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Abstract—The increasing number of road vehicles1

results in more fatalities and accidents. Thus, the2

manufacturing industry is working on driver safety3

to secure and safe transportation in Vehicle Adhoc4

networks. In addition, the mobile vehicles run in the5

geographical zone and communicate roadside units6

over the wireless medium with a certain radius. The7

Internet of Vehicles has become a new network type8

where vehicles communicate with the application over9

public networks. This results in an increase in data10

exploration and threats related to network security.11

We propose the deep reinforcement learning method12

to sensitize the private information for a given vehicle13

connect over Vehicle Adhoc networks, maintaining a14

balance between security and privacy through any15

sanitization process. Furthermore, we provide a set16

of recommendations and potential applications for17

the Vehicle Adhoc networks as use cases.18

I. INTRODUCTION19

A Mobile AdHoc Networks (MANET) are a20

dynamic network technology that enables self-21

configuration, infrastructure-less, and autonomous22

[1]. Vehicle Adhoc Networks (VANET) is a sub-23

type of MANET, in which vehicle nodes commu-24

nicate over the wireless network [1]. The vehicle25

node frequently joins and leaves the network due26

to topology changes dynamically, as mentioned in27

Fig. 1. The major components include vehicles,28

Road Side Units (RSU), vehicle-to-vehicle (V2V),29

vehicle-to-infrastructure (V2I), and infrastructure-30

to-infrastructure (I2I). Another significant differ-31

ence between MANETs and VANETs is that the32

rate and type of vehicular nodes cannot be predicted33

in advance that results in a progressive density 34

of random, asymmetrical vehicles and mostly un- 35

known [1]. With the implementation of IoT tech- 36

nology, VANETs evolve to become more dynamic, 37

reliable, and highly flexible in solving those chal- 38

lenges. This results in advances in both applications 39

and services known as IoV, short for the Internet 40

of Vehicles. IoV infrastructure [2] is illustrated in 41

Fig. 1. However, the advances always come with 42

exposure to security concerns that impact the trust 43

between the vehicle node and network. VANETs 44

are generally restricted to a smaller scale than 45

IoV. IoV has integrated vehicles connected over a 46

global network where vehicular infrastructure and 47

the Internet are connected, providing a collection 48

of both applications and services for vehicles [2]. 49

Moreover, the VANETs nodes frequently come 50

and go from the network due to many constraints 51

like tall buildings and the general inconsistencies 52

within road networks. Simultaneously, the Internet 53

of Vehicles (IoV) seems not to be plagued by the 54

constraints mentioned above [2]. The IoV provides 55

connectivity with multiple services, functionality, 56

and application; however, security and privacy are 57

still issues, particularly regarding the vehicles used 58

in public transports. We have seen that VANETs 59

are an essential component for any Intelligent 60

transportation system (ITS) as VANET’s primary 61

purpose is to provide safe and secure transportation 62

for drivers and travellers. 63

VANETs have three primary purposes road 64

safety, comfort, infotainment, and traffic manage- 65

ment by using the transportation network [3]. The 66
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Fig. 1: The communication method and overview
of the VANET and IoV.

