
The Efficient Mining of Skyline Patterns from a Volunteer
Computing Network

JIMMY MING-TAI WU, Shandong University of Science and Technology, China

QIAN TENG, Shandong University of Science and Technology, China

GAUTAM SRIVASTAVA, Brandon University, Canada and China Medical University, Taiwan

MATIN PIROUZ, California State University, U.S.A
JERRY CHUN-WEI LIN*,Western Norway University of Applied Sciences, Norway

In the ever growing world, the concepts of High-utility Itemset Mining (HUIM) as well as Frequent Itemset

Mining (FIM) are fundamental works in knowledge discovery. Several algorithms have been designed suc-

cessfully. However, these algorithms only used one factor to estimate an itemset. In the past, skyline pattern

mining by considering both aspects of frequency and utility has been extensively discussed. In most cases,

however, people tend to focus on purchase quantities of itemsets rather than frequencies. In this paper, we

propose a new knowledge called skyline quantity-utility pattern (SQUP) to provide better estimations in the

decision-making process by considering quantity and utility together. Two algorithms respectively called

SQU-Miner and SKYQUP are presented to efficiently mine the set of SQUPs. Moreover, the usage of volunteer

computing is proposed to show the potential in real supermarket applications. Two new efficient utility-max

structures are also mentioned for the reduction of the candidate itemsets respectively utilized in SQU-Miner

and SKYQUP. These two new utility-max structures are used to store the upper-bound of utility for itemsets

under the quantity constraint instead of frequency constraint, and the second proposed utility-max structure

moreover applies a recursive updated process to further obtain strict upper-bound of utility. Our in-depth

experimental results prove that SKYQUP has stronger performance when a comparison is made to SQU-Miner

in terms of memory usage, runtime and the number of candidates.

CCS Concepts: • Information systems→Association rules;Data analytics; •Computingmethodologies
→ Knowledge representation and reasoning.

Additional Key Words and Phrases: Skyline quantity-utility patterns (SQUPs); data mining; utility-quantity

list; utility-max

ACM Reference Format:
Jimmy Ming-Tai Wu, Qian Teng, Gautam Srivastava, Matin Pirouz, and Jerry Chun-Wei Lin*. 2020. The

Efficient Mining of Skyline Patterns from a Volunteer Computing Network. 1, 1 (September 2020), 20 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

*Corresponding author.

Authors’ addresses: Jimmy Ming-Tai Wu, Shandong University of Science and Technology, 579 Qianwangang Rd, Qingdao,

Shandong, 266590, China, wmt@wmt35.idv.tw; Qian Teng, Shandong University of Science and Technology, 579 Qianwan-

gang Rd, Qingdao, Shandong, 266590, China, qrape@foxmail.com; Gautam Srivastava, Brandon University, 270 18th St,

Brandon, MB R7A 6A9, Canada, Research Centre for Interneural Computing, China Medical University, Taichung, Taiwan,

srivastavag@brandonu.ca; Matin Pirouz, California State University, Davis Street, Fresno, CA, U.S.A, mpirouz@ieee.org; Jerry

Chun-Wei Lin*, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen, 5063, Norway, jerrylin@ieee.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

XXXX-XXXX/2020/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 J. M. T. Wu et al.

1 INTRODUCTION
Knowledge discovery can be defined as the process to obtain knowledge from information of

various kinds with accordance with user needs that may also vary. The main purpose of what is

defined as “knowledge discovery” is protecting users with mundane details of raw data and be able

to extract novel, effective, pertinent knowledge from that original (raw) data. FIM, short for frequent

itemset mining, is a very important research foundation in knowledge discovery [1, 2, 28, 41]. It

can tell us the variables that appear together frequently within the dataset, as well as provide

some support for possible decision-making. So the aim of FIM is to discover itemsets that occur

together and appear in at least minimum supplemental transactions of the database, where minimal

supplemental (minsup) is a threshold that defined by users. So far, FIM has been widely used, such

as shopping basket data analysis, web page prefetching, cross shopping, personalized website,

network intrusion detection, etc.

However, FIM is known to only consider the frequency of the items while assuming that all

known items occur to a maximum value of once within a given transaction. However, FIM is only

able to reflect whether a given item occurs within a transaction. Moreover, any interesting factors

such as unit profit as well as weight of items are not being considered. But in practical applications,

for example, retailers often focus on benefits. Thus, diamond ring sales may be less frequent than

department store clothing, but the former unit sales profit is much higher. As a result, the frequency

of an item/set is not sufficient to identify high utility patterns. In order to overcome this limitation,

high-utility itemsets mining (HUIM) [6, 25, 35, 39] has become the focus of data mining. It was

aimed at discovering itemsets that have a high utility much higher than a user-defined minimum

utility threshold. Chan et al. [6] first discovered utility mining problem and then Yao et al. [39]
followed with interest of the quantity of items and the unit profit of items to discover the set of

HUIs. Disappointingly, HUIM yield a more difficult problem than FIM because the utility measure

is not known as anti-monotonic (i.e., if a pattern is not considered as a satisfied pattern, any of

its supersets will not be considered either). Furthermore, utility of a given itemset may actually

be greater, smaller, or even equal to the utility of its supersets. To address this limitation, Liu et
al. [25] proposed a new model to satisfy downward closure property called transaction-weighted

utility (TWU), thus being able to reduce search space for mining HUIs. Soon after, Lin et al. [20]
proposed a tree-based structure to maintain necessary information of the database, that is high-

utility pattern (HUP)-tree. Subsequently extensively studied [3, 12, 15, 32, 37] were conducted and

several algorithms were proposed, which imply that high-utility items mining (HUIM) has become

the focus of data mining.

All the algorithms mentioned above are used to create a large set of rules that cab be used for

decision-making, but that depend on user-set parameters. Although, users were concerned with

finding more concise rules in order to choose the most appropriate rules to reduce the time to make

effective decisions. Top-k association-rule mining [11] and high-utility mining [35] were designed

for finding more concise rules. Although the time of making effective decisions was reduced but

only concern one aspect such as frequency or utility of items is not meet the demands of users. In

real-life situations, considering two or greater number of factors jointly in decision-making seems

more than necessary. As an example, if we consider the speed of a given vehicle alongside the cost

of the vehicle, if you choose the plane, the price of the plane should be higher than the bus, but

the speed of the plane also much faster than the bus. In the process of mining if top-k HUIs or

ARs are only given consideration of speed/price of the vehicle, obviously that is not insufficient.

To solve the above limitations, Goyal et al. [17] first proposed a new algorithm called SKYMINE

to mine skyline frequent-utility (SFU) itemsets, which itemsets are non-dominated by any other

itemset under the aspects of frequency and utility. Note that this method also has disadvantages,

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 3

such as SKYMINE is based on the UP-tree structure [36] , but this approach may generate a huge

amounts of candidates. For the sake of improving the performance for obtaining the skyline, Pan

et al. [26] presented the SFU-Miner, but it still has the limitation in terms of runtime. To address

this limitation, Lin et al. [21] proposed efficient utility-list-based skyline mining algorithm (named

SKYFUP-B/SKYFUP-D) to discover SFUPs, short for skyline frequent-utility patterns. Any of the

above algorithms considered frequency of items, but in real-life situations, people tend to focus on

quantity of items. For example, in case of stock squeeze, retailers are concerned about the sales of

items, not the frequency that items occur in transactions.

In the previous works, they seldom described an applied scenario in a real application using

mining algorithms as proposed. Because of the high performance of proposed methods, a volunteer

computing network employing in a supermarket scenario is proposed to be applied to the suggested

algorithms. Nowadays, a cell phone is the standard accessory for everybody and carries on high

performance computing unit and cell network transportation ability. If each shopping cart in a

supermarket has the ability to connect to the customers’ cell phones, the supermarket can utilize

these cell phones collecting the information to reveal useful real-time patterns and provide more

convenient services to their customers. The detailed description is provided in the following section.

Major contributions are listed below.

(1) A new pattern called skyline quantity-utility pattern (SQUP) is presented in this paper. It

is composed of itemsets that are non-dominated by any other itemset under the aspects of

quantity and utility. Meanwhile, two efficient algorithms are designed to discover SQUPs

called SQU-Miner and SKYQUP.

