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ABSTRACT

Artificial intelligence (AI) and automated decision-making have the potential to
improve accuracy and efficiency in healthcare applications. In particular, AI is proved
to outperform human experts in certain domains. However, the application of AI and
machine learning for automated decision-making in healthcare comes with challenges,
such as security and privacy preservation. Such issues are among the primary concerns
that must be addressed as they may negatively affect individuals. For instance,
a patient’s privacy is violated if sharing his/her medical data with a third-party
data recipient reveals that he/she had a medical condition. Furthermore, particular
guidelines, e.g., General Data Protection Regulation (GDPR), are proposed to legally
protect the privacy of patients that has to be observed while employing AI and machine
learning in this domain.

In order to address such privacy concerns, in this thesis, we consider two principal
directions for the analysis of data and concentrate our research on them. In one
primary direction, the analysis is performed on the published/shared data. Therefore,
the data holder needs to consider particular measures to protect the privacy of
data subjects, for instance, by perturbing the data before publishing. In this thesis,
along this direction, we propose an anonymization framework, formulated as an
optimization problem, for datasets with both categorical and numerical attributes.
The proposed framework is based on clustering the data samples by considering the
diversity issue in anonymization to reduce the risks of identity and attribute linkage
attacks. Our method achieves anonymity by formulating and solving this problem as a
constrained optimization problem, by jointly considering the k-anonymity, l-diversity,
and t-closeness privacy models. We evaluate our framework on popular publicly
available structured healthcare data.

The other primary direction is to perform analysis without publishing the data. In
such settings, we consider multiple parties, each of which holds a different part of the
data. The objective is to analyze the data held on these parties without direct access to
the data record values. In this thesis, along this direction, we present a scalable privacy-
preserving distributed learning framework based on the Extremely Randomized
Trees (ERT) algorithm and Secure Multiparty Computation (SMC) techniques. We
build a machine learning model based on the entire dataset by analyzing the data
locally at each party and combining the results of this analysis. We evaluate the
distributed implementation of our technique based on healthcare datasets collected in
the INTROMAT project and demonstrate its prediction performance.

In summary, the research in this thesis contributes to the possibility of exploiting
health data in the healthcare setting for analysis and automatic decision-making
without privacy violation. This has a long-term potential for better decision-making in
the healthcare context, diagnosis, and treatment, at an affordable cost.





SAMMENDRAG

Kunstig intelligens (AI) og automatiserte beslutningsprosesser har potensial til å
forbedre nøyaktigheten og effektiviteten i helsetjenesten. Spesielt har AI vist seg å
kunne utkonkurrere menneskelige eksperter på visse områder. Imidlertid har bruken av
AI og maskinlæring for automatisert beslutningstaking i helsevesenet visse utfordringer,
som for eksempel sikkerhet og personvern. Slike spørsmål er blant de viktigste som
må tas opp, da de kan påvirke enkeltpersoner på en negativ måte. For eksempel blir
pasienters personvern krenket hvis deres medisinske data med en tredjepart viser
at hadde en en spesiell medisinsk tilstand. Videre det retningslinjer, for eksempel
Personvernforordningen (GDPR), for beskytte personvernet til pasienter som overvåkes
ved bruk av AI og maskinlæring på dette området.

For å slike personvernhensyn tar vi i denne tesen for oss to hovedretninger for
konsentrerer vår forskning om disse. I hovedretning utføres analysen på de publis-
erte/delte helseopplysningene. Derfor må databehandleren vurdere spesielle tiltak
for å beskytte datasubjektenes personvern, for eksempel ved å forandre dataene før
de publiseres. I denne tesen, foreslår vi et anonymiseringsrammeverk, formulert
som et optimaliseringsproblem, for datasett med både kategoriske og numeriske at-
tributter. Det foreslåtte rammeverket er basert på gruppering av dataprøver ved å
vurdere mangfoldsproblemet i anonymisering for å redusere risikoen for identitets- og
attributt-koblingsangrep. Vår metode oppnår anonymitet ved å formulere og løse dette
problemet som et begrenset optimaliseringsproblem, ved vurdere personvernmodel-
lene k-anonymity, l-diversity og t-closeness. Vi evaluerer rammeverket for populære,
offentlig tilgjengelige strukturerte helsedata.

Den andre hovedretningen er å utføre dataanalyse uten å publisere helseopplysnin-
gene. I slike miljøer vurderer vi flere parter, som hver har en forskjellig deler av
opplysningene. Målet er å analysere opplysningene fra disse partene uten direkte
tilgang til dataregistreringsverdiene. I denne tesen, presenterer vi et skalerbart rammev-
erk for distribuert læring av personvern basert på teknikkene Extremely Randomized
Trees (ERT) algoritmen og Secure Multiparty Computation (SMC). Vi bygger en maskin-
læringsmodell basert på hele datasettet ved å analysere data lokalt og kombinere. Vi
evaluerer den distribuerte implementeringen av teknikken vår og demonstrerer ytelsen
til teknikken.

Oppsummert bidrar forskningen i denne tesen til å kunne utnytte helseopplysninger
for dataanalyse og automatisk beslutningstaking uten brudd på personvernet. Dette vil,
på lang sikt, bedre beslutningstaking innen helsesektoren, diagnostikk og behandling,
til en rimelig pris.
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Part I

OVERVIEW





CHAPTER 1
INTRODUCTION

1.1 Research Context

We have been witnessing a significant increase in healthcare expenditure over the past
few decades. For instance, the healthcare costs in the United States of America had
a rise from 27.2 billion dollars (only 5 percent of GDP) in 1960 to 4124 billion dollars
(19.7 percent of GDP) in 2020 [18, 92]. In addition to the economic costs for society and
government, health problems impose financial burdens on individual patients and
their family members.

The costs for medication and treatment are among the direct health expenditures,
yet health problems can also impose indirect costs due to loss of jobs, replacement of
employees on sick leave, and reduced productivity from a medical condition [51]. Take
a patient suffering from depression as an example. Aside from the treatment expenses,
he/she may experience reduced productivity due to his/her condition. In addition to
the socioeconomic burden, health problems also affect the patients’ quality of life.

Healthcare subjects related to the brain and mental health are among the primary
domains that should be addressed. This is because one in every four people develops
one or more mental or behavioral disorders at some stage in his/her life [152]. Mental
health disorders are the largest contributor to chronic conditions in Europe [5]. In
addition, neuropsychiatric disorders are the first reason for years lived with disability
in Europe, and subsequent to cardiovascular diseases and cancer, the third leading
cause of disability-adjusted life years in Europe [5]. Human Brain Project [4] and
INTROMAT [13] are among the European projects that address healthcare challenges
related to the brain and mental health problems. In particular, INTROMAT is a research
and development project in Norway that employs adaptive technology for confronting
issues in mental health.

Healthcare technologies have substantial contributions to increasing the quality of
life and reducing socioeconomic burdens. Early diagnosis of the disease assists medical
experts in fighting and controlling it easier rather than facing the disease when it is
no longer curable. For instance, a young woman whose breast cancer is diagnosed in
the early stages of the disease using the new medical image processing methods has a
higher chance of being cured. Moreover, the costs would be much lower since treating
cancer in the advanced stages is considerably harder and more expensive, which may
not always lead to the patient’s full recovery.

Across approaches and technologies related to the healthcare domain, artificial
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intelligence (AI) and automated decision-making have recently attracted a lot of
attention. Such techniques have the potential to improve accuracy and efficiency,
including in the healthcare and medical domain, and can be utilized jointly with other
healthcare technologies, e.g., smart wearable devices. AI is proven to outperform
human experts in several application domains. For instance, AlphaGo, based on
state-of-the-art algorithms, i.e., Deep Neural Networks (DNN) and Reinforcement
Learning (RL), defeated the human European champion in the game of Go [167].
AlphaGo was the first computer program that could defeat a human professional
player in a full-sized game of Go.

In healthcare, for instance, the application of DNN for the classification of rhythms
in electrocardiography (ECG) signals has been proposed in [91]. Hannun et al. used
91,232 single-lead ECGs, collected from 53,877 patients, to classify ECGs into 12 rhythm
classes. The classification results show that DNN outperforms cardiologists considering
the F1-score and sensitivity metrics. This study shows that employing an end-to-end
deep learning approach to classify arrhythmia can lead to high diagnostic performance
and similar to the performance of human experts (cardiologists). The utilization of such
approaches can reduce the ratio for misdiagnosed ECGs and assist domain experts in
diagnosis.

AI is a valuable asset in decision-making in the healthcare and mental health domain
as well as in smart wearable devices for long-term and personalized monitoring of
patients. However, there are several challenges involved in the adoption of AI in the
healthcare domain and wearable and mobile health technologies, most importantly the
privacy of personal medical data, which is the topic of this thesis.

In connection to the privacy challenges involved in the adoption of AI in the
healthcare domain, in Europe, the General Data Protection Regulation (GDPR) [22] is
enforced to protect individuals’ privacy. By adopting GDPR, restrictions concerning the
utilization of personal data are imposed. For instance, one principle is purpose limitation,
i.e., for processing the data, a company or an organization must have a specific purpose
and must inform individuals about that purpose before collecting their personal data.
Another principle in GDPR is data minimization, which is to collect merely the necessary
personal data that is required for that purpose. The other principle is storage limitation,
meaning that the personal data can only be stored while the storage is necessary for
that purpose. Moreover, according to GDPR, the data subject has the right to ask the
data controller for the erasure of his/her personal data without delay.

In the United States, the administrative sections also propose privacy frameworks
in order to protect individuals’ privacy. For instance, in [94] which is a White House
report, the authors introduce several principles to ensure consumers’ privacy. The
following are several examples of such principles: 1) Individual Control: it gives the
right to consumers to have control over what data can be collected and how it can be
used. 2) Respect for Context: it gives the right to consumers to expect that companies
merely collect and use their personal data in a consistent context with what consumers
provide their data in. 3) Focused Collection: it gives the right to consumers to limit the
amount of data that companies can collect and retain.

These regulations posed in Europe and the United States show the importance of
data privacy. The restrictions posed by administrative sections must be taken into
consideration while employing technology. In the healthcare domain, particularly,

4 Chapter 1
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we must observe such regulations and carefully consider them due to the sensitivity
of the domain and health information. This thesis considers the problem of privacy-
preserving data analysis in the healthcare domain.

Examples of Privacy Violation Here, three notable examples of privacy violation
after sharing the data is provided.

Example 1: In [174], the author provides an example in which the governor
of Massachusetts was reidentified through linking two datasets. Thus, the private
information of the subject was revealed. The following explains how the subject was
reidentified.

The Group Insurance Commission (GIC), which is responsible for purchasing health
insurance for state employees in Massachusetts, collected patients’ data with nearly
100 attributes. The collection of patients’ data was according to the recommendation
from the National Association of Health Data Organizations (NAHDO). This dataset
contains attributes that NAHDO recommended. The left circle in Figure 1.1 shows
several attributes that this data includes.

Ethnicity
Visit date
Diagnosis
Procedure
Medication
Total charge

Name
Address
Date registered
Party affiliation
Date last voted

      ZIP
Birthdate
     Sex

Medical Data Voter List

Fig. 1.1: Linking for reidentification [174]

GIC believed that the data was anonymized. Thus, they shared the collected data
with researchers and sold a copy of it to the industry. On the other hand, another
dataset called voter list was accessible in return for a small sum of money. The data
was the voter registration list for Cambridge, Massachusetts, and included address,
ZIP code, name, gender, and birthdate of data subjects. The right circle in Figure 1.1
shows several attributes that this data includes.

Having both of these datasets, the adversaries could link (match) them and reidentify
particular records. This is because the dataset contained similar attributes, i.e., ZIP
code, birth date, and gender. Therefore, by matching the common attributes, one could
link the records from the voter list dataset to records from the medical dataset. For
instance, Massachusetts’ governor of the time, William Weld, was on both datasets.
One could match his record information from the voter list dataset to one record from
the medical dataset and infer about the attributes that only existed on medical data
and not in the voter list dataset, e.g., ethnicity, diagnosis, medication.

Example 2: In another case from Australia, many individuals’ privacy was shown
to be prone to be violated after their data was published online [16, 21, 24, 27, 30, 63].
In August 2016, the federal Department of Health published the records of medical

Chapter 1 5
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bills of 10% of Australians. This was due to the policy of open government data by
the Australian government. The data included all publicly reimbursed medical and
pharmaceutical bills during 1984-2014. The ID information of suppliers and patients
was encrypted, and because of this, one could identify which bills belong to the same
patient or supplier.

First, the authors in [63], were able to decrypt the IDs of suppliers. Second, the
authors showed that records for patients in this dataset could be reidentified without
decryption. This is simply done by matching the known information about the
patients with unencrypted parts of the records in the published dataset. The authors
demonstrate that de-identification can easily fail.

Example 3: In another case in [148], the authors propose a class of statistical
deanonymization attacks. High-dimensional data, such as account owners’ preferences
or records of transactions, are subject to such attacks. The presented technique in
this study tolerates data perturbation and imprecision of the adversary’s background
knowledge. Furthermore, this approach is applicable even when a subset of the original
data is published.

Finally, the authors in [148], practiced their proposed method for deanonymization to
the Netflix Prize dataset. Netflix [19] is among the most prominent movie rental websites.
This dataset includes the records for movie rating of 500,000 Netflix subscribers, which
was anonymized before being published. The authors show that one with limited
knowledge about a subscriber can identify his/her record in the published dataset.
The adversary’s background knowledge about subscribers is obtained through another
online service provider, i.e., Internet Movie Database (IMDb) [12], in this study.

1.2 Problem Outline

The application of AI and its subset, machine learning, for automated decision-making
in healthcare comes with challenges, such as security and privacy. Such issues are
among the primary concerns that must be addressed as they can negatively affect
individuals. For instance, patients’ privacy is violated if sharing their data with others
reveals that they or their family suffer from a medical condition. Therefore, new
regulations, such as GDPR [22], are being introduced to deal with such issues.

In the case of this thesis, which is funded by the INTROducing Mental health
through Adaptive Technology (INTROMAT) project, we are dealing with data that is
related to the healthcare domain. The INTROMAT project’s goal is to use technology to
improve public mental health. Mental illness is an important problem that accounts for
more than 20% of the years lived with disability worldwide [183]. Digital technology
has been shown to assist in the prevention and treatment of mental health disorders
[106, 176]. INTROMAT aims to facilitate effective e-mental health interventions through
an interdisciplinary research team. To this end, several forms of data are available
in the INTROMAT project that could be used to facilitate effective e-mental health
interventions. Such data can be analyzed, particularly utilizing machine learning
techniques, and the results could be used in e-mental health intervention services.

Such mental-health-related data may be collected and held in one center, e.g., a
hospital, or it can be collected and held by several parties, e.g., multiple hospitals
or patients’ mobile phones. We are required to analyze such data to extract useful
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information from it. For instance, in one case, the domain experts in INTROMAT
were interested in learning a classification model for the prediction of depression
in individuals based on the motor activity data collected by wearable devices. In
another case in INTROMAT, the domain experts were interested in using patients’
interaction data with the treatment system developed for the internet intervention of
mental health issues to evaluate their progress and possibly adapt their tasks on the
treatment system based on their interaction data. In such cases, and generally, for any
mental-health-related data, the privacy preservation of data subjects is essential.

Thus, in the context of this research, we deal with confidential health data that is
supposed to be utilized for data analysis purposes. The data may be collected and held
in several centers and may not be shared with other centers due to privacy and legal
concerns. In this thesis, we develop solutions for analyzing such data that address our
privacy concerns.

1.3 Research Questions and Design

As discussed earlier, this research is funded by the INTROMAT project, which addresses
mental-health issues with innovative technology. In this project, we require to analyze
healthcare data, particularly by machine learning algorithms, to provide benefits for
individuals based on the analysis results. However, analyzing such sensitive data
comes with challenges.

The main focus of this research project is the study of privacy for data analysis
and machine learning for extracting patterns from data in the healthcare context. We
study the privacy issues in the application of machine learning for the objectives
like exploiting new patterns from the data. This thesis addresses such issues and
approaches the research with the questions presented in the following.

After performing the literature review and identifying the research questions, we
focused on addressing them. Based on the requirements, e.g., how the data is stored,
we proposed and developed our solutions. We evaluated our developed solution based
on healthcare data and updated our solution according to the results. Finally, we stated
our findings in scientific articles. The research design is discussed in more detail in
Chapter 2.

The following are the questions for our research that are addressed in this thesis:
Research Question 1: What are the challenges for data analysis, particularly based on
machine learning techniques and in the healthcare domain?

• What are the problems related to privacy of patients?

• What are the existing solutions for privacy concerns in performing machine
learning for the analysis of healthcare data?

• What other criteria should be taken into consideration in such solutions?

Research Question 2: Can privacy-preserving data publishing methods serve as a
solution for addressing privacy concerns in healthcare data analysis when the data is
stored in one center?

Chapter 1 7
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• How can we use an anonymization solution for addressing privacy requirements
in the analysis of health data?

• What are the shortcomings of such techniques?

• What are the alternative solutions for addressing such shortcomings?

Research Question 3: How can we address the privacy challenges of data analysis in
the healthcare domain when the data is distributed among several parties?

• What are the criteria to be considered while proposing and developing such
solutions?

• How can we develop a privacy-preserving machine learning solution while
considering such criteria?

• What are the characteristics and limitations of such solutions?

1.4 List of Papers

The studies directly address the topic in this thesis are listed as follows:

Paper A: Aminifar, Amin, Yngve Lamo, Ka I Pun, and Fazle Rabbi. "A Practical
Methodology for Anonymization of Structured Health Data." In Proceedings of the
17th Scandinavian Conference on Health Informatics (SHI), Linköping University
Electronic Press, pp. 127-133. 2019.

Paper B: Aminifar, Amin, Fazle Rabbi, Ka I Pun, and Yngve Lamo. "Diversity-Aware
Anonymization for Structured Health Data." In Proceedings of the 43rd Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 2148-2154. 2021.

Paper C: Aminifar, Amin, Fazle Rabbi, Ka I Pun, and Yngve Lamo. "Privacy Preserving
Distributed Extremely Randomized Trees." In Proceedings of the 36th Annual
ACM Symposium on Applied Computing, pp. 1102-1105. 2021.

Paper D: Aminifar, Amin, Fazle Rabbi, and Yngve Lamo. "Scalable Privacy-Preserving
Distributed Extremely Randomized Trees for Structured Data With Multiple Col-
luding Parties." In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2655-2659. 2021.

Paper E: Aminifar, Amin, Fazle Rabbi, Ka I Pun, and Yngve Lamo. "Monitoring Motor
Activity Data for Detecting Patients’ Depression Using Data Augmentation and
Privacy-Preserving Distributed Learning." In Proceedings of the 43rd Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 2163-2169. 2021.

Paper F: Aminifar, Amin, Matin Shokri, Fazle Rabbi, Ka I Pun, and Yngve Lamo.
"Extremely Randomized Trees with Privacy Preservation for Distributed Structured
Health Data." In IEEE Access, vol. 10, pp. 6010-6027. 2022.
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1.5 Contributions

The following publication is related to the work done during this Ph.D. project, but
not directly covered in this thesis:

• Kumar Mukhiya, Suresh, Amin Aminifar, Fazle Rabbi, Ka I Pun, and Yngve Lamo.
"Artificial Intelligence in Mental Health." In Frontiers in Artificial Intelligence:
Models, Algorithms and Application Areas, Bentham Science Publishers, pp.
13-34. 2021.

Other publications (previous to this Ph.D. work) related to machine learning,
wearable devices, and healthcare applications are available in [165, 169, 170].

1.5 Contributions

As discussed above, accessing the data, particularly healthcare data, for analysis comes
with the challenge of privacy and legal concerns. However, to provide value from
the available personal data, we need to confront and solve such challenges. In order
to address the privacy and legal concerns, in this thesis, we consider two principal
directions for the analysis of data.

One primary direction is for when the data is stored in one central location. In
this direction, the analysis is performed on the published data. Therefore, the data
holder must consider particular measures to protect the privacy of data subjects. For
instance, the data holder perturbs the data, based on anonymization methods, before
publishing in order to thwart specific attack models in the scenario in which data
should be published. Therefore, in such approaches, the data is published, but in a
privacy-preserving fashion. These approaches are referred to as privacy-preserving
data publishing techniques [84].

The other primary direction is for when the data is distributed among multiple
parties. In this direction, the analysis is performed without publishing the data. In
this approach, we consider multiple parties, each of which holds a different part of the
data. The objective is to analyze the data held on these parties without direct access to
the data record values. This can be performed by means of distributed data analysis
algorithms combined with Secure Multiparty Computation (SMC) techniques, e.g.,
for securely computing the result of an operation without revealing the secret values.
These approaches belong to the family of privacy-preserving distributed data mining
and machine learning [31].

Figure 1.2 shows the concepts related to the whole structure of the thesis and displays
the relationship among the presented items. Both research directions, i.e., privacy-
preserving data publishing and privacy-preserving distributed machine learning, aim
for the analysis of data. The data analysis, in this thesis, usually is performed by
employing machine learning algorithms, for instance, for the classification of data
records. The proposed methods, in both directions, is considered for healthcare
applications where we have data privacy concerns. In Chapter 4, we discuss the details
related to the evaluation in terms of privacy and classification performance for both of
these directions.

In the anonymization scenario for privacy-preserving data publishing, the data is
stored in a centralized location. Then, based on the specified attack and privacy models,
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Fig. 1.2: Concepts for the two research directions of this thesis, i.e., privacy-preserving
data publishing (left) and privacy-preserving distributed machine learning (right)

the data is altered by the data holder in a way that the altered data preserves utility
to its recipients and preserves privacy according to the privacy model. Altering the
data improves privacy but decreases data utility, which is due to the trade-off between
data utility and privacy. Then, the anonymized data is shared for future data analysis,
visualization, etc. Therefore, the final outcome in this process is an anonymized dataset,
which can be used in a wide variety of tasks.

In the privacy-preserving distributed machine learning, the training data is stored
on several data holder parties, and one central server (mediator) orchestrates the whole
learning process. The number of data holder parties can be high in certain scenarios,
and the scalability of the privacy-preserving distributed machine learning frameworks
should be taken into consideration. The evaluation of the scalability and overhead
for the privacy-preserving distributed machine learning is discussed in Chapter 4.
In certain methods, The application of secure multiparty computation techniques,
which are used for secure computation based on private information held on multiple
parties, is necessary for protecting the privacy of patients. By using such an approach,
instead of the data, a machine learning model is learned and shared with future users.
Therefore, the final outcome is a machine learning model.

