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1 Introduction

Data mining techniques can be generally described as
descriptive or predictive [14]. The former are used to
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perform predictions, while the latter can summarize data
or reveal interesting information from it to help users to
understand the data. One of the main types of descriptive
data mining is pattern mining, which aims at revealing
interesting, useful or unexpected patterns in databases.
Many pattern mining algorithms have been designed to find
various types of patterns such as frequent itemsets [25],
association rules [36] and frequent sequential patterns [13].
Early studies on pattern mining have mainly focused on
finding frequent patterns, with the assumption that frequent
patterns are interesting to users.

In recent years, motivated by the need to analyze more
complex data and find more useful patterns, high utility
pattern mining has emerged as a key pattern mining task.
The goal is to find patterns that have a high importance as
measured by a numeric utility function [8]. The utility can
be used to measure the occurrence frequency but also other
more interesting criteria. For example, to study purchasing
habits in a customer transaction database, the utility of a
pattern (a set of items) can be measured in terms of profit
that it yields, while for analyzing click-stream data, utility
can represent the time spent on webpages. Various types of
high utility patterns have been studied such as high utility
itemsets (HUIs) [8, 12, 35], high utility sequential patterns
[1, 28, 31], high utility periodic patterns [4, 7] and high
utility episodes [11, 21, 32]. Among these different kinds
of patterns, High Utility Itemset Mining (HUIM) is the most
studied problem.
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The goal of HUIM is to enumerate all sets of items that
have a utility that is no less than a user-defined minimum
utility threshold (e.g. all sets of products purchased together
that yield a high profit). The input database format of HUIM
is a database of transactions with weight and quantities.
This format can be used to model data from many domains
and it is richer than the format used for the traditional
problem of Frequent Itemset Mining (FIM) [9, 25]. More
precisely, the input database in FIM is a table where each
transaction (row) is described using binary attributes (items)
such that each item can appear no more than once in
each transaction, and all items are considered as equally
important. In HUIM, these restrictions are lifted. Each item
can appear more than once in each transaction, and each
item can have a utility value (a weight) indicating its relative
importance in terms of factors such as profit, cost, and time
[8, 12, 17, 35].

HUIM has numerous applications. However, a critical
limitation of traditional HUIM algorithms is that the
discovered patterns do not provide information about
quantities to the user, even though quantities are encoded in
the input database. To address this limitation, High Utility
Quantitative Itemset Mining (HUQIM) was proposed as an
extension of HUIM. The objective of HUQIM is to discover
all sets of items that have a high utility while also providing
information about item quantities that led to this utility [18,
19, 30, 33]. The additional information about item quantities
can be very useful as illustrated by the following example.
Consider the analysis of a costumer transaction database.
Applying traditional HUIM algorithms on this data will
identify sets of items (itemsets) such as “coffee, cookies”
that yield a high profit. This information is interesting for
purposes such as marketing as these items could be co-
promoted to increase sales. However, this kind of patterns
does not inform the user about how many boxes of coffees
or how many cookies a customer typically buy. HUQIM
algorithms addresses this issue by discovering high utility
itemsets that also indicate quantities, which is more accurate
and thus more useful for taking decisions and understanding
customer behaviors [33]. For instance, a HUQIM algorithm
could discover a quantitative high utility itemset “coffee:3,
cookies:2, eggs:6”, indicating that buying 3 boxes of coffee
with 2 cookies, and 6 eggs yields a high profit. Note that
HUQIM is not restricted to finding patterns with single
quantities. It can also find patterns containing range of
quantities. For example, a pattern “cheese:3-6, juice:5-7”
indicates that buying 3 to 6 pieces of cheese with 5 to
7 bottles of juice generates a high profit. It can be seen
from this example, that patterns found by HUQIM are
more informative than those found by HUIM since quantity
information is provided. This information can help decision
makers to take more accurate decisions. For example, by

designing tailored promotions such as offering a discount to
customers that buy at least 7 bottles of juice with 5 pieces
of cheese.

Hence, HUQIM can be viewed as more useful than
HUIM. However, HUQIM is much more difficult than
HUIM. The reason is that while HUIM does not consider
item quantities in patterns, HUQIM associates a quantity
or range of quantities to each item. Then, the same item
with two different quantities can be viewed as distinct
quantitative items (Q-items). As a result, the search space
of HUQIM is much larger than that of HUIM. An itemset
that is composed of a set of quantitative items is called a
quantitative itemset (Q-itemset). A Q-itemset is said to be a
high utility quantitative itemset if its utility is no less than a
user-specified minimum utility threshold θ .

Despite the proposal of several HUQIM algorithms
[18, 19], a major issue is that they can still have very
long runtimes due to the very large search space. This
is inconvenient for users who must often wait a long
time to obtain results. Hence, it is desirable to propose
more efficient algorithms based on novel search space
pruning strategies to efficiently reduce the search space and
therefore make the task of HUQIM faster.

This paper addresses this issue by proposing a novel
algorithm called FHUQI-Miner (Fast High Utility Quan-
titative Itemset Miner). It is based on two novel search
space pruning strategies, namely the Exact Q-items Co-
occurrence Pruning Strategy (EQCPS) and Range Q-items
Co-occurrence Pruning Strategy (RQCPS). These strate-
gies allows to eliminate unpromising itemsets early from
the search space. This paper also describes an extensive
experimental evaluation to compare the performance of
FHUQI-Miner with the previous state-of-the-art HUQI-
Miner algorithm. Results show that FHUQI-Miner outper-
forms HUQI-Miner on sparse datasets.

The rest of this paper is organized as follows: The
next section presents a review of the main approaches for
mining high utility itemsets and high utility quantitative
itemsets. Section 3 introduces the background related to
HUQIM. Section 4 describes the utility-list structure and
how it can be used in HUQIM. Section 5 presents the
proposed FHUQI-Miner algorithm and its proposed pruning
strategies. Section 6 presents the experimental evaluation
of FHUQI-Miner. Finally, a conclusion is drawn and some
research opportunities are discussed in Section 7.

2 Related work

FIM [9, 25] is a fundamental data mining task, which aims at
finding all sets of items that appear at least some minimum
number of times in a transaction database. Finding frequent
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itemsets is useful but is based on the assumption that
frequent patterns are interesting. For some applications,
other importance criteria are more appropriate than the
frequency such as the amount of profit obtained by the sales
of item. Besides, another limitation of FIM is that items
have binary quantities (presence or absence of each item) in
transactions and all items are treated as equally important.
Several FIM algorithms have been proposed [2, 9, 15].
They take advantage of the anti-monotonicity of the support
(occurrence frequency) to reduce the search space. This
property states that an itemset cannot have a support greater
than that of its subsets. Hence, all supersets of an infrequent
itemset do not need to be considered, which speeds up the
discovery of frequent itemsets.

FIM was extended as HUIM to address its aforemen-
tioned limitations [3, 23, 24, 29]. In HUIM, each item can
have non binary quantities in transactions (e.g. a customer
may purchase five breads and three apples), called internal
utility. Moreover, each item can have a numeric value, called
external utility, indicating its relative importance (e.g. sell-
ing one apple yield a 1 $ profit while selling a bread yield
a 2$ profit). The goal of HUIM is then to find all sets of
items that have a utility that is not less than some minimum
utility threshold specified by the user. In HUIM, the utility
is a numeric function that assesses the importance or value
of a set of items. For applications such as market basket
analysis, it can represent the amount of profit generated by
the sale of items, but HUIM can also be applied in other
contexts such as web click-stream analytics where utility
could measure other aspects such as the amount of time
spent on a website. HUIM can reveal interesting insights in
real data such as itemsets that yield a high profit but are
infrequent, which are ignored by FIM. However, finding
high utility itemsets is more difficult than mining frequent
itemsets because the utility function typically considered in
HUIM is neither monotonic nor anti-monotonic. In other
words, the utility of an itemset may be greater than that of its
subsets or supersets. For that reason, strategies used to effi-
ciently mine frequent itemsets are not directly applicable to
solve the HUIM problem.

In recent years, several HUIM algorithms were proposed.
These algorithms can be roughly classified in two cate-
gories: Two-phase based approaches and one-phase based
approaches. As indicated in its name, two-phase based
approaches discover HUIs in two phases. To reduce the
search space, they rely on upper bounds on the utility that
are anti-monotonic such as the Transaction-Weighted Utility
(TWU) upper bound [24]. In the first phase, a set of can-
didate HUIs are generated by overestimating the utility of
itemsets, and thus these candidates may contain low utility
itemsets (LUIs). However, the first phase does not under-
estimate the utility of high utility itemsets. Hence, some

LUIs are selected in the set of candidates during the first
phase. Then, the second phase consists of calculating the
exact utility of candidate itemsets to filter out LUIs. The first
two-phase based algorithm, abbreviated as TP, was pro-
posed by Liu et al. [24]. Then, other more efficient two-
phase-based algorithms were designed such as IHUP [20],
UP-Growth [29] and HUP-Growth [34].

A fundamental problem of two-phase based algorithms is
the generation of a very large number of candidate itemsets
in the first phase, especially for large databases or databases
with long transactions. Consequently, the cost of scanning
the database to calculate the exact utility of each candidate
itemset in the second phase can also be very high. Hence,
two-phase based algorithms may have long runtimes and
may consume much memory.

To address this problem, one-phase based algorithms
were introduced. They immediately identify low and high
utility itemsets in only one phase without generating
candidate itemsets. Moreover, another improvement of one
phase based algorithms is that they use tighter upper bounds
on the utility of itemsets that are based on the exact utilities
of itemsets.

HUI-Miner is the first one-phase based algorithm [23].
It is based on a novel data-structure called Utility-List
(UL). The utility-list of an itemset stores all necessary
information to quickly calculate the itemset’s utility without
reading the database. Moreover, using Utility-Lists(ULs),
HUI-Miner can directly calculate an upper bound on the
utility of an itemset and all its extensions to reduce
the search space. This upper bound is based on a
concept of remaining utility, representing the utility that
could be used when extending an itemset with additional
items. HUI-Miner starts by constructing utility-lists of
itemsets having a single item (1-itemsets). Then, HUI-
Miner recursively builds utility-lists of larger itemsets by
joining utility-lists of their subsets. Despite the fact that,
HUI-Miner was shown to outperform the state-of-the-art
two-phase based algorithms, it was observed that the join
operation used to obtain utility-lists of larger itemsets
remains costly in terms of running time. To deal with this
problem, another efficient algorithm called Faster High-
Utility Itemset Mining Algorithm (FHM) has been proposed
[10].