(2) Utility-max structure was proposed to be able to allowmax utility of itemsets under frequency.

In this paper, utility-max is implemented to allow max utility of itemsets to remain under

quantity constraint as well as being able to reduce the search space so users do not require

setting up minimum quantity threshold for discovering SQUPs.

(3) Meanwhile, we expanded utility-list structure and added quantity elements to the list. Thus

it forms a new list structure called utility-quantity-list. This list is used to store the neces-

sary information of both quantity and utility in place of UP-tree structure that are used in

SKYMINE.

We organize the rest of this work in the following manner. Some related works are mentioned in

Section 2. The key preliminaries and the problem statement of skyline quantity-utility patterns

Mining (SQUPM) are given in Section 3. In Section 4, we propose SQU-Miner and SKYQUP algo-

rithms and introduce our redesigned utility-quantity-list. An illustrated example were proposed in

Section 5. An experimental evaluation of the two mentioned algorithms are provided in Section 6

and some conclusions are obtained by comparing this two methods. We end the paper with some

concluding remarks as well as future directions are finally presented in Section 7.

2 LITERATURE SURVEY
In this section, we will introduce related works about high-utility itemset mining(HUIM) and

the concept of skyline.

2.1 High-Utility Itemset Mining
In the past few years, pattern-mining algorithms [9, 10, 13, 14, 38] such as FIM has attracted the

attention of the data mining industry, as FIM is the first step in association rule mining (ARM).

Researchers have put forward a wide range of research methods to mine frequent itemsets, and

divided it into three categories: hierarchical growth model [1, 28, 30], pattern growth model [18, 23],

and Eclat model [31, 42]. For the first approaches, Apriori algorithm [1] is the mostly popular

, Vol. 1, No. 1, Article . Publication date: September 2020.

4 J. M. T. Wu et al.

algorithm but candidate sets are generated monotonically at each level. In order to improve the

mining performance, frequent-pattern (FP)-growth was designed as the fundamental pattern growth

methods. In addition, Eclat model uses the vertical tid-list database instead of generic Apriori-like

and FP-tree-like approaches to process the database. The depth-first search is then utilized in Eclat

for mining the frequent patterns efficiently. However, all of the above algorithms only consider

item’s frequency and assumes that all item occur at most once in transaction. Thus, FIM is only

able to reflect the occurrence frequency of an item/set in a iven transaction; on the other hand,

many interesting factors such as weight, unit profit of the items are not considered. But in practical

applications, for example, retailers often focus on benefits. Diamond ring sales may be less frequent

than bread, but the former unit sales profit is much higher. As a result, the frequency of an item/set

is not sufficient to identify high utility patterns.

In order to solve the defects mentioned above, HUIM has become the focus of data mining

which considers both quantity and unit profit of items. If the utility of an itemset is not less than

the user-defined minimum utility threshold, it is defined as a HUI. Based on the mathematical

properties of utility constraints, Yao et al. [39] presented an efficient algorithm to mining HUI.

Unfortunately, the designed algorithm can not maintain the downward closure (DC) property,

so it can not find the complete HUI sets. Later, Liu et al. [25] proposed a new concept called

transaction weighted utility (TWU) and designed a new set called high transaction-weighted utility

itemset, or HTWUIs, which is based on transaction-weighted downward closure, which is also

known as the TWDC property. Nevertheless, using TWU to mine HUIs will need multiple database

scans and produce amount of search space. Besides, Liu and Qu [24] proposed a novel list-based

algorithm to find the HUIs called HUI-Miner. The novel algorithm discovered the set of the potential

HUIs use the simple join operation, and effectively reduce the generation of candidate sets and

the execution time. In this algorithm, a new list structure was designed to store the necessary

information of both frequency and utility called utility-list structure. Relevant contents about

utility-list structure will be introduced in detail in the fourth part. Additionally, extensively and

various studies [3, 12, 15, 32, 34, 36, 37] were proposed to efficiently discover the HUIs under specific

domains and applications.

2.2 The Previous Hybrid Approach
Although FIM and HUIM can efficiently find itemsets with high frequency and high utility, but

none of them concern both utility as well as frequency together to mine the effective information. To

discover the set of itemsets with both high frequency and high utility, Yeh et al. [40] first presented a
algorithm called two-phase algorithm. However in this algorithm, it is necessary for users to define

two thresholds called minimum support and utility threshold respectively. In order to improve

the performance of the algorithm, Podpecan et al. [29] proposed a faster algorithm to discover

itemsets with high frequency and high utility, but it also need to set two thresholds. Later, Goyal et
al. [17] proposed a new pattern and named it skyline frequent-utility pattern (SFUP), in which each

itemset is non-dominated by others by concerning both frequency and utility contains. A highly

efficient algorithm known as SKYMINE was presented to mine the required SFUPs. Regretfully

this approach is based on UP-tree structure and generate amount of candidates, so it is not an

efficient algorithm for reducing the search space. To address this limitation, Lin et al. [21] proposed
two algorithms to discover skyline frequent-utility pattern based on the well known utility-list

structure named SFU-Miner and SKYFUP-D respectively.

2.3 The Skyline Concept
When in itself, skyline is known to represent a set of points, each of which is based on a

multidimensional non dominating point. It is very important to deal with large-scale database

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 5

because it only returns non-dominating points as the solution of decision. For example, suppose

clearly that when observed as a known set of objects, we can say that the skyline of a given object

may refer as well to objects that may not be governed using any other given object. If and only if at

least one object can dominate another known object, this fact alone indicates clearly that the object

is as good or even better weighting all dimensions and is at least better in one dimension than all

other objects. In real-world applications, we can say that the distance between a given hotel and its

own city center is in clear contrast to what the price of rooms in the hotel is. In other words, if and

only if the given hotel is very close to its city center, reservation price of rooms in that hotel is

greater than a hotel far away from its city center. We show an example of this fact in Fig. 1. In Fig. 1,

it can be seen that a given set of hotels are used for booking. The 𝑋 -axis is used to clearly show the

location of a hotel when compared to city center as well as price of hotel rooms being expressed on

the horizontal 𝑌 -axis. Through this example, we are able to find that skyline points are 𝑔, 𝑏 as well

as𝑚 respectively, as they are not dominated by others under distance and price contains.

distance

0 2 4 6 8 10

p
ri
c
e

0

2

4

6

8

10

a

b

c

d

e

f

g

h

i

k

l

m

n

Fig. 1. A skyline example.

The concept of skyline was firstly proposed using a method of “divide and conquer” to identify

point sets. Borzsony et al. [4] the presented skyline operation in the context of databases as well as

gave an evaluation of skyline points using 𝐵-tree as well as 𝑅-tree. An improved block nesting loops

is proposed by Chomicki et al. [7] to improve the performance by using a certain tuple order. Tan et
al. [33] implemented a new well-known algorithm that is able to output skyline points step-by-step

without the need to scan the entire sets of input data. Kossmann et al. [19] designed a NN (neural

network) algorithm that is based on 𝑘-nearest neighbor searche as well as applying again “divide

and conquer” and 𝑅-tree technology to find all of the available skyline points. Papadias et al. [27]
created a “branch and bound” skyline algorithm, known as BBS, that is based on 𝑘-nearest neighbor

search that is able to clearly perform single access used for discovering skyline points. Other related

works have been extensively studied and discussed [5, 22].

In the previous works, we see that research and academics have seldom described any applied

scenario pertinent to the real-world applications. Because of the high performance of proposed

methods, a volunteer computing network employing in a supermarket scenario is proposed to

be applied to the suggested algorithms. Nowadays, a cell phone is the standard accessory for

everybody and carries on high performance computing unit and cell network transportation ability.

, Vol. 1, No. 1, Article . Publication date: September 2020.