Figure 1.3 illustrates the process for the two directions of this thesis. The data
collection and data storage phases are gone through before the alteration and analysis
of the data in privacy-preserving data publishing and privacy-preserving distributed
machine learning scenarios. In the anonymization scenario for privacy-preserving data
publishing, based on the attack and privacy models, the data is altered by the data
holder, and the anonymized data is shared for future data analysis. Therefore, the final
outcome in this process is an anonymized dataset, which can be used in a wide variety
of tasks, e.g., training machine learning models for prediction, visualization, etc. In the
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privacy-preserving distributed machine learning direction, the data is decentralized
and may not be shared due to privacy concerns. By employing a privacy-preserving
distributed machine learning algorithm, a machine learning model for a specific task
is learned and shared with future users. Therefore, the final outcome is a machine
learning model specific to a certain task.

Data
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Data
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Fig. 1.3: The process for privacy-preserving data publishing (left) and privacy-
preserving distributed machine learning (right)

1.5.1 Privacy-Preserving Data Publishing
Here, we consider the problem of privacy-preserving data publishing. In privacy-
preserving data publishing, in particular anonymization, the input to our method is
the raw data, which can include explicit identifiers, quasi-identifiers, and sensitive
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and non-sensitive attributes. In addition, the data holder identifies attack models and
decides on privacy models that address the attack models. The goal is to generate an
anonymized version of data to be published with the data recipient, which is consistent
with the privacy models considered. The output of the method is the altered data that
is consistent with the considered privacy models. The anonymized data includes an
anonymous version of quasi-identifiers, plus sensitive and non-sensitive attributes.

The following publications address the problems in privacy-preserving data pub-
lishing:

Paper A: A Practical Methodology for Anonymization of Structured Health Data
In this paper, we investigate the possibility of adopting cryptographic algorithms
in the context of anonymization of structured data. The basic idea is to map
the original dataset to a dataset which is subject to less re-identification risks.
Adopting cryptographic algorithms can potentially provide privacy preservation
by construction. We validate the data utility preservation of the proposed approach
based on the Adult dataset [28].

Paper B: Diversity-Aware Anonymization for Structured Health Data
In this paper, we propose a method for anonymizing and sharing data that
addresses the record-linkage and attribute-linkage attack models. Our method
achieves anonymity by formulating and solving this problem as a constrained
optimization problem, by jointly considering the k-anonymity, l-diversity, and
t-closeness privacy models, for the first time to the best of our knowledge. We
evaluate the proposed approach and demonstrate its relevance based on the
widely-used Heart Disease dataset [66].

1.5.2 Privacy-Preserving Distributed Machine Learning
Here, we consider the problem of privacy-preserving distributed machine learning. In
privacy-preserving distributed machine learning, we have the training data distributed
over several parties, which is the input to our framework. Our assumption is that the
data holders do not share their training data but collaborate in the learning process.
The goal is to collaboratively build a machine learning model based on all available data
without violation of privacy. In addition to privacy, the learned model’s performance
and the learning process’s overhead should be taken into consideration. The output of
our framework is a machine learning model that can be further used for a specific task,
e.g., classification.

The following publications address the problems in privacy-preserving distributed
machine learning:

Paper C: Privacy Preserving Distributed Extremely Randomized Trees
In this paper, we consider the classification problem and show how the Extremely
Randomized Trees (ERT) algorithm could be adapted for settings where (structured)
data is distributed over multiple sources. We propose the Privacy-Preserving
Distributed ERT (PPD-ERT) approach for privacy-preserving utilization of the
ERT algorithm in a distributed setting. To the best of our knowledge, this is
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the first application of the ERT algorithm in the distributed setting with privacy
consideration (without sharing the raw data or intermediate training values),
without any loss in classification performance.

Paper D: Scalable Privacy-Preserving Distributed Extremely Randomized Trees for
Structured Data With Multiple Colluding Parties

In this paper, we extend the distributed Extremely Randomized Trees (ERT)
approach with respect to privacy and scalability. First, we extend distributed
ERT to be resilient with respect to the number of colluding parties in a scalable
fashion. Then, we extend the distributed ERT to show its relevance in settings
with limited participation of data holder parties, without any major loss in
classification performance. We refer to our proposed approach as k-PPD-ERT or
Privacy-Preserving Distributed Extremely Randomized Trees with k colluding
parties.

Paper E: Monitoring Motor Activity Data for Detecting Patients’ Depression Using
Data Augmentation and Privacy-Preserving Distributed Learning

In this paper, we present an approach for extracting classification models for pre-
dicting depression based on a new augmentation technique for motor activity data
in a privacy-preserving fashion. The augmentation addresses several problems
with the dataset, e.g., imbalanced number of recorded days for individuals in the
data, and improves the classification performance. In this study, we employ our
proposed approach for privacy-preserving distributed machine learning for data
collected by wearable devices/sensors to ensure the preservation of the privacy
of sensitive information for the patients in the context of depression and mental
health disorders.

Paper F: Extremely Randomized Trees with Privacy Preservation for Distributed
Structured Health Data

In this work, we build upon our previous work [37] and propose a scalable privacy
preserving framework for distributed machine learning based on the extremely
randomized trees algorithm, with linear overhead in the number of parties. We
use two popular publicly available healthcare datasets for performance evaluation,
i.e., the Heart Disease [66] and the Breast Cancer Wisconsin (Diagnostic) [134]
datasets. This data represents medical applications where missing values are
present, and our algorithm is designed to handle such scenarios. Finally, we
present the implementation of our technique over Amazon’s AWS cloud and
evaluate it in a real-world setting based on the mental health datasets associated
with the Norwegian INTROducing Mental health through Adaptive Technology
(INTROMAT) project.

1.6 Thesis Structure

There are two parts to this thesis. Part I consists of the problem specification, literature
review, research methods, findings, and evaluations, as well as conclusions. Part

Chapter 1 13



Introduction

II consists of the publications for the research performed during this Ph.D. on the
problems and research domains described in this thesis.

Part I of the thesis is divided into five chapters that cover the following subjects:

Chapter 1: Introduction This chapter covers the thesis research context, problem
outline, and research questions in the problem domain and research methods.
The list of articles, a short review of our contributions, and thesis structure are
also provided in Chapter 1.

Chapter 2: Research Context and Design This chapter discusses the research context
related to this thesis and describes our research focus and the relation to the
presented research questions, research method, and research design.

Chapter 3: Results This chapter covers the proposed methods developed in this Ph.D.
project, which are related to our discussed research questions. The technical
details of our contributions are discussed in Chapter 3.

Chapter 4: Evaluation and Discussion In this chapter, we provide an overview of
thesis contributions. We evaluate our contributions against the research goals and
discuss our contributions against the state-of-the-art. The validity threads and
reflections on the research context are also discussed in this chapter.

Chapter 5: Conclusion and Future work This chapter provides a summary of the
findings and contributions of this thesis. The future trends and directions for the
research performed in this thesis are also provided in Chapter 5.
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CHAPTER 2
RESEARCH CONTEXT AND DESIGN

2.1 Research Focus and Research Questions

The funding project of this research focuses on the application of technology for
improving public mental health. One of the related tasks in this regard, as discussed in
the following sections, is the analysis of data in the mental health domain based on
machine learning algorithms. In this thesis, we focused on such tasks in the project
and introduced several research questions, which were provided in Chapter 1. The
following are a short review of research questions in this thesis:

• Research Question 1: What are the challenges for data analysis, particularly
based on machine learning techniques and in the healthcare domain?

• Research Question 2: Can privacy-preserving data publishing methods serve as
a solution for addressing privacy concerns in healthcare data analysis when the
data is stored in one center?

• Research Question 3: How can we address the privacy challenges of data
analysis in the healthcare domain when the data is distributed among several
parties?

The main challenge for health data analysis that is the concern of this thesis is
the privacy of data owners (Research Question 1). In this thesis, we focus on finding
and examining solutions for addressing this issue. In order to address such privacy
concerns, as mentioned in Chapter 1, we consider two primary research directions for
the analysis of health data and concentrate our research on them. The first direction,
i.e., privacy-preserving data publishing, is for when the data is stored in a centralized
location, and in this direction, the analysis is performed on the published/shared
data. The second direction, i.e., privacy-preserving distributed machine learning, is
for when the data is distributed among multiple parties, and in this direction, the
analysis is performed without publishing the data. The objective is to analyze the data
held on these parties without direct access to the data record values. When proposing
a solution in each of these two directions, we should consider relevant criteria, e.g.,
privacy, overhead, and classification performance.



Research Context and Design

2.1.1 Privacy-Preserving Data Publishing
High-quality data is a fundamental requirement for performing analysis and mining
for the extraction of knowledge and providing benefits to individuals. The data in
its raw format has the highest utility. Therefore, at one extreme, to have the highest
data utility, one can share the raw data intact; however, the privacy of individuals is
violated if the raw data is shared. Hence, at the other extreme, one can share no data to
preserve the privacy of data individuals [64], which provides no data utility. As both
utility and privacy of the data are essential, we consider a trade-off between data utility
and privacy for sharing the data. Thus, the one who has access to the raw data can
alter the data based on this trade-off and share it afterward.

The privacy protection practice relying on controls and legislation for restricting
the publishing and usage of data is not always effective. Such policies require either a
high level of trust in the recipient of data or extreme distortion in data. However, the
adversaries are not expected to follow the rules in policies and guidelines. Moreover,
the rules and policies do not guarantee that the data will not accidentally be available
to the adversary. For example, in 2011, [15, 17, 20] report that a laptop containing
sensitive details of more than eight million patients went missing in a medical research
organization in NHS North Central London health authority. The report in [17]
mentions that these records include details about mental illness, HIV, abortion, and
cancer, and it could be a disastrous tool in the hand of a blackmailer. Several more
examples of such cases can be found in [187]. Therefore, developing tools and methods
for publishing data in a hostile environment is a necessary requirement. The published
data must be practically useful and preserve the privacy of the subjects [84].

Figure 2.1 explains the scenario for privacy-preserving data publishing. In this
scenario, data owners are patients or data subjects from whom personal data is collected,
and the data and its associated rights belong to them. The data holder collects and
holds the raw data from the data owner. Based on the described needs and objectives,
the data holder must publish the data with others. Since the data holder publishes
the data, it can also be called the data publisher. The receiver of the published data is
called the data recipient. The data recipient performs the data mining tasks on the
published data [83]. For example, a hospital may collect patients’ personal data and
publish it to a research organization. In our example, the patients are data owners,
the hospital is the data holder or publisher, and the research organization is the data
recipient.

In this thesis, for privacy-preserving data publishing, we assume that the data
holder (for example hospitals) is trusted by the data owners (for example patients). It
means that the data owners are willing to share personal data with the data holder.
This trust, however, does not extend to the data recipient. Therefore, the data holder
must publish an altered version of data to protect the privacy of data owners.

We consider the following assumptions, which are common in privacy-preserving
data publishing [83]:

• The data holder is not an expert. In privacy-preserving data publishing scenarios,
we do not require the data holder to have knowledge about the data mining tasks.
The data recipient performs the tasks for data mining. The data holder might not
know the data recipient or the tasks of mining that the data recipient conducts
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Fig. 2.1: Data collection and publishing procedure (roles on the left and examples on
the right)

on data. However, due to the regulations and public advantages of associated
research, the data holder should publish the data. In such scenarios, the data
holder should merely be able to anonymize the data.
In particular scenarios, the data holder seeks the data mining results while not
having the resources to do it. Thus, the data holder outsources the mining task to
external resources. In this case, the data mining task is known to the data holder.
However, it must still release an altered version of data to the data recipient for
analysis.

• The data recipient can be the adversary. As mentioned above, the data owners’
trust in the data holder is not transitive to the data recipient. In privacy-
preserving data publishing scenarios, we assume that the adversary receives the
data published to the data recipient. For instance, suppose that patients’ personal
data in a hospital is published to a research center for analysis. In general, a
research center could be trustworthy, but it is not guaranteed that every employee
at the research center who has access to the published data is trustworthy.

• The data is required to be published, not the data mining results. In order to obtain
more accurate data mining results, the data mining experts require to have the
data, not partial or statistical information about the data. The data can provide
more utility to the data recipient by providing the opportunity of exploration,
e.g., by visualization. Accessing the published data will also give more flexibility
to the data recipient in performing the mining tasks. For example, by having
the data, the data recipient can try using different algorithms and parameters
to train multiple models and select the best possible options. This assumption
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is consistent with the first assumption about the limited knowledge of the data
holder on data mining.

• The published records are truthful. The correctness of the analysis results depends
on the truthfulness of the records published by the data holder. If the published
records do not correspond to existing data holders in real life, the results will not
be practical and valuable. For example, a hospital publishes data about patients’
lung cancer. A research center is interested in investigating the connection
between smoking and lung cancer in individuals. If the published records to the
research center do not actually correspond to a patient, the obtained results by
the center are not correct or relevant.

By taking the above restrictions and assumptions into consideration, we develop
our solution and investigate if privacy-preserving data publishing methods can serve
as a solution for addressing privacy concerns in health data analysis where the data
is stored in one center (Research Question 2). Connected to Research Question 2, our
research includes considering anonymization solutions for addressing the privacy
concerns in the analysis of health data, their shortcomings, and alternative solutions
for addressing such shortcomings.

2.1.2 Privacy-Preserving Distributed Machine Learning
In many real-world scenarios, the data is inherently stored on multiple sites. For
instance, as different patients go to different centers for receiving various medical
services, the patients’ information can be stored on the servers based at different
hospitals or medical centers. In order to have high-quality data mining results, the
utilization of the entire available data is required for performing data mining tasks.
However, due to the legal and privacy concerns, the centers holding parts of the data
cannot share them with other centers for the analysis. One of the main directions
in this area is to perform the data mining tasks on the data stored on different sites
without violating the privacy of data subjects.

Privacy-preserving distributed machine learning focuses on developing methods
and approaches for addressing the privacy concern in this problem. Figure 2.2 explains
a scenario in which the data required for learning is distributed over multiple parties.
The data holder parties in this scenario are hospitals. Data holder parties cannot share
their data with other data holders or a center for performing the learning task due
to privacy issues. However, they can communicate with each other or a central node
and collaborate in a privacy-preserving manner to perform the task of learning. The
central node in the figure is a server that can be based in a center, e.g., a medical center,
and in this thesis, is called the mediator. The mediator and data holder parties can
communicate on a network, e.g., the Internet, to learn a model, e.g., classification
model, based on the held data on all parties and in a privacy-preserving fashion.

The data can be distributed horizontally or vertically. For each situation, several
different methods and approaches are proposed [108, 179]. The following explains
each of these scenarios:

• Horizontally partitioned data: Different records of data are store on different
sites (data holder parties). All attributes of each record are store on one site.
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Fig. 2.2: This figure illustrates the setting for our privacy-preserving distributed
machine learning [38]. Each data holder, i.e., hospital, holds a portion of the training
data, and the mediator coordinates the process and communicates with hospitals to
build a machine learning model based on the local data on each party.

• Vertically partitioned data: When the data is vertically partitioned, different
attributes of each record may be stored on different sites.

Existing literature on data mining over distributed platforms incorporate approaches
based on cryptographic and secure multiparty computing techniques [44, 60, 108, 124,
179]. In the secure computation embodied in such approaches, we are interested
in the result of a computation without knowing about the basic values needed
for this computation. Therefore, such techniques utilize secure computation to
compute a partial result needed for the learning process without revealing the private
values required for computation. However, such methods significantly increase
communication and computing overhead.

Considerable communication and computing overhead make such approaches
inefficient and impractical for many real-world scenarios, where we have large-scale
data or limited communication and computing features, e.g., in mobile phones or
resource-limited wearable devices [79, 157, 169, 170]. Several state-of-the-art solutions,
such as [75, 114, 136], aim to address learning in distributed settings in terms of
reducing communication and computational overheads. This is because the complexity
and scalability of the approach, along with the quality of data mining results and
privacy, are among the three primary metrics for evaluating privacy-preserving data
mining algorithms [48].
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By taking the above-mentioned requirements into consideration, in this thesis,
we propose a framework for privacy-preserving distributed machine learning. In
particular, we investigate if we can address the privacy challenges of data analysis in
the healthcare domain, where the data is distributed among several parties employing
such approaches (Research Question 3). This includes proposing privacy-preserving
distributed machine learning solutions for addressing privacy requirements in the
analysis of health data while considering their characteristics and limitations.

2.2 Research Methods

The research method followed in this project includes the following steps: identifying
the problem domain, reviewing the literature, identifying the gap, developing a
solution, and analyzing the proposed solution and updating it based on the analysis
results. As discussed in Chapter 1, in this research project, the problem is to analyze
health data that is considered sensitive, particularly using machine learning algorithms,
while addressing privacy concerns. We also introduced the research questions, which
are in accordance with our problem and requirements.

We reviewed the literature and explored the related works to address the identified
problems and research questions. We found two primary research directions that
address the problems specified in this research. Each of these two directions has its
own advantages and disadvantages in different settings and cannot be disregarded
or be considered as the ultimate solution. Then, we reviewed the literature for each
area to learn about the related methods and concepts and identify the challenges and
limitations in each direction.

We carried out theoretical and experimental analyses of our proposed solutions. Based
on the reviewed approaches and backgrounds in each research direction, we proposed
and developed our solutions to the problems outlined in this thesis. We analyzed our
solution according to the criteria designated in each research area for the evaluation
of an approach, including privacy, overhead, and classification performance. We
also performed experiments to evaluate our proposed frameworks by using public
health datasets. We use the results of our evaluations as feedback for improving our
frameworks.

Finally, we also carried out case studies based on health datasets for our developed
solutions. For privacy-preserving data publishing, we used the heart disease dataset
[66], which is among the most popular datasets at the UCI data repository website [71],
for anonymization and evaluation of data privacy and utility of our framework [39].
For privacy-preserving distributed machine learning direction, we implemented our
framework on Amazon’s AWS cloud platform [41]. We used several health-related
datasets for experimental evaluation. In particular, we used the heart disease [66]
and breast cancer [134] datasets which are among the ten most popular at the UCI
repository, and Depresjon (depression in Norwegian) [85] and Psykose [101] datasets
from the INTROMAT project.

Based on [115], the motivation for our research is to be of service to society as the
results of our works will be used for patients and other individuals in the society.
Our research is applied as it aims to find immediate solutions for the problems we
have in the healthcare section for the analysis of private data, as we observe in the
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INTROMAT project. The majority of our research can be considered analytical as it
involves developing new ideas on the basis of reasoning. In these studies, we provide
the logic for why and how our proposed framework works. For instance, we developed
our optimization-based anonymization and privacy-preserving distributed machine
learning frameworks and illustrated the reason why such frameworks should work.
However, in several parts of our research, our work relies on experiments and can
be considered experimental. In these studies, we mostly rely on the experimental
results rather than the logic explaining the reason why our approach should work. For
instance, for our proposed augmentation technique for improving the classification
performance, we discuss the underlying logic of the algorithm, but we rely on the
experimental results to confirm that adopting our approach improves the classification
performance.

2.3 Research Design

In this section, we discuss the research design for this thesis. Figure 2.3 shows an
overview of our research design.

This research is part of the INTROducing Mental health through Adaptive Technol-
ogy (INTROMAT) project. The vision in the INTROMAT project is to improve public
mental health by adopting innovative and adaptive technologies. Mental illness is a
growing concern that accounts for more than one-fifth of the years lived with disability
worldwide, higher than other categories of illnesses [183]. Digital technology has been
shown to help prevent and treat mental health issues [106, 176]. INTROMAT intends to
facilitate effective e-mental health interventions by an interdisciplinary research team.

In the INTROMAT project, several types of data were available that could be used
for the discussed ultimate goals in the project, i.e., facilitating effective e-mental health
interventions and improving public mental health. Such data could be analyzed,
particularly by using machine learning techniques, and the analysis results can be
used in the services provided for e-mental health interventions. For instance, in
one of the cases, building machine learning models for classifying motor activity
signals of depressed and normal individuals was desired in the project [85]. Similarly,
classification of motor activity signals collected by wearable devices into two groups
of patients diagnosed with schizophrenia and control group using machine learning
techniques was desired in the project [101]. In another case, the domain experts were
interested in using patients’ interaction data with the treatment system developed in
the project to evaluate their progress and possibly adapt their tasks on the treatment
system based on their interaction data.

Several sets of such data are made open for research and educational purposes, e.g.,
[25, 26]. However, due to the privacy of the patients and the present regulations for
protecting the right of data owners, e.g., GDPR, the access to many other available data
in the INTROMAT project for research and development purposes is a challenge [151].
Therefore, we require solutions for analyzing such data while considering privacy
concerns. Research Question 1, which addresses the challenges for data analysis based
on machine learning techniques in the healthcare domain, is introduced based on such
requirements in the INTROMAT project.

Based on the identified requirements and problems, we overviewed the available
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This research is part of the INTROducing Mental health through Adaptive 
Technology (INTROMAT) project. The vision in this project is to improve 
public mental health by adopting technology.

We require to analyze the healthcare data, particularly by using machine 
learning techniques. The analysis results can be used in the services 
provided in the healthcare domain, e.g., e-mental health interventions.

We explore the state of the art to find solutions for analyzing sensitive 
health data without violating privacy.
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Fig. 2.3: Research design

solutions and found two main and closely connected research directions addressing
such problems. In one of the directions, the focus is on altering the raw data and
publishing it for the analysis, e.g., by using machine learning algorithms. This
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direction is referred to as privacy-preserving data publishing in this thesis. In the
other direction, the analysis, particularly by using machine learning and data mining
algorithms, is performed without publishing the data and when that raw data is stored
in a decentralized fashion. This thesis refers to this direction as privacy-preserving
distributed machine learning.

In the privacy-preserving data publishing direction, we studied the privacy concerns
discussed in this area and the proposed solutions for addressing them. We reviewed
the literature related to this research direction and presented research questions to
be addressed in this thesis. In particular, we focused on anonymization and several
well-known attacks and privacy models. Then, we developed an anonymization
solution based on these attacks and privacy models. We evaluated our methods based
on publicly available datasets, and in accordance with our evaluation, we worked
on improving our anonymization approach. Finally, we published the results of our
research in peer-reviewed conferences.

