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Abstract: In this paper we discuss some strategy for red re�nements of product
elements and show that there are certain structure characteristics (d-sines of angles
formed by certain edges in the initial partition) which remain constant during re�ne-
ment processes. Such characteristics are directly related to the so-called maximum
angle condition, the validity of which is a strongly desired property in interpolation
theory and �nite element analysis.

1. Introduction and basic definitions

Red re�nement is one of the most popular meshing techniques used in various
branches of numerical mathematics. However, it is usually applied to simplicial
partitions only, see e.g. [1, 14, 15, 17, 18], and various aspects of regularity of the
generated meshes are then analysed.
In practice, depending on the shape of the domain over which we construct the

meshes, one may prefer to construct some initial mesh consisting of so-called product
elements, and only after that re�ne it into simplices. The simplest illustration in this
direction would be the case of cylindric-type domains �rst naturally split into right
prisms and then into tetrahedra, see e.g. [13].
In this work, we consider a more general case of product elements of any dimensions

and red re�nement techniques used independently for each factor of the product.
Some regularity properties of resulting simplicial meshes are discussed. Products of
simplices, and their triangulations, have been studied in many contexts, in particular
for two factors. See e.g. [2, 4, 6, 7, 9].

In 1978, F. Eriksson proposed the following concept of the d-dimensional sine of
angles in Rd. In terms of the simplex S, for any of its vertices Ai, i = 0, . . . , d, the
d-dimensional sine of the angle of S at Ai, denoted by Âi, is de�ned as follows (see
(3) in [5, p. 72]):

(1) sind(Âi|A0A1 . . . Ad) =
dd−1 (vol S)d−1

(d− 1)!
∏d

j=0,j 6=i vol Fj

,

where vol denotes the measure of (simplex or its facets) of relevant dimension. We will
apply sind to a set of d vectors, which then will mean that we choose Ai at the common
point of origin of the vectors and the remaining vertices A0, . . . , Ai−1, Ai+1, . . . , Ad

as the corresponding endpoints. Write vol(a set of vectors) for the hypervolume of
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the generalized parallelotope spanned by the vectors. We then have the convenient
formula

sind(vi, . . . , vd) =
vol(v1, . . . , vd)

d−1∏d
i=1 vol(v1, . . . , vi−1, vi+1, . . . , vd)

.

See also [12].

De�nition 1.1 ([10]). A family F = {Th}h→0 of partitions of some polytope into
simplices is said to satisfy the maximum angle condition if there exists C0 > 0 such
that for any Th ∈ F and any S = conv{A0, . . . , Ad} ∈ Th we can always �nd d edges of
S, which when considered as vectors, constitute a (higher-dimensional) angle whose
d-sine is bounded from below by the constant C0. Here, we let h denote the maximal
diameter of the simplices in a partition.

Simplicial partitions satisfying the maximum angle condition are highly desired in
numerical analysis for various interpolation and �nite element convergence proofs,
see e.g. [17, 10]. There is another (equivalent) de�nition of the maximum angle
condition in [12]. However, we prefer the one from De�nition 1.1 in this paper, since
it is more suitable for our geometric considerations in what follows.

2. Red refinement strategy and its properties

Recall a standard triangulation of the hypercube (see e.g. Freudenthal [8]).

Theorem 2.1. Consider the unit hypercube in Rd with 2d vertices (0, 0, . . . , 0) to
(1, 1, . . . , 1) (all possible combinations of 0 and 1). For any path from (0, 0, . . . , 0)
to (1, 1, . . . , 1) consisting of the standard unit vectors ei, i = 1, . . . , d, in some order,
there is a corresponding d-simplex given as the convex hull of the vertices of the
hypercube along the path.

a) By varying the path over all possible orderings of the vectors ei, this gives
a triangulation of the hypercube consisting of d! elements, each sharing the
common edge from (0, 0, . . . , 0) to (1, 1, . . . , 1).

b) We can subdivide the unit cube into 2d smaller cubes, with coordinates given
by 0, 1/2 or 1, and apply the same construction to each of them.