6 J. M. T. Wu et al.

If each shopping cart in a supermarket has the ability to connect to the customers’ cell phones,

the supermarket can utilize these cell phones collecting the information to reveal useful real-time

patterns and provide more convenient services to their customers. This scenario can be applied

into any pattern-mining tasks to reveal more useful information for decision-making. Moreover, in

the traditional pattern-mining tasks such as FIM or HUIM, they all consider one aspect of mining

information, obviously, it is not enough. However, skyline method can find the non-dominated

solution based on multi-dimensions. In this paper, a new pattern called skyline quantity-utility

pattern (SQUP) is proposed and designed to provide better solutions in the decision-making process

by considering both quantity and utility together. To discover SQUP, two efficient algorithms were

designed called SQU-Miner and SKYQUP respectively. Besides, we use the utility-max structure to

keep the max utility of the items under the frequency and use it to reduce search space. Meanwhile,

a new structure called utility-quantity-list is designed and used to store the essential information

of both quantity and utility in the developed model.

3 PRELIMINARY AND PROBLEM STATEMENT

Table 1. A quantitative database.

𝑇𝐼𝐷 Transactions (Item/quantity)
𝑇1 B/1,C/2,D/1
𝑇2 A/4,B/1,C/3,D/1,E/1
𝑇3 A/4,C/2,D/1
𝑇4 C/2,D/1,E/1
𝑇5 A/5,B/2,D/1,E/2
𝑇6 A/3,B/4,C/1,D/1
𝑇7 D/1,E/1

Table 2. Profits.

Items C B A D E
Profit 1 2 1 5 4

Table 3. A sorted quantitative database.

𝑇𝐼𝐷 Transaction (Item/quantity)
𝑇1 B/1,C/2,D/1
𝑇2 E/1,B/1,C/3,A/4,D/1
𝑇3 C/2,A/4,D/1
𝑇4 E/1,C/2,D/1
𝑇5 E/2,B/2,A/5,D/1
𝑇6 B/4,C/1,A/3,D/1
𝑇7 E/1,D/1

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 7

3.1 Preliminaries
Let 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑚} be defined as a set containing a total of distinct items 𝑚. Quantitative

database 𝐷 = {𝑇1,𝑇2, . . . ,𝑇𝑛} is defined as a transaction set, where each and every transaction is

also a subset of 𝐼 containing a unique identifier 𝑡 , called 𝑇𝐼𝐷 . Furthermore, each item 𝑖 𝑗 within a

transaction 𝑇𝑞 contains its purchase quantity (internal utility) and denoted as 𝑞(𝑖 𝑗 ,𝑇𝑞). A profit

table stores the profit value of each item 𝑖 𝑗 . k-itemset is a set of 𝑘 distinct items 𝑋 = {𝑖1, 𝑖2, . . . , 𝑖𝑘 },
and 𝑘 is the length of the itemsets. If 𝑋 ⊆ 𝑇𝑞 that is to say an itemset 𝑋 is contained in a transaction

𝑇𝑞 . In this paper, we use Table 1 as an example to evaluate our developed algorithms. From Table 1,

it contains seven transactions as well as give distinct items respectively shown as (𝐴) to (𝐸) and
profit values through external utility are then clearly shown in Table 2 through a profit table.

Definition 3.1. In a database 𝐷 , in transaction 𝑇𝑞 , the purchase of an itemset 𝑋 is denoted as

𝑞(𝑋,𝑇𝑞) and defined as:

𝑞(𝑋,𝑇𝑞) =𝑚𝑖𝑛{𝑞(𝑌) |𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑇𝑞 ∧ 𝑌 ∈ 𝑇𝑞} (1)

Through Table 1, in transaction 𝑇1, the quantity of the item (𝐵) is 1 and the quantity of the item

(𝐶) is 2, so the quantity of the itemset (𝐵𝐶) is calculated as 1.

Definition 3.2. Define a transaction 𝑇𝑞 , the utility of an item 𝑖 𝑗 is denoted as 𝑢 (𝑖 𝑗 ,𝑇𝑞) and defined

as:

𝑢 (𝑖 𝑗 ,𝑇𝑞) = 𝑞(𝑖 𝑗 ,𝑇𝑞) × 𝑝𝑟 (𝑖 𝑗) (2)

Through Table 1, in transaction 𝑇1, the utility of the item (𝐵) can be calculated as 𝑢 (𝐵,𝑇1) =
𝑞(𝐵,𝑇1) × 𝑝𝑟 (𝐵) = 1 × 2 = 2, the utility of the item (𝐷) can be calculated as 𝑢 (𝐷,𝑇1) = 𝑞(𝐷,𝑇1) ×
𝑝𝑟 (𝐷) = 1 × 5 = 5 . In transaction 𝑇2, the utility of the item (𝐴) can be calculated as 𝑢 (𝐴,𝑇2) =
𝑞(𝐴,𝑇2) × 𝑝𝑟 (𝐴) = 4 × 1 = 4.

Definition 3.3. Define a transaction 𝑇𝑞 , the utility of an itemset (𝑋) is denoted as 𝑢 (𝑋,𝑇𝑞) and
defined as:

𝑢 (𝑋,𝑇𝑞) =
∑

𝑖 𝑗 ⊆𝑋∧𝑋 ⊆𝑇𝑞
𝑢 (𝑖 𝑗 ,𝑇𝑞) (3)

Through Table 1, in transaction 𝑇1, the utility of the itemset (𝐷) is calculated as 𝑢 (𝐷,𝑇1) =
𝑞(𝐷,𝑇1) × 𝑝𝑟 (𝐷) = 1 × 5 = 5, the utility of the itemset (𝐵𝐶𝐷) is calculated as 𝑢 (𝐵𝐶𝐷,𝑇1) =
𝑞(𝐵,𝑇1) × 𝑝𝑟 (𝐵) + 𝑞(𝐶,𝑇1) × 𝑝𝑟 (𝐶) + 𝑞(𝐷,𝑇1) × 𝑝𝑟 (𝐷) = 1 × 2 + 2 × 1 + 1 × 5 = 9.

Definition 3.4. Define in a database 𝐷 , the utility of itemset𝑋 can be denoted as𝑢 (𝑋) and defined
as:

𝑢 (𝑋) =
∑

𝑋 ⊆𝑇𝑞∧𝑇𝑞 ∈𝐷
𝑢 (𝑋,𝑇𝑞) (4)

Through Table 1, the itemset (𝐷) appears in transactions 𝑇1, . . . ,𝑇7, so the utility of the itemset

(𝐷) is calculated as 𝑢 (𝐷) = 𝑢 (𝐷,𝑇1) + 𝑢 (𝐷,𝑇2) + . . . + 𝑢 (𝐷,𝑇7) = 5 + 5 + 5 + 5 + 5 + 5 + 5 = 35. The

itemset (𝐵𝐶𝐷) appears in transactions 𝑇1, 𝑇2, 𝑇6, so the utility of the itemset (𝐵𝐶𝐷) is calculated as

𝑢 (𝐵𝐶𝐷) = 𝑢 (𝐵𝐶𝐷,𝑇1) + 𝑢 (𝐵𝐶𝐷,𝑇2) + 𝑢 (𝐵𝐶𝐷,𝑇6) = 9 + 10 + 14 = 33.

Definition 3.5. In a database D, the utility of a transaction is denoted as 𝑡𝑢 (𝑇𝑞) and defined as:

𝑡𝑢 (𝑇𝑞) =
∑
𝑖 𝑗 ⊆𝑇𝑞

𝑢 (𝑖 𝑗 ,𝑇𝑞) (5)

, Vol. 1, No. 1, Article . Publication date: September 2020.

8 J. M. T. Wu et al.

As another example using Table 1, transaction 𝑇1 contains item (𝐶), (𝐵) and (𝐷), so 𝑡𝑢 (𝑇1) =
𝑢 (𝐵,𝑇1) +𝑢 (𝐶,𝑇1) +𝑢 (𝐷,𝑇1) = 2+ 2+ 5 = 9. Similarly transactions in a resting phase from𝑇2, . . . ,𝑇7
can be calculated as 𝑡𝑢 (𝑇2) = 18, 𝑡𝑢 (𝑇3) = 11, 𝑡𝑢 (𝑇4) = 11, 𝑡𝑢 (𝑇5) = 22, 𝑡𝑢 (𝑇6) = 17, and 𝑡𝑢 (𝑇7) = 9.

As we mentioned above, HUIM does not does not hold the downward closure property, Liu et
al. [25] was able to give the transaction-weighted utility 𝑡𝑤𝑢 model which holds the transaction-

weighted-utilization downward closure (TWUDC) property. In this model, each itemset 𝑋 has

utility within a transaction can be enlarged into 𝑡𝑢 of the transaction, so the 𝑡𝑤𝑢 is a upper-bound.