For the privacy-preserving distributed machine learning direction, we studied the
literature to find out about the challenges and state-of-the-art solutions for addressing
them. We introduce the respective research question in this area to be discussed
in this thesis. In particular, we focused on the classification problem, similar to the
problems discussed in [85, 101]. We developed our solution based on the state-of-
the-art extremely randomized trees algorithm and a secure multiparty computation
layer to protect patients’ privacy. To evaluate our methods, on the one hand, we
described their logic and reason for why these methods work in their corresponding
studies. We analyzed our framework, and the analysis results caused us to work to
improve it. On the other hand, we used several publicly available healthcare datasets,
including the datasets associated with the INTROMAT project, i.e., the Depresjon and
Psykose datasets [85, 101], as the benchmarks for evaluating our methods. Moreover,
we implemented a proof of concept on Amazon’s AWS cloud platform. Finally, the
results of our research studies were evaluated and published in several peer-reviewed
conferences and one peer-reviewed journal.
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CHAPTER 3
RESULTS

As discussed in previous chapters, we made our contribution in two research directions.
The first direction is for scenarios in which the data is stored in a centralized location.
In this direction, we alter and publish a version of data that preserves privacy, and
the analysis is performed on the published data. The other direction is for when the
data is distributed among multiple parties. In this direction, we build a machine
learning model based on such data while preserving the privacy of data owners. The
background and technical details for our contributions are provided in this chapter.

3.1 Privacy-Preserving Data Publishing

In this section, connected to Research Question 2, we consider the problem of privacy-
preserving data publishing. In privacy-preserving data publishing, in particular
anonymization, the input to our method is the raw data, which can include explicit
identifiers, quasi-identifiers, and sensitive and non-sensitive attributes. In addition, the
data holder identifies attack models and decides on privacy models that address the
attack models. The goal is to generate an anonymized version of data to be published
with the data recipient, which is consistent with the privacy models considered. The
output of the method is the altered data that is consistent with the considered privacy
models. The anonymized data includes an anonymous version of quasi-identifiers,
plus sensitive and non-sensitive attributes. The criteria to be considered for privacy-
preserving data publishing solutions, as questioned in Research Question 1, are data
privacy and data utility which need to be preserved. In this research project, Papers A
and B are related to Research Question 2, which is for when the data is stored in one
center.

Anonymization methods alter the data to avoid identifying data subjects [99].
Previous studies propose privacy models for anonymization, e.g., k-anonymity [174],
l-diversity [131], t-closeness [118], LKC-privacy [140]. The data holder selects a model
for anonymization based on the scenario and data utility and privacy requirements.
Several methods have been proposed to comply with such privacy models and avoid
the associated attacks, i.e., record-linkage and attribute-linkage attacks, e.g., using
genetic algorithm, kd-trees algorithm, etc. for achieving anonymity [47, 100, 117].

Our anonymization framework is based on k-anonymity, l-diversity, and t-closeness
privacy models which address the record-linkage and attribute-linkage attack models.
In the following section, these attack models and privacy models are reviewed using
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an example.

3.1.1 Privacy Models

In this section, we briefly review the record-linkage and attribute-linkage attack models.
Then, we discuss three popular privacy models addressing such attacks, namely,
k-anonymity, l-diversity, and t-closeness.

In the record-linkage and attribute-linkage attack models, we suppose that a version
of data after removing the identifier attributes of patients, e.g., name and address, is
shared with a data recipient. At the same time, the adversary has access to the data
shared with the data recipient. This data contains several attributes through which a
patient (record owner) can be identified, i.e., quasi-identifiers, and it is assumed that
the adversary has the exact value of these attributes for the victim patient. Finally,
there is a sensitive attribute in the data, e.g., HIV, that the adversary is interested in
knowing about.

To explain this attack models, we use Tables 3.1a and 3.1b as an example. The
2nd-4th columns are considered as quasi-identifiers and refer to age, the number of
children, and the smoking state of the patient (Yes/No). The 5th column is a sensitive
attribute capturing the state of the HIV disease for the patient (Positive/Negative). Table
3.1a represents shared data after removing the identifier features. Suppose that Table
3.1a is shared with the data recipient. If the adversary knows that the victim is 37 years
old, has two children, and smokes, he/she can easily match his/her information to
one of the records (record one in Table 3.1a) and identify that the victim is diagnosed
with HIV. The record-linkage attack occurs by matching the adversary’s information
(quasi-identifiers) with published data for identifying the patient’s (record owner)
sensitive information [84].

The k-anonymity privacy model was proposed to address the record-linkage attack
model. A dataset is k-anonymous when the values of quasi-identifiers for each record
are the same as the values for at least k-1 other records in the data. In this way, the
adversary can only match his/her information with at least k records. Table 3.1b shows
a 3-anonymous version of the same data in Table 3.1a. For instance, in our example in
Table 3.1b, if the adversary knows that the victim is 37, has two children, and smokes,
he/she can merely match his/her information with a qid group containing the records
of three patients, records 1-3.

While the k-anonymity model guarantees that a patient is only matched with a
qid group, however, this model does not guarantee the protection of patients’ privacy
against attribute-linkage attacks. That is, k-anonymity does not consider the diversity
of values for the sensitive attribute in each qid group. In this example, in the first
qid group, all the values for the sensitive attribute are Positive. Therefore, in the first
qid group, the adversary can infer that the victim patient is diagnosed with HIV by
matching quasi-identifiers’ information. The attribute-linkage attack model occurs in
situations where the diversity of values for the sensitive attribute is low. As a result,
the adversary may infer the sensitive attribute with high confidence.

To address the attribute-linkage attack, the l-diversity model proposes that every
qid group should have a least l distinct values for the sensitive attribute. For instance,
in Table 3.1b, if the adversary matches his/her information with the third qid group,
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Index Quasi Identifier Sensitive
Age Number of Children Smoke HIV

1 37 2 Yes Positive
2 36 0 Yes Positive
3 40 0 Yes Positive
4 35 3 Yes Negative
5 32 1 Yes Negative
6 34 1 Yes Negative
7 30 2 No Positive
8 34 2 No Negative
9 28 1 No Negative
10 31 1 No Negative

(a) Original data

Index Quasi Identifier Sensitive
Age Number of Children Smoke HIV

1 [36-40] [0-2] Yes Positive
2 [36-40] [0-2] Yes Positive
3 [36-40] [0-2] Yes Positive
4 [32-35] [1-3] Yes Negative
5 [32-35] [1-3] Yes Negative
6 [32-35] [1-3] Yes Negative
7 [28-34] [1-2] No Positive
8 [28-34] [1-2] No Negative
9 [28-34] [1-2] No Negative
10 [28-34] [1-2] No Negative

(b) 3-anonymous data

Table 3.1: Patient data tables in original and 3-anonymous formats
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he/she can not identify that the patient was diagnosed with HIV for sure because both
Negative and Positive values are in that qid group. However, this does not consider the
confidence of the adversary’s inference properly. For example, if we have both Negative
and Positive values in all qid groups, we have 2-divers data, but if the proportion
of Positive values in one qid group is high, the adversary can infer that the patient
is diagnosed with HIV with high confidence. The entropy l-diversity and recursive
(c,l)-diversity are proposed to address such issues [131].

The entropy l-diversity is one of the existing privacy models to address the distribution
of values in the sensitive attribute. A data table meeting the following condition for
each qid group is entropy l-diverse:

−
∑
s∈S

P(qid, s) log(P(qid, s)) ⩾ log(l), (3.1)

where S is the set of values for sensitive attribute, and P(qid, s) is the probability/pro-
portion of value s for the sensitive attribute in the qid group.

The entropy l-diversity still has several limitations. For instance, if the entropy of
values for the sensitive attribute in qid groups is high, the l will be high. The entropy is
highest when the distribution of values is a uniform distribution. Nevertheless, we
prefer the minimum probability for the sensitive value (Positive in our example) in the
qid group. In our example, we favor as few Positives in the qid groups as possible to
lower the confidence of inferring HIV positive for the victim patient. Still, entropy
l-diversity encourages an equal number of Positives and Negatives in the qid groups.

The recursive (c,l)-diversity model controls the frequency of values for the sensitive
attribute in the qid group. In this model, c is a constant greater than zero, c > 0. The
values for the sensitive attribute S are: s1, s2, . . . , sm. The number of occurrence for
each value (for the sensitive attribute) in the qid group are: n1, n2, . . . , nm. The number
of occurrence for values sorted in a decreasing order are: r1, r2, . . . , rm. If a data table
meets r1 ⩽ c

∑m
i=l ri for each qid group, then the data is recursive (c,l)-diverse.

The recursive (c,l)-diversity can relax the restrictiveness compared to entropy l-
diversity. When we have a larger c, we can have a larger l. Therefore, we can relax the
restrictiveness by increasing c. This privacy model avoids having a high frequency of
highly repeated values (in the dataset for sensitive value) in the qid group. It also forces
the less frequent values (in the dataset for sensitive value) to be more frequent in the
qid group. However, this may not be desirable in certain scenarios. Many healthcare
datasets have sensitive attributes with highly imbalanced values. For instance, in a
table of data with 1000 records, we may have merely 20 patients diagnosed with HIV.
In our example, by increasing the frequency of a sensitive value (with low frequency in
the dataset) in a qid group, the adversary can more confidently infer that the patient is
diagnosed with HIV.

The t-closeness privacy model proposes having a more similar distribution of values
in the sensitive attribute among the qid groups and the whole dataset. In the t-closeness
model, the maximum distance between these two distributions may not be greater than
the threshold t. For measuring the distance between probabilistic distributions, one
possible metric is as follows:
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D[P,Q] =

m∑
i=1

|pi − qi|, (3.2)

where m is the number of values for the sensitive attribute. P = {p1, p2, . . . , pm} and
Q = {q1, q2, . . . , qm} are the distributions of sensitive attribute in the entire dataset and
in a particular qid group, respectively. This distance metric (variational distance) does
not consider the semantic distance between values. In scenarios where the semantic
distance of values is important, we may use other distance measures. For instance,
if we have three categories like teacher, police, farmer for occupation, categories are
generally not related, but the categories for height, e.g., short, middle, and tall, are
semantically related and should be treated accordingly.

3.1.2 Our Approach
For privacy-preserving data publishing, we investigate the possibility of adopting
cryptographic algorithms in the context of anonymization of structured data. The basic
idea is to map the original dataset to a dataset which is subject to less re-identification
risks. Adopting cryptographic algorithms can potentially provide privacy preservation
by construction.

For the preservation of privacy, we seek a function to map each unique record of
raw data to another unique record, which is different from the raw one and in the
same feature space. The anonymized data records must be different enough to prevent
identity and attribute attacks. The anonymized data should not allow the possibility for
the adversary to map back to the raw data. Therefore, the utilized function for mapping
the raw data should not be reversible (without access to the private cryptographic key),
or in other words, should be one-way, for those with whom the anonymized data will
be shared.

Cryptography fulfills the privacy objectives by construction. Mapping a number to
another unique number through one-way functions is the main purpose of cryptography.
Therefore, by such intrinsic features of cryptographic algorithms, we can make sure
of the preservation of privacy criterion without taking further actions. Since, after
encryption, the values would be meaningless numbers for the adversary, and it is not
possible for one without a key to map back to the raw data.

As described earlier the anonymization methods should fulfill two criteria, namely
privacy preservation and data utility. Application of cryptographic algorithms guar-
antees the privacy preservation criterion by construction. The state-of-the-art cryp-
tographic algorithms are robust against adversarial attempts for revealing the values
which are encrypted. However, we also need to make sure about the performance of
this methodology in regard to the utility of data. We experimentally show that our
proposed methodology for anonymization of structured data is also efficient regarding
the data utility.

The utility of the data needs to be preserved and this is related to the correlation of
attributes and labels in data samples. To ensure this criterion is satisfied after encryption
of the dataset, the utility of the data is compared before and after anonymization based
on classification performance. If the results for raw and anonymized data are close,
then in addition to the preservation of the privacy, there also would be a confidence
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about the utility of data. A loss to a limited extent in the utility of data is acceptable as
there exists a trade-off between privacy and data utility in data anonymization [64].
We evaluate this approach based on several state-of-the-art cryptographic algorithms
on the Adult dataset [29]. We observe minor degradation in terms of classification
performance (less than 3% reduction in geometric mean) after the anonymization
process, which shows preservation of data utility.

This approach is particularly suited in the context of categorical data without
semantic relation. In addition, we assume that the distribution of data is not known to
the adversary. The proposed approach is relevant in the context of learning classification
models and is not applicable in other applications, e.g., visualization of data. The
proposed methodology can have a complementary role in combination with other
methods as well.

To address the shortcomings of the discussed approach, we propose an optimization-
based anonymization framework for datasets with both categorical and numerical
attributes. The proposed framework is based on clustering the data samples in a
diversity-aware fashion to reduce the risks of identity and attribute linkage attacks. Our
method achieves anonymity by formulating and solving this problem as a constrained
optimization problem, by jointly considering the k-anonymity, l-diversity, and t-
closeness privacy models, for the first time to the best of our knowledge. In other
words, we propose a method for anonymizing data that ensures each record is
indistinguishable from, at least, k-1 other records in the shared data while taking the
diversity and frequency of values in the sensitive attribute into consideration. We
evaluate our method based on the utility and privacy of data after anonymization in
comparison to the original data.

We formulate the anonymization problem in a constrained optimization framework
as a clustering problem, where the diversity and frequency of sensitive values are
captured and enforced by constraints. We refer to our proposed method as diversity-
aware anonymization, where diversity captures both the diversity concept in the
l-diversity privacy model and the frequency and distribution of sensitive values in the
t-closeness privacy model. The experimental results show the preservation of utility of
data for classification tasks and the privacy properties noted in the discussed models.

Similar to other anonymization techniques, in our method, if the number of Quasi-
Identifier attributes increases, the utility of anonymized data will be negatively affected.
This method is relevant for structured healthcare datasets and is not designed for
time-series data. Our proposed method is designed for scenarios in which data is
stored centrally. An interesting future research topic is extending our method for
anonymizing data stored in a distributed fashion.

In the following, we describe our method for addressing the attack models discussed
in Section 3.1.1. In our method, we consider the indistinguishability of samples in a qid
group, proposed in k-anonymity, diversity of values in sensitive attributes in qid group,
discussed in l-diversity, and frequency of sensitive values in qid group in t-closeness.

In this method, we suppose that the values for the sensitive attribute are either
sensitive or not. In our example, the Positive value shows that the patient (record
owner) is diagnosed with HIV and is sensitive, while the value Negative if known to the
adversary causes no consequence to the patient. Therefore, we consider a binary state
for the values in the sensitive attribute and distribute them in the qid groups evenly.
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Our method clusters the points in the space of quasi-identifiers and shares the
center of each cluster (qid group) as the quasi-identifiers’ values for each qid group.
Each cluster contains k samples and is clustered based on the distance of instances to
the cluster center and the number of samples with sensitive values in each cluster.

We adopt the constrained optimization framework to solve the described clustering
problem. The classical clustering techniques, e.g., k-means [132], do not fulfill our
requirements. First, we need to introduce the constraints to have k samples in each
cluster to ensure the indistinguishability property of the k-anonymity model. Second,
we need to introduce a constraint for distributing instances with sensitive values evenly
among qid groups (clusters) to ensure diversity in the l-diversity and t-closeness
models.

The described anonymization problem is formulated in the Mixed-Integer Linear
Programming (MILP) framework, as follows:

min
B,C

nC∑
i=0

nS∑
j=0

|Bij · (Xj − Centeri)| (3.3)

s.t.
nC∑
i=0

Bij = 1, ∀j ∈ {0, . . . , nS} (3.4)

nS∑
j=0

Bij =
nS

nC

= k, ∀i ∈ {0, . . . , nC} (3.5)

(∑nS

j=0 Bij · Xj

)

k
= Ci, ∀i ∈ {0, . . . , nC} (3.6)

nS∑
j=0

Bij · Sj ⩽ α ·
∑nS

j=0 Sj

nC

, ∀i ∈ {0, . . . , nC}, (3.7)

where nC is the number of clusters (qid groups), and nS is the number of samples to
be anonymized. Xj is the vector of quasi-identifiers’ values for sample j. Bij indicates
if sample j belongs to cluster (qid group) i and it is a Boolean optimization variable.
Centeri is the i-th cluster center calculated by k-means algorithm to be used as an initial
solution in our method to reduce the complexity of our optimization problem.

The parameter k is the number of samples in each cluster and is equal to nS

nC
. Ci is

the center of cluster i which will be optimized during solving this problem. The values
of vector Ci will be shared with data recipients, i.e., instead of raw quasi-identifiers’
values for i-th qid group. Sj is a Boolean parameter, Sj ∈ {0, 1}, that identifies if sample
j has a sensitive value. Finally, α is a parameter that controls the restrictiveness of
the constraint, i.e., the higher the value of α, the less the restrictions in solving this
optimization problem. This parameter is introduced to be able to tune the restriction
with respect to diversity in each qid group.

Let us discuss the proposed formulated optimization problem. The |Bij ·
(Xj − Centeri)| expression in Equation (3.3) is the Manhattan distance [116] of sample
j, Xj, and cluster center i, Centeri, when the Boolean variable Bij is equal to one. Bij will
be equal to one, Bij = 1, if sample Xj belongs to cluster i, and it will be zero otherwise.
The objective function in Equation 3.3 intends to optimize Bijs to minimize the distance
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between samples in cluster i and Centeri, for all clusters and samples.
Equations (3.4)-(3.7) are the constraints of our proposed optimization problem:

• The first constraint, in Equation (3.4), forces each sample to belong to only one
cluster. This is done by ensuring that Bij is one exactly once for all i. This is
formulated by having the sum of Bij for sample j and all clusters equal to one as
the constraint. Since Bij is binary, it will be 1 for one and only one cluster.

• The second constraint, in Equation (3.5), forces the number of samples in each
cluster to be equal to k. The summation of the number of samples must be equal
to k for cluster i. This condition can readily be relaxed to: at least k samples in
each cluster. This is formulated by having the sum of Bij for cluster i and all
samples equal to k as the constraint. Since Bij is binary, there will be k samples in
cluster i.

• The third constraint, in Equation (3.6), finds the optimized cluster centers, i.e.,
Cis. The optimized center for cluster i is the average of all k samples that belong
to cluster i. This is formulated by having the sum of all samples, which fall in
cluster i (k samples fall in each cluster) divided by k equal to the center of cluster i
as the constraint.

• Finally, the last constraint, in Equation (3.7), forces the optimization to distribute
the samples with sensitive values (Sj = 1) into all clusters. The left-hand side
of the constraint is equal to the number of sensitive values in cluster i. The
right-hand side is the number of samples with sensitive value divided evenly
among the clusters (multiplied by α, which is the parameter for relaxing the
hard constraint in our optimization problem). This is formulated by having the
number of samples with sensitive value in cluster i to be less than or equal to
almost the number of samples with sensitive value in the dataset divided by the
number of clusters as the constraint.

After the optimization, we know which sample belongs to which qid group or
cluster, based on B matrix. We also know the optimized cluster centers, identified
based on the values of Cis. Therefore, the values of sample quasi-identifiers will be
replaced by their respective cluster center values. In this way, we obtain a solution that
addresses record-linkage and attribute-linkage attack models. We force the samples in
the anonymized data to be indistinguishable from k-1 other samples while considering
the diversity of values in the sensitive attribute.

An integer programming problem is an optimization problem in which the variables
to be optimized are integers. In case the variables are not limited to integers, our
problem is mixed-integer programming. When in the problem, the objective and the
constraints are linear, our problem is linear programming [56, 189]. In our optimization
problem, the variables B and C are not limited to integers. The problem’s objective and
constraints are also linear. Therefore, our optimization problem is a mixed-integer linear
programming problem and can be solved using solvers supporting MILP problems.

The algorithm for anonymization, which was based on clustering, is described
above. The objective and constraints should be created according to the described
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Fig. 3.1: Illustrative example for our anonymization method

algorithm and passed to a solver for optimization. CPLEX [11] and GUROBI [10] are
two examples of solvers for solving programming problems.

Figure 3.1 presents an example in which the solution in Figure 3.1b merely considers
k-anonymity property, while Figure 3.1c considers the diversity of values in the sensitive
attribute addressed in l-diversity and t-closeness. The color of the circles shows if
the samples contain a sensitive value. If the color is blue, the sample does not have a
sensitive value, Sj = 0, while a red circle shows having a sensitive value Sj = 1.

In Figure 3.1b, samples 0, 1, 2, 4, 9 fall in the same qid group. The rest of the samples
fall in the second group. By sharing the cluster centers for each group, we achieve
5-anonymous data. However, in such a solution, the samples with sensitive values
are not evenly distributed. By considering the constraint introduced for the diversity
of values in the sensitive attribute, we obtain the solution presented in Figure 3.1c.
In this solution, the data is still 5-anonymous, i.e., it has five samples in each cluster.
Nevertheless, in this case, sample 2, falls in the same cluster with 5, 6, 7, 8 to evenly
distribute samples with sensitive values.

In Chapter 4, we evaluate our proposed method experimentally based on Heart
Disease dataset [66] and consider data utility and data privacy criteria. We discuss
the experimental results and the trade-off between data utility and data privacy in
anonymization.

3.2 Privacy-Preserving Distributed Machine Learning

The previous section discusses the methods for altering raw data and publishing it.
One main drawback of such methods is that they require enough disturbance in data
to preserve the privacy of record owners or patients. However, this is not desirable in
terms of the utility of the data. In anonymization, particular information that may help
the learning algorithms to generate more accurate models can get lost by distortion of
raw data.

On the other hand, the majority of anonymization methods are designed for
scenarios in which data is collected in one central repository. Nevertheless, in distributed
scenarios, we may not be able to send the raw data to a center for the anonymization
process. These are among the characteristics and shortcomings of privacy-preserving
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data publishing approaches questioned in Research Question 2 that motivate us to
also look for alternative solutions for scenarios with requirements exceeding the
privacy-preserving data publishing approach capabilities. Therefore, based on the
conditions of the problems and our requirements, we need to devise new techniques
for privacy-preserving data analysis. Here, we focus on learning from decentralized
data without privacy violation.

In this section, connected to Research Question 3, we consider the problem of
privacy-preserving distributed machine learning. In privacy-preserving distributed
machine learning, we have the training data distributed over several parties, which
is the input to our framework. Our assumption is that the data holders do not share
their training data but collaborate in the learning process. The goal is to collaboratively
build a machine learning model based on all available data without violation of privacy.
In addition to privacy, the learned model’s performance and the learning process’s
overhead should be taken into consideration. As questioned in Research Questions 1
and 3, privacy, scalability and overhead, and model’s performance are the criteria to
be used while proposing and developing a privacy-preserving distributed machine
learning framework. The output of our framework is a machine learning model that
can be further used for a specific task, e.g., classification. In this research project,
Papers C, D, E, and F are related to Research Question 3, which is for when the data is
distributed among multiple parties.