FHM was designed with the goal of reducing as much
as possible the number of join operations. To this end, an
additional pruning strategy, called Estimated Utility Co-
occurrence Pruning (EUCP), is adopted that can prune
some low utility itemsets without performing the join
operation. The proposed strategy first calculates the TWU
measure of all pairs of items that co-occur in the database.
Then, during the recursive pattern mining process, low
TWU itemsets (LTWUIs), i.e, itemsets having TWU values
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that are less than the pre-defined minimum utility value
θ , are eliminated early as well as all their supersets.
It was shown that, this strategy can greatly reduce the
search space as FHM was found to be much faster than
HUI-Miner.

Using similar approaches, several other one phase based
algorithms have been proposed such as: mHUIMiner [26],
d2HUP [22], EFIM [37], HMiner [16], HUI-Miner* [27]
and ULB-Miner [5]. In those studies, it was observed
that one-phase based algorithms generally outperform two-
phase based algorithms. However, both types of algorithms
only discover patterns that generate a high profit in
databases without giving information to the user about item
quantities. To overcome this limitation, HUQIM algorithms
came into play where both utilities and quantities of itemsets
are taken into account. The first algorithm for mining
high utility quantitative itemsets is HUQA [33]. HUQA
introduced the concept of weak utility quantitative itemsets
to efficiently discover High Utility Quantitative Itemsets
(HUQIs). Weak utility quantitative itemsets are itemsets that
can be extended to get high utility quantitative itemsets.
To prune unpromising Q-itemsets, the k-support bound
measure is used.

Motivated by the success of utility-list based algorithms,
a vertical based algorithm (VHUQI) for HUQIM was
proposed [19]. It utilizes a variation of the utility-list
structure. Experimental results have shown that VHUQI
outperforms HUQA. However, a key problem with these
two algorithms is that they only adopt the k-support
bound to eliminate Low Utility Quantitative Itemsets
(LUQIs) which is insufficient to reduce the search
space.

To address this problem, Li et al. [18] have recently
proposed a novel algorithm, named HUQI-Miner (High
Utility Quantitative Itemsets Miner), where both the TWU
and a remaining utility-based upper bound are used to
quickly eliminate LUQIs.

Although HUQI-Miner was found to outperform previ-
ous algorithms, the runtime of HUQI-Miner is still very
long due to the huge number of join operations that are per-
formed during the mining process. A reason is that the same
item with two different quantities is regarded as two differ-
ent Q-items in HUQIM. Accordingly, the search space in
HUQIM is much larger than the search space in HUIM. As
a result, the number of join operations for HUQIM can be
much larger than in HUIM.

To overcome this limitation, this paper proposes a
novel improved algorithm named FHUQI-Miner where
the EUCP strategy [10] utilized in traditional HUIM
is modified and extended to deal with Q-itemsets in
HUQIM. More precisely, two new pruning strategies,
EQCPS and RQCPS, are proposed and used for mining
HUQIs.

3 Background

This section first describes preliminary concepts of
HUQIM. Then, the combining operation of HUQIM is pre-
sented. After that, the formulation of the HUQIM problem
is given. Finally, the TWU pruning strategy is introduced.

3.1 Preliminaries

Let I = {I1, I2, . . . , lN } be a set of N distinct items, a
quantitative transaction database D is composed of a set of
transactions, denoted as D = {T1, T2, ..., TM}, where each
transaction Tq ∈ D (1 ≤ q ≤ M) has a unique identifier
called Tid (Transaction Identifier) and each transaction is
a subset of I . Besides, every item i ∈ I that appears
in a transaction Tq has a positive number q(i, Tq), called
internal utility, which represents the quantity of item i in Tq .
Moreover, each item i has a profit pi (a positive number)
called external utility.

Table 1 presents an example of a quantitative transaction
database D, which is composed of four transactions, T1 to
T4. Moreover, Table 2 presents the external utilities of items
in D. The database D will be used as example through
this section to illustrate the different concepts of HUQIM.
Taking item A as example, we can see in Table 2 that the
profit of item A is 3, and in Table 1 that the internal utility
of A in T1 (resp. T2, T3, T4) is 2 (resp. 0, 2, 2).

In HUQIM, there are two kinds of quantitative items:
Exact quantitative items, also called Exact Q-items, and
range quantitative items, also named Range Q-items.

An exact Q-item x is defined as a pair (i, q) where i ∈
I and q is the quantity of item i. Thus, each transaction
Tq ∈ D is composed of a set of exact Q-items, Tq =
{x1, x2, . . . , xk}.

For example, the transaction of T1 in Table 1 is composed
of exact Q-items (A,2), (B,5), (C,2) and (D,1).

A range Q-item is another type of Q-items where
the quantity of the corresponding item has not a unique
value but it is defined as a range. Range Q-items do not
exist explicitly in the database but they are obtained by
combining exact Q-items. A range Q-item x is defined as a
triple (i, l, u) where i ∈ I , l (resp. u) represents the lower
(resp. upper) bound of the quantity of item i. The interval
size of a range Q-item, called a Q-interval, is defined as

Table 1 An example of a transaction database

Tid Transaction

T1 (A,2) (B,5) (C,2) (D,1)

T2 (B,4) (C,3)

T3 (A,2) (C,2)

T4 (A,2) (B,6) (D,1)
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Table 2 Profit table

Item A B C D

Profit 3 1 2 2

(u − l + 1). Note that, an exact Q-item (i, q) can be
formulated as a range Q-item (i, l, u) where q = l = u.

For example, (A,5,7) is a range Q-item that has a Q-
interval of size 3.

A quantitative itemset X, denoted as Q-itemset X, is a
set of Q-items. A k-Q-itemset is a Q-itemset consisting of
k distinct Q-items, X = [x1, x2, . . . , xk]. If X is composed
only of exact Q-items, X is an exact Q-itemset. If there is at
least one range Q-item, X is a range Q-itemset.

For example, [(A,5), (B,6), (D,3)] is an exact Q-itemset.
Or more precisely, an exact 3-Q-itemset. [(B,6), (D,3,5)] is
a range Q-itemset. More precisely, it is a range 2-Q-itemset.

Definition 1 (Inclusion of Q-items) Given an exact Q-item
x = (i, q) and a range Q-item y = (j, l, u), we say that y

includes x, or x is included in y, if i = j and l ≤ q ≤ u.
Given two range Q-items, x = (i, l, u) and y =

(i′, l′, u′), y includes x, or x is included in y, if i = j , l ≥ l′
and u ≤ u′.

For example, the exact Q-item (A,3) is included in the
range Q-item (A,1,5).

Definition 2 (Occurrence of a Q-item) An exact Q-item
x = (i, q) occurs in a transaction Td = {y1, y2, . . . , yk} if
x ∈ Td .

A range Q-item x = (i, l, u) occurs in a transaction
Td = {y1, y2, . . . , yk} if one of its included exact Q-items
occurs in this transaction. Formally, x occurs in transaction
Td if there exists a Q-item y = (j, q ′) ∈ Td such that i = j

and l ≤ q ′ ≤ u.
For example, (B,4) appears in T2, while (B,4,6) appears

in transactions T1, T2 and T4.

Definition 3 (Occurrence of a Q-itemset) A Q-itemset X =
{x1, x2, . . . xk} occurs in a transaction Td if ∀x ∈ X, x

occurs in Td .
For example, we can observe that Q-item (A,2) occurs

in transactions T1, T3 and T4 and that the Q-itemset
[(A,2),(D,1)] occurs in transactions T1 and T4.

Definition 4 (Occurrence-set of a Q-itemset) The
occurrence-set of a Q-itemset X, denoted as OCC(X), it
the set of transactions where X appears.

For example, OCC([(A, 2), (C, 2)]) = {T1, T3}.

Definition 5 (Support count of a Q-itemset) Given a Q-
itemset X, the support count of X, denoted as SC(X), is

defined as the number of transactions where X appears, i.e.,
SC(X) = |OCC(X)| [19].

For example, SC([(A, 2), (C, 2)]) = |{T1, T3}| = 2.

Definition 6 (Utility of a Q-item in a transaction) The
utility of an exact Q-item x = (i, q) in a transaction Td ,
denoted as u(x, Td), is defined as u(x, Td) = pi × q [19].

The utility of a range Q-item x = (i, l, u) in a transaction
Td is the sum of utilities of all exact Q-items that are
included in x. Formally, u(x, Td) = ∑u

j=l u((i, j), Td)

[19].
For example, u((A, 2), T1) = 3 × 2 = 6. Moreover,

u((A, 2, 3), T3) = u((A, 2), T3) + u((A, 3), T3) = 6 + 0 =
6

Definition 7 (Utility of a Q-itemset in a transaction / in
the database) Given a Q-itemset X = [x1, x2, . . . , xk], the
utility of a Q-itemset X in a transaction Td , denoted as
u(X, Td), is the sum of utilities of Q-items from X in Td .
Formally, u(X, Td) = ∑k

j=1 u(xj , Td) [19].
The utility of a Q-itemset X in a database D, denoted as

u(X), is the sum of utilities of X in all transaction where X

occurs. Formally, u(X) = ∑
Td∈OCC(X) u(X, Td) [19].

For instance, u([(A, 2, 3)(C, 2, 3)], T1) =u((A, 2, 3), T1)

+u((C, 2, 3), T1) = 6 + 4 = 10. Similarly, u([(A, 2)

(C, 2)])=u((A, 2)(C, 2), T1) + u((A, 2)(C, 2), T3) = 10 +
10 = 20.

Definition 8 (Utility of a transaction) The utility of a
transaction Td = {y1, y2, . . . , yk}, denoted as T U(Td), is
the sum of utilities of all Q-items that occurred in Td , that is
T U(Td) = ∑k

i=1 u(yi, Td) [19].

For example, T U(T2) = u((B, 4), T2)+u((C, 3), T2) =
4 + 6 = 10

Definition 9 (Total utility of a database) The total utility of
a database D, denoted as σ , is the sum of its transaction
utilities. Formally, σ = ∑

Td∈D T U(Td) [19].
For example, the total utility of the database D given in

Table 1 is σ = T U(T1) + T U(T2) + T U(T3) + T U(T4) =
17 + 10 + 10 + 14 = 51.