The definition of 𝑡𝑤𝑢 is given below.

Definition 3.6. In database 𝐷 , the transaction-weighted utility of an itemset 𝑋 is denoted as

𝑡𝑤𝑢 (𝑋) and defined as:

𝑡𝑤𝑢 (𝑋) =
∑

𝑋 ⊆𝑇𝑞∧𝑇𝑞 ∈𝐷
𝑡𝑢 (𝑇𝑞) (6)

Shown again through example created using Table 1, an itemset shown as (𝐷) can be seen to

appear in transactions 𝑇1, . . . ,𝑇7. Therefore, the 𝑡𝑤𝑢 of itemset (𝐷) can calculated as 𝑡𝑤𝑢 (𝐷) =
𝑡𝑢 (𝑇1) + . . . + 𝑡𝑢 (𝑇7) = 9 + 18 + 11 + 11 + 22 + 17 + 9 = 97.

To discover skyline patterns by considering both the quantity and utility factors together, we

define the skyline quantity-utility pattern mining (SQUPM) as follows.

Definition 3.7. For two itemsets 𝑋 and 𝑌 , if 𝑞(𝑋) ≥ 𝑞(𝑌) and 𝑢 (𝑋) > 𝑢 (𝑌) or 𝑞(𝑋) > 𝑞(𝑌) and
𝑢 (𝑋) ≥ 𝑢 (𝑌), we can say an itemset 𝑋 dominates an itemset 𝑌 which is denoted as 𝑋 ≻ 𝑌 .

Definition 3.8. If an itemset X cannot be shown to be dominated by another itemset from within

the database through consideration of the quantity as well as utility factors, we can say that X is a

skyline quantity-utility pattern (SQUP).

3.2 Problem Statement
When we look at the above mentioned definitions, we can clearly define our problem of SQUPM

as the ability to find skyline patterns which are both required to be under quantity as well as utility

restrictions.

For our given example as in Table 1, the quantity as well as utility of (𝐷) are calculated as 7

and 35, respectively. For (𝐴), they are calculated as 16 and 16 respectively. The quantity/utility of

(𝐸𝐷) are calculated as 4 and 40 respectively. Finally the quantity/utility of (𝐵𝐴𝐷) are calculated
as 3 and 41 respectively. The (𝐷), (𝐴), (𝐸𝐷) and (𝐵𝐴𝐷) may as well be taking into consideration

as SQUPs due to the fact that none of these mentioned itemsets can be shown to be dominated

(non-dominated) with any of the other itemsets that may exist within a given database.

4 SKYLINE QUANTITY-UTILITY PATTERN MINING
There are two independent parts provided in this section. The first part is the volunteer computing

network scenario using the proposed skyline framework in a supermarket. It provides a flowchart

of the applied scenario and the detailed descriptions in each part. The second part focuses on

the skyline mining algorithms to reveal the non-dominated patterns in a dataset. The detailed

pseudo-code of the developed algorithms are shown in the following subsection.

4.1 Real-time skyline patterns framework in supermarkets
An introduced scenario of volunteer computing network in a supermarket is shown in Fig. 2.

Recently, cell phones are the standard accessories of everyone and provide high-performance

computing resources. Moreover, due to the widespread cell phone network service, cell phones are

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 9

Fig. 2. Real-time skyline patterns framework in supermarkets.

very suitable to be the devices of Volunteer Computing resources. In this scenario, a supermarket

utilizes a volunteer computing network composed of customers’ cell phones to provide better

services to customers. A novel designed shopping cart in this framework equipped Bluetooth
1

connection ability and NFC
2
technique. The produces in this supermarket all attract NFC tags and

shopping carts can summarize the quantities and list of the purchased produces in a shopping

cart. The connected cell phone is responsible for calculating the total quantities of products, and

the total purchased price and the total profits are in this shopping cart. A central server collects

the information from all cell phones by cell phone network service. Finally, the central server can

perform the proposed skyline algorithms and obtain real-time non-dominated patterns. Due to the

credit of sharing computing resources, the customers can attain express checkout service and the

supermarket also can provide an extra discount to encourage customers to share their devices and

using this service.

4.2 Skyline Algorithms
When analyzing the skyline algorithms as they are proposed here and as shown in Fig. 3, we use a

tree to represent the search space to be used in the mining for SQUPs and use the common technique

of “depth-first search” for exploration of a given search space for the sake of mentioned itemsets

on the utility-quantity-list (UQL) are sorted in twu-ascending order. The utility-quantity-list (UQL)

architecture is made to be able to store a collection of essential information which includes both

quantity as well as utility. The definition of the UQL structure will be discussed next. Besides the

structure (utility-max) can be used to maintain max utility for itemsets below quantity constraint

and reduce further the size of the search space, next two different utility-max structures will be

discussed and later two algorithms will be proposed to discover skyline quantity-utility patterns

(SQUPs) based on the two different utility-max structures.

, Vol. 1, No. 1, Article . Publication date: September 2020.

10 J. M. T. Wu et al.

{}

E B C A D

ECEB ADCDCABDBABCEDEA

CADBADBCDBCAEADECDECAEBDEBAEBC

BCADECADEBADEBCDEBCA

EBCAD

visited itemsets unvisited itemsets

(a) SQU-Miner

{}

E B C A D

ECEB ADCDCABDBABCEDEA

CADBADBCDBCAEADECDECAEBDEBAEBC

BCADECADEBADEBCDEBCA

EBCAD

visited itemsets unvisited itemsets

(b) SKYQUP

Fig. 3. The searching tree of the proposed methods.

Table 4. The utility-quantity-list structures of 1-items.

(a) E

𝑡𝑖𝑑 quan iutil rutil
2 1 4 14

4 1 4 7

5 2 8 14

7 1 4 5

(b) B

𝑡𝑖𝑑 quan iutil rutil
1 1 2 7

2 1 2 12

5 2 4 10

6 4 8 9

(c) C

𝑡𝑖𝑑 quan iutil rutil
1 2 2 5

2 3 3 9

3 2 2 9

4 2 2 5

6 1 1 8

(d) A

𝑡𝑖𝑑 quan iutil rutil
2 4 4 5

3 4 4 5

5 5 5 5

6 3 3 5

(e) D

𝑡𝑖𝑑 quan iutil rutil
1 1 5 0

2 1 5 0

3 1 5 0

4 1 5 0

5 1 5 0

6 1 5 0

7 1 5 0

4.3 Utility-Quantity-List Structure
Taking database 𝐷 and sorting its contents using an ascending order for TWU, and represented

by ▷. Each itemset 𝑋 has its own utility-quantity-list (UQL) structure keeping a certain number of

tuples where we can say that each and every tuple has four elements given as (𝑡𝑖𝑑, 𝑞𝑢𝑎𝑛, 𝑖𝑢𝑡𝑖𝑙, 𝑟𝑢𝑡𝑖𝑙).
Here we define 𝑡𝑖𝑑 as transaction ID containing itemset 𝑋 , 𝑞𝑢𝑎𝑛 as purchase quantity of itemset

𝑋 ∈ 𝑡𝑖𝑑 , the 𝑖𝑢𝑡𝑖𝑙 as utility of itemset 𝑋 ∈ transaction 𝑡𝑖𝑑 and finally 𝑟𝑢𝑡𝑖𝑙 as the sum of the utilities

of all itemsets after 𝑋 in transaction 𝑡𝑖𝑑 and defined as:

Definition 4.1. 𝑟𝑢𝑡𝑖𝑙 (𝑋) = ∑
𝑖 𝑗 ⊆𝑇𝑞/𝑋

𝑢 (𝑖 𝑗 ,𝑇𝑞)

1
https://en.wikipedia.org/wiki/Bluetooth

2
Near-field communication, https://en.wikipedia.org/wiki/Near-field_communication

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 11

Because the procedure to construct utility-quantity-list structure is the same as HUI-Miner,

readers can refer to [24]. Again focusing on Table 1, we see that the twu-ascending order for

items can be seen as 𝐸 ▷ 𝐵 ▷ 𝐶 ▷ 𝐴 ▷ 𝐷 . According to HUI-Miner algorithm, all 1-itemsets

utility-quantity-list structures are constructed. The UQL structure of itemset (𝐸) is 𝑈𝑄𝐿.𝐸 =

{(𝑇2, 1, 4, 14), (𝑇4, 1, 4, 7), (𝑇5, 2, 8, 14), (𝑇7, 1, 4, 5)}.