Our privacy-preserving distributed machine learning framework is based on the
extremely randomized trees algorithm and secure multiparty computation. In the
following section, extremely randomized trees algorithm and its characteristics are
reviewed, and secure multiparty computation is discussed using an example.

3.2.1 Underlying Techniques for Our Privacy-Preserving Distributed
Machine Learning Framework

Extremely Randomized Trees (ERT) Algorithm ERT [86] algorithm is a tree-based
ensemble learning algorithm that has been widely used for solving classification
problems due to its learning performance, robustness to overfitting, and explainability,
which are among the characteristics of tree-based ensemble learning algorithms
[81, 125, 129]. However, the traditional ERT algorithm operates under the circumstances
where the data is stored in a central location. We adapt the ERT algorithm for distributed
settings where data is stored and essentially distributed among several parties. In the
following we discuss some of the advantages of the ERT algorithm, for its utilization in
distributed settings, with respect to other available solutions.

Firstly, since the ERT algorithm is an ensemble learning method, it is robust to
tackle overfitting. Ensemble learning methods incorporate weak learners to generate
weak classifiers that are independent of other generated classifiers. Therefore, based
on Condorcet’s jury theorem (1785) [65], the majority vote of this ensemble of learned
classifiers predicts better than the vote of an individual classifier, and if we increase
the number of classifiers, the accuracy will improve [163]. Therefore, in the ensemble
learning method, we generate a collection of classifiers instead of only one, e.g., in
distributed ID3 in [75] by Emekçi et al., and finally predict based on the voting result
of the learned classifiers. In such ensemble learning methods, randomness parameters
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in the learning algorithm cause generating classifiers different from each other. In
the ERT algorithm, the randomness of candidate attributes and the splitting point for
every decision node in the tree are the randomness parameters as described by Geurts
et al. in [86], which result in learning different classifiers. ERT follows the logic of
bagging in ensemble learning. Bagging combines the learned classifiers by voting, i.e.,
it predicts based on the majority vote among learned classifiers. While not increasing
the bias, bagging leads to lower variance in our learned model since we are averaging,
and lower variance in the learned model reduces the risk of overfitting [81].

Secondly, ERT is tree-based, and tree-based algorithms have been shown to out-
perform other techniques for the structured data that we are addressing. In [129], the
authors report that tree-based learned models usually outperform models learned
by standard deep neural networks (e.g., [114, 137]) for tabular-style data. Moreover,
in health informatics domain applications, the interpretability of the learned models
is advantageous. The patterns that tree-based learned models unveil, particularly in
the healthcare domain, can be more useful than the learned model’s prediction capa-
bility [129]. Tree-based algorithms are more interpretable compared to deep neural
networks [125]. This is an advantage for ERT. However, since ERT is an ensemble learn-
ing method, and in ensemble methods, instead of learning a one-tree model, e.g., in
the ID3 algorithm [159], the algorithm constructs several trees as a model. Hence, this
decreases the explainability of such approaches compared to the ID3 algorithm.

Secure Multiparty Computation The studies on the Secure Multiparty Computation
(SMC) problem were started by Yao’s Millionaires’ problem [191]. The Millionaires’
problem is a classical problem used for describing the SMC field and is secure two-party
computation. In Millionaires’ problem, two millionaires want to know which of them is
wealthier without revealing the amount of wealth they possess. The secure multiparty
computation framework considers the problem of collaborative computation among
several parties, each of which hold a secret value; the parties are interested in the
result of a computation performed based on their secret values, while they refrain from
sharing their secret values with other parties.

The secure multiparty computation can be employed for a wide range of problems,
including healthcare applications while considering privacy concerns. For instance, the
SMC technique can be used for comparing an individual’s DNA against a database
of DNAs of patients diagnosed with cancer. This comparison can aim to identify if
the person whose DNA is being compared against the database is in the high-risk
group for a particular type of cancer. On the one hand, DNA information is very
sensitive and may not be shared with other institutions or organizations. On the
other hand, the benefit from performing this comparison is significant for health and
society. Here, the secure multiparty computation can resolve such a dilemma and only
return a category of cancer, based on the individual’s DNA, without disclosing any
information about other DNAs in the database [123]. The same methods for securely
comparing, aggregating, multiplying, etc., can be employed in the healthcare domain
and its subdomains, e.g., mental health, for various applications.

We provide an example here for explaining secure multiparty computation. Figure
3.2 explains a scenario for an SMC problem. In this problem, as shown in the figure,
we have four parties, each holding a secret value. The desired value in this problem is
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the result of function F that takes secret values as input and returns a value as output;
for instance, the desired value could be the summation of secret values. One simple
solution for computing the desired value without sharing secret values with other
parties is to share them with a trusted party by everyone. Then, the trusted party can
perform the computation and return the result to all parties. Figure 3.3 shows this
solution. However, the assumption with respect to the trusted parties is not feasible in
many scenarios, so such solutions are not practical. Therefore, based on the type of
the computation and the scenarios, we need to devise other solutions to perform the
desired collaborative computation in a secure way and without violating privacy.

Party 1

Secret Value 1

Party 2

Secret Value 2

Party 3

Secret Value 3

Party 4

Secret Value 4

Desired Value = F(Secret Value 1, Secret Value 2, Secret Value 3, Secret Value 4)

Fig. 3.2: Secure Multiparty Computation

Party 1

Secret Value 1

Party 2

Secret Value 2

Party 3

Secret Value 3

Party 4

Secret Value 4

Desired Value = F(Secret Value 1, Secret Value 2, Secret Value 3, Secret Value 4)

Trusted Party

Fig. 3.3: Sharing secret values with a trusted party

Following the above example, and for explaining secure multiparty computation, we
describe a simple method for secure aggregation of secret values. In secure aggregation,
the desired value is the summation of secret values. Figure 3.4 represents the method
for secure aggregation. In this example, we have four parties, each, hold a secret value
(S.V.), the parties are interested in the summation of all secret values, i.e.,

∑4
i=1 S.V.i.

For securely aggregation the secret values: (i) The first party generates a random mask,
aggregates it with its secret value (S.V.1), and sends the result to the next party. (ii) The
following parties receive the input, aggregate it with their secret values, and send the
result to the next party. The last party sends the result to the first party. (iii) The first
party receives the result from the last party, removes its random mask from the result,
and informs all parties about the final result.
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Party 1

S. V. 1

Party 2

S. V. 2

Party 3

S. V. 3

Party 4

S. V. 4

Desired Value = Sum(Secret Value 1, Secret Value 2, Secret Value 3, Secret Value 4)

Sum(Random Value, S. V. 1) Sum(Input, S. V. 2) Sum(Input, S. V. 3)

Sum(Input, S. V. 4)

Fig. 3.4: Secure aggregation

In this way, each party cannot identify the secret value of previous parties based on
the received information. However, in this method, if two neighbor parties, i.e., the
parties before and after a certain party in the ring, collude, they will be able to identify
the secret value of the victim party. For instance, if Party 2 reveals the input of Party 3,
and at the same time, Party 4 reveals the output of Party 3, then they can reveal the
secret value of Party 3. Therefore, the minimum number of colluding parties required
for identifying a secret value is two in this method. Moreover, in terms of overhead, for
one secure computation operation in this method, each party sends one message and
receives one message. Thus, the communication overhead for this method is 2n, in
which n is the number of parties.

In privacy-preserving data mining techniques, two important characteristics of the
SMC approach to be selected are the privacy and communication overhead of the
approach. In such methods, we seek a higher level of privacy preservation, i.e., a larger
minimum number of colluding parties, and lower communication overhead, i.e., a
lower number of messages sent and received for each secure operation.

3.2.2 Our Approach
In this section, we target the problem of distributed machine learning with multiple data
holders, without privacy violation. We assume that the training data is horizontally
partitioned, i.e., different records of data are stored on different sources. We consider
the classification problem, in which each data record has one category as the target.
We consider that data is structured, i.e., it can be stored in spreadsheets, and contains
categorical attributes, e.g., gender or mental-disorder history, and numerical attributes,
like age or frequency and duration of pathological episodes.

We focus on the class of tree-based algorithms that have been shown to consistently
outperform or to be on a par with the other state-of-the-art techniques when it comes to
structured data [57, 129]. To learn from such horizontally-partitioned structured data,
we propose the privacy-preserving distributed extremely randomized trees (PPD-ERT).
We first extend the ERT algorithm [86] for distributed settings to enable learning
without explicit sharing of the raw data. We then introduce a secure aggregation
technique over the distributed ERT algorithm to avoid any information leakage. We
evaluate the proposed solution experimentally and compare the results against the
state-of-the-art techniques.

We assume that parties and mediator communications are performed securely,
and message passing is performed through secure communication. We also assume
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that each party sends and receives messages which are based on correct information.
We assume that there is no collusion among the involved parties. Our technique is
designed for tree-based learning methods, and its logic may be applicable for extending
other tree-based machine learning algorithms in distributed settings.

Here, we provide a simplified example to clarify the procedure of learning for our
algorithm without the secure multiparty computation layer. This procedure is shown
in Figures 3.5 and 3.6. For the sake of simplicity of presentation, we do not consider the
secure aggregation in this example. In the initiation of the learning process, the global
random seed, personal random seeds, number and type of data attributes, possible
categories or range of data attributes, as well as learning parameters for the algorithm
(e.g., k) are shared among all parties. In our example, we have two data holder parties
and a mediator. The first and second parties, respectively, hold three and two records
for learning as shown in Figure 3.5a. Each record has three attributes (two numerical
and one categorical) and one classification label.

The goal is to learn an ensemble of decision trees from all the records available on
the data holder parties based on the privacy-preserving distributed ERT algorithm.
The mediator initiates a round of learning a decision tree and repeats it after finishing
to have an ensemble of decision trees. At every step in choosing a decision node for our
decision tree, each party, including the mediator, generates two random decision nodes
based on the global seed. Since all parties use the same seed, they locally generate
candidate decision nodes that are similar to the generated decision nodes in other
parties. Figure 3.5a demonstrates the local generation of candidate decision nodes for
the root of the first decision tree.

In the next step, the parties classify their records with each randomly generated
candidate decision node as shown in Figure 3.5b. Several data records fall in the True
branch (for each candidate decision node), and several data records fall in the False
branch. Therefore, based on each record’s labels (class), we make two vectors for each
branch that represent the combination of the labels. For instance, for the first candidate
decision node in the first party: the True vector is [0, 1], and it means that zero records
of this party which belong to the class (label) A, and one record of this party which
belongs to the class (label) B fall under True branch of this candidate decision node.
Thus, each data holder party, for each candidate decision node, generates two vectors
representing the records labels’ combination (that fall under True and False branches).

The resulting vectors for each candidate decision node and in all data holder parties
should be aggregated and returned to the mediator. Figure 3.6a shows this procedure
in which all vectors for the True branch of each candidate decision node are aggregated
and returned to the mediator, similar to the False branch’s vectors. At this point, for
each candidate decision node, the mediator has the combination of labels for True and
False branches. In addition to deciding about making a leaf or decision node in the
decision tree’s current position, such vectors determine which candidate decision node
is better (has higher score/information gain) and should be chosen. For calculating
the score (the information gain here) for a decision node, the combination of labels
at each branch is required. The information gain enables the comparison of how
decision nodes classify the samples concerning the purity of their labels. This is done
by calculating the impurity of labels before and after classification with a decision node.
In our example, the second decision node has a higher information gain and is selected.
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(a) Generating decision nodes randomly
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Att. 1 Att. 2 Att. 3 Class

1 18 M 80 A

2 21 F 60 B

3 30 M 70 B

Att. 1 Att. 2 Att. 3 Class

4 27 F 90 A

5 43 F 70 A

Record #1
Record #3

Record #1Record #2
Record #3

B A
B

A B
B

Record #4

Record #5
Record #4 Record #5

A

A

A A

ቊ
True: [1, 0]

False: [0, 2]
ቊ
True: [0, 1]

False: [1, 1]

ቊ
True: [2, 0]

False: [0, 0]
ቊ
True: [1, 0]

False: [1, 0]

(b) Splitting the data in each computational node

Fig. 3.5: Practical example
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(b) Continuing the same process for the rest of the tree

Fig. 3.6: Practical example
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As shown in Figure 3.6b, the second candidate decision node is selected for the
decision tree’s root. After checking the labels in its True branch, [2, 0], we observe that
all the records falling in the True branch belong to the same class (have the same label:
A). Therefore, instead of making a decision node, we make a leaf in the True branch.
On the other hand, we follow the same procedure of making a decision node for the
False branch. However, this time, the data holder parties only consider the records that
fall in the root’s False branch, i.e., 2, 3, and 5. We continue the same procedure for the
rest of the tree.

Now we discuss the secure multiparty computation layer in PPD-ERT. We employ
an SMC technique in our proposed distributed ERT algorithm to avoid sharing the
vectors representing the combination of the data record labels for each candidate
decision node and each branch in each data holder party. In addition to the provided
privacy by not sharing the raw values of data attributes, which is by construction,
adoption of the SMC technique for aggregating the partial results from data holder
parties contributes to privacy preservation.

In an extreme example, suppose our data has one sensitive attribute in it, e.g.,
having conducted transgender surgery before, and each data holder party has only one
record on it. Then, sharing the partial results from one party, the vectors representing
the combination of data record labels for one candidate decision node, can reveal
sensitive information. If the candidate decision node is "whether the record falls
into the transgender branch or not," the mediator can infer if that individual with
the specified record has conducted transgender surgery. Therefore, to avoid such
vulnerabilities, we adopt an SMC technique for aggregating the partial results from
the data holder parties.

In the adopted SMC technique, shown in Figures 3.7 and 3.8, parties add random
integer masks to their partial result vectors’ values and pass them to the next party
(or mediator). The mediator knows about these random integer masks and subtracts
them from the partial results that it receives from the last party. We now describe
the proposed technique in detail. The mediator shares a personal random seed with
each data holder party through secure communication, to avoid sending and receiving
exclusive random numbers between the mediator and each party as shown in Figure
3.7a. In Figures 3.7 and 3.8, superscripts represent the number/ID of the data holder
party (P1 ⩽ Pm ⩽ Pn), and subscripts represent the branch (T or F) and class/label of
data samples (1, ..., nc).

Then, in the process of learning a decision tree, the mediator sends the request
for secure aggregation to the first party, as shown in Figure 3.7b. The party makes
calculations described earlier and obtains two resulting vectors for each decision node.
Afterward, the party generates random integer masks based on its personal random
seed and adds it to the results from the previous step. For each global and the personal
random seeds, the states of random function are stored and utilized precisely in every
party. If the data holder party receives partial results vectors (P. R. in Figure 3.8) from
the previous data holder party, then it also aggregates those values to the calculated
vector in the previous step. Finally, the party passes its computed vectors to the next
party or to the mediator if that party is the last one. Figure 3.8a, shows this procedure
in each data holder party.

Finally, when the mediator received these masked aggregated results from the
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𝑠𝑒𝑒𝑑(𝑃1)

𝑠𝑒𝑒𝑑(𝑃𝑛)

(a) Sharing personal random seeds

Pass the Results to 𝑃2

Receive the Partial 
Results from 𝑃𝑛−1

Request for Secure

Aggregation to 𝑃1

Pass the Result of Secure

Aggregation to Mediator (from 𝑃𝑛)

(b) Secure aggregation process

Fig. 3.7: Secure aggregation of the results of splitting the data
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Fig. 3.8: Secure aggregation of the results of splitting the data
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last party. Since the mediator has the personal random seeds, it generates the same
random masks as generated on the data holder parties. Then, for further computations
for learning the decision tree, the mediator subtracts those random masks from the
received result from the last party. At this step, without sharing the partial information
about data labels by each data holder party, the mediator has the aggregated vectors
representing the combination of data record labels for each branch of each candidate
decision node for all parties. Figure 3.8b, shows this procedure in the mediator.

The minimum number of parties required for collusion in order to identify a
secret value in this approach, PPD-ERT, is two. PPD-ERT is also limited to datasets
without missing values, which is rarely the case in real-world healthcare applications.
Therefore, we propose a framework based on PPD-ERT, called k-PPD-ERT, that employs
an extended SMC technique without increasing the communication overhead. In
k-PPD-ERT, the minimum number of required colluding parties is raised to k, which is
a parameter that can be tuned by the user of the algorithm. The k-PPD-ERT’s secure
multiparty computation technique is efficient, and at the same time, similar to Shamir’s
secret sharing technique [164], is resilient to multiple colluding parties. Our k-PPD-ERT
framework is designed to handle scenarios in which the dataset contains records
with missing values. In the following, we describe our proposed privacy-preserving
distributed machine learning framework in detail.

3.2.2.1 Adaptation of ERT for Distributed Settings

This section presents the detailed procedure of learning an ensemble of decision trees
based on the ERT algorithm in the discussed setting. The pseudocode of the algorithm
is also provided for clarity.

Initialization and Start of the Learning Process We have two types of parties in
our distributed learning framework. We have a mediator that mediates and orchestrates
the overall learning process and several data holder parties that collaborate with each
other and the mediator to learn a classification model. Algorithm 1 and Algorithm
2 show the pseudocodes of the procedures and functions for the mediator and data
holder parties, respectively.

(a) Sharing the Random Seeds

To start this process, a global seed for the random function is agreed upon among
all parties (Algorithm 1, Line 1 and Algorithm 2, Line 1). The global seed is
common among the mediator and all data holders. In the ERT algorithm, we
have two parameters of randomness for learning a weak classifier. First, we need
to randomly select several attributes for the candidate decision nodes, at every
step of building our decision tree (Algorithm 1, Line 20 Algorithm 2, Line 20).
Second, a random splitting point for every attribute in the candidate decision
node is required (Algorithm 1, Line 21, and Lines 23–27, and Algorithm 2, Line 21,
and Lines 23–27). The data holder parties and the mediator are required to use
the same candidate decision nodes at every step when learning a decision tree.
For this purpose, we use the global random seed that all parties, including the
mediator, utilize to locally generate these candidate decision nodes (Algorithm 1,
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Line 10, and Algorithm 2, Line 14). This is instead of making these randomly-
made candidate decision nodes in the mediator and sharing them with all parties
for further tasks. Since all parties use a common random seed, i.e., the global
random seed, they generate the same candidate decision nodes at every step,
without major communication overhead.

In addition, for the secure aggregation of partial results, described further, k
selected data holder parties send unique seeds for the random function to other
data holders through secure communication (Algorithm 2, Line 2). These random
seeds are exclusive and private for each pair of data holder parties.

(b) Initiate the Process of Learning One Decision Tree

The privacy-preserving distributed ERT algorithm is an ensemble learning
method, therefore, we repeat the process of learning a decision tree for M times,
until we have M decision trees (Algorithm 1, Lines 3–4). The number of trees,
M, is a parameter tuned by the user to make a trade-off between robustness and
overhead. We learn different decision trees every time due to the randomness in
ERT. Finally, after repeating the process of learning a decision tree M times, we
store the trees in E (Algorithm 1, Line 5). For future prediction, the ensemble of
the learned trees, E, will be used.

The Process of Learning One Decision Tree The learning of a decision tree based
on the privacy-preserving distributed ERT algorithm is a recursive procedure. The
procedure is executed top-down and starts from the root and ends in the leaves. For
the root decision node, the Split_ID or the ID for the decision node is zero, and there is
no previous branch, so the Branch input is set to ‘None’(Algorithm 1, Line 4).

(a) Generation of Candidate Decision Nodes

For building each decision tree, extremely randomized tree, the mediator generates
the candidate decision nodes (Algorithm 1, Line 10). The mediator will further
select the best decision node among the candidates based on the results received
from data holder parties. The candidate decision nodes are generated randomly,
based on the global random seed, according to Algorithm 1, Lines 19–27, and
Algorithm 2, Lines 19–27. The number of candidate decision nodes, D, is a
parameter in the ERT algorithm tuned by the user. D attributes from all possible
attributes are selected for candidate decision nodes (Algorithm 1, Line 20, and
Algorithm 2, Line 20). Then, each candidate decision node’s splitting point is
selected (Algorithm 1, Line 21, and Algorithm 2, Line 21). If the attribute is
categorical, one random possible category is selected to be checked (Algorithm 1,
Lines 24–25, and Algorithm 2, Lines 24–25); otherwise, when the attribute is
numerical, a point in the possible range is selected for comparison in the decision
node (Algorithm 1, Lines 26–27, and Algorithm 2, Lines 26–27). We assume that
all parties already have the possible categories and ranges for each attribute.
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Algorithm 1 Mediator
(1) • The global random seed (known to all parties) is set in the mediator
(2) • Wait for data holder parties’ connection
(3) for i = 1 to M do

(4) • Generate tree: ti = Build_k-PPD-ERT(0, ‘None’)
end

(5) E = {t1, t2, ..., tM}

(6) Function Build_k-PPD-ERT(Split_ID, Branch)
(7) • Send Secret_aggregation(Split_ID, Branch) request to data holder parties
(8) • Wait until receiving the results from data holder parties
(9) • Sum = aggregated the received results form data holder parties

(10) • Generate_splits() (based on the global seed)
(11) if number of classified records is less than nmin or labels of the classified records are the

same then

(12) return a leaf label
else

(13) • Calculate each split’s score (Information Gain) based on Sum
(14) • Select the split with the highest score.
(15) • Inform all parties about the selected split (for Split_ID)
(16) • Build tree_T = Build_k-PPD-ERT(next Split_ID, ‘T’)
(17) • Build tree_F = Build_k-PPD-ERT(next Split_ID, ‘F’)
(18) • Create a node with the selected split, attach tree_T and tree_F as T and F

subtrees, and return the resulting tree.
end

end

(19) Function Generate_splits()
(20) • Select D attributes randomly: {a1, ..., aD}

(21) • Generate D splits: {s1, ..., sD}, where si = Pick_rand_split(ai)
(22) return splits {s1, ..., sD}

end

(23) Function Pick_rand_split(a)
(24) if a is categorical then

(25) return a possible category
end

(26) if a is numerical then

(27) return a possible value in the min and max range
end

end
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Algorithm 2 Data Holder Party
(1) • The global random seed (known to all parties) is set in the data holder party
(2) • Wait for completion of data holder parties initialization. In initialization, k selected

data holder parties send their unique seeds to other data holders. In initialization,
SSApi

pj
is sent by party i (i is among the k selected parties) and received by party j

(3) • Connect to the Mediator
(4) Function Secret_aggregation(Split_ID, Branch)
(5) • secret_valPj = Split_data(Split_ID, Branch)
(6) • rand_sumPj

others = Generate and aggregate random masks based the received
seeds

(7) if the party, Pj, is among k selected data holder parties for secure aggregation then

(8) • rand_sumPj

self = Generate and aggregate random masks based the sent seeds
else

(9) • rand_sumPj

self = 0
end

(10) • Result = secret_valPj − rand_sumPj

self + rand_sumPj

others

(11) • Send Result to the mediator
end

(12) Function Split_data(Split_ID, Branch)
(13) • Ssub = records in the computational node that should be split based on Split_ID

and Branch
(14) • {s1, ..., sD} = Generate_splits() (based on the global seed)
(15) for i = 1 to D do

(16) • Split Ssub to two sets (T, F) by si
(17) • Append vectors {VecT , VecF} representing the records’ labels for each of the

above sets to Result
end

(18) return Result
end

(19) Function Generate_splits()
(20) • Select D attributes randomly: {a1, ..., aD}

(21) • Generate D splits: {s1, ..., sD}, where si = Pick_rand_split(ai)
(22) return splits {s1, ..., sD}

end

(23) Function Pick_rand_split(a)
(24) if a is categorical then

(25) return a possible category
end

(26) if a is numerical then

(27) return a possible value in the min and max range
end

end

(b) Parties Classify Their Records
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To decide about the candidate decision nodes for each branch, the mediator
requires the collective outcome of the classification with candidate decision nodes
from all data holders on all their data. By having the combination of data record
labels for each branch (True and False), the mediator can decide if we require a
leaf or we need to calculate the score, i.e., information gain (Algorithm 1, Line
11). Information gain captures the extent of samples’ purity (concerning their
class/category) after splitting and is used as a basis for comparing decision nodes.
The mediator sends a request to data holder parties and waits for receiving the
result from all parties, which is masked according to the secure aggregation
technique described further (Algorithm 1, Lines 7–8). The masked results are two
vectors, one for each of the True and False branches, representing the combination
of data record labels after classification with each candidate decision node.
Each party receives Split_ID and Branch to determine the local records for
classification (Algorithm 2, Line 13). Then, the party randomly generates
candidate decision nodes based on Lines 19–27 in Algorithm 2 and the global
random seed (Algorithm 2, Line 14). Next, it classifies the selected local data
based on each candidate decision node and returns the result (Algorithm 2, Lines
15–18).
We describe how each party returns the result to the mediator in the following,
using an example. VecT represents the combination of labels for the records that
fall in the True branch, and VecF represents the combination of labels for the
records that fall in the False branch. For instance, if three records with labels A, A,
and B fall in the True branch of the candidate decision node, and we have three
labels, A, B, and C in the dataset, then VecT = [2, 1, 0].