main goal of the safety application is to decrease67

accidents and save lives. On-time warning messages68

can be achieved by using the vehicular nodes in69

the network. Some of the early warning messages70

include a collision warning, a recommendation71

about hazardous conditions, and lane change as-72

sistance. Other traffic management applications of73

VANETs include congestion avoidance or speed74

limitation notifications. We can see that infotain-75

ment applications can provide services that enhance76

any driver’s experience. Any of these infotainment-77

based applications require Internet connections [3].78

The primary goal of the VANETs is to make driving79

safe and secure. Therefore, secure network com-80

munication is vital. The critical nature of VANETs81

becomes more vulnerable in the context and refer-82

ence to both law enforcement and first responders.83

Therefore, this research aims to address security84

and privacy concerns for vehicular networks in85

Intelligent Transport Systems (ITS).86

The data traffic generated over the VANETs87

connected over 5G networks is extensive. These88

lead to the development of progressive technolo-89

gies in data mining used for implicit information90

discovery. Managers or decision-makers then use91

the extracted and mined data to decide and update92

policy. However, excess data open was concerning93

in the privacy protection domain. Since data mining94

is designed to look for patterns and valuable infor-95

mation from data that may reveal sensitive personal96

information, in turn, this may cause high-risk secu-97

rity issues for trust in vehicular communication.98

Mostly, researchers use heuristic and metaheuris- 99

tic approaches to sanitize sensitive information. 100

Here, we present the idea of using the PPDM 101

issue with deep reinforcement learning (Q-learning 102

model [4]). The proposed model takes the input 103

states and predicts the actions. An advantage of this 104

approach is adjusting to fewer parameters and hid- 105

ing sensitive information by keeping the utility. The 106

Q-learning model helps in the prediction process 107

and can achieve good generalizations. Our model 108

discovers instances dynamically and perturbs them 109

to hide information successfully without predefined 110

rules. Also, it dynamically maintained the utility of 111

the data. 112

II. RELATED WORK 113

Security and privacy issues have been considered 114

a vital research area [5] with exponential data gen- 115

eration. The model-like l-diversity and k-anonymity 116

in data streams are utilized to make the process 117

anonymized [6]. The standard K-means algorithm 118

is used in the data privacy and sanitization process 119

[7]. The encryption and data utility is improved 120

with the proposed model [7]. These are a standard 121

method that is used in the fields of machine learning 122

(ML) as well as data mining. In a wireless medium, 123

network threats and attacks used radio commu- 124

nication broadcast technology in VANETs. This 125

data over wireless communication mediums must 126

be secure, or it can lead to unnecessary attention 127

for adversaries. 128

Private information of the user’s vehicle must 129

be protected from the exchange of information in 130

vehicular nodes. Moreover, the control authorities 131

should preserve the driver’s privacy while keeping 132

private identity [3]. Privacy concerning vehicular 133

networks should be a key component in VANETs. 134

Both forged and adversarial information broad- 135

casted in unknown vehicles may result in severe 136

repercussions for drivers and pedestrian well-being. 137

On the flip side, if a trustworthy safety message 138

may also be sent using adversarial information 139

using a component in a VANET, it causes delayed 140

and modified information. As a result, human lives 141

have server consequences. This means the security- 142

related legitimate and accurate information also 143

required the same security level over VANETs [3]. 144
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III. VANETS AND DATA SANITIZATION145