4.4 Utility-Max Structures
In this part, two efficient utility-max structures are mentioned to record the max utility of the

potential itemsets, thus reducing the search space for finding the SQUPs from the candidates.

Definition 4.2. The first utility-max structure stores the max utility for each quantity 𝑖 is denoted

𝑈𝑚𝑎𝑥1(𝑖) and defined as:

𝑈𝑚𝑎𝑥1(𝑖) =𝑚𝑎𝑥{𝑢 (𝑋) | 𝑞(𝑋) = 𝑖 } (7)

Definition 4.3. The second utility-max structure stores the max utility of the patterns if their

quantity is greater than or can also be equal to index parameter 𝑖 as:

𝑈𝑚𝑎𝑥2(𝑖) =𝑚𝑎𝑥{𝑢 (𝑋) | 𝑞(𝑋) ≥ 𝑖 } (8)

These two utility-max structures are used to store the max utility of itemsets under any quantity

constraint and reduce search space while mining SQUPs. The first Umax1 is used in the developed

SQU-Miner and the second Umax2 is used in the designed SKYQUP. To reduce the redundant and

overlapping contents of the algorithm, Umax1 and Umax2 are then simplified as the Umax for

the later contents. If the SQU-Miner is chosen to mine the required SQUPs, then the Umax in

Algorithm 1 is considered as the Umax1, and if the SKYQUP is performed for mining the SQUPs,

the Umax in Algorithm 1 is then utilized by the Umax2. Experiments will be later performed to

show that the SKYQUP with Umax2 is more effective to reduce the search space for finding SQUPs.

4.5 Pruning Strategy
Theorem 4.4. For a given itemset𝑋 , we say that if and only if sum of iutil within utility-quantity-list

of 𝑋 < 𝑈𝑚𝑎𝑥 (𝑞(𝑋)), X ∉ SQUP.

Theorem 4.5. For a given itemset 𝑋 , we say that if the sum of iutil and rutil in the utility-quantity-
list of 𝑋 < 𝑈𝑚𝑎𝑥 (𝑞(𝑋)), then say that all the superset of 𝑋 are not able to be SQUPs.

Again, note that Umax1 or Umax2 is then simplified as Umax in two theorems depending on

which algorithm (SQU-Miner or SKYQUP) is used for mining SQUPs. Using these 2 lemmas, we

define the following strategy for pruning the search space as:

Two pruning strategies:
(1) If the sum of iutil in the utility-quantity-list of X is less than the𝑈𝑚𝑎𝑥 (𝑞(𝑋)), we can clearly

cut X from search space.

(2) If the sum of iutil and rutil in the utility-quantity-list of X is less than the𝑈𝑚𝑎𝑥 (𝑞(𝑋)), we
can cut all supersets of X off the search space.

, Vol. 1, No. 1, Article . Publication date: September 2020.

12 J. M. T. Wu et al.

4.6 The Mining Algorithms
In this part, based on the two utility-max structures mentioned above, we design two algorithms

named SQU-Miner (based on the Umax1) and SKYQUP (based on the Umax2) respectively to

discover skyline utility-quantity patterns (SQUPs). Meanwhile, these two algorithms are all based

on depth-first search, because all items are sorted by twu in ascending order. The only difference

between the two algorithms is the process of judgment given in Algorithm 3 as well as Algorithm

4, respectively. The detailed description of the designed algorithms are as follows:

Algorithm 1 SQU-Miner/SKYQUP algorithm

Input:
D, a transaction database; and ptable, a profit table.

Output:
The set of skyline quantity-utility patterns (SQUPs).

1: ∀i𝑗 ∈ T𝑞 ∧ T𝑞 ∈ D do
2: for each transaction T𝑞 ∈ D do
3: calculate tu(T𝑞);
4: for each item i𝑗 ∈ T𝑞 do
5: calculate twu(i𝑗);
6: end for
7: end for
8: sort i𝑗 in twu-ascending order;

9: re-organize the database D;
10: UQLs← construct(i𝑗);
11: set k is the maximum quantity of 𝑖 𝑗 in D;
12: for i = 1 to k do
13: initialize𝑈𝑚𝑎𝑥 (i) to 0; {SQU-Miner uses Umax1 and SKYQUP uses Umax2, refer to Section

4.4}

14: end for
15: 𝑆𝑄𝑈𝑃𝑠 ← 𝑛𝑢𝑙𝑙 ;

16: Search (𝑛𝑢𝑙𝑙,𝑈𝑄𝐿𝑠,𝑈𝑚𝑎𝑥, 𝑆𝑄𝑈𝑃𝑠);
17: return SQUPs;

In Algorithm 1, the first step is shown to be the calculation of transaction-weighted utility for

each item followed by sorting each item by twu-ascending order, later re-organize the database D
according to the twu-ascending order of each item. After that, the utility-quantity-list of each item

is constructed based on the HUI-Miner algorithm. Next, initialize the Umax (Umax1 and Umax2)
values of varied quantity from 1 to the max quantity as 0. After updating SQUPs, the Umax (Umax1
and Umax2) is updated at the same time. But note that for two different Umax structures, the update

operations of Umax (Umax1 and Umax2) are also different. Last, it is necessary to check whether

an itemset is still a SQUP after updating SQUPs. The details of Judge 1 and Judge 2 are shown in

Algorithm 3 as well as Algorithm 4 respectively. The purpose of this step is to reduce the search

space for mining SQUPs. Then the search algorithm, shown in Algorithm 2, is designed to explore

the search space, and details are given below.

From Algorithm 2, we see the process for “depth-search” that can be used for mining SQUPs. For

each itemset X ∈ UQLs, if the ∑ of iutil ∈ the utility-quantity-list of X not less than𝑈𝑚𝑎𝑥 (𝑞(𝑋)),
then X may be a SQUP according to Lemma 1, so X needs to be further determined whether it is a

SQUP. The Judge function as shown in Algorithm 3 is detailed as below. On the other hand, it is

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 13

Algorithm 2 Search

Input:
P.UQL, the utility of an itemset P ; UQLs, the set of utility-quantity-list of P’s all 1-extensions;
𝑈𝑚𝑎𝑥 (𝑘), the max utility of k; SQUPs, the set of SQUPs.

1: for each itemset X ∈ UQLs do
2: if 𝑠𝑢𝑚(𝑋 .𝑖𝑢𝑡𝑖𝑙) ≥ 𝑈𝑚𝑎𝑥 (𝑞(𝑋)) then
3: Judge (𝑋,𝑈𝑚𝑎𝑥, 𝑆𝑄𝑈𝑃𝑠);
4: end if
5: if 𝑠𝑢𝑚(𝑋 .𝑖𝑢𝑡𝑖𝑙) + 𝑠𝑢𝑚(𝑋 .𝑟𝑢𝑡𝑖𝑙) ≥ 𝑈𝑚𝑎𝑥 (𝑞(𝑋)) then
6: for each 𝑌 ◁ 𝑋 do
7: exUQLs← construct(𝑃 .𝑈𝑄𝐿,𝑋,𝑌);
8: end for
9: Search(𝑋, 𝑒𝑥𝑈𝑄𝐿𝑠,𝑈𝑚𝑎𝑥, 𝑆𝑄𝑈𝑃𝑠)
10: end if
11: end for

necessary to determine whether the supersets of X needs to be searched. If the

∑
of iutil and rutil

∈ the utility-quantity-list of X is not less than the 𝑈𝑚𝑎𝑥 (𝑞(𝑋)), then the supersets of X needs to

be explored based on Lemma 2. Later the set of UQLs of all supersets of X is constructed.

Algorithm 3 Judge1

Input:
X, the potential SQUP;𝑈𝑚𝑎𝑥 (𝑘), the max utility of k; SQUPs, the set of SQUPs.