(c) Each Party Sends the Result to the Mediator

After adopting the secure aggregation protocol described further, each data holder
party returns the masked result to the mediator to select the best decision node
(or generate a leaf instead of a decision node). For every candidate decision node,
the mediator receives and aggregates the results from all parties and obtains two
vectors, for True and False branches, representing the combination of data labels
(Algorithm 1, Lines 8–9).

(d) Mediator Determines the Best Candidate for the Decision Node

Now that the mediator has the value of Sum (Algorithm 1, Line 9), it determines
if a decision node or a leaf node is required here in the tree (Algorithm 1, Lines
11). If all labels are the same or if the number of received labels is less than
our threshold parameter, the mediator introduces a leaf node (Algorithm 1,
Line 12). Otherwise, the mediator calculates the score, i.e., information gain,
of each candidate decision node based on the results from data holder parties
(Algorithm 1, Line 13). It then selects the candidate decision node with the highest
information gain and informs all parties about it (Algorithm 1, Lines 14–15). The
selected node will be used to build the tree at the mediator (Algorithm 1, Line
18). This decision is communicated to all data holder parties and is required to
select records for classification at every step (Algorithm 2, Line 13).

(e) The Mediator Initiates Another Round From the First Step
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After selecting the best candidate decision node, the mediator continues the
process for each branch of this decision node. Therefore, the same process is
performed from the first step, for each of the True and False branches (Algorithm
1, Lines 16–17). After returning from these recursive calls, the selected subtrees
for each branch are returned (Algorithm 1, Lines 12 and 18).

3.2.2.2 Secure Aggregation of Results From Data Holder Parties

We adopt an SMC technique in our proposed distributed ERT algorithm to avoid
sharing the vectors representing the combination of the data record labels for each
candidate decision node and each branch in each data holder party. In addition to
the provided privacy by not sharing the raw values of data attributes, which is by
construction, the adoption of an SMC technique for aggregating the partial results from
data holder parties contributes to privacy preservation. In an extreme example, suppose
our data has one sensitive attribute in it, e.g., having conducted transgender surgery
before, and each data holder party has only one record on it. Then, sharing the partial
results from one party, the vectors for the combination of data record labels for each
candidate decision node, can reveal sensitive information. If the candidate decision
node is “whether the record falls into the transgender branch or not,” the mediator can
infer if that individual with the specified record has undergone transgender surgery.
Therefore, to avoid such vulnerabilities, we adopt an SMC technique to aggregate the
partial results from the data holder parties.

The secure aggregation procedure begins with an initialization process. Subse-
quently, the parties can securely aggregate their secret values through this approach.

Initialization: In the initialization phase, k selected data holder parties share their
unique seeds for the random function with all parties. These seeds are unique and
private between each pair of parties. Without loss of generality and for the simplicity of
the presentation, we assume that the k selected data holder parties arePi (∀i ∈ {1, . . . , k}).
Party Pi (∀i ∈ {1, . . . , k}) sends unique seeds to party Pj (∀j ∈ {1, . . . , n | i ̸= j}). Figure
3.9a shows this process.

The seed party Pi shares with party Pj is represented with SSAPi

Pj
, and it is a unique

seed; SSA is the short form of Seed for Secure Aggregation. Parties 1 to k, send n− 1

and receive k − 1 seeds. Parties k + 1 to n, receive k seeds. This is shown in Figure
3.9b. Therefore, k parties send n− 1 and receive k− 1 messages, and n− k parties send
zero and receive k messages. The total communication overhead for initialization is
2k(n− 1). The communication overhead by adopting this approach is equal to O(kn),
which can be adjusted by adapting k based on the sensitivity of the data. If all parties
were required to send and receive seed, then, the communication overhead would be
equal to 2n(n− 1). The communication overhead by adopting this approach is equal
to O(n2) [37].

Secure aggregation: In the adopted SMC technique, shown in Figure 3.10, parties
add random masks to their partial result vectors and pass them to the mediator. The
mediator aggregates the partial results received from all parties. After aggregation,
the random masks from all parties cancel each other. We now describe the proposed
technique in detail:
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Step 1
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(a) The k selected data holder parties sending
unique seeds to other data holders
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Fig. 3.9: Initialization
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• Step 1: The mediator initiates the secure aggregation process round (Algorithm
1, Line 7). This is shown in Figure 3.10a.

• Step 2: Data holder parties generate random masks and aggregate them with
their secret values (Algorithm 2, Line 10). This is shown in Figure 3.10b.

– Parties Pi (∀i ∈ {1, . . . , k}) generate random masks based on the sent and
received seeds (Algorithm 2, Lines 6–9).

– Parties Pi (∀i ∈ {k + 1, . . . , n}) generate random masks based on received
seeds (Algorithm 2, Lines 6–9).

• Step 3: In the next step, the parties send the masked results to the mediator
(Algorithm 2, Line 11). Then, the mediator receives the results from all parties
(Algorithm 1, Line 8). Figure 3.10c shows this.

• Step 4: In the last step, the mediator aggregates all the received results to obtain
the desired value, i.e., the aggregated secret values from all parties (Algorithm 1,
Line 9). This is shown in Figure 3.10d.

Privacy: We now show that the secret values of the parties are kept private in
our proposed protocol. The partial result ResultPi , which is shared with the mediator,
consists of three components: secret_valPi , rnd_sumPi

self, and rnd_sumPi

others. The
two components, rnd_sumPi

self and rnd_sumPi

others, mask the secret value.

• For Pi (∀i ∈ {1, . . . , k}), the value of rnd_sumPi

self can only be identified by
the collusion of n − 1 parties holding the random seeds for generating the
random masks, which are the components of rnd_sumPi

self. At the same time,
rnd_sumPi

others can only be identified by the collusion of k−1 parties that generate
the components of rnd_sumPi

others. Therefore, the minimum number of colluding
parties required to reveal the secrete value of Pi is n− 1.

• For Pi (∀i ∈ {k + 1, . . . , n}), the value of rnd_sumPi

self is zero and known to all,
and secret_valPi is masked by rnd_sumPi

others. However, rnd_sumPi

others can
only be identified by the collusion of k parties that generate the components of
rnd_sumPi

others, i.e., the k selected parties for secure aggregation.

In the worst case, i.e., for Pi (∀i ∈ {k + 1, . . . , n}), the k selected parties for secure
aggregation are required to collude to identify a secret value; hence, the minimum
number of colluding data holder parties is equal to k. Moreover, since only the mediator
receives the victim’s partial result, the collusion of other parties without the mediator’s
participation is not possible. Therefore, for identifying a secret value, the collusion of k
data holder parties and the mediator is necessary.

Correctness: We also show that the final value of the aggregation of partial results
is equal to the aggregation of secret values. The aggregation of all the partial results
sent to the mediator is as follows:
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(d) Step 4

Fig. 3.10: Secure aggregation
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n∑
j=1

ResultPj = secret_valP1 − rnd_sumP1

self + rnd_sumP1

others

... (3.8)
+ secret_valPn − rnd_sumPn

self + rnd_sumPn

others

=

n∑
j=1

secret_valPj−

n∑
j=1

rnd_sumPj

self+

n∑
j=1

rnd_sumPj

others.

In addition, we also have the following equations for the data holder parties:

• For Pi (∀i ∈ {1, . . . , k}), rnd_sumPi

self =
∑n

j=1 rnd
Pi

Pj
− rndPi

Pi
, where rndPi

Pj
is the

shared random mask between Pi and Pj. On the other hand, rnd_sumPi

others =∑k
j=1 rnd

Pj

Pi
− rndPi

Pi
.

• For Pi (∀i ∈ {k + 1, . . . , n}), rnd_sumPi

self = 0. On the other hand,
rnd_sumPi

others =
∑k

j=1 rnd
Pj

Pi
.

Substituting these in Equation 3.8, we obtain:
n∑

j=1

ResultPj=

n∑
j=1

secret_valPj−

n∑
j=1

rnd_sumPj

self+

n∑
j=1

rnd_sumPj

others

=

n∑
j=1

secret_valPj−

k∑
j=1

(

n∑
i=1

rnd
Pj

Pi
− rnd

Pj

Pj
)−

n∑
j=k+1

(0)

+

k∑
j=1

(

k∑
i=1

rndPi

Pj
− rnd

Pj

Pj
)+

n∑
j=k+1

(

k∑
i=1

rndPi

Pj
)

=

n∑
j=1

secret_valPj−

k∑
j=1

(

n∑
i=1

rnd
Pj

Pi
)+

k∑
j=1

(rnd
Pj

Pj
) (3.9)

+

k∑
j=1

(

k∑
i=1

rndPi

Pj
)−

k∑
j=1

(rnd
Pj

Pj
)+

n∑
j=k+1

(

k∑
i=1

rndPi

Pj
)

=

n∑
j=1

secret_valPj−

n∑
i=1

(

k∑
j=1

rnd
Pj

Pi
)+

n∑
j=1

(

k∑
i=1

rndPi

Pj
)

=

n∑
j=1

secret_valPj .

The above equation shows that the aggregation of partial results from data holder
parties is equal to the aggregation of data holder parties’ secret values.

As shown above, the correctness and accuracy of our SMC technique do not depend
on k or the minimum number of colluding parties. By increasing k, the minimum
number of colluding parties required for revealing a secret value increases, which in
turn improves the privacy of the method. Increasing k increases the communication
overhead in the initialization phase. Therefore, the trade-off is between privacy and
communication overhead of the initialization phase.

3.2.2.3 Handling Missing Values
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Table 3.2: Example of structured data distributed among two parties with missing
values

Party Record Sex Height

1
1 M 170
2 F 155
3 M ?

2
1 F ?
2 F 165
3 M 178

In this section, handling missing values when the data is distributed is explained
in the context of our proposed privacy-preserving distributed learning framework,
i.e., k-PPD-ERT. In the application of distributed learning approaches, particularly in
the healthcare domain, we deal with data with missing values. Missing values in a
dataset may occur as a result of improper collection of data, refusal of patients to share
information, etc. In scenarios where the data is distributed, handling missing values
can require a different procedure in comparison to scenarios in which the data is held
in one center.

Several approaches can still be used in such scenarios, e.g., deleting records with
missing values. However, they might not be helpful in all cases, e.g., where we have a
low number of data records or when the percentage of records with missing values
is high. Another solution is to replace the missing values in an attribute with the
mean/average of the available values in that attribute. This approach avoids deleting
data records and is particularly relevant when dealing with smaller datasets with
missing values.

For calculating the mean of the available values for an attribute, we require the
summation of these values. Due to privacy concerns, data holder parties refrain from
sharing the summation of their available values with others. In particular, this is a
major privacy concern when each data holder party holds only one record. Therefore,
we adopt the approach presented in the secure aggregation section to address this
issue, as we merely require the final summation of the available values.

We explain the approach using an example. Suppose we have two parties, and each
party holds three records. Table 3.2 represents the data for each party. Each record
contains the sex and height of record owners or patients. Two records miss the value
for height. Assume that by preserving privacy, we can calculate the summation of
available values for the height, i.e., 668 in our example, as well as the summation of the
number of records not missing the height value, i.e., 4 in our example. In that case, we
can calculate the mean for the height, i.e., 167 in our example.

The summation of the available values and the number of available values are
calculated using our secure aggregation method. Finally, the mediator divides the
summation of the available values by the number of available values and calculates the
mean. Then, the mean is shared with all parties to replace the missing values.

Our technique may also be modified based on the problem settings. For instance, in
the above example, suppose the user requires the mean of values for male and female
patients separately, i.e., 174 and 160, respectively. Then, our technique can be adjusted
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Fig. 3.11: Overall scenario for our privacy-preserving learning

by only securely aggregating the available values belonging to male or female patients.
We use the same technique for categorical attributes, i.e., to calculate the frequencies

of categories in one attribute. Then, we may decide how to fill the missing values
based on these frequencies. We may decide to replace all values with the most frequent
category, i.e., the mode. The missing category can also be drawn randomly based on
the distribution of frequencies. Moreover, we may also decide on filling the missing
values by jointly considering the frequencies and information from other attributes.

We present the implementation of our framework on Amazon’s AWS cloud and
evaluate it based on real-world mental health datasets associated with the Norwegian
INTROducing Mental health through Adaptive Technology (INTROMAT) project. In
Chapter 4, we investigate the classification performance, scalability, and privacy of
our privacy-preserving distributed machine learning framework. We compare our
proposed framework against the state-of-the-art in terms of the mentioned criteria. We
also compare the classification performance of our framework against the centralized
ERT and the communication overhead of our framework compared to distributed ERT.

In this research, we investigate the possibility of using our proposed privacy-
preserving distributed machine learning framework for sensor data based on the
Depresjon (depression in Norwegian) dataset [85], which paves the way for the real-
world applications of our approach for wearable technology in the described settings.
In our study, we use an approach for augmenting the motor activity signals, which
is presented in Paper E. The augmentation addresses several problems with the
Depresjon dataset, e.g., imbalanced number of recorded days for individuals in the
data, and improves the classification performance. The scenario is shown in Figure
3.11. In Chapter 4, we will evaluate our privacy-preserving extremely randomized
trees framework in conjunction with the proposed augmentation technique.
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CHAPTER 4
EVALUATION AND DISCUSSION

4.1 Overview of Thesis Contributions

As discussed in previous chapters, the research in this thesis is carried out in two
directions. The first direction is for scenarios in which the data is stored in a centralized
location. The other direction is for scenarios in which the data is distributed among
multiple parties. Accordingly, our contributions in this thesis are twofold and in the
discussed directions.

For privacy-preserving data publishing direction, in [36], we investigated the
possibility of adopting cryptographic algorithms, which facilitates privacy preservation
by construction, in the context of anonymization of structured data. The basic idea is
to map the original dataset to a dataset that is subject to less re-identification risk. We
evaluated this approach based on several state-of-the-art cryptographic algorithms on
the Adult dataset [29]. However, this approach is particularly suited in the context of
categorical data without semantic relation.

To address the shortcoming of our previous work [36], in [39], we proposed an
optimization-based anonymization framework for datasets with both categorical and
numerical attributes. The proposed framework is based on clustering the data samples
in a diversity-aware fashion to reduce the risks of identity and attribute linkage
attacks. Our method achieves anonymity by formulating and solving this problem as a
constrained optimization problem, by jointly considering the k-anonymity, l-diversity,
and t-closeness privacy models, for the first time to the best of our knowledge. We
evaluated our method based on the utility and privacy of data after anonymization in
comparison to the original data.

In the privacy-preserving distributed machine learning direction, we presented a
framework based on the Extremely Randomized Trees (ERT) algorithm [86] and Secure
Multiparty Computation (SMC) techniques. The ERT algorithm has a competitive
performance for structured data, where we have independently meaningful attributes,
compared to the existing state-of-the-art techniques, e.g., standard deep neural networks
[129]. The ERT algorithm is designed for scenarios in which data is stored on a central
repository. We extended the ERT algorithm for distributed settings to reduce the
amount of raw data leaving a party, which is necessary where we have privacy and
legal concerns [38].

In addition, we proposed a layer of SMC on top of the distributed ERT to preserve
the privacy of record owners. In Privacy-Preserving Distributed ERT (PPD-ERT) [38],



Evaluation and Discussion

we adopt an efficient Secure Multiparty Computation (SMC) technique for secure
aggregation of partial results in our approach, which is resilient to two colluding
parties in the worst case. Moreover, we employed our proposed technique for learning
classification models for the prediction of mental health problems in combination with
data augmentation [40].

In k-PPD-ERT [37], we improved the SMC layer to be resilient to k colluding parties,
similar to Shamir’s secret sharing technique [164], while keeping the communication
overhead in the same order as PPD-ERT. Then, we extended the distributed ERT to
show its relevance in settings with limited participation of data holder parties without
any major loss in classification performance. Our proposed framework offers the
opportunity to make a trade-off among performance, privacy, and overhead.

Finally, in [41], we built upon our previous work [37] and proposed a scalable
privacy-preserving framework for distributed machine learning based on the extremely
randomized trees algorithm, with linear overhead in the number of parties. We used
two popular publicly available healthcare datasets for performance evaluation, i.e.,
the Heart Disease [66] and the Breast Cancer Wisconsin (Diagnostic) [134] datasets.
This data represents medical applications where missing values are present, and our
algorithm is designed to handle such scenarios. We presented the implementation of
our technique on Amazon’s AWS cloud and evaluated it in a real-world setting based
on the mental health datasets associated with the Norwegian INTROducing Mental
health through Adaptive Technology (INTROMAT) project.

4.2 Evaluation of Contributions Against Research Goal

4.2.1 Privacy-Preserving Data Publishing

In this section, we evaluate our proposed anonymization method experimentally and
discuss the experimental results. For evaluation, we consider data utility and data
privacy criteria and demonstrate their trade-off [64]. Then, we present and discuss the
experimental results.

The data analysis task that is going to be performed on the anonymized data
is classification. Therefore, the anonymization method should alter the data to
the extent that learning high-performance classification models are possible. We
train the learning algorithms on both original and anonymized data to evaluate the
anonymization method in terms of data utility preservation. Our method preserves the
data utility if the classification model learned from altered data has similar performance
compared to the one learned from original data.

On the other hand, the anonymized data should be sufficiently altered to avoid
the identification of record owners. In this research, we address the record-linkage
and attribute-linkage attack models. We consider the property for making samples
indistinguishable in the qid group, discussed in k-anonymity privacy model, the
diversity of values in sensitive attribute, in l-diversity, and the frequency of sensitive
values, in t-closeness.

There is a trade-off between the utility of data and privacy of data in anonymization
methods. On the one hand, we can share no data to preserve patients’ privacy, but
there will be no utility for the data. On the other hand, we can publish the data in its
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original format to maximize the data utility, but the privacy of data subjects is going to
be violated. Therefore, in anonymization techniques, we require altering the data to
the extent that we establish a trade-off between data utility and privacy [64].

4.2.1.1 Experimental Setup

In our experiments, we use the Heart Disease dataset [66], which is one of the popular
datasets publicly available on the UCI repository. We utilize Cleveland’s processed
dataset [71] to predict the presence of heart disease (presence/absence). The dataset
contains 282 complete records, and each belongs to one patient. The data includes 13
attributes which we consider in this work.

Quasi-identifiers are the attributes that the adversary can potentially obtain infor-
mation about them from other sources. In addition to quasi-identifiers, the sensitive
attribute should also be identified. In our experiments, we suppose all 13 attributes
are quasi-identifiers. Moreover, we select the Boolean attribute for family history of
coronary artery disease as the sensitive attribute.

For evaluation of preservation of utility, we split the dataset into train and test
sets. We anonymize the training set using our method with soft constraints and train
several classification algorithms based on the resulting data. Then, we measure the
classification performance on the test set. We also train the same algorithms on the
original data and the data anonymized without considering the diversity constraint
and measure the performance of the trained classification models on the test set. The
comparison of the classification performance results indicate the utility of anonymized
data in our method.

In our experiments, we randomly select 200 samples as the train set and the rest
as the test set at each round. We repeat the same process for 1000 rounds and report
the average results for classification performance. The algorithms used for learning
classification models are Extremely Randomized Trees (ERT), Random Forest, XGBoost,
Decision Tree, and linear SVM. The measures used for classification performance are
F1-score, Accuracy, and Matthews Correlation Coefficient (MCC).

4.2.1.2 Experimental Results

Table 4.1 shows the classification performance results for three different training sets,
i.e., original data, anonymized using our method, and anonymized without considering
the diversity constraint. For both anonymization methods k is set to 10. The best
performance is for the SVM classification models trained based on the original data.
The models trained with ERT and random forest algorithms, which are tree-based
ensemble learning methods and have randomness in the algorithms, show a good
performance on the original and anonymized data.