To enable the communication for service and146

application, VANETs include the application unit147

(A.U.), onboard unit (OBU), and the roadside unit148

(RSU). These RSU units are connected over the149

Internet for services providing tasks. The applica-150

tion units following, as shown in Fig. 1 are the151

fundamental components of VANETs with a brief152

description of each: The application units use an153

application and handle the networking issues. The154

A.U. coupled with OBU and communicate over155

the wireless medium. The application can control156

OBU [3]. The OBU helps connect the network157

components among OBUs and RSUs in VANET158

architecture using the IEEE 802.11p radio tech-159

nology. Mainly OBU consists of different sensors160

(i.e., wireless communication element), a central161

control module (CCM), and an interface compo-162

nent. The CCM provides the user interface to do163

a resource command process (RCP) and contains164

the memory to read and write operations using165

the transceiver. Sensors data are usually processed166

using the OBU; the proposed model is also de-167

ployed here to hide the sensitive information. OBU168

also provides the vehicles’ geographical location,169

Ad Hoc routing, data security, network congestion170

control mechanism, message dissemination, and171

I.P. mobility. The RSU is the fixed infrastructure172

located on the road and provide wireless access173

in vehicular environments (WAVE) or dedicated174

short-range communications (DSRC) device. It is175

based on the IEEE 802.11p wireless technology176

to enable communications with vehicles on the177

road [3]. The RSU also provides the access point178

(A.P.) in wireless Ad Hoc networks [3]. The RSU179

functionality includes infotainment, traffic status180

sharing, safety message from central authorities181

[8]. It also provides message sharing among OBUs182

to extend communication, function as the gateway183

for OBUs, and act as the data source to pro-184

vide infrastructure-to-vehicle communications. All185

RSUs (within a specific geographical zone) can186

communicate and are interconnected. The trusted187

authority is responsible for controlling TSUs. It188

can process high computations and provide high189

storage capacity. T.A.s aims to authenticate all the190

vehicles and validated security relevant to vehicles191

transmitting false messages. It also verifies digital192

signatures and certificates. 193

Attackers used the false traffic emergency to 194

forge the signals [1]. This miscommunication way 195

has successfully become more effective when 196

hacker identification has become untraceable [1]. 197

Therefore, there is a need to improve the security of 198

the communication. Data sanitization method was 199

introduced [7], where evolutionary-based algorithm 200

is utilized by optimization model. The method 201

first selects the key utility transaction and then 202

clusters them for hiding the sensitive information. 203

The rules-based approach is also used for data 204

privacy preservation [9]. The model used the k- 205

anonymous imprecise rules to compose the data 206

tables. The composed data is then used to protect 207

privacy ability. Vehicular sensors data are also used 208

for the motor torque based on the model prediction 209

[10]. The model is used to close the loop between 210

system engineering. The model output is used in 211

E-powertrain mounted vehicles. The privacy pre- 212

served call data record analysis (CDRA) is also 213

performed for the COVID-19 patients to control the 214

pandemic [11]. 215

A. Problem statement 216

PPDM for VANETs can be seen in Figs. 2 217

and 3 that represent the Road Side Units (RSU) 218

vehicle-to-vehicle (V2V), vehicle-to-infrastructure 219

(V2I), and infrastructure-to-infrastructure (I2I), and 220

trusted authority (T.A.), respectively. The Intelligent 221

Internet of Vehicular Things (IIOVT) network RSU 222

and T.A. mentioned in Fig. 2. Both used different 223

OBU sensors to create data sent to the PPDM 224

algorithm shared via RSU and T.A. mentioned in 225

Fig. 2. Once the sanitization process is complete 226

and the data is stored, group anonymization is done 227

to hide any group information. This article uses a 228

Markov Decision Process for the sanitation process 229

as given in Fig. 3. 230

We can see the method as proposed in Fig. 3 231

and described in Algorithm 1. In step 1, the model 232

takes all its arguments as input. Next, the algo- 233

rithm extracts all of the F.I.s, or frequent itemsets 234

Fitemsets = {f1, f2, . . . , fk}. The F.I.s need to have 235

a support count value that can not be less than the 236

min support count value as given in (Algorithm 237

1, Line 1). Based on F.I.s, we select 20% of the 238

F.I.s for utility and data sanitization. We project 239
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each item set to get instances InsI.D. from the raw240

original dataset, as shown in (Algorithm 1, Line241

1). Next, we can represent the states as a set of242

instances InsI.D. as shown in (Algorithm 1, line243

3). We initialize the Q table and simultaneously244

set the exploration rate. Randomness is used in the245

model based on the epsilon greedy policy given in246

[12], from this each episode is updated as given247

in (Algorithm 1, Lines 4-6). Action reward R rep-248

resents change based on the action, State and next249

State (Algorithm 1, Lines 10) and is then calculated250

using a fitness function (Algorithm 1, Lines 7 to251

13).252

Fig. 2: VANETs communication with trusted units
and others components.

fitness (s) = w1 × a+ w2 × β + w3 × δ (1)

