IEEE714

Internet of Things Journal, 2021.715

[24] W. Zhang, Q. Lu, Q. Yu, Z. Li, Y. Liu, S. K. Lo, S. Chen, X. Xu, and716

L. Zhu, “Blockchain-based federated learning for device failure detection717

in industrial iot,” IEEE Internet of Things Journal, vol. 8, no. 7, pp.718

5926–5937, 2020.719

[25] J. C.-W. Lin, G. Srivastava, Y. Zhang, Y. Djenouri, and M. Aloqaily,720

“Privacy-preserving multiobjective sanitization model in 6g iot environ-721

ments,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5340–5349,722

2020.723

[26] D. Chou and M. Jiang, “A survey on data-driven network intrusion724

detection,” ACM Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–36,725

2021.726

[27] W. H. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative727

hierarchical clustering methods,” Journal of classification, vol. 1, no. 1,728

pp. 7–24, 1984.729

[28] J. MacQueen et al., “Some methods for classification and analysis 730

of multivariate observations,” in Proceedings of the Fifth Berkeley 731

Symposium on Mathematical Statistics and Probability, vol. 1, no. 14, 732

1967, pp. 281–297. 733

[29] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document 734

clustering techniques,” in KDD Workshop on Text Mining, vol. 400, 735

no. 1. Boston, 2000, pp. 525–526. 736

[30] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based 737

algorithm for discovering clusters in large spatial databases with noise,” 738

in Proceedings of KDD, 1996, pp. 226–231. 739

[31] Y. Djenouri, D. Djamel, and Z. Djenoouri, “Data-mining-based decom- 740

position for solving MAXSAT problem: Towards a new approach,” IEEE 741

Intelligent Systems, 2017. 742

[32] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for 743

mining outliers from large data sets,” in ACM SIGMOD Record, vol. 29, 744

no. 2, 2000, pp. 427–438. 745
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