The classification results for the original data are at a similar level (±0.5% due
to randomness in the algorithms) or higher than the anonymized data. However,
since there is a trade-off between privacy and utility in anonymization [64], we may
accept a loss in the utility to obtain privacy. The results in Table 4.1 show that our
method preserves the information in data that leads to learning high-performance
models. Moreover, the classification performance difference between our method
and the approach without considering the diversity is negligible. This indicates that
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Table 4.1: Classification performance for trained models on three different versions of
Heart Disease dataset (Cleveland) [66, 71]

Algorithm Original Data Anonymized Data Without Diversity Anonymized Data by Our Method
F1-score Accuracy MCC F1-score Accuracy MCC F1-score Accuracy MCC

ERT 81.0% 81.0% 0.615 81.1% 81.4% 0.625 81.0% 81.4% 0.625
Random Forest 82.5% 82.6% 0.647 80.1% 80.4% 0.603 80.0% 80.3% 0.602
XGBoost 78.9% 79.0% 0.573 74.7% 75.1% 0.493 74.7% 75.1% 0.495
Decision Tree 73.8% 73.8% 0.470 68.9% 69.3% 0.372 69.2% 69.8% 0.382
SVM 83.0% 83.1% 0.656 73.3% 73.3% 0.459 72.8% 72.9% 0.449

introducing the diversity constraint in our method does not significantly affect the data
utility.

We now evaluate the privacy preservation of our method in Table 4.2. Here, we set
the value of k to 10. This means that if the adversary has the values for quasi-identifiers
for one patient, he/she can only map his/her information to 10 records. Therefore,
through our method, we avoid record-linkage attacks. Second, our method evenly
distributes the samples with sensitive value, i.e., having a family history of coronary
artery disease, to qid groups. This weakens the confidence of the adversary’s inference
for identifying a patient with sensitive value.

Table 4.2: Privacy properties of the anonymized data by our method and the approach
without diversity

No Diversity Our Method
k in k-anonymity 10 10
l in l-diversity 1 2
l in entropy l-diversity 1 1.64
l and c in recursive (c,l)-diversity l=1, c ⩾ 1 l=2, c ⩾ 4

D in t-closeness 1.06 0.38

The number of patients with the sensitive value can be different at each round.
In our method, in the worst qid group with respect to l-diversity, entropy l-diversity,
and recursive (c,l)-diversity, we have two samples with non-sensitive value and eight
with the sensitive value. In other words, the proportion of patients with a family
history of coronary artery disease in the qid group is 80.0%, which is optimal since the
proportion of samples with the sensitive value in the training set at this round was
70.5%. This leads to l = 2 in l-diversity, l = 1.64 in entropy l-diversity, and l = 2 and
c ⩾ 4 in recursive (c,l)-diversity in Table 4.2. In the worst qid group with respect to the
variational distance D in t-closeness, we have six with non-sensitive value and four
with the sensitive value, while the proportion of samples with the sensitive value in
the dataset at this round was 59.0%. This leads to variational distance D = 0.38 in
t-closeness.

For the approach without diversity constraint, in the worst qid group with respect
to l-diversity, entropy l-diversity, and recursive (c,l)-diversity, we have ten patients
with the sensitive value. This leads to l = 1 in l-diversity, l = 1 in entropy l-diversity,
and l = 1 and c ⩾ 1 in recursive (c,l)-diversity in Table 4.2. This allows the adversary
to infer that the patient had a family history of coronary artery disease with 100%
confidence. Moreover, in the worst qid group with respect to the variational distance
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D in t-closeness, we have nine records with the non-sensitive value and one with the
sensitive value. The proportion of samples with the sensitive value in the dataset at
this round was 63.0%. This increases the variational distance between the distributions
of values in the sensitive attribute in the qid group and the whole dataset to D = 1.06

in Table 4.2.
The results in Table 4.2 demonstrates that by adopting our method, we will have

higher l in l-diversity, entropy l-diversity, and recursive (c,l)-diversity. Moreover, the
variational distance between the distributions of values in the sensitive attribute for
the train set and the qid group is lower in our method. Therefore, regarding the
diversity of values in sensitive attributes and the attribute-linkage attack, we observe
that introducing the diversity constraint improves patients’ privacy.

We also investigate the data privacy and data utility based on different values of k,
size of qid groups. For each k, we have 100 rounds that in each we randomly split the
data into the train and test sets. The classification performance results are the average
results for all rounds. The privacy results are the worst results in all rounds and qid
groups. We perform these experiments based on our method and the anonymization
approach without the diversity constraint and show the results in Figs. 4.1 and 4.2 for
comparison.

(a) F1-score (b) Accuracy (c) MCC

Fig. 4.1: The classification performance for anonymized data based on F1-score, Accuracy, and
MCC measures for different values of k

Figs. 4.1a-4.1c show the results based on F1-score, Accuracy, and MCC metrics.
The patterns in the results show that the higher the qid group size (k), the lower the
classification performance. On the other hand, increasing the value of k improves the
privacy with respect to the record-linkage attack model. These figures illustrate the
trade-off between the privacy and data utility.

The slight increases in the classification performance for the anonymized data
by our approach when k is increased from 5 to 10 could be due to the difference in
the clustering of samples. When k is larger, satisfying the diversity constraint and
distributing samples with the sensitive value to different qid groups for increasing the
diversity could be easier. This could lead to creating qid groups with samples that
are closer together, which in turn perturbs the data less and increase the classification
performance. Moreover, the figures show slight outperformance for trained models
based on anonymized data without diversity constraint compared to the trained models
based on the data anonymized by our method at certain points. This is due to the fact
that in our method, we also consider the attribute-linkage attack model and the privacy
models addressing that, which can negatively affect the data utility.
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Fig. 4.2: The privacy properties of the data anonymized by our method and the approach
without considering the diversity constraint for different values of k

The results in Figs. 4.2a-4.2d exhibit the privacy properties of the anonymized
data. Regarding the attribute-linkage attack model, the results display that the data
anonymized by our method has higher privacy properties than the anonymized data
without diversity constraint. Increasing the value of k significantly improves the
diversity and frequency of values in the sensitive attribute, compared to the approach
without considering the diversity constraint, but without any major loss in terms of
classification performance.

The experimental results show that our method provides privacy protection against
record-linkage and attribute-linkage attacks. Furthermore, the utility of the data is
retained after anonymization, allowing the learning of high-performance classification
models. The slight degradation of utility is the cost for providing patients privacy,
which is a common phenomenon in anonymization approaches [64].

4.2.2 Privacy-Preserving Distributed Machine Learning

In this section, we evaluate our proposed approach with respect to classification
performance, scalability and overhead, and privacy criteria [48].

62 Chapter 4



4.2 Evaluation of Contributions Against Research Goal

4.2.2.1 Data

We consider four sets of data for the evaluation in this research. First, we consider two
popular publicly available healthcare datasets, i.e., Heart Disease [66] and Breast Cancer
Wisconsin (Diagnostic) [134]. For the Heart Disease case, we utilize the processed
Cleveland’s data [71] to predict the presence or absence of heart disease. In the other
case, Wisconsin Diagnostic Breast Cancer (WDBC) data [71] is used to predict breast
cancer’s diagnosis as benign or malignant.

In addition to the above publicly available datasets, we also consider two mental
health detests associated with the INTROMAT project:

• The Depresjon (depression in Norwegian) dataset [85] contains motor activity
data from 55 individuals (30 females and 25 males) recorded using an ActiGraph
wristband worn on the right wrist. 23 individuals in this dataset have been
diagnosed with depression, including both unipolar and bipolar individuals,
while the remaining 32 are in the control group. Each individual wore an
ActiGraph wristband for an arbitrary number of days, ranging from 5 to 20 days.
The condition and control groups were monitored for 291 and 402 days in total,
respectively.

• The Psykose dataset [101] contains motor activity data from 54 individuals (23
females and 31 males) recorded using an ActiGraph wristband worn on the right
wrist. 22 individuals in this dataset have been diagnosed with schizophrenia,
and all used antipsychotic medications, while the remaining 32 are in the control
group. Each individual wore an ActiGraph wristband for an arbitrary number
of days, ranging from 8 to 20 days. The condition and control groups were
monitored for 285 and 402 days in total, respectively.

4.2.2.2 Performance Evaluation Metrics

The performance of the proposed algorithm is evaluated by measuring the F1-score
(F1), Accuracy (ACC), and Matthews Correlation Coefficient (MCC), which are defined
as follows:

F1 =
TP

TP + 0.5 · (FP + FN)

ACC =
TP + TN

TP + FP + TN+ FN

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN+ FP)(TN+ FN)

where FP, TN, TP and FN definitions are the false positive, true negative, true positive,
and false negative, respectively.

4.2.2.3 Evaluation and Results

In this section, we present our evaluation results for classification performance, privacy,
overhead, and latency for our proposed framework.
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Table 4.3: Classification performance for our proposed method, distributed ID3, and
centralized ERT

Dataset Metric k-PPD-ERT Distributed ID3 ERT

Heart Disease [66] Accuracy 80.4% 74.5% 80.4%
F1-Score 80% 74.3% 80%

Breast Cancer [134] Accuracy 95.3% 91.3% 95.3%
F1-Score 95.4% 91.3% 95.4%

Classification Performance for Widely Used Healthcare Datasets To evaluate
the classification performance for Heart Disease [66] and Breast Cancer Wisconsin
(Diagnostic) [134] datasets, we perform a three-fold cross-validation. We divide the
dataset into three parts, and in each round, we use one of the parts as the test set
and the rest as the training set and finally report the averaged results. We adopt the
F1-score (weighted average) and accuracy as our classification performance metrics.
The F1-score is the harmonic mean between the precision and recall metrics, while
the accuracy measures the ratio of correctly classified samples. Table 4.3 exhibits the
classification performance of our approach, k-PPD-ERT, against the distributed ID3
algorithm [75]. We compare our approach against the distributed ID3 [75] since, similar
to our approach, it is a state-of-the-art tree-based method that employs SMC techniques
for secure aggregation of partial results and addresses classification problems in
scenarios where the data is horizontally partitioned. Moreover, the classification
performance of the centralized version of ERT is also provided for comparison.

The k-PPD-ERT and ERT algorithms follow the same learning procedure. This
means that, for both algorithms, the same steps for selecting candidate decision nodes
and building the decision tree are followed. In our experiments, we set the same seeds
for the random functions and the same learning parameters for both algorithms, e.g.,
the number of candidate decision nodes. Moreover, the datasets are split into train and
test sets in the same way with the same random seed, so these sets are the same for both
experiments. Therefore, both algorithms result in the same classification performance,
i.e., by following the same procedure, setting the same seeds and parameters, and
having the same train and test data.

In our experiments, for our approach, k-PPD-ERT, and the ERT algorithm, we
learn an ensemble of 25 decision trees. For the number of candidate decision nodes’
parameter in the algorithm, we use 5-fold cross-validation on the training set for the
model selection (concerning classification performance measured by the F1-score). In
the case of the Heart Disease dataset, k-PPD-ERT outperforms the distributed ID3 [75]
by up to 5.9%. For the Breast Cancer dataset, our approach outperforms the distributed
ID3 by up to 4.1%.

Classification Performance for Mental Health Datasets Associated with IN-

TROMAT Project In addition to the widely used public datasets, we also consider
the data associated with the INTROMAT project, i.e., Depresjon dataset [85] and
Psykose dataset [101]. We use F1-score (weighted average), Accuracy (ACC), and
Matthews Correlation Coefficient (MCC) for measuring the classification performance,
which are the metrics previously used for performance evaluation on these datasets
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Table 4.4: Classification performance (leave one patient out) of different classification
algorithms for mental health datasets associated with the INTROMAT project, i.e.,
Depresjon dataset [85] and Psykose dataset [101]

Algorithms Depresjon Dataset [85] Psykose Dataset [101]
Augmented Data Without Augmentation Augmented Data Without Augmentation

F1-score ACC MCC F1-score ACC MCC F1-score ACC MCC F1-score ACC MCC
k-PPD-ERT (Distributed) 76.3% 76.8% 0.518 66.3% 67.0% 0.310 87.9% 88.0% 0.751 81.7% 81.8% 0.623
ID3 (Distributed) 65.1% 65.0% 0.286 65.6% 66.5% 0.296 75.0% 74.8% 0.490 79.3% 79.4% 0.573
ERT (Centralized) 76.3% 76.8% 0.518 66.3% 67.0% 0.310 87.9% 88.0% 0.751 81.7% 81.8% 0.623
Random forest (Centralized) 74.4% 75.1% 0.481 64.3% 64.7% 0.266 90.7% 90.7% 0.807 80.6% 80.7% 0.601
XGBoost (Centralized) 76.2% 76.3% 0.510 64.3% 64.7% 0.265 92.4% 92.5% 0.844 80.7% 80.7% 0.601
Decision Tree (Centralized) 65.7% 65.8% 0.293 60.6% 60.7% 0.191 76.0% 76.0% 0.505 76.1% 76.2% 0.508
Linear SVM (Centralized) 69.5% 69.5% 0.375 68.4% 68.6% 0.349 87.3% 87.2% 0.748 82.8% 82.8% 0.645

Table 4.5: Communication complexity and privacy of different SMC approaches

Approach Party Communication Total Communication Number of Colluding Parties
Send Receive (N = number of parties)

NOSMC Data Holders 1 0
(N− 1)× 1+ 1× (N− 1) 1: mediator has the values with no collusionMediator 0 N− 1

STSMC All 2 2 N× (2+ 2) 2: neighbor parties

k-PPD-ERT Data Holders 1 0
(N− 1)× 1+ 1× (N− 1) k+ 1: k data-holder parties and the mediatorMediator 0 N− 1

Shamir [164]
k− 1 Parties N N− 1

N× (N− 1+N− 1) + 2× (k− 1) k parties (k<N)One Party N− 1 N− 1+ k− 1

The Rest N− 1 N− 1

[85, 101]. We consider both the original and augmented data for each dataset. The orig-
inal data includes the mean and the standard deviation of the activity level along with
the proportion of minutes with no activity [85, 101]. The augmented sample reflects
the activity level of an individual in a day by locally resampling the raw data from
the same individual. The problem related to the difference in the number of recorded
days for each individual, which makes the dataset more imbalanced, is addressed by
augmentation. Augmentation also addresses the problem of samples with a shorter
length, i.e., motor activity signals recorded starting from the middle of the day [40].

We compare our approach against several state-of-the-art machine learning algo-
rithms, including ERT [86], random forest [93], XGBoost [57], Decision Tree [159], and
linear SVM algorithm [62]. Table 4.4 shows the classification performance of different
algorithms for the INTROMAT data. The results demonstrate that the proposed ap-
proach performs on par or better than state-of-the-art techniques. We also compare
our approach against the distributed ID3 [75]. For the Depresjon dataset [85], the
k-PPD-ERT technique outperforms distributed ID3 [75] by 0.7% in terms of F1-score,
0.5% in terms of ACC, and 0.014 in terms of MCC for the original data and by 11.2%
in terms of F1-score, 11.8% in terms of ACC, and 0.232 in terms of MCC for the aug-
mented data. For the Psykose dataset [101], the k-PPD-ERT technique outperforms
distributed ID3 [75] by 2.4% in terms of F1-score, 2.4% in terms of ACC, and 0.05 in
terms of MCC for the original data and by 12.9% in terms of F1-score, 13.2% in terms
of ACC, and 0.261 in terms of MCC for the augmented data.

Privacy and Overhead of Secure Multi-Party Computation Techniques We
now discuss the privacy and communication overhead of our proposed approach.
We adopt an SMC technique to avoid direct sharing of the vectors representing the
combination of record labels for each candidate decision node with other parties and
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the mediator. We compare the communication overhead and privacy of our adopted
SMC technique against three other techniques, including the SMC methods employed
in [75], i.e., Shamir’s technique [164]. Table 4.5 presents the communication overhead
and privacy evaluation of each approach. In the table, N is the number of parties, and
k is a parameter in k-PPD-ERT and Shamir’s secret sharing for the minimum number
of colluding parties to identify a secret value. The communication overheads in the
table are for one round of secure aggregation.

In the first approach (NOSMC), no SMC technique is adopted, and all values are
directly shared with the mediator and known to it. This approach has the lowest possible
communication cost and number of colluding parties, and, here, it is considered as a
baseline. The other approach for the aggregation of partial results is the straightforward
SMC (STSMC) approach. In this approach, in the first round, each party aggregates its
random mask and its secret value to the received result from the previous party and
passes it to the next party, and in the second round, parties subtract their random masks
from the aggregated result of the previous round. This method’s communication
overhead is of the same order as NOSMC, O(N), but it is more robust to collusion.
On the other hand, Shamir’s secret sharing is an SMC method employed in [75] for
secure aggregation. This approach can tolerate the highest number of colluding parties,
although it has a high communication overhead, i.e., O(N2).

Our approach’s communication overhead, similar to NOSMC and STSMC, is from
order O(N), which is considerably more efficient compared to Shamir’s approach
with an order of O(N2). Concerning the number of colluding parties, by adopting
our approach, it takes k (k < N) data-holder parties and the mediator to collude for
identification of the secret values. In our approach, the participation of the mediator
for collusion is required to reveal a secret value. The mediator is assumed as an honest
party in many scenarios, and in the case of a secret value revelation, we know that the
mediator has been involved in the collusion. Shamir’s secret sharing requires k (k < N)
parties to collude for identifying a secret value but suffers from scalability and high
communication overhead.

Latency for Our Proof-of-Concept Implementation Finally, we have also imple-
mented our proposed approach on Amazon’s AWS cloud to evaluate the latency and
scalability of the k-PPD-ERT.1 We consider four scenarios where we change the number
of data-holder parties. We consider four datasets, i.e., Heart [66], Breast [134], De-
presjon [85], Psykose [101]. For each dataset, the training data (75% of the dataset) is
distributed equally among the data-holder parties. The mediator includes a 2 core
2.40 GHz CPU and 512 MB RAM, runs Ubuntu 20.04, and is located in Sweden. The
machines in all other locations include a 1 core 2.40 GHz CPU and 512 MB RAM and
run Ubuntu 20.04.

The latency results are shown in Figure 4.3. In the first scenario, as shown in Table
4.6, we consider two data-holder parties located in Canada and Germany. Learning
one extremely randomized tree through our approach takes 15.9± 1.5, 11.8± 3.5, 3.5±
1.0, 2.4±0.7 seconds for Heart, Breast, Depresjon, and Psykose datasets, respectively. In
the second scenario, as shown in Table 4.6, we consider five data-holder parties located

1The source code of our implementations is available at
https://github.com/AminAminifar/kPPDERT_cloud
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Table 4.6: The scenarios for our experiments on Amazon’s AWS cloud

Number of
data holders

Mediator
location Data holders locations

Scenario 1 2 SE CA,DE
Scenario 2 5 SE CA,DE,US,JP,AU
Scenario 3 10 SE CA,DE,US,JP,AU,SG,IN,KR,FR,EN
Scenario 4 20 SE CA,DE,US,JP,AU,SG,IN,KR,FR,EN

in Canada, Germany, the United States, Japan, and Australia. Learning one extremely
randomized tree through our approach takes 43.5± 4.1, 32.4± 9.6, 9.5± 2.7, 6.6± 2.0

seconds for Heart, Breast, Depresjon, and Psykose datasets, respectively. In the third
scenario, as shown in Table 4.6, we consider ten data-holder parties located in Canada,
Germany, the United States, Japan, Australia, Singapore, India, South Korea, France,
and England. Learning one extremely randomized tree through our approach takes
43.8 ± 4.2, 32.6 ± 9.7, 9.6 ± 2.7, 6.7 ± 2.0 seconds for Heart, Breast, Depresjon, and
Psykose datasets, respectively. In the fourth scenario, as shown in Table 4.6, we
consider twenty data-holder parties located in Canada, Germany, the United States,
Japan, Australia, Singapore, India, South Korea, France, and England, with two parties
at each location. Learning one extremely randomized tree through our approach
takes 43.6± 4.1, 32.5± 9.7, 9.6± 2.7, 6.8± 2.0 seconds for Heart, Breast, Depresjon, and
Psykose datasets, respectively.

To better understand the reason for the increase and decrease in the latencies
reported above and the shape of the graphs in Figure 4.3, it should be noted that the
latency depends on the geographical location of the data holders and communication
delays. In scenario two, the latency has increased due to the fact that the bottleneck
communication distance between the data holders and the mediator is increased.
However, the results in scenario three are similar to scenario two because the bottleneck
communication distance remains the same. In scenario four, the slight reduction in the
latency is due to the fact that we distribute the data among data-holder parties (each
party has fewer data samples to process), and the learning process on each party is
performed simultaneously and in parallel, similar to big data analysis. These explain
the increase of latencies from scenario one to two and the almost flat shapes of the
graphs from scenario two to scenario four in Figure 4.3.

Communication Latency of Secure Multi-Party Computation Techniques We
also evaluate the communication latency of one secure aggregation round for each SMC
approach based on their algorithms, the location of data holders in each scenario, the
volume of packets transferred between parties, and the network bandwidth between
parties. This shows to what extent adopting each approach can increase the latency.

In this research, we consider the propagation and transmission delays for commu-
nication latency [153, 173]. The latency of transferring a packet from Pi to Pj is equal
to the sum of propagation and transmission delays and is denoted by L(Pi, Pj). The
propagation delay is equal to the distance between parties divided by the velocity of
signal propagation, which for unguided transmission through air or space is equal
to the speed of light [173]. The transmission delay is equal to the number of bits in
the packet divided by the rate of transmission. For transmission delay, we divide the
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Fig. 4.3: The mean and standard deviation of learning time (ten times performed) of
one extremely randomized tree through k-PPD-ERT for different datasets in several
scenarios on Amazon’s AWS cloud

volume of the message to be transferred from Pi to Pj by the bandwidth between these
parties.

The network bandwidth between two Amazon machines is measured as 1.05
Mbits/sec using the iPerf tool [14]. When a packet contains two arrays for true and false
branches, each including information for five candidate decision nodes for a binary
classification task, the volume of each packet is 384 bytes. The volume of the packet
depends on the data, i.e., the number of candidate decision nodes and the number of
target classes.

The following are the analysis of communication latency for each method:

• For NOSMC and k-PPD-ERT, all parties (Pi, ∀i ∈ {1, . . . , n}) send one message
to the mediator (M) in parallel. Since the messages are sent in parallel, the
communication latency is equal to the arrival duration of the last message.
Therefore, the communication delay is equal to maxi L(Pi,M), i ∈ {1, . . . , n}.