The resulting triangulation from Theorem 2.1 b) re�nes the original triangulation,
thus de�ning a red re�nement scheme for the hypercube by iteration. By making
consistent choice of diagonals, we get a conformity always for free when we start
re�ning a single simplex as above.
By embedding a simplex into the hypercube we can produce a consistent red re-

�nement scheme by intersecting with the subdivision of the hypercube as presented
in Theorem 2.1, see Figure 1.
More formally, given any d-dimensional simplex S, we can choose a path (or an

ordering of the vertices) A0A1 . . . Ad. There is then a unique a�ne transformation
T that maps A0 to (0, 0, . . . , 0), and Ai to (1, 1, . . . , 1, 0, 0, . . . , 0) (1 in the �rst i
positions), i = 1, . . . , d. Then T (S) is one of the simplices in the triangulation of the
hypercube described in the theorem, corresponding to the path e1, e2, . . . , ed, which
we will use as a reference simplex. To describe the set by inequalities, it is the set
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Figure 1. By embedding a simplex in a hypercube, we construct a
red re�nement of the simplex by restriction of the red re�nement of
the hypercube

1 ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0. Since we will usually only consider these inequalities in
the unit hypercube, we will suppress 1 and 0 at the ends of the string of inequalities.
Using the re�nement from Theorem 2.1 b), and then translating back with T−1, gives
a red re�nement of S.

Theorem 2.2. Consider a simplex S and the red re�nement de�ned above. Then

a) each sub-simplex resulting from the red re�nement step has a path consisting
of the vectors {1

2
fi} in some order, where {fi} are the vectors along the chosen

path in S,
b) repeated red re�nements using the paths parallel to the chosen path in S will

produce only �nitely many similarity types of simplices (up to scaling and rigid
transformations),

c) each sub-simplex produced by a repeated red re�nement has a path such that
sind applied to the vectors along the path is equal to sind(f1, . . . , fd).

Proof. Part a) immediately follows from Theorem 2.1 and standard properties of
a�ne transformations. Part b) follows since each simplex produced is congruent to
a simplex whose vertices are connected by a path consisting of {1

2
fi} in some order.

Part c) follows since sind remains unchanged if one of the vectors is multiplied by a
non-zero constant, and also after permutation of the inputs (see [5, 12]). �

Remark 2.3. The statements a) and b) in the above theorem are well known (see
e.g. [1]), and are included only for completeness. Statement c) of Theorem 2.2 has
been considered for tetrahedra in [15].

3. Main results

In what follows we will need a result about the higher-dimensional sines when the
arguments are orthogonal to each other.
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Lemma 3.1. Suppose that {v1, . . . , vd1} and {u1, . . . , ud2} are two sets of vectors that
are orthogonal to each other. Then

sind1+d2(v1, . . . , vd1 , u1, . . . , ud2) = sind1(v1, . . . , vd1) sind2(u1, . . . , ud2).

In case d1 and/or d2 is equal to one, we use the natural convention sin1(u1) = 1 (sine
of a single nonzero vector is one).

Proof. We assume that each of the n = d1 + d2 vectors is a unit vector. Then

sinn(v1, . . . , vd1 , u1, . . . , ud2) =
vol(v1,...,vd1 ,u1,...,ud2

)n−1∏d1
i=1 vol(v1,...,vi−1,vi+1,...,vd1 ,u1,...,ud2

)
∏d2

i=1(v1,...,vd1 ,u1,...,ui−1,ui+1,...,ud2
)
.

By orthogonality of the two sets of vectors, each hypervolume factors as a product
of two lower-dimensional hypervolumes and we get:

sinn(v1, . . . , vd1 , u1, . . . , ud2)

=
vol(v1,...,vd1 ,u1,...,ud2

)n−1∏d1
i=1 vol(v1,...,vi−1,vi+1,...,vd1 ,u1,...,ud2

)
∏d2

i=1(v1,...,vd1 ,u1,...,ui−1,ui+1,...,ud2
)

=
vol(v1,...,vd1 )

n−1vol(u1,...,ud2
)n−1∏d1

i=1 vol(v1,...,vi−1,vi+1,...,vd1 )vol(u1,...,ud2
)d1vol(v1,...,vd1 )

d2
∏d2

i=1(u1,...,ui−1,ui+1,...,ud2
)

=
vol(v1,...,vd1 )

d1−1∏d1
i=1 vol(v1,...,vi−1,vi+1,...,vd1 )

vol(u1,...,ud2
)d2−1∏d2

i=1(u1,...,ui−1,ui+1,...,ud2
)

= sind1(v1, . . . , vd1) sind2(u1, . . . , ud2).