Using Equation (1), state fitness values can be253

found. We only calculate fitness values for deletion254

operations. To update the Q table, the Bellman255

equation is implemented as shown in (Algorithm 1,256

Lines 12 to 13). Every cycle sees the instance set257

selected using random deletion points. Our model258

gets trained using it and the length of the input259

feature of InsID, as well as the action (Delete/Not-260

Delete), next State (if action = Delete), is only261

used for Reinforcement Learning (R.L.) as shown262

in (Algorithm 1, Line 13). At episode end, our263

model minimizes fitness value which in turn in-264

dicates that the instance set (sensor data) needs265

deletion for hiding sensitive itemsets as shown in266

(Algorithm 1, Line 16). As mentioned in Fig. 3,267

the training phase is done based on Algorithm 1. In268

a recurrent neural network-based LSTM network -269

one State represents the instances (vehicular sensors270

data) with two actions (delete or not delete) that 271

results in another state is the union of the previous 272

and current State. It is noted that both decisions 273

lead to different fitness values depending upon the 274

set instances when deleted. Then, during privacy 275

preservation, Algorithm 1 trained network is used 276

for decision-making, leading to the fitness value. 277

The fitness value is used to calculate the side 278

effects of privacy preservation as mentioned in 279

Fig. 3 privacy preservation phase. Upon deletion of 280

certain item sets, the data has a specific impact for 281

each instance. The impact on each sample can be 282

calculated using the fitness function and represents 283

the quality of privacy preservation mentioned in 284

Equation 1 and Fig. 3 privacy preservation phase. 285

State: Let s = [p, h, b] : be defined as the set 286

of instances p ∈ RD+ , where we see that cost to 287

delete instances h ∈ ZD+ , as well as the remaining 288

instance after the sanitization process, is given as 289

b ∈ R+, where D is the number of instances in 290

the projected datasets and Z+ denotes non-negative 291

integer numbers. 292

Action: Let there be a set of actions on s i.e. 293

delete/not-delete. If the action is a deletion, then 294

and only then can it lead to the union of instance 295

in st+1 and st. If action is not deleted, then the 296

union operation is not made. The action will result 297

in increasing/decreasing the fitness values as given 298

in Equation 1, where α can be seen as hiding of 299

sensitive itemset ratio before/after sanitization, and 300

β can be defined as the # of F.I.s before/after saniti- 301

zation. Furthermore, we can say that δ is defined as 302

the # of F.I.s that are present in sanitized database 303

D′ and were also previously infrequent in original 304

database D, where we see that w1, w2, . . . , w3, are 305

known to be the relative importance of each side 306

effect, which is set at runtime by a user in the range 307

of [0, 1]. 308

Policy: We define that π(s) : is the method to 309

delete/not delete state s. We give the probability 310

distribution of a at state s as a policy. 311

Reward: Let us define r (s, a, s′) as the the 312

change in fitness value that can occur only when 313

action a occurs at state s while arriving at new 314

state s′. In policy, if action is deleted, then and 315

only then is the fitness value calculated. If the 316

fitness value decreases, then the reward will be 10. 317

Otherwise, we set the reward to −10. The Bellman 318
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Fig. 3: DSRL framework.

Equation is followed originally given in [12], where319

action reward at is in expectation r (st, at, st+1).320

We see that the discounted factor γ is returned321

only based on assumption. Our method’s goal is322

to minimize fitness value at a given target time tf .323

Our model’s Markov property, which optimizes pol-324

icy minimizing the function Qπ (st, at). Using the325

optimization of fitness value while also considering326

the interaction with the environment, our policy is327

learned. A sample table for the State, action, and328

reward is mentioned in Table I.329

TABLE I: A sample table for state, action, reward
and fitness value. a, b, c, d, e represent vehicle
sensors data.

States T ID a b c d e Action / Policy Reward Fitness Value
1 1 1 1 0 0 1 Delete 10 1
2 34 0 1 1 0 1 Delete 10 0.5
3 9 1 1 1 0 1 Delete 10 0.3
4 14 1 0 1 1 0 no Delete -10 0.3
5 16 0 1 1 0 1 no Delete -10 0.3

B. Deep reinforcement learning (DRL)330

We proposed the LSTM based network, as men-331

tioned in Fig. 3. The architecture input is sensors332

input values, whereas the output is delete or not−333

delete, making a binary classification problem. We334

also proposed a windows-based time stepping. The335

fitness value of the previous State and its predic-336

tion is added as input features. As the vehicular337

communication frequency is very high, we set the338

windows time step to two. Therefore, (t+1) is used339

with two previous (t − 1 and t − 2) decision and340

fitness values. In this way, a model can relearn the341

complex patterns and try to achieve generalization342

[13]. Model input is encoded item value, a previous343

decision, and fitness value as the input vector. In344

the decoder network, the Dense layer is added to 345

produce the output. The rectified linear unit ReLU 346

is used as the activation function in encoder and de- 347

coder network as defined as f(x) = max(0, x). To 348

avoid overfitting, the Dropout mechanism should 349

be adopted. The Adam optimization algorithm is 350

used as an optimizer, which very effective in the 351

training of LSTM. 352

Algorithm 1 Deep Sanitization Reinforcement
Learning (DSRL)
INPUT: D, OBU dataset, support threshold ε, percentage of sensitive

itemsets P , state size S, episode size M
OUTPUT: Minimize fitness value actions.
1: Select sensitive itemsets using P from calculated frequent itemsets

based on ε
2: Get the TID of the Select sensitive itemsets from D
3: Select set S combination based on randomized set of TID
4: for episode = 1,M do
5: Take random decision N for action exploration
6: Receive output based N on state s1
7: for t = 1, S do
8: Take action based on the N
9: Execute (action at, observe reward rt, state st+1)

10: R ← transition (st, at, rt, st+1)
11: TrainDRL ← Input (action at, rewards rt )
12: Update Bellman Equation using N
13: Update TrainDRL (action at)

14: end for
15: end for
16: Return States, action and fitnessvalue

IV. SECURITY AND PRIVACY REQUIRED OF 353

VANETS 354

The vehicular network collects different data that 355

includes sensors equipped with healthcare, smart 356

city, and surveillance. Data fragmentation in dy- 357

namic VANETs is a challenge for practitioners. 358

In the case studies [14], [15], the number of au- 359

tonomous vehicles indicates the network breaches 360
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through the communication system. Hackers target361