• For STSMC, we have two loops of message passing between parties in each
round, and finally, the first party sends the result to the mediator. Therefore, the
communication delay is equal to 2 · (∑n−1

i=1 L(Pi, Pi+1) + L(Pn, P1)) + L(P1,M).

• For Shamir, each round of secure aggregation consists of two parts performed
sequentially. In the first part, all data-holder parties send one message to n− 1

parties. When all parties receive these messages, they calculate the intermediate
results [75] and send them to the mediator. Therefore, the communication delay
is equal to maxi,j L(Pi, Pj), i, j ∈ {i, j ∈ {1, . . . , n} | i ̸= j} plus maxi L(Pi,M), i ∈
{1, . . . , n}.

The number of required secure aggregation operations is also recorded for the
experiments in the previous part, i.e., Latency for Our Proof-of-Concept Implementation.
The mean and standard deviation of the required number of secure aggregation
operations for learning one extremely randomized tree (ten times performed) are
98.8±9.4, 73.6±21.9, 22.0±6.2, 15.4±4.5 operations for Heart, Breast, Depresjon, and
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(b) Breast [134]
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(c) Depresjon [85]
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Fig. 4.4: The mean and standard deviation of estimated communication latency of different
methods for aggregation of secret values in learning one extremely randomized tree (ten times
performed) based on different datasets in several scenarios on Amazon’s AWS cloud

Psykose datasets, respectively. For estimating the total communication latency of each
method for aggregating secret values, the calculated latencies should be multiplied by
the number of secure aggregations performed for learning the classification model.

Figure 4.4 shows the mean and standard deviation of communication latency of
different methods for aggregation of secret values for each scenario and each dataset.
This figure shows that k-PPD-ERT has the same communication latency as the NOSMC
procedure. Shamir’s technique has lower communication latency compared to STSMC,
but it still has higher communication latency compared to k-PPD-ERT and NOSMC
procedures.

It should be noted that the communication latency of these methods should not
be confused with the communication overhead presented in Table 4.5. The orders of
communication overhead for NOSMC, STSMC, and k-PPD-ERT are the same and lower
than Shamir’s technique. However, since in STSMC, we have two loops of message
passing between parties that are performed sequentially, this technique has more delay
for a secure aggregation operation. Shamir’s technique has two rounds for each SMC
operation, and in each round, the message passings are performed in parallel, so it has
a lower delay compared to STSMC. For NOSMC and k-PPD-ERT, we have one round
of message passing that is performed in parallel and has the lowest communication
latency.

Finally, we demonstrate that our proposed k-PPD-ERT approach provides a solution
for the classification of structured data distributed over multiple sources with privacy-
preservation considerations, without performance degradation.
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4.3 Discussion of Contributions Related to the State-of-the-Art

In this section, we have a review of the literature for our research in both directions.
Then, for each direction, we discuss the novelty of our contribution with respect to the
related works.

4.3.1 Privacy-Preserving Data Publishing

4.3.1.1 State of the Art

Various approaches for the utilization of data with consideration of privacy and
legal concerns are proposed (see Table 4.7). Each approach can be relevant based
on the context, problem, and needs. For instance, when we seek the result of data
mining analysis, e.g., classification model for prediction, privacy-preserving data
mining approaches adopting secure computation techniques are relevant. In particular
scenarios, instead of the analysis results, we seek a version of the data that does not
violate the privacy of data owners. Depending on the type of data, attack model,
and other requirements in the scenario, we may employ statistical disclosure control
methods, popular privacy models, e.g., ε-differential privacy [73] or k-anonymity [174],
state-of-the-art anonymization methods which are based on generative adversarial
networks (GAN) [89], etc.

Table 4.7: Several existing techniques in the state of the art

Approach Related Studies
Statistical Disclosure Control [50, 54, 67, 112, 172]
Generative Adversarial Networks (GAN) [35, 59, 104, 133, 154–156, 190]
Randomization Based [33, 34, 82, 113, 162]
Optimization Based [39, 68, 122]
Differential Privacy [73, 104, 138, 139, 190]
Distributed Anonymization [102, 103, 105, 130, 141]

Several studies consider encryption algorithms for performing privacy-preserving
data mining [52, 53, 88, 90]. These studies mainly employ homomorphic encryption
for analysing the data. A comprehensive review of studies in such privacy-preserving
data mining approaches for horizontally and vertically partitioned data is provided
in [108, 179]. Despite several attempts to improve the computational complexity of
homomorphic enrcyption, including somewhat homomorphic encryption and learning-
with-error, the existing homomorphic encryption schemes still suffer from extreme
computational complexity [147].

The statistical disclosure control (SDC) field studies the approaches for privacy-
preserving data publishing of statistical tables or microdata files. Microdata files
contain several data records, which consist of multiple values related to one individual,
business, etc. Microdata files may contain identifier fields, e.g., name and address, that
will not be shared with data recipients to protect the privacy of data owners. Microdata
sets, or collections of records including information on individuals, usually are collected
through a survey and are products of statistical offices [188]. SDC addresses three types
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of disclosure, i.e., identity disclosure, attribute disclosure, and inferential disclosure
[61].

Disclosure in SDC is referred to as the undesired linkage of the information to
data owners [61, 84]. Identity disclosure is the identification of a data subject from
published data. Attribute disclosure occurs if sensitive information about a data subject
is revealed through the published data. Inferential disclosure happens when a data
subject’s information can be more confidently inferred from the released data.

SDC protects data subjects’ privacy against the mentioned disclosures by adopting
different approaches, from adopting random perturbation methods to introducing
limitations on query systems. Several studies [54, 112, 172] consider adding noise to
data for privacy protection. Additive noise generally replaces the original sensitive
value (v) with a number that is masked with a random value (v+r) and is often used
for hiding sensitive numbers in the data [84]. In certain scenarios, the statistical data
is released through online query systems. For instance, one SDC solution in such
cases is that the system only has access to aggregated data that has been assessed for
its sensitivity and disclosure control [61]. Similar to other privacy-preserving data
publishing approaches, in SDC, we want to maximize data utility and minimize the
risk of privacy violation, which can be contradictory. This is illustrated in Figure 4.5.
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Fig. 4.5: Disclosure risk and data utility objectives [97]

On the other hand, several privacy models address the adversary’s probabilistic
belief after accessing the published data about the victim’s information. This is different
from the privacy models that focus on stopping the adversary from linking records,
attributes, and tables to a victim data owner. The ε-differential privacy [73] is a
privacy model that assures that adding or removing a record from a dataset does not
notably affect the outcome of the analysis. Therefore, in such a model, if incorrect
data is collected from one data owner, it will not significantly change the result of the
anonymization algorithm [84].

Differential privacy is an extensively used statistical method that protects the privacy
of data subjects and limits the disclosure of information [74]. Differential privacy
techniques usually hide data subjects’ information by adding uncertainty in machine
learning models [72]. Such techniques also suffer from the trade-off between the data
privacy and utility [175]. Moreover, adopting differential privacy techniques and deep
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neural networks (DNN) is challenging due to the property of DNNs for memorizing
the presence of data samples in the learned models [193].

Recently, generative adversarial network (GAN) models have gained popularity due
to their capacity to produce realistic synthetic data in privacy-sensitive applications.
DPGAN [190] and PATE-GAN [104] provide differentially private GAN models for
medical applications with sensitive data, by adding noise to the model’s gradients.
However, both PATE-GAN and DPGAN suffer from a significant quality decrease in
high-dimensional datasets. Differential privacy techniques introduce a well-known
trade-off between performance and privacy level [120], i.e., increasing the noise
magnitude improves privacy at the expense of utility loss.

In [59], Choi et al. propose MedGAN to generate high-dimensional synthetic
discrete variables by using generative adversarial networks. MedGAN achieves high-
performance results for electronic health records and demonstrates the possibility
of using synthetic data to preserve patients’ privacy. In [155], Pascual et al. show
the possibility of generating synthetic epileptic brain activities using generative ad-
versarial networks. Moreover, Pascual et al. in [156] show the possibility of patient
re-identification and demonstrate that using synthetic signals produced by the Epilep-
syGAN model alleviates the privacy concerns associated with sharing sensitive medical
data in the epileptic seizure detection problem.

Anonymization is a popular solution to privacy-preserving data publishing.
Anonymization is a process for altering personal data to avoid the identification
of the data subjects [99]. In the anonymization field, several attack models are identi-
fied and taken into consideration, and privacy models are proposed to address them.
For instance, one well-known attack model considered in anonymization is the record
linkage model, which is addressed by k-anonymity privacy model [174]. Another im-
portant attack model is the attribute linkage model, and this attack is addressed by
l-diversity, entropy l-diversity, (c,l)-diversity privacy models [131]. Several methods
have been proposed to comply with such privacy models and avoid the associated
attacks, i.e., record-linkage and attribute-linkage attacks, e.g., using genetic or kd-trees
algorithms to encryption for achieving anonymity [36, 47, 100, 117].

The Mixed-Integer Linear Programming (MILP) frameworks have also been consid-
ered for anonymization. In [68], Doka et al. propose the utilization of Mixed-Integer
Programming for achieving k-anonymity. Similarly, [122] formulates the anonymiza-
tion problem in a Mixed-Integer Linear Programming (MILP) framework and achieves
k-anonymity based on optimization. This approach uses generalization for anonymiza-
tion and optimizes the lower and upper bound for each value of quasi-identifiers.
Quasi-identifiers are the attributes that the adversary may have information about
them, and he/she can use such information to re-identify data subject’s records. How-
ever, these anonymization methods [68, 122] merely consider k-anonymity and does
not prevent the attribute-linkage attack, which is the issue addressed by the l-diversity
and t-closeness privacy models.

Finally, in certain scenarios, the data is stored in multiple sites, e.g., several hospitals
and medical centers in different cities or countries, and cannot be transferred to one
center due to privacy and legal concerns. We seek an anonymized version of data
stored on all sites that is consistent with considered privacy models, e.g., k-anonymity.
However, the anonymization methods, generally, are designed for scenarios in which

72 Chapter 4



4.3 Discussion of Contributions Related to the State-of-the-Art

data is held in one center. Thus, we require anonymization methods that support
settings in which raw data is distributed. Figure 4.6 shows the distributed (collaborative)
anonymization scenario.
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Fig. 4.6: Distributed (collaborative) anonymization

In distributed anonymization, data can be horizontally or vertically partitioned and
distributed over multiple data holder parties. Data is horizontally partitioned if each
data holder stores a division of all records on it. Data is vertically partitioned if each
party holds a part of the records’ attributes. Several studies address the problem of
anonymization in distributed settings [102, 103, 105, 130, 141]. For instance, in [105],
Jurczyk and Xiong propose a method that generates integrated anonymized data based
on horizontally partitioned data. Their protocol utilizes secure multiparty computation
schemes to minimize the risk of information disclosure among data holders.

4.3.1.2 Contributions

For privacy-preserving data publishing, we propose a method to anonymize data to
ensure that each record is indistinguishable from, at least, k-1 other records in the
shared data while taking the diversity and frequency of values in the sensitive attribute
into consideration. In other words, we propose a method for anonymization of data
considering the k-anonymity, l-diversity, and t-closeness privacy models in a unified
framework. We formulate the anonymization problem in a constrained optimization
framework as a clustering problem, where the diversity and frequency of sensitive
values are captured and enforced by constraints. We refer to our proposed method as
diversity-aware anonymization, where diversity captures both the diversity concept in
the l-diversity privacy model and the frequency and distribution of sensitive values
in the t-closeness privacy model. The experimental results show the preservation of
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utility of data for classification tasks and the privacy properties noted in the discussed
models.

As discussed above, [68] proposes the utilization of Mixed-Integer Programming
for achieving k-anonymity. Similarly, [122] formulates the anonymization problem in
a Mixed-Integer Linear Programming (MILP) framework and achieves k-anonymity
based on optimization. These anonymization methods [68, 122] merely consider
k-anonymity and does not prevent the attribute-linkage attack, which is the issue
addressed by the l-diversity and t-closeness privacy models. Therefore, the joint
consideration of the k-anonymity, l-diversity, and t-closeness privacy models in such
frameworks have not been considered in previous studies.

4.3.2 Privacy-Preserving Distributed Machine Learning

4.3.2.1 State of the Art

The topic of collaborative learning from distributed data has been discussed in the
literature for many years. Several distributed learning techniques have been proposed
in the literature [79, 137, 166, 168]. Such techniques contribute to privacy preservation
by limiting the amount of data that has to be shared with other parties or transferred
to central servers or the cloud.

To explicitly introduce privacy preservation into data mining techniques, several
studies [33, 34, 76, 162] adopted randomization techniques to preserve the privacy of
individuals. In [33], Agrawal and Srikant present a technique that incorporates noise to
raw data before sharing and conducting data mining processes. However, the original
values can be estimated based on noise removal techniques. Hence, such techniques
do not provide strong security guarantees [96, 110, 111, 181].

In order to perform data mining over data distributed in multiple parties where no
private information except the mining results should be disclosed, secure multiparty
computation (SMC) is utilized by several studies [69, 108, 179]. The Yao’s Millionaires’
problem [191], initiated studies about SMC. In SMC, we are usually interested in
the result of a computation without knowing about the basic values needed for
this computation. Therefore, techniques utilizing SMC usually compute a partial
result needed for the learning process without revealing the basic values needed for
computation to other parties. Although such methods can provide perfect privacy,
the application of SMC can substantially increase communication and computation
overheads, leading to efficiency issues, especially when dealing with a high volume of
data [75].

Several approaches incorporate encryption techniques for secure computations in
the learning tasks [108, 179]. For instance, in [108], it is shown how homomorphic
encryption can be used in secure dot protocol, which can be used in particular machine
learning algorithms, e.g., for the secure dot-product protocol in SVM algorithm [192].
In another example, homomorphic encryption is used for secure computation in
Naïve Bayes Classifier [180]. In another example, commutative encryption can be
used for secure union operation, which is required in the association rule mining
method [109]. However, the communication and computation overhead of such secure
computation techniques are high, which makes them impractical in many real-world
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scenarios [157, 181]. Despite attempts to improve the computational complexity of
such methods, these schemes still suffer from high computational complexity [147]. In
[78], Feigenbaum et al. propose secure multiparty approximation in order to address
such issues by accepting a decrease in the accuracy. Nonetheless, their technique for
secure and private approximate multiparty computations is still expensive and should
be improved to be practical.

In particular, federated learning [46, 114] keeps the data distributed over clients,
e.g., mobile devices, and learns a model collaboratively from such decentralized
training data. We may also have a central server for the orchestration of the process
in this approach. Federated learning observes the data minimization principle in
data protection guidelines and limits the privacy risks we face in centralized machine
learning. However, the majority of studies in the federated learning domain focus on
deep neural network algorithms [107]. In such neural network algorithms, in addition
to data-holder parties’ contribution, i.e., gradients, sharing model parameters is also a
privacy concern. This is due to recent attacks on the neural networks, i.e., membership
inference attack [149, 178].

In [186], Wei et al. combine federated learning with differential privacy. The authors
propose to add artificial noises to the parameters at the clients’ side before model
aggregation for providing differential privacy. In [95], Hu et al. propose a federated
learning scheme with differential privacy guarantee and evaluate their scheme based
on realistic mobile sensing data. In [87], Geyer et al. present a federated optimization
algorithm, by considering differential privacy, to hide clients’ contributions in the
process of learning. This approach requires a sufficiently large number of participating
clients to obtain high-performance models. In general, since in differential privacy, we
have a trade-off between privacy and data utility, this can degrade the performance of
the final machine learning model.

A comprehensive study on security and privacy of federated learning is performed
in [143]. The authors extensively discuss the vulnerabilities and threats in federated
learning. For instance, one concern in federated learning is data poisoning [49], which
is relevant when the attacker incorporates malicious data points to training data in
order to maximize the error. In another example, the global model can be used to infer
details about training data. Membership Inference attack [149, 178] can be used to
determine if a record exists on the training data. Moreover, several techniques and
approaches, e.g., secure multiparty computation and differential privacy, for addressing
these vulnerabilities and mitigating the identified threats is discussed in the survey.

In the application of federated learning for resource-constraint devices, the commu-
nication and computation costs should be considered. In [98], Imteaj et al. surveyed
federated learning for resource-constrained IoT devices. This study points out the
challenges in applying federated learning on a resource-constrained IoT environment
and analyzes the potential solutions for addressing such challenges. The challenges
include communication overhead, scalability, energy-efficient training of deep neural
networks, limited memory, bandwidth, and energy, heterogeneous hardware, etc.

Federated learning avoids transferring all the raw data to a center for training
a machine learning model using conventional centralized methods. In federated
optimization for learning a neural network model using the gradient descent algorithm,
the clients or parties holding a part of the training data share their gradients with a
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central server that orchestrates the learning process. Then, the central server aggregates
the received gradients and updates the model parameters based on the received results.
In cross-device federated learning, where we have a large number of mobile or IoT
devices, communication is often the main bottleneck [107]. In [136], McMahan et al.
propose FederatedAveraging (FedAvg) in order to reduce the rounds of communication
required for training a deep neural network. First, at each round of communication
and update of the global model, FedAvg selects a fraction of clients holding part of the
data to participate. Second, the selected clients calculate the gradient and update its
parameters locally several times and, then, share the results calculated based on locally
updating parameters with the central server. FedAvg addresses the communication
cost with such schemes, but this can increase the computation cost on clients’ devices.
Anyhow, in federated optimization, communication costs dominate compared to central
optimization.

In [185], Wang et al. address the problem of training gradient-descent-based
machine learning models with data distributed on edge devices. This study decides the
best tradeoff between local updates on clients and global updates on the central server
to minimize the loss function with a given resource budget. Similar to FedAvg, this
approach includes several rounds of local updates on the client device before sharing
the client contribution to the central server and global update of network parameters.
The local update consumes the computational resources of the client device, and the
global update consumes the communication resource of the network. The frequency
of global updates is configurable and can occur after one or several local updates.
There exist a connection between the frequency of global updates, the performance of
the trained machine learning models, and the consumption of resources. This study
proposes an algorithm for determining the frequency of global updates to optimize the
utilization of available resources.

In [150], Nishio and Yonetani propose FedCS for addressing the challenges related
to efficiency in the application of federated learning for clients with limited resources.
Similar to FedAvg, in this approach, at every round for updating the parameter on the
central server, several clients are randomly asked to download the model from the
central server, update them with their local data, and upload it to the central server.
However, the limited computational resource of clients delay the updating time, and
the limited communication resource delays the upload time. This, in turn, increases
the learning time and negatively affects the efficiency of the federated learning process.
FedCS addresses this issue by managing the clients based on the condition of their
resources. This protocol sets deadlines for download, update, and upload steps for
clients. The operator in this protocol, then, selects clients at each round based on
the limited time frame and the ability of each client to complete its tasks within the
deadline considering its computation and communication resource constraints. This
scheme improves efficiency and reduces learning time, as experimentally demonstrated
by the authors.

In [121], Li et al. propose FedProx, which is a generalization of FedAvg. FedProx
allows variable amounts of work to be performed on client devices depending on the
available resources. This is instead of uniform amounts of work performed by each client
device proposed by FedAvg. FedProx is particularly practical for resource-constrained
federated learning in IoT environments [98].
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The majority of previous studies in federated learning domain have focused on
deep neural network algorithms. In many applications, tree-based methods can be
more accurate than neural networks. Deep neural network algorithms are appropriate
solutions when dealing with unstructured data, e.g., for video, audio, and text in
[142, 158, 195]. However, the tree-based methods can outperform such algorithms when
dealing with structure data, where the data attributes are individually meaningful, and
we do not have strong multi-scale structures related to time or space [129]. Therefore,
tree-based algorithms are currently being adopted in many applications in which the
training data is structured.

Several studies have been done to address the privacy concerns in distributed
learning using tree-based data mining techniques. In [181], Vaidya et al. consider
the problem of learning decision trees, with random decision trees (RDT) algorithm
[77]. They present a technique based on homomorphic encryption and apply it over
horizontally and vertically partitioned datasets. However, that approach suffers from
extreme computational complexity.

In [124], Lindell and Pinkas propose the utilization of SMC techniques for learning
decision trees which is based on ID3 algorithm [159]. In this approach, data is
horizontally partitioned among two parties. The number of parties in this method can
grow to more than two, but the efficiency and scalability of the technique decrease
[157]. Moreover, perturbation techniques may also be used to build approximate
decision trees. In [70], collecting all data in one center for mining, from all sources and
after applying randomization techniques, leads to decreasing our confidence in the
technique’s privacy.

Gradient and tree-based algorithms have been employed by several studies in
conjunction with strategies related to federated learning [58, 119, 128, 194]. In [194], the
authors propose a privacy-preserving distributed data mining method for regression
and classification based on the Gradient Boosting Decision Tree (GBDT) algorithm [80].
The trees are trained locally on data-holder parties and passed to the following parties
after being modified according to differential privacy requirements [194]. Nevertheless,
injecting noise into participants’ contribution, model parameters, etc., can increase the
learning time and degrade the results of learning due to the trade-off between privacy
and data utility [64]. Similarly, in [119], the authors propose a method based on GBDT
for distributed scenarios called SimFL. In this framework, each party boosts a number
of trees utilizing similarity information using locality-sensitive hashing. However, their
privacy model is weaker than secure multiparty computation for improving efficiency,
and their model performance is not the same as GBDT but comparable to it [119].

There are other studies that propose tree-based methods that are not gradient-
based but are under the name of federated learning, e.g., [127, 177]. In [177], the
authors propose a method employing the decision tree algorithm, ID3, that uses the
combination of differential privacy and secure multiparty computation for addressing
privacy concerns. The model’s performance is degraded compared to the performance
of the machine learning model in a centralized scenario. In [127], the authors propose
a solution based on the random forest algorithm [55, 93]. This method requires a
third-party trusted server and employs encryption, which increases the communication
and computation overheads [75].

Closely connected to the proposed method in this thesis for the application of
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machine learning methods for decentralized data, Emekçi et al. in [75] propose
a tree-based method that utilizes a secure multiparty computation technique as an
additional layer in their approach to have more confidence about its privacy. Particularly,
Shamir’s secret sharing [164] is used to aggregate the results received from each party
at every step of learning with the ID3 algorithm. The limitation in the incorporation
of methods with high communication and computation overheads leads to higher
efficiency. However, Shamir’s secret sharing technique still introduces major overheads
in communication and computation and suffers from the scalability problem.