�

Let S1, . . . , Sk be simplices of dimensions d1, . . . , dk, respectively. Let n =
∑k

i=1 di.
Now we can independently choose a path (or equivalently a vertex ordering) in each
Si, and embed it in the unit di-cube by an a�ne transformation Ti as discussed
before Theorem 2.2. By this choice, Ti(Si) is the reference di-simplex. The product
polytope ∆ =

∏
Si of the simplices is embedded into Rn by the product map T of

the maps Ti:

T : ∆ =
k∏

i=1

Si →
k∏

i=1

Ti(Si) ⊂
k∏

i=1

Rdi = Rn.

Theorem 3.2. Consider the product of simplices ∆ =
∏

Si as de�ned above. Then:

a) The product ∆ can be triangulated by simplices, each of which contains a path
with the property that sinn of the path vectors is the product of the sindi of the
chosen paths of the factors.

b) There is a red re�nement scheme so that all simplices occuring by repeated
re�nement has a path with sinn equal to the sinn in part a), and that only
contains a �nite number of similarity types of product elements.
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c) There are also red re�nement schemes where the factors are re�ned at di�erent
rates, so that each simplex occuring by repeated re�nement has a path with
sinn equal to the sinn in part a). In this case, the family may contain an
in�nite number of similarity types of product elements.

Proof. We apply the a�ne transformation T de�ned above, solve the problem in the
unit n-cube, and transform using T−1 to get back to the original polytope ∆. Look
at the coordinates of T (∆). For each factor,

Ti(Si) = {
(
x
(i)
1 , . . . , x

(i)
di

)
|x(i)

1 ≥ x
(i)
2 ≥ · · · ≥ x

(i)
di
} ∩ [0, 1]di ⊂ Rdi .

The product T (∆) =
∏

Ti(Si) can then be described as a product of these sets with
the given coordinates. More precisely, if we use

x
(1)
1 , . . . , x

(1)
d1
, x

(2)
1 , . . . , x

(2)
d2
, . . . , x

(k)
1 , . . . , x

(k)
dk

as coordinates for Rn, we can use the k sets of the same inequalities to describe
T (∆). We then consider the triangulation of the hypercube in Rn from Theorem 2.1.
A triangulation of T (∆) then uses only those simplices in the triangulation of the
hypercube that always satisfy these inequalities. The index set of these simplices
can be given by shu�es, i.e. permutations of {1, 2, . . . , n} that preserve the order
of {1, . . . , d1}, {d1+1, . . . , d1+d2}, . . . , {d1+· · ·+dk+1, d1+d2+· · ·+dk} separately.

The results in parts a) and b) now follow immediately as in Theorem 2.2, using
only that if a given set of n vectors splits as a union of sets of cardinality d1, d2, . . . , dk
such that all the subsets are orthogonal to each other, the corresponding sinn is the
product of the corresponding sindi (by Lemma 3.1 and an obvious induction).

For part c), introduce the notation f
(i)
j for the preimage under T of the standard

basis vectors e
(i)
j on Rn, so that e.g. f

(1)
1 , f

(1)
2 , ..., f

(1)
d1

are the vectors along the
chosen path of S1. We can now perform the re�nement on a single factor, keeping
the remaining factors unchanged. Without loss of generality, we can assume that
we only re�ne the �rst factor S1. Then any simplex in the re�ned triangulation

has a path with vectors 1
2
f
(1)
1 , 1

2
f
(1)
2 , ..., 1

2
f
(1)
d1

in some order, and keeping the vectors

f
(k)
j for all j and for k ≥ 2. Since sinn is unchanged when arguments are scaled,
this does not change its value. We can then re�ne another factor, and keep doing
this in any order, with any number of repetitions of factors. This process can in
general produce in�nitely many shapes of the product elements and of their simplicial
subdivisions. �

Example 3.3. We illustrate the main theorem by the simplest nontrivial example,
namely a rectangular prism, i.e. a cartesian product of a triangle and an interval. It
can be split into three tetrahedra in various ways. Let the chosen path in the triangle
be R00, R10, R20 (see Figure 2). Each of the three tetrahedra in the �gure contains a
path with one edge for each of the two edges in the chosen path and a third vertical
edge. When we apply sin3 to these three edges, we get the same value as sin2 of
the two edges in the triangle, which is the same as the ordinary sine of the angle at
R10. This value of sin3 will be preserved by the red re�nement scheme described in
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part c) of Theorem 3.2, i.e. when subdividing the height and the triangular base at
independent rates.