1: ∃𝑌 in SQUPs, 𝑞(𝑌) > 𝑞(𝑋)
2: if 𝑌 = 𝑛𝑢𝑙𝑙 or 𝑢 (𝑋) > 𝑢 (𝑌) then
3: insert X to SQUPs;

4: for each 𝑛 in 𝑞(𝑋) do
5: if 𝑈𝑚𝑎𝑥 (𝑛) < 𝑢 (𝑋) then
6: 𝑈𝑚𝑎𝑥 (𝑛) := 𝑢 (𝑋);
7: end if
8: 𝑛 := 𝑛 − 1;
9: end for
10: for each Y in SQUPs do
11: if 𝑞(𝑌) < 𝑞(𝑋) and 𝑢 (𝑌) ≤ 𝑢 (𝑋) then
12: remove Y ;
13: end if
14: if 𝑞(𝑌) = 𝑞(𝑋) and 𝑢 (𝑌) < 𝑢 (𝑋) then
15: remove Y ;
16: end if
17: end for
18: end if

We know from Algorithm 2 that if the

∑
of iutil in the utility-quantity-list of X is not less than

the 𝑈𝑚𝑎𝑥 (𝑞(𝑋)), then X may be a SQUP according to Lemma 1, so it is necessary to determine

whether X is a SQUP. The first step is to find the first itemset Y which has higher quantity than X
in SQUPs, that is to say q(X) < q(Y). Because the sum of iutil in the utility-quantity-list of X is not

less than the𝑈𝑚𝑎𝑥 (𝑞(𝑋)), so u(X) must higher than or equal to u(Y). Respectively if u(X) = u(Y),

, Vol. 1, No. 1, Article . Publication date: September 2020.

14 J. M. T. Wu et al.

Algorithm 4 Judge2

Input:
X, the potential SQUP;𝑈𝑚𝑎𝑥 (𝑘), the max utility of k; SQUPs, the set of SQUPs.

1: ∃𝑌 in SQUPs, 𝑞(𝑌) > 𝑞(𝑋)
2: if 𝑌 = 𝑛𝑢𝑙𝑙 or 𝑢 (𝑋) > 𝑢 (𝑌) then
3: insert X to SQUPs;

4: 𝑈𝑚𝑎𝑥 (𝑞(𝑋)) := 𝑢 (𝑋);
5: for each Y in SQUPs do
6: if 𝑞(𝑌) < 𝑞(𝑋) and 𝑢 (𝑌) ≤ 𝑢 (𝑋) then
7: remove Y ;
8: end if
9: if 𝑞(𝑌) = 𝑞(𝑋) and 𝑢 (𝑌) < 𝑢 (𝑋) then
10: remove Y ;
11: end if
12: end for
13: end if

X must not be a SQUP since Y dominates X and if Y is null or u(X) > u(Y), X must be a SQUP. It

needs to judge whether an itemset is still a SQUP if its quantity is less than or equal to X.

5 ILLUSTRATIVE EXAMPLE
An illustrative example is presented in this section to only show the procedure of the designed

SKYQUP algorithm since SQU-Miner has the similar progress but only the used Umax structure is

different, we then skip to give the overlapping descriptions for SQU-Miner. As an example again,

Table 1 gives a transactional database alongside Table 2 which shows the unit profit of each item

respectively. First, twu for all items is obtained through calculation using a database scan and the

result values are {twu(N): (A):68, (B):66, (C):66, (D):97, (E):60}. Second, the collection of all items

within the database go through a sorting process in twu-ascending order meanwhile the database

is re-organized and the results are shown in Table 3. All items’ utility-quantity-list structures are

constructed in the third step and the results are shown in Table 4. Next, from the quantity values in

utility-quantity-list of all items, we can get themaximum quantity values, so we can initialize Umax
of each quantity to 0. Next based on the twu values of items we can get the searching tree such

as Fig. 3 and based on depth-first search, we start to explore search space for mining the required

SQUPs.

Let us start with point (𝐸), the quantity of (𝐸) is calculated as 5 and the utility of (𝐸) is calculate
as 20 from the utility-quantity-list structure of (𝐸), because 𝑢 (𝐸) = 20 > 𝑈𝑚𝑎𝑥 (5) = 0, so (𝐸) may

be a SQUP according to Lemma 1 and insert (𝐸) into SQUPs. Next, the Umax values from 1 to 5 are

updated to 20, now the Umax values of each quantity are𝑈𝑚𝑎𝑥 (1) = (2) = (3) = (4) = (5) = 20.

Since we use depth-first search, so the supersets of (𝐸) are considered next. The sum of rutil+iutil
for (𝐸) can be calculated to be 60, clearly higher than 𝑈𝑚𝑎𝑥 (5) = 20, so the supersets of (𝐸) are
explored using to Lemma 2. Supersets for (𝐸) are (𝐸𝐵), (𝐸𝐶), (𝐸𝐴), (𝐸𝐷), let us first explore itemset

(𝐸𝐵). The quantity and utility of (𝐸𝐵) are calculated as 3 and 18 respectively from Table 4. Since

𝑢 (𝐸𝐵) = 18 < 𝑈𝑚𝑎𝑥 (3) = 20 so (𝐸𝐵) must not be a SQUP and the sum of rutil+ iutil for (𝐸𝐵) can
be calculated as 40, clearly higher than𝑈𝑚𝑎𝑥 (3) = 20, so the supersets of (𝐸𝐵) are thus explored.
Then the itemset (𝐸𝐵𝐶) is determined. From Table 4 we can get 𝑞(𝐸𝐵𝐶) = 1 and 𝑢 (𝐸𝐵𝐶) = 9,

obviously 𝑢 (𝐸𝐵𝐶) = 9 < 𝑈𝑚𝑎𝑥 (1) = 20, so (𝐸𝐵𝐶) must not be a SQUP. The

∑
of iutil+rutil for

(𝐸𝐵𝐶) can be calculated as 18, clearly smaller than𝑈𝑚𝑎𝑥 (1) = 20, therefore it becomes unnecessary

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 15

for the exploration of supersets of (𝐸𝐵𝐶) using Lemma 2. Exploration of other itemsets are made

continuously until all itemsets are handled. We then discover four skyline quantity-utility patterns

(SQUPs), which are (𝐵𝐴𝐷), (𝐸𝐷), (𝐷), (𝐴).

6 EXPERIMENTAL EVALUATION

Table 5. Parameters.

|𝐷 | Total # of transaction

|𝐼 | Total # of item

Avglen Avg length (trans)

MaxLen Max length (trans)

Type Set as “Sparse (sp)" or “dense (d)"

Table 6. Characteristics.

ID Database |𝐷 | |𝐼 | Avglen MaxLen Type

1 Mushroom 8,124 119 23 23 d

2 Foodmart 21,557 1550 4 11 sp

3 Retail 88,162 16,470 10 76 sp

4 Chess 3,196 76 37 37 d

5 Accident 4,164 468 25 25 d

Because in this paper, skyline quantity-utility pattern mining is proposed for the first time, so it is

not compared with any state-of-the-art methodologies. However, instead in the paper, we proposed

two utility-max structures to keep the maximum utility of each quantity and respectively designed

two algorithms, so we compared these two approaches in terms of memory usage, runtime, search

space size and the number of candidates. It is unreasonable to compare the designed algorithm

with the traditional Top-k method, because these methods can only concern one aspect to find

the valuable information, and the information found can not get multiple factors to reveal a better

solution. The algorithms were implemented in Java and experiments were tested on a computer

equipped with an Intel(R) Core(TM) i5-8500 CPU and 8 GB of RAM, running on the 64-bit Microsoft

Windows 10 operating system. The proposed algorithms take the following five databases as

experimental data called chess [16], mushroom [16], foodmart [8], retail [16] and accident [16]. All

databases are stored in plain text files. A row in the file indicate a transaction record, the format of

the records is {𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, . . . , 𝑖𝑡𝑒𝑚𝑛 : total utility : 𝑢𝑡𝑖𝑙𝑖𝑡𝑦1, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦2, . . . , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑛} where n is the

number of items. A unit utility information for all items is put in a separate file. It can be used

to calculate the quantity of each item. Next, we will compare the experimental results in detail.