Definition 10 (High utility quantitative itemset) Given
a user-defined minimum utility threshold θ(0 ≤ θ ≤
σ) and a Q-itemset X, X is a high utility quantitative
itemset, abbreviated as HUQI, if the utility of X is no less
than θ . Otherwise, X is a low utility quantitative itemset,
abbreviated as LUQI [19].

For example, if the minimum utility threshold θ is set
to 15, then the Q-itemset [(A,2), (C,2)] is a HUQI because
u([(A, 2), (C, 2)]) = 20 > 15.
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Similarly to HUIM [23], the utility function of HUQIM
is also not monotonic nor anti-monotonic. In other words,
the utility of a Q-itemset may be less, greater, or equal to
the utility of its supersets. Accordingly, alternative pruning
strategies are necessary to prune unpromising itemsets.
Before presenting the TWU pruning strategy, we first
introduce some concepts and definitions that are related to
the combination process of Q-itemsets.

3.2 Q-itemsets combination

As mentioned above, range Q-itemsets do not explicitly
exist in the database, but they are produced by combining
exact Q-itemsets. In fact, mining range Q-itemsets in
addition to exact Q-itemsets is more advantageous since
it gives the opportunity to discover more interesting
patterns by providing quantity range information within the
discovered patterns.

The combination operation is performed by merging Q-
itemsets that have Q-items with consecutive quantities. To
apply the combination process, it is required to define: (1)
The combining method to be applied.

(2) The set of candidate Q-itemsets to be possibly
combined.

(3) A quantitative related coefficient (qrc) [33].
Three combining methods have been proposed for

HUQIM, namely Combine Max, Combine Min and
Combine All [6, 18]. In the next section, an explanation of
each combining method is given with illustrative examples.

Candidate Q-itemsets are a set of LUQIs that may be used
to perform the combination process. It is worth noticing
that, not all LUQIs are selected to be candidate Q-itemsets
but only those having utility values that are high enough.
The selection of candidate Q-itemsets for combination is
done based on the obervation that although some Q-itemsets
are LUQIs, they have a utility values that are close to that
required for HUQIs. Therefore, it is highly probable that
some combinations of these Q-itemsets will produce high
utility range Q-itemsets.

The qrc coefficient was introduced to avoid continuously
combining Q-itemsets with adjacent quantities, which may
produce range Q-itemsets with very large Q-intervals
[33]. Such kind of range Q-itemsets are undesirable since
their interpretation may be meaningless. Therefore, the
combination process should be stopped if the Q-interval of
a generated Q-itemset is larger than qrc. Moreover, qrc is
also used to avoid combining LUQIs and considering only
some Q-itemsets that may lead to produce HUQIs.

Formally, candidate Q-itemsets and the combining
constraint are respectively defined as follows:

Definition 11 (The candidate quantitative itemset) Given a
user-defined minimum utility threshold θ where 0 ≤ θ ≤ σ

and a quantitative related coefficient (qrc > 0), a Q-itemset
X is a candidate Q-itemset if θ

qrc
≤ u(X) ≤ θ .

Definition 12 (Last Q-items combining constraint) Given
a quantitative related coefficient (qrc > 0) and two Q-
itemsets X = [(x1, l1, u1), (x2, l2, u2), . . . , (xk, lk, uk)] and
Y = [(y1, l

′
1, u

′
1), (y2, l

′
2, u

′
2),. . . ,(yk, l

′
k, u

′
k)].

X and Y can be combined together to form a range Q-
itemset Z = [(i1, l1, u1), (i2, l2, u2), . . . , (ik, lk, u

′
k)], if the

following conditions hold [18]:

(1) X and Y are both candidate Q-itemsets.
(2) X and Y have the same prefix. i.e, the first (k − 1) Q-

items in X and Y are the same. Formally, ∀(1 ≤ i ≤
k − 1): xi = yj , li = l′j and ui = u′

j .
(3) For the last Q-item, xk = yk and l′k = (uk + 1).
(4) The Q-interval of the last Q-item to be generated

should be less than qrc, i.e, u′
k − lk ≤ qrc.

It can be seen that, the combination process is always
performed on the last Q-item of two Q-itemsets that have
a same prefix and quantities of their last Q-items are
consecutive.

For example, suppose that qrc = 3 and that there are 4
candidate Q-itemsets X1=[(A,2), (B,3), (C,5)], X2=[(A,2),
(B,3), (C,6)], X3=[(A,2), (B,3), (C,7)] and X4=[(A,2),
(B,3), (C,8)]. X1 can be combined with X2 because the
four conditions of the combining constraint are verified
(Definition 12). The result of combining X1 and X2 is
Y1=[(A,2), (B,3), (C,5,6)]. Again, Y1 can be combined with
X3 to form Q-itemset Y2=[(A,2), (B,3), (C,5,7)]. However,
Y2 cannot be combined with X4 because the Q-interval of
the last Q-item in the generated Q-itemset [(A,2), (B,3),
(C,5,8)] is larger than qrc.

3.2.1 Combiningmethods

Based on the combining constraint presented in Definition
12, there exist three combining methods in HUQIM, namely
Combine Max, Combine Min and Combine All. These
methods differ from each other on how the combining
constraint is used [6, 18]. Basically, candidate Q-itemsets
have the same prefix and they differ only on the last Q-item.
Thus, Q-itemsets are first ordered according to the last Q-
item. Then, the combining method continuously combines
each Q-itemset with Q-itemsets that come after according to
a processing order. This process is repeated until traversing
all candidate Q-itemsets.

Combine All method The Combine All method outputs
all possible high utility range Q-itemsets that can be
generated by either combining candidate Q-itemsets or
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by combining candidate Q-itemsets with range Q-itemsets
[18].

To better illustrate the Combine All method, let’s
assume that there is a sorted set C of 6 candidate Q-itemsets
{[(A,2),(B,6)], [(A,2),(C,4)], [(A,2), (C,5)], [(A,2),(C,6)],
[(A,2),(C,7)], [(A,2),(C,9)]} and qrc = 4. The combining
process on C using the Combine All method is illustrated
in Fig. 1.

Besides, arrows are labeled with numbers that indicate
the order of generation of range Q-itemsets. Moreover,
colors are used to show range Q-itemsets that can be
generated after traversing one candidate Q-itemset. The
method first generates Q-itemsets in rectangles with
rounded corners, followed by Q-itemsets in rectangles with
sharp corners, and then Q-itemsets in Parallelograms.

The method tries to combine each Q-itemset in C with
all Q-itemsets that come after this current Q-itemset. Back
to our example, the method tries to combine the first
Q-itemset in C which is [(A,2),(B,6)] with the second
Q-itemset [(A,2),(C,4)]. However, since the 3rd condition
of the combining constraint (Definition 12) is not valid,
the method passes directly to the second Q-itemset. The
second Q-itemset [(A,2),(C,4)] can be combined with the
third Q-itemset [(A,2),(C,5)] because all conditions of the
combining constraint are verified. The resulting Q-itemset is
[(A,2),(C,4,5)]. Similarly, this range q-itemsets is combined
with the next Q-itemset in C which is [(A,2),(C,6)] and Q-
itemset [(A,2),(C,4,6)] is generated. Once again, the method
combines [(A,2),(C,4,6)] with [(A,2),(C,7)] to generate
[(A,2),(C,4,7)]. Moving to the next Q-itemset, the method
does not combine [(A,2),(C,4,7)] with [(A,2),(C,9)] because
the 3rd condition of the combining constraint presented
in definition 12 is not satisfied. After traversing the Q-
itemset [(A,2), (C,4)], three range Q-itemsets are generated
which are [(A,2), (C,4,5)], [(A,2), (C,4,6)] and [(A,2),
(C,4,7)].

At this point, the method passes to the next Q-itemset
in C, [(A,2),(C,5)] and repeats the above process by trying
to combine this Q-itemset with the rest of Q-itemsets that
come after it. As a result, Q-itemsets [(A,2),(C,5,6)] and
[(A,2),(C,5,7)] are generated. The above process is repeated
with the rest of Q-itemsets until traversing all Q-itemsets.

It is worth noticing that, at each generation of a new
range Q-itemset, the method checks its utility to keep only
range Q-itemsets having high utilities. More precisely, the
method will keep only HUQIs from the set of generated Q-
itemsets {[(A,2),(C,4,5)], [(A,2),(C,4,6)], [(A,2), (C,4,7)],
[(A,2),(C,5,6)], [(A,2),(C,5,7)], [(A,2),(C,6,7)]}.

Combine Min method The Combine Min method differs
from Combine All method in the fact than it only outputs
high utility range Q-itemsets with minimal Q-intervals.

More precisely, the Combine Min method follows the
same traversing process of the Combine All method. How-
ever, after generating a range HUQI, the Combine Min

method will immediately stop combining the current Q-
itemset with the rest of Q-itemsets and it will directly pass
to the next candidate Q-itemset in C.

Back to our example presented in Fig. 1, after generating
[(A,2),(C,4,5)], there are two cases, if this Q-itemset is
not a HUQI, the Combine Min method continues with
this Q-itemset by combining it with [(A,2),(C,6)] as the
Combine All method does. However, if [(A,2),(C,4,5)] is
a HUQI, the Combine Min method will move directly to
combine the next Q-itemset [(A,2),(C,5)] with [(A,2),(C,6)]
to generate [(A,2),(C,5,6)] without producing the remaining
Q-itemsets presented in rectangles with rounded corners,
i.e, Q-itemsets {[(A,2),(C,4,6)], [(A,2),(C,4,7)]}. Similarly,
if [(A,2),(C,5,6)] is not a HUQI, the method combines
it with [(A,2),(C,7)] and generates [(A,2),(C,5,7)]. If
[(A,2),(C,5,6)] is a HUQI, the method moves directly to
combine [(A,2),(C,6)] with [(A,2),(C,7)] without generating
[(A,2),(C,5,6)].

After traversing all candidate Q-itemsets, the method per-
forms the minimal Q-interval checking to keep only range
Q-itemsets with minimal Q-intervals. Suppose that HUQIs
resulting from the above process are: [(A,2),(C,4,6)], [(A,2),
(C,5,6)] and [(A,2),(C,6,7)]. After performing the minimal
Q-interval checking, the method will keep {[(A,2),(C,5,6)],
[(A,2),(C,6,7)]} while Q-itemset [(A,2),(C,4,6)] will be dis-
carded because the Q-interval of its last Q-item (C,4,6)
is larger than the Q-interval of the last Q-item in
[(A,2),(C,5,6)].