R00 R10

R20

R01
R11

R21

Figure 2. The prism is split into three tetrahedra, each with a path
containing the same three edge vectors in some order. This path is
marked in bold for the middle tetrahedron.

Remark 3.4. The maximum angle condition from De�nition 1.1 will be satis�ed for
all re�nements of a product of simplices produced by Theorem 3.2. Since we have
used the formulation with sinn this is obvious. As the restricted process in part b) of
the theorem only produces a �nite number of similarity types, that process will even
preserve the standard regularity property, see [3]. In the general process in part c),
the factors can shrink at di�erent rates, and therefore the regularity condition can
be violated. We refer to [11] for more information about the case of prisms in this
context.

Remark 3.5. We are currently working on extending the ideas from [13] to guarantee
overall conformity of a mesh of product elements, not only for a single product element
as considered in the present paper.

References

[1] J. Bey. Simplicial grid re�nement: on Freudenthal's algorithm and the optimal number of
congruence classes, Numer. Math. 85 (2000), 1�29.

[2] L.J. Billera, R. Cushman, J.A. Sanders. The Stanley decomposition of the harmonic oscillator.
Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 4, 375�393.

[3] P. G. Ciarlet. The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[4] S. Eilenberg, N. Steenrod. Foundations of algebraic topology. Princeton University Press,
Princeton, New Jersey, 1952. xv+328 pp.

[5] F. Eriksson. The law of sines for tetrahedra and n-simplices, Geom. Dedicata 7 (1978), 71�80.
[6] A. Fomenko, D. Fuchs. Homotopical topology. Second edition. Graduate Texts in Mathematics,

273. Springer, [Cham], 2016. xi+627 pp.
[7] H. Freudenthal. Eine Simplizialzerlegung des Cartesischen Produktes zweier Simplexe, Fund.

Math. 29 (1937), 138-144.
[8] H. Freudenthal. Simplizialzerlegungen von beschränkter Flachheit, Ann. of Math. 43 (1942),

580�582.
[9] P. Galashin, G. Nenashev, A. Postnikov. Trianguloids and triangulations of root polytopes,

preprint, available as https://arxiv.org/abs/1803.06239



PRESERVED STRUCTURE CONSTANTS FOR RED REFINEMENTS OF PRODUCT ELEMENTS7

[10] A. Hannukainen, S. Korotov, M. K°íºek. Generalizations of the Synge-type condition in the
�nite element method, Appl. Math. 62 (2017), 1�13.

[11] A. Khademi, S. Korotov, J. E. Vatne. On interpolation error on degenerating prismatic ele-
ments, Appl. Math 63 (2018), 237�257.

[12] A. Khademi, S. Korotov, J. E. Vatne. On the generalization of the Synge-K°íºek maximum
angle condition for d-simplices, J. Comput. Appl. Math. 358 (2019), 29�33.

[13] S. Korotov, M. K°íºek. On conforming tetrahedralizations of prismatic partitions. In Di�erential
and Di�erence Equations with Applications (ed. by S. Pinelas et al.), Springer Proceedings in
Mathematics & Statistics 47, Springer Science+Business Media, New York, 2013, 63�68.

[14] S. Korotov, M. K°íºek. Red re�nements of simplices into congruent subsimplices, Comput.
Math. Appl. 67 (2014), 2199�2204.

[15] S. Korotov, J. E. Vatne. On regularity of tetrahedral meshes produced by some red-type re-
�nements, in: Proceedings of Inter. Conference ICDDEA, Amadora, Portugal, 2019 (ed. by S.
Pinelas et al.), Springer (in press).

[16] M. K°íºek. An equilibrium �nite element method in three-dimensional elasticity, Apl. Mat. 27
(1982), 46�75.

[17] M. K°íºek. On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer.
Anal. 29 (1992), 513�520.

[18] S. Zhang. Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes,
Houston J. Math. 21 (1995), 541�556.