Parameters and characteristics of these datasets are respectively shown in Tables 5 and 6.

6.1 Runtime
Based on two utility-max structure, two algorithms were proposed and were compared with each

other on five real-world datasets. In this subsection, the running time for discovering the SQUPs is

explored. We give detailed accounting of our experiments in Table 7 and Fig. 4(a) respectively.

Experimental results are given in From Table 7. For the dense (type = d) databases, the proposed
SKYQUP algorithms is faster than the proposed SQU-Miner algorithm. For the databases such as

, Vol. 1, No. 1, Article . Publication date: September 2020.

16 J. M. T. Wu et al.

Table 7. Runtime.

````````````Database

Algorithm

SQU-Miner SKYQUP

Mushroom 34.59 14.25

Foodmart 1.97 2.05

Retail 610.98 621.76

Chess 433.25 211.28

Accident 1400.87 18.89

chess and mushroom, the proposed SKYQUP algorithm is 2× faster than the proposed SQU-Miner

algorithm. But note that for sparse databases such as retail and foodmart, the proposed SQU-Miner

algorithm is faster than the SKYQUP algorithm. However, from Fig. 4(a), even though the first

method is faster, the running time of the two methods is almost the same. The reasons are as follows.

The number # of transactions in retail and foodmart databases is larger. In the second method,

it is necessary to update utility-max structure recurrently, so if the database is such large that it

needs more time to update utility-max structure. Then, the conclusions are drew as following: If

the database is too large the second method is not applicable.

6.2 Memory Usage

Table 8. Memory used.

````````````Database

Algorithm

SQU-Miner SKYQUP

Mushroom 64.53 82.73

Foodmart 45.00 67.90

Retail 274.99 244.75

Chess 433.25 211.28

Accident 207.82 57.55

Memory usage of two proposed algorithms using two utility-max structures were compared

with each other. Java API is used to measure memory usage and the results are shown in Table 8

and Fig. 4(b).

Looking at Table 8, it can be observed that, for retail, accident and chess databases, the second

approach saves more memory than the first. For example in accidents database, the proposed

SQU-Miner needs 208MB memory while the SKYQUP algorithm only needs 58MB memory and

the memory usage of SKYQUP algorithm is up to almost four orders of magnitude smaller than

the SQU-Miner algorithm. But for mushroom and foodmart databases, the second approach needs

more memory compared to the first approach. However, in terms of running time, the second

method is better than the first method. For now, since memory is not valuable to us, and efficiency

is increasingly valued, so taken together the SKYQUP algorithm is better than the SQU-Miner

algorithm.

6.3 Search space size
Search space size is explored in this section which is used for exploration of SQUPs and is then

evaluated using a collection of datasets. We show our strong results in Table 9 and Fig. 4(c).

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 17

Table 9. Search space.

````````````Database

Algorithm

SQU-Miner SKYQUP

Mushroom 2,466,082 1,254,926

Foodmart 1,879,333 1,212,356

Retail 1,033,394,856 981,229,210

Chess 14,194,845 10,281,155

Accident - 126,625,389

Database

1 2 3 4 5

R
u

n
n

in
g

 t
im

e

0

0.2

0.4

0.6

0.8

1
SQU-Miner

SKYQUP

(a) Running time

Database

1 2 3 4 5

M
e

m
o

ry
 u

s
a

g
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SQU-Miner

SKYQUP

(b) Memory usage

Database

1 2 3 4 5

S
e

a
rc

h
 s

p
a

c
e

 n
u

m
b

e
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SQU-Miner

SKYQUP

(c) Search space number

Database

1 2 3 4 5

C
a

n
d

id
a

te
 n

u
m

b
e

r

0

0.2

0.4

0.6

0.8

1

SQU-Miner

SKYQUP

(d) Candidate number

Fig. 4. Experimental results in term of running time, memory usage, search space number and candidate
number (x-axis indicates the name of the listed database from top to down in Table 6).

SQU-Miner clearly needs a very large search space as shown in Table 9. In the mushroom

database as an example, SQU-Miner needs to explore 2, 466, 082 nodes as search space while in

contrast SKYQUP explores almost half 1, 254, 926 nodes as search space and the # of search space

count of SKYQUP algorithm is up to almost two orders of magnitude smaller than the proposed

SQU-Miner algorithm. Whether it is a sparse database or a dense database, the search space of

the SKYQUP algorithm is always smaller than the SQU-Miner algorithm. This is reasonable since

, Vol. 1, No. 1, Article . Publication date: September 2020.



18 J. M. T. Wu et al.

the difference between the two different utility-max structures, as the second approach can prune

much more search space from the searching tree than the first approach.

6.4 Candidate Size

Table 10. The number of candidate of the two algorithms.

````````````Database

Algorithm

SQU-Miner SKYQUP

Mushroom 5264 1970

Foodmart 164 108

Retail 1472 254

Chess 5276 2950

Accident 80 65

In this subsection, the candidate size produced when exploring the SQUPs is explored and given

in Table 10 and Fig. 4(d). We can see that the proposed SQU-Miner will produce more candidates

while discovering the SQUPs compared to the proposed SKYQUP algorithm from the results in Table

10. For example in the retail database, the SQU-Miner algorithm produces 1,472 candidates while

the SKYQUP produces 254 candidates and the number of candidate count of SKYQUP algorithm

is up to almost seven orders of magnitude smaller than the SQU-Miner algorithm. Whether it is

a sparse database or a dense database, the candidate count of the SKYQUP algorithm is always

smaller than the SQU-Miner algorithm. The reason is explained in the first part of this section.

7 CONCLUSION AND FUTUREWORK
FIM and HUIM have been proposed to discover frequent itemsets or high utility itemsets,

respectively. However, in practical applications with real-world consequences, there is often more

than one aspect that should be considered in the decision-making process. Unfortunately, none of

the current methodologies consider both quantity and utility factors when making decisions. In

some practical applications, for example in store, salesmen and retailers often pay more attention to

the sales volume of goods. In this paper, a new pattern called skyline quantity-utility pattern (SQUP)

is proposed and is used to provide better solutions in the decision-making process by considering

both quantity and utility together. The designed algorithms use the utility-quantity-list structure

to store necessary information contain both quantity and utility for mining SQUPs, which greatly

reduces the amount of calculation. Besides, the utility-max structures are designed to keep the

maximum utility for each quantity, which greatly reduces the size of the searching space. Lastly,

experiments were conducted on several databases and conclusions were achieved based on our

experiments. The proposed algorithms show outstanding performance. Thus, they can be very

suitable when applied to real-world, real-time application as shown in our introduced examples. For

the proposed algorithms applied in the volunteer computing network using a supermarket scenario,

the customers’ cell phones not only enhance the speed of purchases but also collect necessary

information for use in the skyline mining algorithms. It significantly improves the commercial

value of the proposed mining algorithms. Due to the lack of research skyline mining combined

with volunteer computing, as such we can further explore the expansion of skyline mining from

big data, uncertain data or dynamic databases. Furthermore, we can also open the door to explore

new skyline patterns considering other factors except for frequency, quantity and utility in future

works. In addition, it will become necessary for the implementation of effective structures that can

help to discover SQUPs efficiently.

, Vol. 1, No. 1, Article . Publication date: September 2020.

The Efficient Mining of Skyline Patterns from a Volunteer Computing Network 19

ACKNOWLEDGMENTS
This research was partially funded by the Natural Sciences Research Council of Canada (NSERC)

Discovery Grant program (RGPIN-2020-05363) held by Dr. Gautam Srivastava.

REFERENCES
[1] Rakesh Agarwal and Ramakrishnan Srikant. 1994. Fast algorithms for mining association rules. In International

Conference on Very Large Data Bases. 487–499.
[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large

databases. In ACM SIGMOD International Conference on Management of Data. 207–216.
[3] Usman Ahmed, Jerry Chun-Wei Lin, Gautam Srivastava, Rizwan Yasin, and Youcef Djenouri. 2020. An evolutionary

model to mine high expected utility patterns from uncertain databases. IEEE Transactions on Emerging Topics in
Computational Intelligence (2020).

[4] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. 2001. The skyline operator. In The International Conference
on Data Engineering. 421–430.