Combine Max method The Combine Max method does
the contrary of the Combine Min method. It outputs
only high utility range Q-itemsets having maximal Q-
intervals. More precisely, for each traversed candidate
Q-itemset, the Combine Max method keeps combining
Q-itemsets as long as the conditions of the combining
constraint presented in Definition 12 are verified. Follow-
ing the same example depicted in Fig. 1, the method first
combines [(A,2),(C,4)] with [(A,2),(C,5)] and Q-itemset
[(A,2),(C,4,5)] is generated. Then, [(A,2),(C,4,5)] is com-
bined with [(A,2),(C,6)] and [(A,2),(C,4,6)] is generated.
Once again, [(A,2),(C,4,6)] is combined with [(A,2),(C,7)]
to generate [(A,2),(C,4,7)]. The method does not combine
[(A,2), (C,4,7)] with [(A,2),(C,4,9)] because the 3rd con-
dition of the combining constraint is not satisfied. After
traversing the Q-itemset [(A,2),(C,4)], only one range Q-
itemset is generated which is [(A,2),(C,4,7)].

At this point, the method moves to the next Q-
itemset [(A,2),(C,5)] and repeats the above process. As
a result, the Q-itemset [(A,2),(C,5,7)] is generated. The

FHUQI-Miner: Fast high utility quantitative itemset mining



method then moves to [(A,2),(C,6)] and so on until all Q-
itemsets have been traversed. Similarly to Combine Min,
Combine Max checks the utility of the resulting Q-
itemsets to keep only HUQIs. Moreover, after traversing
all candidate Q-itemsets, the method performs the maximal
Q-interval checking to keep only Q-itemsets with maximal
Q-intervals.

Following our example, Q-itemsets generated by the
traversing process using Combine Max method are:
[(A,2), (C,4,7)], [(A,2),(C,5,7)] and [(A,2), (C,6,7)]. By
supposing that all generated Q-itemsets are HUQIs, the
maximal Q-interval checking process will retain only Q-
itemset [(A,2),(C,4,7)] which has the maximal Q-interval
and other range Q-itemsets are eliminated.

In summary, the Combine All method returns all pos-
sible patterns. The method Combine Max allows identi-
fying general patterns which can be seen as summarizing
HUQIs generated by the Combine All method. Whereas,
Combine Min provides small patterns which can be
obtained by decomposing the patterns generated by the
Combine Max method.

3.3 Problem statement

Based on the previous definitions, the high utility quan-
titative itemset mining (HUQIM) problem is defined as
follows:

Given a set of items I = {I1, I2, . . . , lN } and a
quantitative transaction database D that is composed of
items from I , a user-defined minimum utility threshold θ

and a quantitative related coefficient qrc, the problem of
HUQIM is to find all exact Q-itemsets having a utility that
is no less that θ as well as all range Q-itemsets that satisfy a
user-selected combining constraint and have a utility no less
than θ .

Formally, HUIM aims to find a set H that contains both
high utility exact Q-itemsets, denoted as H1, and high utility

range Q-itemsets, denoted as H2. The set H is defined by
the following equation:

H = H1∪H2 such that

{
H1 = {X/X ∪ I and u(X) ≥ θ}
H2 = {Y/Y = Combine(CM,C, qrc) and u(Y ) ≥ θ}

(1)

where Combine(CM, C, qrc) is a function that combines
candidate Q-itemsets in C using one of the three combining
methods (Combine All, Combine Min or Combine

Max) and qrc is a parameter for the combination
constraint. The reader can refer to Section 3.2 to see how
range q-itemsets are generated.

3.4 TWU pruning strategy for Q-itemsets

The TWU pruning strategy can be used to prune unpromis-
ing Q-itemsets during the mining process [18]. This strategy
is based on the calculation of the transaction weighted utility
(TWU) measure of Q-itemsets.

Definition 13 (TWU of a Q-itemset) The transaction
weighted utility (TWU) of a Q-itemset X, denoted as
T WU(X), is the sum of utilities of transactions where X
appears, that is T WU(X) = ∑

Td∈OCC(X) T U(Td).

One important specificity of the TWU measure in
HUQIM is that it is anti-monotonic. More precisely, given
two Q-itemsets X and Y , if X ⊆ Y then T WU(X) ≥
T WU(Y ). Moreover, the TWU measure is an upper bound
on the utility of Q-itemsets. In other words, ∀ (X ∈ D),
T WU(X) ≥ u(X). Therefore, T WU can be used to prune
unpromising Q-itemsets with their supersets.

Definition 14 (Promising Q-itemsets) Given a user-defined
minimum utility threshold θ (0 ≤ θ ≤ σ), a quantitative
related coefficient (qrc > 0) and a Q-itemset X, X is a

Fig. 1 Example of combining
process (A,2)(B,6) (A,2)(C,4) (A,2)(C,5) (A,2)(C,6) (A,2)(C,7) (A,2)(C,9)

(A,2)(C,4,6)

(A,2)(C,4,7)

11 44 6611 44 66

(A,2)(C,4,5) (A,2)(C,5,6)

(A,2)(C,5,7)

(A,2)(C,6,7)
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promising Q-itemset, if T WU(X) ≥ θ
qrc

. Otherwise, X is
an unpromising Q-itemset.

Property 1 (The TWU pruning strategy) T WU pruning
strategy for Q-itemsets states that if a Q-itemset X is
unpromising, then X is low utility Q-itemset as well as all
its extensions.

4 Q-itemset utility-lists

This section introduces the utility-list structure, which is
used by the proposed algorithm. A utility-list (UL) is a
structure used to represent a pattern (Q-itemset in our
case) and additional information about this pattern that is
relevant for the pattern mining problem. A utility-list allows
to quickly calculate the utility of its associated Q-itemset
without the need to scan the database. Utility-lists (ULs)
were initially used to mine high utility itemsets [23], and
later have also been adopted for HUQIM [18, 19].

Utility-list uses an upper bound based on a function
called remaining utility to prune the search space. Before
calculating the remaining utility, Q-items in each transaction
are first sorted according to the pre-defined total order
relation ≺. More precisely, Q-items are first sorted
according to their utilities in a descending order as
suggested in [18, 19]. Then the remaining utility is
calculated using the following definition.

Definition 15 (Remaining utility of a Q-itemset in
transaction/ in the database) Let there be a set of distinct
Q-items Q∗ extracted from a database and sorted in
each transaction according to a processing order ≺. The
remaining utility of a Q-itemset X in a transaction Td ∈
OCC(X), denoted as Rutil(X, Td), is the sum of utilities
of Q-items that come after all Q-items in X according to the
≺ order. Formally, Rutil(X, Td) = ∑

x∈Td/X u(x, Td)

Here, Td/X denotes the set of all Q-items that appear
after all Q-items of X according to the ≺ order in Td .

The remaining utility of a Q-itemset X in a database
D is the sum of the remaining utilities of X in all
transactions of its occurrence set. Formally, Rutil(X) =∑

Td∈OCC(X) Rutil(X, Td).
Considering the database D presented in Table 1, it is

found that Rutil({(A, 2) (B, 5)}, T1) = u((C, 2), T1) +
u((D, 1), T1) = 4 + 2 = 6.

Definition 16 (Utility-list of a Q-itemset) The utility-
list of a Q-itemset X, denoted as UL(X), is composed
of | OCC(X) | tuples. Each tuple contains the utility
information of X in one transaction in which X has
appeared. Tuples have the form 〈Tid, Eutil, Rutil〉, where
Tid is the identifier of the transaction Td , Eutil(X, Td) is
the utility of X in Td , i.e., u(X, Td), and Rutil(X, Td) is the
remaining utility of X in Td .

In addition to the list of tuples, the utility-list of a Q-
itemset also stores the sum of all Eutil values, denoted
as SumEutil, which represents the exact utility of the
Q-itemset and the sum of all Rutil values, denoted as
SumRutil, which will be used to prune low utility Q-
itemsets.

Figure 2 shows the initial utility-lists for Q-items of the
database presented in Table 1.

Using utility-lists allows to not only quickly calculate
the utilities of Q-itemsets but also to prune more efficiently
the search space using tighter pruning strategies compared
with the TWU pruning strategy. More precisely, pruning the
search space is performed by the following properties.

Property 2 (SumEutil property) Given a Q-itemset X,
SumEutil in UL(X) represents the exact utility of X, i.e,
u(X). Therefore, if (SumEutil < θ ), then X is a low utility
Q-itemset.

Fig. 2 Initial utility-lists for
Q-items of database presented in
Table 1

(A,2) TWU: 41

Tid Eutil Rutil

1 6 11

3 6 4

4 6 8

Sums 18 23

(B,4) TWU: 10

Tid Eutil Rutil

2 4 6

Sums 4 6

(B,5) TWU: 17

Tid Eutil Rutil

1 5 6

Sums 5 6

(B,6) TWU: 14

Tid Eutil Rutil

4 6 2

Sums 6 2

(C,2) TWU: 27

Tid Eutil Rutil

1 4 2

3 4 0

Sums 8 2

(C,3) TWU: 10

Tid Eutil Rutil

2 6 0

Sums 6 0

(D,1) TWU :31

Tid Eutil Rutil

1 2 0

4 2 0

Sums 4 0
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Fig. 3 Constructing the
utility-list of the 2-Q-itemset
[(A,2),(D,1)]

(A,2) TWU: 41

Tid Eutil Rutil

1 6 11

3 6 4

4 6 8

Sums 18 23

(D,1) TWU: 31

Tid Eutil Rutil

1 2 0

4 2 0

Sums 4 0

((A,2),(D,1)) TWU: 31

Tid Eutil Rutil

1 8 0

4 8 0

Sums 16 0

Property 3 (SumRutil pruning strategy) Given a Q-itemset
X, if (SumEutil+SumRutil < θ), X and all its extensions
are low utility Q-itemsets.

There are two fundamental operations that can be
performed on utility-lists: The join operation and the merge
operation. In the next subsections, these operations are
presented.

4.1 Join utility-lists operation

The join operation is used to obtain utility-lists of larger
Q-itemsets from smaller utility-lists. The initial case is to
construct utility-lists of 2-Q-itemsets from those of initial
Q-items (Definition 17). The general case is to construct
utility-lists of (k+1)-Q-itemsets from utility-lists of k-Q-
itemsets where k > 2 (Definition 18).