the ECU program and try to compromise the ve-362

hicle networks. As a result, the vehicle behaves363

abnormally. This leads to solid communication364

network security measures including intrusion de-365

tection systems at the vehicle. Privacy preserved366

method is considered for sensors communication,367

frequent log reviews of mobile application and368

servers [14]. If any vulnerability is detected, then369

the vehicle owner and manufacture should be in-370

formed before the attack. We proposed a data san-371

itization process for VANETS component OBUs.372

The function only shares limited data with other373

components attached wirelessly. The deep learning374

method is adopted to improve and learn patterns375

of the sensors. We attempt to demonstrate that the376

DQRL model can be sufficient to hide private infor-377

mation while communicating. Sensitive information378

can be removed on certain public data points by379

using the sanitization process. The framework can380

help users who want to hide information especially381

for private events. The VANETs are equipped with382

multiple sensors to read the data from the tem-383

perature, humidity, camera, accelerometer sensors,384

ultrasonic, proximity, and gas. These sensor values385

are instrumental for a smart city to evaluate and386

improve the transportation system. However, while387

collecting the sensors points, private information is388

also being processed to be vulnerable to the users.389

Data Safety: Safety of the data among commu-390

nication in public wireless connection is essentials.391

Correct and on-time message delivery can be safe392

and causes fatalities if the malicious nodes injecting393

adversarial models result in misinformation. The394

data security and privacy requirements highlight395

this research that can be reduced using the proposed396

model. Failure of the requirement can cause vulner-397

abilities in VANETs. A proposed model can satisfy398

security and privacy issues in VANET. Integrity399

and Data Trust: The data communicated between400

two parties should not be altered [3]. The content401

should be non-modified and dropped [3]. Integrity402

is violated when data is modified [3]. Detection403

of such a mechanism should be adopted. Authen-404

tication and Identification: All connected nodes405

must be authenticated to ensure protected data406

transfer. The unauthorized access must be blocked407

to secure node communication and messages. Also,408

the identity of the user should be preserved using 409

the proposed model. Therefore, a malicious node 410

prevented to be duplicating the identity of a genuine 411

node. Upon compromise, the malicious node might 412

delete the warning message; thus, the driver might 413

not respond according to instructions. Like Sybil 414

attack, the attack can be prevented by using the 415

unique I.D. mechanism [8]. Legal forensic evidence 416

to law enforcement agencies requires a strong au- 417

thentication process to avoid any adversarial attacks 418

[8]. The only vehicular node that authenticated 419

and authorized vehicles should access RSUs and 420

benefit from services the VANET [8]. Availabil- 421

ity: The vehicular nodes should send and receive 422

messages even in an attack such as a D/DoS or 423

jamming attack [3] or under any malicious activity 424

[8]. For example, in a specific area, the server 425

cannot communicate in a very congested area due 426

to attacks. Availability required high bandwidth and 427

connectivity. The importance of availability arises 428

when some messages are delayed and not transmit- 429

ted in real-time. As a result, messages lose their 430

values (e.g., message about road conditions) and 431

might even be harmful (e.g., hazardous reporting 432

message) to the users in the network [8]. Privacy 433

and Confidentiality: Vehicular and driver privacy 434

must be preserved even when the liable connection 435

is available. The proposed helpful model removed 436

the identity of the person to avoid identity theft 437

issues. The actual identity of the driver, vehicle, and 438

location should always be preserved. Only official 439

authorities can see the drivers and vehicle identity. 440

Suggestions for Sanitization method: During 441

sanitization progress, vehicular node data scala- 442

bility analysis should be done and information 443

required to be shared. Vehicle sensors data rela- 444

tionships within the vehicle. The dimension size 445

analysis (Number of sensors) should be performed 446

concerning the number of instances (sensors rate 447

of data). The modality analysis should also be 448

performed to analyze the model distribution. Out- 449

liers often decrease model performance [16]. The 450

noise and contamination (anomalies) analysis is 451

required to be considered [16]. The unbalanced 452

data distribution for DSRL results in underper- 453

formance. In particular, the following suggestions 454

should be considered. Problem identification: For 455

the VANETs application, the machine learning en- 456
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gineer should identify the problem to be solved with457

the sanitization process. Client instrumentation:458

Some applications cache the vehicular sensors data459

for the model’s prediction. Data instrumentation460

should be done for the interaction of the network.461

Simulation prototyping: The model architecture462

and hyper tunning should be tested using the valid463

tested data [16]. The purpose is to carefully monitor464

data distribution drift and its performance in the465

simulated online production system. Deep learn-466

ing model training: Different architectures should467

be trained and tested to check adversarial attack468

compatibility. The model should be optimized, and469

hyper-tuned [16]. Model evaluation: The model470

should be trained and tested under different tests471

case. Deployment: For the deployment, the best472

model configuration should be selected.473

V. CONCLUSION474

We proposed a data sanitization model to hide475

sensitive information. Our model can analyze the476

OBU sensors and hide them using the RL method.477

The method can adopt concerning the fitness func-478

tion and gets the feedback reply integration method479

to correct the wrong decision making. The time480

series’s additional features can also be employed,481

including uncertainty, utility, frequency, and co-482

occurrence.483
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