[5] Chee-Yong Chan, HV Jagadish, Kian-Lee Tan, Anthony KH Tung, and Zhenjie Zhang. 2006. Finding k-dominant

skylines in high dimensional space. In ACM SIGMOD International Conference on Management of Data. 503–514.
[6] Raymond Chan, Qiang Yang, and Yi-Dong Shen. 2003. Mining high utility itemsets. In IEEE International Conference on

Data Mining. 19–19.
[7] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Skyline with presorting. In International

Conference on Data Engineering, Vol. 3. 717–719.
[8] Microsoft. Example database foodmart of microsoft analysis services. 2000. http://msdn.microsoft.com/en-us/library/

aa217032(SQL.80).aspx.

[9] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh, and Rincy Thomas. 2017. A survey of

sequential pattern mining. Data Science and Pattern Recognition 1, 1 (2017), 54–77.

[10] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Bay Vo, Tin Truong Chi, Ji Zhang, and Hoai Bac Le. 2017. A survey of

itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7, 4 (2017), e1207.

[11] Philippe Fournier-Viger, Cheng-Wei Wu, and Vincent S Tseng. 2012. Mining top-k association rules. In Canadian
Conference on Artificial Intelligence. 61–73.

[12] Wensheng Gan, Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Vincent Tseng, and Philip Yu. 2019. A

survey of utility-oriented pattern mining. IEEE Transactions on Knowledge and Data Engineering (2019), 1–1.

[13] Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, and Justin Zhan. 2017. Data mining in distributed environment:

a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7, 6 (2017), e1216.

[14] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, and Philip S Yu. 2019. A survey of

parallel sequential pattern mining. ACM Transactions on Knowledge Discovery from Data 13, 3 (2019), 1–34.
[15] Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, and Philip S Yu. 2020. Utility mining across multi-sequences

with individualized thresholds. ACM Transactions on Data Science 1, 2 (2020), 1–29.
[16] Bart Goethals and MJ Zaki. 2003. Frequent itemset mining implementations repository. http://fimi.cs.helsinki.fi.

[17] Vikram Goyal, Ashish Sureka, and Dhaval Patel. 2015. Efficient skyline itemsets mining. In The International C*
Conference on Computer Science & Software Engineering. 119–124.

[18] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. ACM Sigmod
Record 29, 2 (2000), 1–12.

[19] Donald Kossmann, Frank Ramsak, and Steffen Rost. 2002. Shooting stars in the sky: An online algorithm for skyline

queries. In International Conference on Very Large Data Bases. 275–286.
[20] Chun-Wei Lin, Tzung-Pei Hong, and Wen-Hsiang Lu. 2011. An effective tree structure for mining high utility itemsets.

Expert Systems with Applications 38, 6 (2011), 7419–7424.
[21] Jerry Chun-Wei Lin, Lu Yang, Philippe Fournier-Viger, and Tzung-Pei Hong. 2019. Mining of skyline patterns by

considering both frequent and utility constraints. Engineering Applications of Artificial Intelligence 77 (2019), 229–238.
[22] Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. 2007. Selecting stars: The k most representative skyline

operator. In The International Conference on Data Engineering. 86–95.
[23] Junqiang Liu, Yunhe Pan, Ke Wang, and Jiawei Han. 2002. Mining frequent item sets by opportunistic projection. In

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 229–238.
[24] Mengchi Liu and Junfeng Qu. 2012. Mining high utility itemsets without candidate generation. In ACM International

Conference on Information and Knowledge Management. 55–64.
[25] Ying Liu, Wei-keng Liao, and Alok Choudhary. 2005. A two-phase algorithm for fast discovery of high utility itemsets.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining. 689–695.

, Vol. 1, No. 1, Article . Publication date: September 2020.

http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
http://fimi.cs.helsinki.fi

20 J. M. T. Wu et al.

[26] Jeng-Shyang Pan, Jerry Chun-Wei Lin, Lu Yang, Philippe Fournier-Viger, and Tzung-Pei Hong. 2017. Efficiently mining

of skyline frequent-utility patterns. Intelligent Data Analysis 21, 6 (2017), 1407–1423.
[27] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive skyline computation in database systems.

ACM Transactions on Database Systems 30, 1 (2005), 41–82.
[28] Jong Soo Park, Ming-Syan Chen, and Philip S Yu. 1995. An effective hash-based algorithm for mining association rules.

ACM SIGMOD Record 24, 2 (1995), 175–186.

[29] Vid Podpecan, Nada Lavrac, and Igor Kononenko. 2007. A fast algorithm for mining utility-frequent itemsets. In

International Workshop on Constraint-based Mining and Learning at ECML/PKDD. 9–20.
[30] Ashok Savasere, Edward Robert Omiecinski, and Shamkant B Navathe. 1995. An efficient algorithm for mining association

rules in large databases. Technical Report. Georgia Institute of Technology.
[31] Pankaj Singh, Sudhakar Singh, PK Mishra, and Rakhi Garg. 2019. RDD-Eclat: approaches to parallelize eclat algorithm

on spark RDD framework. In International Conference on Computer Networks and Inventive Communication Technologies.
755–768.

[32] Gautam Srivastava, Jerry Chun-Wei Lin, Matin Pirouz, Yuanfa Li, and Unil Yun. 2020. A pre-large weighted-fusion

system of sensed high-utility patterns. IEEE Sensors Journal (2020).
[33] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, et al. 2001. Efficient progressive skyline computation. In International

Conference on Very Large Data Bases, Vol. 1. 301–310.
[34] Vincent S Tseng, Bai-En Shie, Cheng-Wei Wu, and S Yu Philip. 2012. Efficient algorithms for mining high utility

itemsets from transactional databases. IEEE Transactions on Knowledge and Data Engineering 25, 8 (2012), 1772–1786.

[35] Vincent S Tseng, Cheng-Wei Wu, Philippe Fournier-Viger, and S Yu Philip. 2015. Efficient algorithms for mining top-k

high utility itemsets. IEEE Transactions on Knowledge and data engineering 28, 1 (2015), 54–67.

[36] Vincent S Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S Yu. 2010. UP-Growth: an efficient algorithm for high utility

itemset mining. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 253–262.
[37] Jimmy Ming-Tai Wu, Jerry Chun-Wei Lin, and Ashish Tamrakar. 2019. High-utility itemset mining with effective

pruning strategies. ACM Transactions on Knowledge Discovery from Data 13, 6 (2019), 1–22.
[38] Tsu-Yang Wu, Jerry Chun-Wei Lin, Unil Yun, Chun-Hao Chen, Gautam Srivastava, and Xianbiao Lv. 2020. An efficient

algorithm for fuzzy frequent itemset mining. Journal of Intelligent & Fuzzy Systems (2020), 1–11.
[39] Hong Yao, Howard J Hamilton, and Cory J Butz. 2004. A foundational approach to mining itemset utilities from

databases. In SIAM International Conference on Data Mining. 482–486.
[40] Jieh-Shan Yeh, Yu-Chiang Li, and Chin-Chen Chang. 2007. Two-phase algorithms for a novel utility-frequent mining

model. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. 433–444.
[41] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W Li. 1997. New algorithm for fast discovery of association rules. In

International Conference on Knowledge Discovery and Data Mining. 283–286.
[42] Mohammed Javeed Zaki. 2000. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data

Engineering 12, 3 (2000), 372–390.

, Vol. 1, No. 1, Article . Publication date: September 2020.

	Abstract
	1 Introduction
	2 Literature Survey
	2.1 High-Utility Itemset Mining
	2.2 The Previous Hybrid Approach
	2.3 The Skyline Concept

	3 Preliminary and Problem Statement
	3.1 Preliminaries
	3.2 Problem Statement

	4 Skyline Quantity-utility Pattern Mining
	4.1 Real-time skyline patterns framework in supermarkets
	4.2 Skyline Algorithms
	4.3 Utility-Quantity-List Structure
	4.4 Utility-Max Structures
	4.5 Pruning Strategy
	4.6 The Mining Algorithms

	5 Illustrative Example
	6 Experimental Evaluation
	6.1 Runtime
	6.2 Memory Usage
	6.3 Search space size
	6.4 Candidate Size

	7 Conclusion and Future Work
	References