Definition 17 (Construction of the utility-lists of a
2-Q-itemset) Given two Q-items x and y where x is before
y according to the ≺ order (x ≺ y), the utility-list of
Q-itemset [xy] can be constructed from the intersection
of tuples in UL(x) with UL(y). More precisely, common
transactions are identified, i.e. common Tid , in UL(x) and
UL(y). For each common transaction Td , a new tuple E

is added to UL([xy]) where Tid of E is the common
Tid , Eutil([xy], Td) = Eutil(x, Td) + Eutil(y, Td) and
Rutil([xy], Td) = Rutil(y, Td).

Figure 3 shows an example of this operation where the
utility-list of the Q-itemset [(A,2),(D,1)] is constructed from
the utility-lists of Q-items (A,2) and (D,1).

Definition 18 (Construction of the utility-list of a
(k+1)-Q-itemset) Let there be two k-Q-itemsets X, Y where
X = [(i1, l1, u1), (i2, l2, u2), . . . , (ik−1, lk−1, uk−1),

(ik, lk, uk)] and Y = [(i1, l1, u1), (i2, l2, u2), . . . , (ik−1,
lk−1, uk−1), (ik′ , lk′, uk′)]. If X and Y have the same pre-
fix P = [(i1, l1, u1), (i2, l2, u2), . . . , (ik−1, lk−1, uk−1)]
and the last Q-item (ik, lk, uk) ≺ (ik′ , lk′, uk′). The utility-
list of [XY ] = [(i1, l1, u1), (i2, l2, u2), . . . , (ik, lk, uk),
(ik′ , lk′, uk′)] can be constructed from UL(X), UL(Y )

and UL(P ). Besides, for each common transaction Td

in X and Y , a new tuple E is added into UL([XY ])
where the Tid of E is the identifier Tid of transaction
Td , util([XY ], Td) = Eutil(X, Td) + Eutil(Y, Td) −
Eutil(P, Td) and Rutil([XY ], Td) = Rutil(Y, Td).

Figure 4 shows an example where the utility-list of
[(A,2),(C,2),(D,1)] is constructed from the utility-list of Q-
itemset [(A,2),(C,2)], [(A,2),(D,1)] and that of the prefix
[(A,2)].

4.2 Merge utility-lists operation

The merge operation is performed to obtain the utility-list
of a range Q-itemset.

Definition 19 (Constructing utility-lists of range Q-item-
sets) Let there be two k-Q-itemsets X = [(i1, l1, u1), (i2,

l2, u2), . . . , (ik, lk, uk)] and Y = [(i′1, l′1, u′
1), (i′2, l′2, u′

2),

. . . , (i′k, l′k, u′
k)]. If the following conditions hold:

(1) X and Y have the same prefix, i.e, ∀j ∈ [1, k − 1],
ij = i′j , lj = l′j and uj = u′

j .
(2) For the last Q-item, ik = i′k and uk = l′k + 1.

Then, X and Y can be merged to form a range Q-itemset
Z = [(i1, l1, u1), (i2, l2, u2), . . . , (ik, lk, u

′
k)]. The utility-

list UL(Z) is obtained by merging tuples of UL(X) and
UL(Y ).

Figure 5 shows the UL([B, 4, 5]] resulting from merging
UL([B, 4]) with UL([B, 5]).

Fig. 4 Constructing the
utility-list of the k-Q-itemset
[(A,2),(C,2),(D,1)]

((A,2),(C,2)) TWU: 40

Tid Eutil Rutil

1 10 2

3 10 0

Sums 20 2

((A,2),(D,1)) TWU: 31

Tid Eutil Rutil

1 8 0

4 8 0

Sums 16 0

((A,2),(C,2),(D,1)) TWU: 17

Tid Eutil Rutil

1 12 0

Sums 12 0
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5 Proposed algorithm

This section describes the proposed FHUQI-Miner algo-
rithm. But first, the section introduces a novel structure
named TQCS (TWU of Q-items Co-occurrence based
Structure) and the proposed search space pruning strategies
that are based on TQCS.

5.1 The TQCS structure

The TQCS structure is composed of a set of tuples having
the form (a, b, c) where a and b are two Q-items that
have co-occurred in the database and is the TWU
of the 2-Q-itemset obtained by their concatenation. i.e,
c = T WU([ab]). TQCS is created by reading the database
one time and similarly to the EUCS structure of FHM
[10], TQCS is not represented as a matrix that contains
the TWU of all possible 2-Q-itemsets. Alternatively, TQCS
contains only TWU of all 2-Q-itemsets that really co-
occur in the database. To this end, TQCS is composed of
a set of tuples (a,b,c) such that c = 0. The reader can
refer to the illustrative example of Section 5.4. Besides,
Table 6 provides an example of the TQCS’s construction for
Q-items of the database presented in Table 3.

5.2 Proposed pruning strategies

The main advantage of the proposed FHUQI-Miner
algorithm compared with the previous utility-list based
algorithms [18, 19] is that FHUQI-Miner does not directly
perform the join operation to form larger Q-itemsets.
Alternatively, based on the TQCS, FHUQI-Miner adopts
new pruning mechanisms that allow eliminating low-utility
Q-itemsets with their extensions without the need to
construct their utility-lists.

In contrast with the EUCS of FHM where there exists
only one type of itemsets [10], the proposed TQCS deals
with both exact and range Q-itemsets based on the following
properties:

Property 4 (Exact Q-items Co-occurrence Pruning Strategy
(EQCPS)) Given two Q-items x and y, EQCPS states that,
if there is no tuple (a, b, c) such that x = a, y = b

and c ≥ θ
qrc

, then the Q-itemset [xy] is not a high utility
Q-itemset and also all its extensions.

For example, we can see from the last row of Table 6
that T WU([(C, 8), (A, 3)]) = 620. If the minimum utility
threshold θ is set to 1400 and qrc = 2, then Q-itemset
[(C,8),(A,3)] is pruned with all its extensions because
T WU([(C, 8), (A, 3)]) < ( 1400

2 ).
A limitation of this property is that, it is applicable only

when Q-items x and y are both exact Q-items. However,
in the case of range Q-items, Property 4 never returns any
tuple because TQCS contains only tuples of exact Q-items.
Therefore, another pruning strategy is designed to consider
range Q-items.

If x is a range Q-item, we need to take into consideration
all exact Q-items that are included in x (Definition 1). More
precisely, the proposed strategy identifies TWU values of
all Q-itemsets resulting from the combination of each exact
Q-item included in x with Q-item y. TWU values can be
easily found using the TQCS structure. According to the
sum of TWU values, we can decide to consider or to prune
the Q-itemset [xy] using the following property.

Property 5 (Range Q-items Co-occurrence Pruning Strategy
(RQCPS)) Given a range Q-item x = (i, l, u) and an exact
Q-item y, let xi = (i, q) be an exact Q-item extracted
from x with quantity q where l ≤ q ≤ u and let ci be
the TWU value of Q-itemset [xiy] taken from the TQCS
structure. If

∑u
i=l ci < θ

qrc
, then Q-itemset [xy] is a low

utility Q-itemset as well as all its extensions.

For example, T WU ([(C, 7, 8), (H, 4)]) =T WU ([(C, 7),
(H, 4)]) + T WU([(C, 8), (H, 4)]) = 2840 + 0 = 2840. If
θ = 1400 and qrc = 2, then Q-itemset [(C,7,8),(H,4)] is
not pruned because T WU([(C, 7, 8), (H, 4)]) ≥ 1400

2 .

5.3 FHUQI-Miner algorithm

This section presents the proposed FHUQI-Miner algo-
rithm. The proposed algorithm follows the same procedure
as algorithms proposed in [18, 19]. However, FHUQI-Miner
adopts additional punning strategies to explore the search
space more efficiently. FHUQI-Miner takes as input four
parameters: (1) The transaction database D with quanti-
ties of items in different transactions (internal utilities) and
profits of different items (external utilities), (2) The pre-
defined minimum utility threshold (θ ), (3) The Combining
Method (CM) to be applied and (4) The quantitative related

Fig. 5 Constructing the
utility-list of [(B,4,5)] by
merging (B,4) and (B,5)

(B,4) TWU: 10

Tid Eutil Rutil

2 4 6

Sums 4 6

(B,5) TWU: 17

Tid Eutil Rutil

1 5 6

Sums 5 6

(B,4,5) TWU: 27

Tid Eutil Rutil

1 5 6

2 4 6

Sums 9 12

FHUQI-Miner: Fast high utility quantitative itemset mining



coefficient (qrc). The output is the set of all Q-itemsets
having a high utility.

FHUQI-Miner starts by scanning the database D for the
first time to calculate the T WU values of initial Q-items
using Definition 13 (line 1). Based on TWU values, the
TWU pruning strategy (Property 1) is applied to prune
unpromising Q-items early and to keep only promising Q-
items whose extensions and combinations may be HUQIs
(Definition 14). All promising Q-items are stored in the set
P ∗ (line 2). After that, a total order relation ≺ on Q-items
of P ∗ is established where ≺ is the descending order of Q-
items utilities as suggested in [18, 19]. A second database
scan is then performed. Besides, promising Q-items in each
transaction are first reordered according to the ≺ order.
Then, the utility-list of each promising Q-item is built.
Moreover, the TQCS is built for Q-items of P ∗ (line 3).

After the construction of the TQCS, FHUQI-Miner first
checks the utility of Q-items in P ∗ (lines 4 to 17). For each
Q-item x in P ∗, if u(x) ≥ θ , x is outputted as it is a HUQI
and it is put in the set H which contains HUQIs (Definition
10). Otherwise, FHUQI-Miner performs two tests: (1) If
θ

qrc
≤ u(x) ≤ θ , x is put in C set where C contains

candidate Q-itemsets that can be combined together to
form high utility range Q-itemsets (definition 11). (2) if
u(x) + UL(x).SumRutil ≥ θ , x is put in the set E which
contains all Q-itemsets that should be explored because one
or more than one of their extensions may have high utilities
(Property 3).

If the C set is not empty, the CM combining method
is applied (line 18). The CM method tries to combine Q-
itemsets of C to produce HR and ULs(HR) where HR is
the set of high utility range Q-itemsets that are generated
by combining candidate Q-items of C (Definition 12)
and ULs(HR) are their corresponding utility-lists. Then,
FHUQI-Miner creates the set QIs which is composed of the
union of Q-items in sets H , E and HR. Q-items in QIs are
reordered according to ≺ order (line 19).

At this point, FHUQI-Miner calls the
Recursive Mining Search procedure (line 20). The main
steps of this procedure are illustrated in Algorithm 2.

The Recursive Mining Search procedure is a recur-
sive depth-first search algorithm that takes as input the
following parameters: (1) The prefix Q-itemset P , (2)
The set of Q-itemsets QIs , (3) Utility-lists of Q-itemsets
ULs(QIs), (4) The list of promising Q-itemsets P ∗ (5)
The quantitative related coefficient (qrc), (6) The combin-
ing method CM and (7) The minimum utility threshold
(θ ).

At the first call of the algorithm, the prefix Q-itemset
P is ∅ and QIs contains exact and range Q-items that are
identified in Algorithm 1.

The Recursive Mining Search algorithm operates as
follows: For each extension [Px] of P where x ∈ QIs , the
algorithm traverses all extensions [Py] of P where y ∈ P ∗
and y � x to explore extensions of the form [Pxy] (lines 1
to 3).

For each extension [Pxy], the algorithm performs a
pruning check based on TQCS structure to decide whether
to consider Q-itemset [Pxy] or to directly prune this Q-
itemset without spending time on creating its utility-list
(lines 4 to 15). There are two cases:

(1) Both Q-items x and y are exact Q-items (lines 4 to
9). In this case, property 4 is applied. More precisely,
the algorithm searches the tuple (X, Y, c) in the TQCS
structure. If c = ∅ or c < θ

qrc
, the algorithm will pass

directly to the next extension Py without constructing
UL([Pxy]) because the Q-itemset [Pxy] with all its
extensions are LUQIs (line 7).
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(2) If x is a range Q-item (lines 10 to 15), then the
algorithm applies property 5 to look for tuples in
the TQCS structure that correspond to each exact Q-
item included in x with Q-item y. If the sum of
obtained TWU values, i.e, sum of extracted c values, of
these tuples is less than θ

qrc
, the algorithm prunes the

combination [Pxy] without constructing its utility-list
as in the first case (line 13).

For both cases, if T WU([xy]) ≥ θ
qrc

, the algorithm
performs the join process to build UL([Pxy]) from UL(P ),
UL([Px]) and UL([Py]) (line 16).

Based on UL([Pxy]), if [Pxy] is not promising, [Pxy]
is pruned and the algorithm will pass directly to another
extension [Py]. Otherwise, the extension [Pxy] is put
in a new list of promising Q-itemsets P ∗ (line 18) and
the algorithm performs similar tests as in Algorithm 1 to
check if [Pxy] is a HUQI (belongs to the H set), [Pxy]
is to be explored (belongs to the E set) or [Pxy] is a
candidate Q-itemset (belongs to the C set) (lines 18 to
28).

After traversing all extensions [Py], the combination
process is performed to extract high utility range Q-itemsets
(HR) using the CM method (line 31). Then, the new set
QIs is formed from the union of H , E and HR (line
32).

At this point, the Recursive Mining Search algorithm
is recursively called with new prefix [Px] and new QIs

and P ∗ with respect to prefix [Px] (line 33). Since the
algorithm starts from single Q-items and then recursively
explores the search space by appending these single Q-
items, the algorithm is able to discover the complete set of
HUQIs.

5.4 An illustrative example

In this section, we give an example to illustrate how the
designed FHUQI-Miner algorithm is applied. Consider the
database presented in Table 3 with external utilities of
different items shown in Table 4 and suppose that the
Combine All method is selected with qrc = 5 and θ=25%.
Accordingly, the minimum utility threshold value is (TU x
0.25 = 5376 x 0.25 = 1344).

Table 3 An example of a transaction database

Tid Transaction

T1 (A,2) (C,7) (H,4) (I,9)

T2 (A,3) (C,8)

T3 (A,2) (B,1) (C,7) (G,7) (H,4)

T4 (B,2) (C,9) (G,8) (H,5)

T5 (A,2) (D,5) (E,1) (F,1)

Table 4 Profit table

Item A B C D E F G H I

Profit 20 15 70 54 11 100 75 47 96

First, the database is scanned to calculate TWU values
of the different Q-items. Based on TWU values, promising
Q-items are identified. TWU values of all Q-items are
presented in Table 5. We can see from Table 5 that, all Q-
items are promising because their TWU values are greater
than θ

qrc
(Definition 14). Thus, all Q-items should be

considered during the recursive mining process. The second
database scan is then performed to construct utility-lists
of all promising Q-items. Moreover, the algorithm also
constructs the TQCS structure. The TQCS structure for this
example is given in Table 6.

After that, promising Q-items are ordered based on their
utilities in descending order. The ordered list of Q-items is
P ∗ = {(I,9), (C,9), (G,8), (C,8), (G,7), (C,7), (D,5), (H,5),
(H,4), (F,1), (A,3), (A,2), (B,2), (B,1), (E,1)}. At this point,
the algorithm traverses Q-items of P ∗ to check the utility
of each initial Q-item using its corresponding utility-list.
Based on their utilities, Q-items are put in the set of HUQIs
(H ), the set of candidates Q-itemsets (C), or the set of Q-
itemsets to be explored (E). After traversing all Q-items in
P ∗, E ={(I,9), (C,9), (C,7)}, C = {(I,9), (C,9), (G,8), (C,8),
(G,7), (C,7), (D,5), (H,4)} while H set is empty because all
Q-items in P ∗ are LUQIs.

FHQUI-Miner then tries to form high utility range Q-
items with their utility-lists from the set C using the
Combine All method. From Q-items (C,7), (C,8) and
(C,9), three range Q-items are generated which are (C,7,8),
(C,8,9) and (C,7,9). Moreover, from Q-items (G,7) and
(G,8), one range Q-item is generated which is (G,7,8). The
utility of (C,7,8) (resp. (C,8,9), (C,7,9), (G,7,9)) is 1540
(resp. 1190, 2170, 1125). Thus, the algorithm outputs and
keeps only high utility Q-items (C,7,8) and (C,7,9) while
Q-items (G,7,8) and (C,8,9) are discarded. Accordingly,
HR ={(C,7,8), (C,7,9)}.

Table 5 Promising items

Q-item TWU Q-item TWU

(A,2) 3261 (B,1) 1258

(C,7) 2840 (G,7) 1258

(H,4) 2840 (A,3) 620

(I,9) 1582 (C,8) 620

(B,2) 1495 (D,5) 421

(C,9) 1495 (E,1) 421

(G,8) 1495 (F,1) 421

(H,5) 1495
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Table 6 TQCS structure for Q-items of the database presented in
Table 3

a b c a b c

(A,2) 2840 (E,1) 421

(C,7) (B,1) 1258 (D,5) (A,2) 421

(H,4) 2840 (F,1) 421

(A,3) φ φ (B,2) φ φ

(A,2) (E,1) 421 (G,8) (B,2) 1495

(B,1) 1258 (H,5) 1495

(A,2) 1582 (A,2) 1285

(I,9) (C.7) 1582 (G,7) (C,7) 1285

(H,4) 1582 (B,1) 1285

(B,1) φ φ (H,4) 1285

(H,5) (B,2) 1495 (E,1) φ φ

(H,4) (A,2) 2840 (G,8) 1495

(B,1) 1258 (C,9) (B,2) 1495

(F,1) (E,1) 421 (B,5) 1495

(A,2) 421 (C,8) (A,3) 620

After performing the combination process, the algorithm
forms the QIs set from the union of H and E and HR. In
this example, QIs = {(I,9), (C,7,9), (C,9), (G,8), (C,7,8)}.

At this point, the Recursive Mining Search procedure
is invoked to perform the depth-first search. The procedure
recursively explores the search space starting from the first
Q-item in QIs until reaching the last Q-item. Besides, the
join operation is used to form larger Q-itemsets. However,
before joining Q-itemsets, the algorithm first applies
the proposed EQCPS and RQCPS to avoid considering
unpromising Q-itemsets.

Back to our example, the extension Px=(I,9) is processed
with all extensions Py such that y ∈ P ∗. (I,9) is first
processed with extension Py =(C,9). From Table 6, we
can see that there is no tuple (a, b, c) ∈ T QCS such
that a=(I,9), b=(C,9) and c ≥ ( θ

qrc
). Thus, Q-itemset

[(I,9), (C,9)] is directly ignored and the algorithm will
pass to the next Q-item y ∈ P ∗ to test a new extension
Py without constructing UL([(I, 9), (C, 9)]). Similarly, the
algorithm passes directly extensions Py =(G,8), Py=(C,8)
and Py=(G,7) until reaching Py =(C,7). From Table 6, we
can see that T WU([(I, 9), (C, 7)]) = 1582 ≥ θ

qrc
. Thus,

Q-items (I,9) and (C,7) are joined to form [(I,9),(C,7)] and
UL([(I, 9), (C, 7)]) is constructed. Once a new larger Q-
itemset is constructed, the algorithm puts this Q-itemset in
the P ∗ set and tests its utility to see if this Q-itemset is
a HUQI (belongs to H set), is to be explored (belongs
to E set) or to be combined (belongs to C set). Since
u([(I, 9), (C, 7)]) = 1354, The Q-itemset [(I,9), (C,7)] is
outputted and it is put in the H set. The algorithm continues
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traversing extensions Py. After traversing all extensions,
H ={(C,7)}, C ={[(H,4),(A,2)]} and E = ∅.

The combination process is then performed on candidate
Q-itemsets of C. Since the two Q-items in C cannot be
combined, the combining process does not produce any
range Q-itemset and HR = ∅. At this point, the new QIs is
created, QIs = {H ∪ E ∪ HR} = {(C,7) ∪∅ ∪ ∅} ={(C,7)}.
Moreover, the new list of promising items is P ∗ = {(C,7),
(H,4), (A,2)}.

At this point, the procedure is recursively called to
explore larger Q-itemsets with new prefix P =(I,9),
QIs ={(C,7)}, P ∗ ={(C,7), (H,4), (A,2)}. The procedure
continue in the same way until all HUQIs are found. The set
of all HUQIs are presented in Table 7.

5.5 Complexity analysis

Lastly, this section discusses the complexity of the FHUQI-
Miner algorithm. Let M and N be respectively the number
of transactions and the number of distinct Q-items in the
database. The algorithm starts by performing two database
scans, the first scan is to calculate the TWU of Q-items.
Besides, all transactions are scanned once where each
transaction contains at most N Q-items. Thus, the first scan
requires O(MN) time.

The second database scan is performed to create initial
utility-lists and the TQCS structure. To create initial-utility

Table 7 HUQIs for θ = 25%

Q-itemset Utility

[(C,7,8)] 1540

[(C,7,9)] 2170

[(I,9),(C,7)] 1354

[(I,9),(C,7),(H,4)] 1542

[(I,9),(C,7),(A,2)] 1394

[(I,9),(C,7),(H,4),(A,2)] 1582

[(C,7,9),(H,4)] 1356

[(C,7,9),(A,2,3)] 1680

[(C,7,9),(G,8),(H,5)] 1465

[(C,7,9),(G,8),(H,5),(B,2)] 1495

[(C,7,9),(H,4),(A,2)] 1436

[(C,9),(G,8),(H,5)] 1465

[(C,9),(G,8),(H,5),(B,2)] 1495

[(C,7,8),(H,4)] 1356

[(C,7,8),(A,2,3)] 1680

[(C,7,8),(H,4),(A,2)] 1436

[(C,7),(H,4)] 1356

[(C,7),(H,4),(A,2)] 1436

lists, a sort is performed on each transaction. This process
has complexity O(MNlog(MN)). Moreover, to create the
TQCS structure, it is necessary to check all co-occurrences
in each transaction which requires O(MN2). Thus, the
complexity of the two first database scans is O(MN +
MNlog(MN) + MN2) = O(MN2 + MNlog(MN)).

The algorithm then checks the utility of each 1-Q-
itemset which requires only O(P ∗). In the worst case, the
complexity of this checking process is O(N). After that, the
algorithm performs the combining operation on candidate
1-Q-itemsets. The combining operation is performed on
the set C of candidate Q-itemsets. Besides, Q-itemsets
are first sorted based on their names. Then, all pairs of
Q-itemsets in C are compared with each other. Thus,
the complexity of the combining operation is O(|C|2 +
|C|log(|C|)) =O(|C|2). The complexity of the combining
operation depends on the number of candidate Q-itemsets
in C. The worst case corresponds to the situation where
all 1-Q-itemsets are treated as candidates Q-itemsets. In
that case, the complexity of the combining operation is
O(N2). Hence, the total complexity before performing the
recursive mining search is O(MN2 + MNlog(MN) +
N2)=O(MN2 + MNlog(MN)).

During the recursive search for patterns, FHUQI-Miner
performs two main operations, the join operation and the
combining operation.

The join operation is performed by recursively inter-
secting utility-lists of smaller Q-itemsets to get utility-lists
of larger Q-itemsets. Given a prefix Q-itemset P and two
extensions Px and Py such that x ≺ y, the complexity of
performing the join operation on Px and Py to obtain Pxy

is O((|Px| + |Py|)|P |) where |P |, |Px| and |Py| are the
number of transactions in UL(P ), UL(Px) and UL(Py),
respectively. In the worst case, the number of transactions
in P , Px and Py is M . Accordingly, the complexity is
O(M2).

The number of join operations to be performed depends
on the pruning strategy that is utilized. Mathematically,
the number of join operations is exactly the number of Q-
itemsets that have not been pruned which equals the number
of all possible Q-itemsets (2N ) minus the number of Q-
itemset extensions that are pruned during the search for
itemsets. Given that the number of Q-itemsets that are not
pruned during the mining search is l1, the overall complexity
of join operations during the recursive search procedure is
O(l1M

2).
As mentioned above, the combination operation has a

complexity O(N2) in the worst case. By assuming that
the number of combining operations during the recursive
mining search is l2, the overall complexity of the combining
process is O(l2N

2).
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In summary, the complexity of FHUQI-Miner is
O(MN2 +MNlog(MN)+N2 + l1M

2 + l2N
2) = (MN2 +

MNlog(MN) + l1M
2 + l2N

2).
It is worth noticing that pruning strategies that are

integrated in the proposed algorithm are sufficiently
effective to prune a large number of unpromising Q-itemsets
when compared with HUQI-Miner. In fact, although HUQI-
Miner and FHUQI-Miner theoretically have the same
complexity, the number l1 in our algorithm FHUQI-Miner is
much smaller than l1 in HUQI-Miner which makes FHUQI-
Miner more efficient than the former algorithms as it will
be demonstrated in the experimental evaluation of this
paper.

6 Experimental results

This section describes experiments that were carried out
to evaluate the performance of the proposed FHUQI-Miner
algorithm. FHUQI-Miner is compared with the current
state-of-art HUQIM algorithm, which is HUQI-Miner.

All experiments were performed on a PC equipped with
an Intel(R) i7-8700 processor, 16 GB RAM and running
the Windows7 operating system. The compared algorithms
were implemented in Java by extending the SPMF Java open
source data mining library [6].

Algorithms were tested using six different datasets,
namely Foodmart, Retail, BMSWebView2, Pumsb, Mush-
room and Connect. These datasets have various charac-
teristics and they are commonly used to evaluate HUIM
algorithms. All datasets were downloaded from the SPMF
library [6]. However, except Foodmart, other datasets can-
not be directly used for HUQIM since they provide utilities
of items without giving their quantities. Thus, quanti-
ties and profits of different items were generated using
the transaction database generator of SPMF [6]. Besides,
profits of items were generated randomly between 1
and 10000 using a log-normal distribution while quanti-
ties were randomly generated from a pre-defined range
for each dataset. The description of different parame-
ters are presented in Table 8 while characteristics of
each dataset based on these parameters are given in
Table 9.

Table 8 Parameters description

Parameters description

M The number of transactions

N The number of items

Q Quantities range

Table 9 Characteristics of datasets

Dataset M N Q Type

Foodmart 4141 1559 1-10 Sparse

Retail 88162 16470 1-10 Sparse

BMSWebView2 77512 3340 1-10 Sparse

Mushroom 8416 128 1-10 Dense

Connect 67557 129 1-5 Dense

Pumsb 49046 2113 1-10 Dense

6.1 Execution time

In the first experiment, the execution time of FHUQI-Miner
was compared with HUQI-Miner with different combining
methods. We ran the two algorithms on each dataset
with different values of θ . Results for both algorithms
using Combine All, Combine Min and Combine Max

are provided in Figs. 6, 7 and 8, respectively.

Results with Combine All For the Combine All method, it
is observed in Fig. 6 that FHUQI-Miner clearly outperforms
HUQI-Miner on four out of the six datasets used in these
experiments. FHUQI-Miner is faster than HUQI-Miner for
the Foodmart, Retail, BMSWebView2 and Pumsb datasets
while the results are equivalent with a slight advantage for
FHUQI-Miner for the Mushroom and Connect datasets.

For Retail, BMSWebView2, Foodmart and Pumsb,
FHUQI-Miner is up to 22.18, 8.31, 4.79, 1.98 times faster
than HUQI-Miner. On average, FHUQI-Miner is 12.21,
6.16, 3.39 and 1.58 faster than HUQI-Miner.

For the Mushroom and Connect datasets, the two algo-
rithms have similar running time. However, FHUQI-Miner still
outperforms HUQI-Miner in most of the cases. Globally, for
the Mushroom and Connect datasets, FHUQI-Miner is on
average 1.08 and 1.05 times faster than HUQI-Miner.

Results with Combine Min It is observed in Fig. 7 that
when the Combine Min method is used, FHUQI-Miner
is faster than HUQI-Miner on all datasets. More precisely,
for Retail, BMSWebView2, Foodmart, Pumsb, Connect and
Mushroom, FHUQI-Miner is up to 33.95, 14.72, 5.07,
2.05, 1.24 and 1.36 faster than HUQI-Miner. On average,
FHUQI-Miner is 23.47, 12.53, 3.27, 1.83, 1.20 and 1.17
faster than HUQI-Miner.

Results with Combine Max It is found in Fig. 8 that
when utilizing Combine Max, FHUQI-Miner has better
runtimes than HUQI-Miner on all datasets, and especially
for Retail and BMSWebView2. In terms of results, FHUQI-
Miner is up to 41.23, 18.77, 7.17 faster than HUQI-Miner
for sparse datasets Retail, BMSWebView2 and Foodmart,
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Fig. 6 Runtime with the
Combine All method
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respectively. For dense datasets Pumsb, Mushroom and
Connect, FHUQI-Miner is respectively up to 2,95, 1,58,
1,37 times faster than HUQI-Miner.

It is worth noticing that as θ is set to smaller values, more
patterns may need to be evaluated by the algorithm. Thus,
the search space becomes larger. In Figs. 6, 7 and 8, it can
be observed that the difference between the two algorithms
is bigger for small θ values. More precisely, the smaller
the value of θ is, the faster FHUQI-Miner is compared
to HUQI-Miner. Therefore, we can conclude that FHUQI-
Miner is more efficient than HUQI-Miner when the search
space becomes larger. This result will be further confirmed
in next experiments.

6.2 Join operations

The search space of HUQIM can be represented as a graph
in where a depth-first search algorithm os applied. Besides,

the join operation which is performed to obtain larger Q-
itemsets, can be viewed as visiting a new node in the search
space. Accordingly, an efficient algorithm should perform
as less join operation as possible to avoid visiting nodes that
correspond to unpromising Q-itemsets.

In this experiment, the number of join operations for each
dataset with different settings of θ was recorded.

The obtained results with Combine All, Combine Min

and Combine Max methods are respectively presented
in Figs. 9, 10 and 11. Generally, it can be seen from
these figures that for all combining methods, FHUQI-Miner
performs much less join operations than HUQI-Miner for
all datasets, especially sparse datasets.

For sparse datasets, the difference between the number
of join operations of the two algorithms is huge especially
with low values of θ . For example, on the Retail dataset
with the Combine All method and threshold θ = 0.01,
HUQI-Miner performs 1979170399 join operations while
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Fig. 7 Runtime with the
Combine Min method
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FHUQI-Miner performs only 135424988 join operations.
This means that HUQI-Miner processes 1843745411
unpromising Q-itemset which will be directly pruned
by FHUQI-Miner without constructing their utility-lists.
Similarly for Foodmart and a threshold 0.01, HUQI-Miner
performs 60170299 join operations while FHUQI-Miner
performs only 267979. The difference between the two
algorithms is huge (59902320).

Similarly to when the Combine All method is used, the
number of join operations performed by FHUQI-Miner is
much lower than HUQI-Miner when the Combine Min

and Combine Max methods are applied. For instance,
using the Combine Min method, the difference between
the number of join operations for BMSWebView2 with
threshold θ = 0.05 is 50412766 (Fig. 10-c). For the same
dataset, when Combine Max is applied, the difference is
78732 (Fig. 11-c).

For dense datasets, FHUQI-Miner also performs less join
operations than HUQI-Miner. However, the gap between
the two algorithms is not as large as for sparse datasets.
Moreover, the performance of FHUQI-Miner on Pumsb is
clearly better than its performance on the two other datasets,
Mushroom and Connect. Starting with the Combine All

method, Pumsb and θ = 0.5 (Fig. 9-d), HUQI-Miner
performs 136344145 join operations while FHUQI-Miner
only performs 93051302. Taking the same example, the
difference of join operations for the Combine Min and
Combine Max methods is respectively 6214571 and
3994845.

To clarify and summarize the obtained results, the
average of differences between the two algorithms in terms
of number of join operations for each dataset is calculated.

When adopting the Combine All method, the differ-
ence between the two compared algorithms is 27068382.1

M. Nouioua et al.



Fig. 8 Runtime with the
Combine Max method
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(resp. 329932650.6, 42762584.2, 15639851.3, 21429504)
for Foodmart (resp. Retail, BMSWebView2, Pumsb, Mush-
room, Connect).

Using the Combine Min method, the difference is
19633675,5 (resp. 197506293, 21884389,9, 3604549,5,
517312,1, 39730,5) for Foodmart (resp. Retail, BMSWe-
bView2, Pumsb, Mushroom, Connect). Finally, with the
Combine Max method, the difference between the two
compared algorithms is 15279436 (resp. 154308832,6,
15437347,8, 1574647,6, 332387,7, 17026,6) for Foodmart
(resp. Retail, BMSWebView2, Pumsb, Mushroom, Con-
nect).

6.3 Pruning strategies effectiveness

To demonstrate the effectiveness of the proposed pruning
strategies, Tables 10 and 11 indicate the percentages of

candidate Q-itemsets that FHUQI-Miner is able to directly
prune that HUQI-Miner does not prune. These percentages
are called pruning rates and they are calculated for different
values of θ for both sparse and dense datasets.

For sparse datasets, it is clear from Table 10 that FHUQI-
Miner is able to prune a large amount of unpromising
candidate Q-itemsets when using all combining meth-
ods thanks to the proposed EQCPS and RQCPS prun-
ing strategies, used during the search for patterns. More
precisely, with the Combine All method, FHUQI-Miner
prunes up to 99.72%, 96.17% and 93.15% of unpromis-
ing Q-itemsets for the Foodmart, Retail and BMSWe-
bView2 datasets, respectively. Using the Combine Min

method, FHUQI-Miner prunes up to 99.77%, 99.07%
and 98.22% of candidate Q-itemsets for the Foodmart,
Retail and BMSWebView2 datasets, respectively. Finally,
with the Combine Max method, FHUQI-Miner prunes

FHUQI-Miner: Fast high utility quantitative itemset mining



Fig. 9 Number of join
operations with the
Combine All method
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up to 99.82%, 99.43% and 98.88% of candidate Q-
itemsets for the Foodmart, Retail and BMSWebView2
datasets.

By comparing the average pruning rates on different
datasets with each combining method, it is found that, the
largest average pruning rates are obtained on Foodmart,
which is known as a very sparse dataset. On that
dataset, 99.64%, 99.68%, and 99.69% of candidates are
pruned when using the Combine All, Combine Min and
Combine Max method, respectively. Retail is the second
dataset in which pruning averages are large. Overall, the
obtained results demonstrate the effectiveness of FHUQI-
Miner on sparse datasets.

Pruning rates of FHUQI-Miner on dense datasets are
given in Table 11. The highest pruning rates are obtained
on Pumsb on which FHUQI-Miner can prune on average
40.43%, 39.23%, and 52.45% of candidate Q-itemsets with

the Combine All, Combine Min and Combine Max

respectively. On the Connect dataset, FHUQI-Miner is
able to prune 1,87%, 18,73% and 36,93% of candidates
using Combine All, Combine Min and Combine Max

respectively. Finally, on Mushroom dataset, FHUQI-
Miner can prune on average 8,64%, 28,74% and 48,13%
with Combine All, Combine Min and Combine Max,
respectively.

From the obtained results in terms of running time and
pruning effectiveness, a natural question arises: Why the
performance of FHUQI-Miner on sparse datasets is higher
than its performance on dense datasets?

The major reason behind that is the characteristics of
these datasets. Sparse datasets contain transactions that have
few similarities. Accordingly, discovered HUQIs are not
similar to each other. Moreover, the number of HUQIs
is low and it is close to the number of distinct Q-

M. Nouioua et al.



Fig. 10 Number of join
operations with the
Combine Min method
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items. For example, on Retail dataset and θ = 0.01, the
number of distinct Q-items is 101546 while the number of
HUQIs is 89459. On BMSWebView2 with θ = 0.05, the
number of distinct Q-items is 101546 while the number
of HUQIs is 89459. Therefore, a large part of Q-items
combinations, i.e, Q-itemsets, are unpromising and they
will be pruned during the recursive search for patterns
(Algorithm 1) using the proposed EQCPS and RQCPS
strategies. Consequently, the runtime is reduced, less join
operations are performed, and more candidate itemsets are
pruned.

On the other hand, transactions in dense datasets are
similar and the number of HUQIs is very high comparing
with the number of distinct Q-items. For instance, in
Mushroom with threshold θ = 0.1, the number of
HUQIs is 8199402 while the number of distinct Q-
items is only 1161. Due to this fact, many candidate

Q-itemsets obtained by joining different Q-items during
the recursive search for patterns are HUQIs. Accordingly,
the frequency of successfully applying pruning strategies
in dense datasets is lower than that for sparse datasets.
As a result, the pruning rate of FHUQI-Miner on dense
datasets is not as large as that for sparse datasets
and the running time of the two algorithms is quite
similar with an advantage for the proposed FHUQI-Miner
algorithm.

It is worth noticing that, the high performance of FHUQI-
Miner on sparse datasets is more advantageous since sparse
datasets are more valuable and more common than dense
datasets. In fact, most of real world problems such as
customer behavior analysis have data sparsity. Therefore,
obtaining better performance for mining patterns in sparse
datasets is often viewed as more important than for dense
datasets.

FHUQI-Miner: Fast high utility quantitative itemset mining



Fig. 11 Number of join
operations with the
Combine Max method
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Table 10 Percentage of candidate itemsets pruned by FHUQI-Miner for sparse datasets

Foodmart Retail BMSWebView2

θ (%) All (%) Min (%) Max (%) θ (%) All (%) Min (%) Max (%) θ (%) All (%) Min (%) Max (%)

0.01 99.55 99.54 99.52 0.01 93.15 98.35 98.88 0.05 93.15 98.11 98.59

0.02 99.50 99.52 99.48 0.02 91.58 98.30 98.83 0.06 91.84 98.05 98.55

0.03 99.55 99.58 99.54 0.03 90.92 98.43 98.89 0.07 89.88 97.99 98.53

0.04 99.61 99.64 99.63 0.04 91.49 98.59 98.99 0.08 89.52 97.97 98.55

0.05 99.67 99.71 99.71 0.05 92.94 98.76 99.11 0.09 89.72 97.99 98.57

0.06 99.70 99.75 99.76 0.06 93.27 98.86 99.18 0.1 84.33 98.01 98.61

0.07 99.70 99.76 99.80 0.07 94.36 98.98 99.29 0.11 87.00 98.04 98.67

0.08 99.71 99.76 99.81 0.08 94.86 99.03 99.34 0.12 89.09 98.12 98.74

0.09 99.72 99.77 99.82 0.09 95.82 99.05 99.40 0.13 91.05 98.15 98.80

0.1 99.72 99.76 99.82 0.1 96.17 99.07 99.43 0.14 92.18 98.22 98.88

Avg 99,64 99,68 99,69 Avg 93,46 98,74 99,13 Avg 89,78 98,07 98,65

M. Nouioua et al.



Table 11 Percentage of candidate solutions pruned by FHUQI-Miner for dense datasets

Pumsb Connect Mushroom

θ (%) All (%) Min (%) Max (%) θ (%) All (%) Min (%) Max (%) θ (%) All (%) Min (%) Max (%)

0.5 31.75 32.60 40.30 2.9 9.14 15.03 30.10 0.1 8.89 18.61 22.90

0.55 34.47 18.91 8.63 3 9.18 15.80 32.70 0.2 9.08 18.50 28.96

0.6 36.31 23.23 7.88 3.1 9.36 16.63 33.82 0.3 8.46 20.81 36.93

0.65 37.92 38.27 45.56 3.2 9.55 17.30 36.12 0.4 8.86 24.11 44.78

0.7 39.44 40.57 54.74 3.3 10.59 17.37 37.14 0.5 8.73 27.65 51.12

0.75 40.53 42.18 62.11 3.4 11.15 17.01 38.08 0.6 8.68 29.85 52.71

0.8 41.89 44.08 67.42 3.5 11.85 17.62 39.46 0.7 8.43 31.43 55.55

0.85 43.18 45.40 70.83 3.6 13.29 20.06 40.01 0.8 8.35 35.67 60.14

0.9 44.51 47.04 72.71 3.7 16.30 24.30 40.44 0.9 8.38 39.00 63.15

0.95 46.52 48.92 73.35 3.8 18.28 26.22 41.42 1 8.55 41.73 65.05

Avg 40,43 39,23 52,45 Avg 11,87 18,73 36,93 Avg 8,64 28,74 48,13

7 Conclusion

In this paper, we have presented a new algorithm for high
utility quantitative itemset mining named FHUQI-Miner
(Faster High Utility Quantitative Itemset Mining). It relies
on two new pruning strategies, named EQCPS (Exact Q-
items Co-occurrence Pruning Strategy) and RQCPS (Range
Q-items Co-occurrence Pruning Strategy). The proposed
strategies can greatly reduce the number of join operations
during the search for patterns which allows to improve
the efficiency of HUQIM in terms of execution time. An
extensive experimental study was performed on various
datasets. Results have demonstrated the efficiency of the
adopted pruning strategies especially for sparse datasets
where the proposed algorithm is up to 41.23 times faster
than HUQI-Miner. Moreover, the proposed algorithm can
prune up to 99.82% of the search space.

There are many possibilities for extending this research
in future work. First, we plan to propose new tighter upper
bounds that can further improve the process of mining
quantitative itemsets. Second, we plan to also integrate
additional optimizations to speed up the processing of the
existing combining methods which will make them faster.
Third, another interesting orientation is to propose new
combining methods that allow to discover more meaningful
patterns in a database.
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