4.3.2.2 Contributions

In this research direction, we target the problem of learning from data held on multiple
sources without explicit sharing of raw information. We assume that the learning data
is horizontally partitioned, meaning that different records of data are stored on different
sources. We focus on the classification problem and structured health data, which can
be stored in spreadsheets. We propose a scalable privacy-preserving framework for
distributed machine learning based on the extremely randomized trees algorithm [86],
which has a linear overhead in the number of parties and can handle missing values.
We refer to our approach as k-PPD-ERT (Privacy-Preserving Distributed Extremely
Randomized Trees), in which k is the number of colluding parties in our approach. We
use two popular publicly available healthcare datasets for performance evaluation, i.e.,
the Heart Disease [66] and the Breast Cancer Wisconsin (Diagnostic) [134] datasets.
This data represents medical applications where missing values are present, and our
algorithm is designed to handle such scenarios. Finally, we present the implementation
of our technique on Amazon’s AWS cloud and evaluate it in a real-world setting based
on the mental health datasets associated with the INTROMAT project [13].

As discussed above, several studies focus on tree-based methods for distributed
machine learning which can outperform state-of-the-art deep neural network algorithms
when dealing with structure data, where the data attributes are individually meaningful,
and we do not have strong multi-scale structures related to time or space [129]. Several
studies adopt differential privacy in their approaches, but differential privacy can
degrade the performance of the machine learning model due to the trade-off between
privacy and data utility [64]. Several studies incorporate inefficient secure computation
techniques and homomorphic encryption in the methods, which can substantially
increase the communication and computation overheads. We, in particular, propose
an efficient privacy-preserving distributed machine learning framework based on
the extremely randomized trees and secure multiparty computation, which was not
considered in previous studies.

4.4 Discussion of Validity Threats

In this section, we discuss several points and threats to the validity of our proposed
techniques.

For our Anonymization framework, one important assumption is that the data
records to be published should be truthful. The analysis results directly depend on
the published records, and if the records are not accurate, then the results will not
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be correct. Therefore, to be able to correctly analyze the data and to produce valid
analysis results, the truthfulness of the data records before and after anonymization is
necessary.

For our privacy-preserving distributed machine learning framework, we have
several assumptions and points that should be taken into consideration before the
application.

• Parties should share correct information. In this framework, since only data holder
parties are aware of their data values, other parties can not check the correctness
of the partial information shared. The resulting model will be negatively affected
if data holders send incorrect partial information to the central server or the
mediator. This is because the model is trained based on the partial information
received from data holders. Therefore, data holder parties should share correct
information based on the proposed algorithm for training a high-performance
classification model.

• All parties should participate in the learning process according to the algorithm.
In our framework, we are using random masks for partial information, and
the random mask of each party is canceled by random masks of other parties.
Therefore, if a party is supposed to participate in one round, other parties mask
their partial information accordingly. If that data holder party does not participate,
the result of secure aggregation will not be correct. Hence, if a party is expected
to participate in one round for selecting a candidate decision node, then its
participation is necessary for training a high-performance classification model.

• The performance of our framework, similar to the ERT algorithm, depends on
the data. In case the data is not suitable for learning a high-performance machine
learning model with the ERT algorithm, e.g., the data is small, biased, or noisy,
then our framework will face the same problem as ERT. Our framework is based
on the ERT algorithm and follows the same learning procedure as the ERT
algorithm. Our contribution was to extend ERT for learning from decentralized
data while protecting the privacy of data owners. Therefore, the data itself plays
an important role in training a high-performance machine learning model.

4.5 Reflections on the Research Context

In this section, we discuss how our research contributes to the described context. First,
our problem was the privacy issue involved in analyzing healthcare data mainly by
using machine learning algorithms. In particular, in the mental health domain context
and in connection to the funding project of this thesis, i.e., the INTROMAT project,
there exist different sets of data that can not be published and shared with researchers
due to privacy concerns. Our proposed solutions address this and facilitate analyzing
such sensitive healthcare data.

Using our anonymization technique allow publishing a version of data that addresses
record-linkage and attribute-linkage attack models by considering k-anonymity, l-
diversity, and t-closeness privacy models. Therefore, when the data holder, in our case
hospital, identifies that the above two models of attack threaten the privacy of data
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owners, patients in this case, and the above models for protecting privacy suffice their
privacy needs, then our anonymization technique can help. By using our technique, an
altered version of data could be shared with the data recipient, in INTROMAT case
researchers and developers, that can be utilized for analysis purposes.

By using our privacy-preserving distributed machine learning framework, we
can learn classification models from decentralized structured healthcare data while
protecting patients’ privacy. Our framework is designed for scenarios in which data is
horizontally partitioned and is distributed among several parties, in our case, hospitals
or patients’ personal devices. Therefore, in cases where we have the data as described
and where only the result of training should be shared, our proposed technique can be
used.

The goal of our research in this thesis was to provide a way to analyze existing
healthcare data while protecting the privacy of the data owners. Ultimately, this leads
to enhancements in healthcare treatment, diagnoses, and decision-making.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Overall Summary of Findings

Artificial intelligence (AI) and its subset Machine Learning (ML) can assist us in in-
creasing the accuracy of decision-making and improving the efficiency and automation
of systems. Nowadays, AI made significant progress and is outperforming human
experts in in certain domains. Two examples are the classification of rhythms in elec-
trocardiography signals with deep neural networks in [91] and prediction of breast
cancer using the AI system presented in [135]; more related studies can be found in
[32, 126]. Nevertheless, the application of AI and ML in the healthcare domain raises
certain challenges. Security and privacy concerns in the healthcare domain are impera-
tive, and we should carefully consider them in our applications. In data analysis and
machine learning applications, we require patients data. However, providing access to
such data for analysis purposes can violate the privacy of the patients.

Our main objective, in this study, is to facilitate the possibility of exploiting the
sensitive data available in the health domain without privacy violation. That is, to
enable performing data mining and machine learning in a privacy-preserving fashion.
In particular, the primary motivation for our objective is that this study is a part of the
INTROMAT (INtroducing personalized TReatment Of Mental health problems using
Adaptive Technology) project, and, in INTROMAT, there is a need for the analysis of
sensitive mental health data.

In connection with Research Question 1 and in the context of this research, one of
the main challenges is the privacy of data owners or patients in the healthcare domain.
On the one hand, if the data in its raw format is published, the adversaries may infer
private information about patients even after removing the identifier fields, e.g., by
adopting attack models discussed in this thesis. On the other hand, releasing analysis
results, e.g., a trained deep neural network model, or neglecting particular details while
analyzing the data in a distributed fashion, e.g., not protecting partial information, can
pose a threat to the privacy of patients.

We explored the literature and found two primary research directions that address
the privacy issue for analyzing healthcare data. The first direction focuses on sharing
an altered version of data that can be used for a variety of tasks, e.g., analysis using
machine learning techniques or visualization of data. The second direction focuses on
analyzing the data, which is decentralized using machine learning techniques. In the
first direction, we have two criteria, i.e., data privacy and data utility, for which we
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have a trade-off. For the second direction, we have data privacy, model performance,
scalability, and overhead criteria that should be considered.

In connection to Research Question 2, the anonymization methods can be considered
for publishing health data, for which we have concerns with respect to privacy
protection. We have several privacy models that address specified attack models in
data publishing. Then, we can anonymize the raw data by altering it based on the
privacy model. The problem with such approaches is that we have a trade-off between
data privacy and data utility which can degrade the data or pose a threat to the privacy
of the data owner. Moreover, such approaches are designed for scenarios in which
the data is centralized. One important alternative to address such shortcomings is
privacy-preserving distributed machine learning which is the other research direction
addressed in this thesis.

In connection to Research Question 3, in scenarios where the health data is dis-
tributed among several parties and where we require to train a machine learning model
based on such data, privacy-preserving distributed machine learning techniques can be
used. In such solutions, privacy, scalability and overhead, and model performance are
among the criteria for evaluation. Such techniques usually are designed for a particular
machine learning task and are not suitable for other analysis tasks, e.g., calculating the
distributions in data or visualization. An alternative solution where we have decen-
tralized health data is distributed anonymization methods. However, anonymization
solutions suffer from degradation of data utility due to the data privacy and utility
trade-off.

For privacy-preserving data publishing direction, we analyze the data after it is
published. Therefore, we require a version of data for publication that preserves the
privacy of data owners. Privacy-preserving data publishing methods and approaches
are in this direction. In privacy-preserving data publishing, we usually have certain
attack models that we try to avoid, e.g., by altering the data before publication. In
this thesis, we propose an optimization-based anonymization framework for protect-
ing patients’ privacy in publishing datasets that contains categorical and numerical
attributes. Our method addresses identity-linkage and attribute-linkage attack models
and is based on clustering the data samples in a diversity-aware fashion. The proposed
method formulates and solves this problem as a constrained optimization problem and
achieves anonymity by jointly considering the k-anonymity, l-diversity, and t-closeness
privacy models. We evaluate our framework on popular publicly available structured
healthcare data, i.e., the Heart Disease dataset. We show that our optimization-based
anonymization framework retains data utility (by evaluation of classification perfor-
mance) while providing privacy against both record-linkage and attribute-linkage
attack models (by evaluation of with respect to k, l, etc. in privacy models).

In the other direction, we perform the analysis without direct access to the data
to protect the privacy of data owners. In this direction, the data that is subject to
analysis is held in a distributed fashion over multiple parties. Therefore, we require
methods that can analyze such data without having direct access to it. In this thesis,
we presented a scalable privacy-preserving distributed learning framework along this
direction. Our framework is based on Extremely Randomized Trees (ERT) algorithm
and Secure Multiparty Computation (SMC) techniques. Furthermore, we extend
our framework to be resilient to multiple colluding parties, improve the scalability,
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and handle missing values in data. We demonstrate the relevance of the proposed
framework by implementing our technique on Amazon’s AWS cloud and based on
health data, as a proof of concept. We evaluate our proposed technique based on two
popular publicly available healthcare datasets, i.e., the Heart Disease and the Breast
Cancer Wisconsin (Diagnostic) datasets, and two mental health detests associated with
the INTROMAT project, i.e., the Depresjon and Psykose datasets. We show that our
framework has the same classification performance as the ERT algorithm but provides
privacy in the presence of up to k colluding parties, in a scalable fashion and with a
communication overhead of O(n) for a secure aggregation operation.

In conclusion, our research in this thesis was focused on providing the opportunity
for utilizing the available healthcare data for analysis while protecting the privacy of
data owners. In the long run, this results in improvements in treatment, diagnostics,
and decision-making in the healthcare context.

5.2 Directions for Future Work

The topic in this thesis and the research areas of our contributions are broad and can
also be combined with other disciplines. Therefore, there are many research subjects in
this relation that can be considered for forthcoming studies. In the following, several
interesting directions that are relevant to the topic of this thesis are outlined that can
be considered in our future works:

• Anonymization methods are designed for scenarios in which data is stored in
one center. However, in many real-world applications, the raw data is stored
in multiple centers, e.g., at different hospitals or medical centers. Sharing the
raw data with one center for anonymizing it can be problematic due to privacy
and legal concerns. Therefore, particular anonymization methods are proposed
to perform the anonymization in a distributed fashion. One interesting future
work is to explore the possibility of extending our anonymization method for
distributed scenarios.

• In distributed anonymization, similar to distributed machine learning, we may
require to share partial information with other parties for anonymizing the data.
This can pose a threat to the privacy of data owners. Therefore, in such scenarios,
we may utilize an additional layer of secure multiparty computation (SMC) to
protect the privacy of patients. In our future works, we may be able to use our
SMC techniques used in PPD-ERT and k-PPD-ERT in distributed anonymization
as well.

• We implemented and tested our privacy-preserving distributed machine learning
technique on Amazon Web Services to demonstrate its performance. In many
applications, the training data is inherently distributed over patients’ mobile
phones. Our proposed techniques can be employed for learning from such data,
while the data does not leave the patient’s mobile device for the learning process.
One other future work is to implement and use our proposed approach on mobile
devices.
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• Our privacy-preserving distributed machine learning technique is designed for
scenarios in which data is horizontally distributed. One example of a scenario in
which data is horizontally distributed is multiple hospitals that hold the same
type of data which are collected from different patients at different hospitals.
However, in certain scenarios, the training data is vertically partitioned. When
the values for different attributes of the same records are stored at multiple places,
the data is vertically partitioned. For instance, if the data about age, weight, and
height of patients are stored at one hospital and their data for attributes related
to a particular type of cancer, e.g., the radius and area of a tumor, is stored in a
cancer institute, then, the data is vertically partition. Another future work that
can be done is to extend our proposed techniques to be employed in scenarios in
which the training data is vertically partitioned.

• One basic assumption in our privacy-preserving distributed machine learning
techniques is that data holder parties participate in the learning process by pro-
viding correct information. The performance of the learned model is dependant
on the correctness of parties’ information. In particular scenarios, parties may
intentionally or unintentionally collaborate on learning a model by providing in-
correct information. One interesting future direction is to address such scenarios.
One future research work would be to explore the possibility of detecting such
issues and improving the robustness of our proposed techniques against them.

• Regarding the other challenges of using AI in healthcare and in connection with
the scope of our INTROMAT project, interoperability is a practical issue in the
application of technology in the medical section. There is a vast body of studies
in this domain that each of which addresses a particular problem. For example,
[144–146, 146, 160, 161] address the interoperability and software architectures
in the healthcare domain. In this thesis, we assume that the interoperability is
addressed by the data infrastructure manager. One future research area is the
interoperability issues involved in the adoption of AI systems in the healthcare
domain.

• Regarding the amount of trust that we can put in AI and machines’ decision-
making, during the past year, there has been a discussion [7, 8, 23, 43], including
in the healthcare domain [45]. In many applications, AI can assist human experts
in their roles. For instance, if a medical doctor requires to look for tumors in
mammogram images, a machine may be used to highlight suspicious areas
using segmentation techniques for the medical doctor to double-check. In such
scenarios, a human expert makes the final decision to avoid the risk of false
negatives.
Using a machine for decision-making in certain applications can only be beneficial
compared to not using them. For example, before the availability of mobile
devices for monitoring physiological signals during daily life, individuals could
not get helpful recommendations or alerts based on the data that such devices
capture and process, but now, such a possibility exists. On the other hand, AI
and automatic decision-making have the potential to help humans and are not
imposed on us. The application of such technology should be investigated based
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on each healthcare scenario. Total delegation of important decision-makings
to the machine should be carefully assessed beforehand, e.g., by analyzing the
risk based on the scenario [184]. One interesting future research work would be
assessing how much trust we can put in AI systems in the healthcare domain.

• Smart wearable devices provide the opportunity to monitor the physiological
states and behavioral patterns of patients on a long-term basis and can contribute
to early detection and prevention of health disorders, e.g., depression [85].
Examples of wearable devices are Empatica E4 [2], Muse headband [6], ActiGraph
[1], fitbit [3], and eGlass [9, 42, 171]. Wearable technologies provide promising
solutions for pervasive healthcare with an affordable price by removing time and
location constraints [182]. In particular, in [85], Garcia-Ceja et al. propose the
detection of depression in individuals based on their motor activity data collected
using ActiGraph wristbands. In a similar study, [101], Jakobsen et al. utilize the
motor activity data collected using ActiGraph wristbands to detect Schizophrenia
in individuals. We plan to consider the data from wearable devices in the future,
and we have already considered two datasets associated with the INTROMAT
project.
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Abstract 

Hospitals, as data custodians, have the need to share a version of the data in hand with external research institutes 

for analysis purposes.  For preserving the privacy of the patients, anonymization methods are employed to 

produce a modified version of data for publishing; these methodologies shall not reveal the patient’s information 

while maintaining the utility of data. In this article, we propose a practical methodology for anonymization of 

structured health data based on cryptographic algorithms, which preserves the privacy by construction. Our initial 

experimental results indicate that the methodology might outperform the existing solutions by retaining the utility 

of data. 
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1 INTRODUCTION 

Hospitals, nowadays, are increasingly collecting data from 

patients as it allows to provide better treatment and precise 

diagnosis. Analyzing such data by sharing it with 

researchers can be useful for society. However, the shared 

data should not compromise the privacy of the individuals. 

Removing the identifier fields like name and address, is not 

enough for preserving privacy from certain attacks, e.g., 

linking attack [1]. Such attacks can re-identify the 

individuals and reveal specific information based on the 

raw data.  One solution to this is that the data custodians, 

e.g., hospitals, anonymize such data before sharing. 

1.1 Anonymization 

Having access to high-quality data is a necessity for 

medical and pharmaceutical experts and researchers for 

facilitating decision making. Sharing healthcare data can 

benefit several parties, including hospitals, medical and 

pharmaceutical researchers outside the hospital, patients, 

and data mining researchers. Hospitals, more precisely, 

medical experts and researchers, can make use of the result 

of data analysis performed by external research centers. 

Medical practitioners and pharmaceutical researchers 

outside the hospital need the data for analysis leading to 

informed decision making. Patients, indirectly through this, 

will receive better services from hospitals and medical 

centers outside the hospital. Finally, data mining 

researchers will have access to real health data and use 

them as benchmarks for their methods. However, raw 

health data contains patients’ sensitive information and can 

compromise their privacy. Therefore, health data holders 

are looking for anonymization techniques that prepare the 

health data for release, while keeping the quality of data and 

preserving the privacy of patients. 

Patients consider hospitals as trustworthy entities, so they 

are willing to share their data with hospitals. Nevertheless, 

this trust is not transitive to other entities such as research 

centers outside the hospitals. Many believe that removing 

specific identifying information including name, telephone, 

and social security number, is sufficient for releasing the 

data. As several previous studies show [1, 2], merely 

removing the identifier fields is deficient for preserving the 

privacy of individuals. Sweeney [1] shows, an adversary by 

having limited information from an individual, say from 

another dataset, can match other attributes, called quasi-

identifiers (QID), and reidentify the individual. Three 

prominent examples about this are provided in [1, 3-6, 7]. 

At some points, hospitals, instead of analyzing the data by 

themselves and sharing the analysis results, e.g., statistics 

or classifiers, need to share the data with external research 

centers, e.g., universities and pharmaceutical companies, in 

order to make use of other professional resources outside. 

Therefore, they should share the data with external 

researchers specialist in data analysis. Moreover, having 

the data give much freedom to external research centers for 

data analysis. Frequent requests from hospitals for 

providing statistical information and fine-tuning the data 

mining results is not feasible [2]. 

1.2 Motivational Example 

Hospitals are considered to be the trusted party, and thus 

have access to the raw data.  However, they, in general have 

limited resources for some specific data analyses.  

Therefore, it is common to delegate the analysis process to 

external research institutions. To preserve privacy of 

individuals, data should be anonymized in the hospitals, 

and only anonymized data can be shared with external 

institutions or released to the public.  Note that any party 

external to hospitals can be the adversary, as illustrated in 

Figure 1. 

After analyzing the published data, the results will be 

released to the hospital, which can be, for instance, a 

discriminator function as the outcome of the learning from 

anonymized data. With this function, the hospital can 
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classify new raw records as follows: firstly, the new record 

should be anonymized in the same way as the published 

data anonymized; secondly, the new anonymized record 

can be passed to discriminator function, shared by the 

external institutions, for classification. In this way, 

hospitals can make use of services outside without 

compromising the privacy of their patients. 

 

Figure 1 medical data anonymization and analysis. 

In this paper, we propose a methodology to anonymize 

structured health data based on cryptographic algorithms 

and without assumptions on the characteristics of the 

encryption method. Adopting cryptographic algorithms 

guarantees privacy preservation by construction. 

Moreover, the comparison results of the data utility 

between raw and anonymized data generated based on our 

proposed methodology and the existing methods are 

promising. The proposed methodology can have a 

complementary role in combination with previous methods 

as well. 

The organization of the rest of this article is as follows. In 

Section 2, a short review of previous methods for 

anonymization of the structured data is provided. Section 3 

addresses the proposed approach for anonymization, along 

with providing some preliminary information. Section 4 

presents the necessary information and settings concerning 

the experiments. Section 5 is devoted to the evaluation and 

experimental results. Finally, in Section 6, conclusions and 

future research directions are provided. 

2 RELATED WORKS 

For research purposes, data custodians need to release a 

version of data in a way that individuals cannot be re-

identified. Statistical and multi-level databases are among 

the other approaches for addressing these kinds of needs. 

Despite the assumption made in [1], statistical disclosure 

control [8] is an active research area for addressing today's 

needs to provide accurate information while protecting the 

privacy of the various parties involved [9, 10]. On the other 

hand, anonymization techniques are between other 

solutions in this regard. For sharing the data records, 

microdata, in anonymization, we try to irreversibly alter the 

personal data until the re-identification of data subjects is 

no longer possible [11]. 

Anonymization methods provide a new class of acceptable 

solutions to this problem. Typically, anonymization 

techniques for structured data make use of generalization 

method. More specifically, such techniques modify or 

generalized the data records components in a way that a 

data record is hardly distinguishable from others. Some 

important related studies are k-anonymity [1], l-diversity 

[12], t-closeness [13], and LKC-privacy [2]. To date, k-

anonymity remains the most widely known privacy model 

for anonymization during the past two decades. To thwart 

privacy threats, k-anonymity privacy model generalizes 

and suppresses data record components or features into 

equivalence groups so that any record is indistinguishable 

from at least k other data records [14, 2]. However, in this 

method, when the dimensionality of data is high, most of 

the data must be generalized or suppressed for achieving k-

anonymity; this negatively affects the utility of data and 

degrades it [2]. Other methods try to rectify the issue, for 

instance, by imposing limitations on the problem, such as 

the supposition of limited knowledge of the adversary 

about the patient. For example, in the LKC-privacy model, 

the adversary is supposed to have only the values for a part 

of the QID attributes of the victim’s record, L attributes [2]. 

The proposed approach in this study described in Section 3 

tries to provide a solution for the above problem, i.e., 

anonymization of structured data. The problem here is the 

same as the one described in the above research studies, 

while we formally define the problem in Section 3. The 

proposed approach of this study for the solution is 

completely different from that provided in the previous 

studies. This study investigates the application of 

cryptographic algorithms, which is distinguishing from 

previous works. The majority of previous studies consider 

performing machine learning over homomorphically-

encrypted data [15-18], while in this paper we do not make 

such assumptions. 

3 METHOD 

In this section, we first define the anonymization problem 

and then propose a practical solution to this problem. Two 

main concerns for data anonymization is privacy 

preservation and data utility, discussed in the following 

subsection. There is often an inherent trade-off between 

these two metrics. At one extreme, all data can be released, 

for maximizing the utility, and as a result, violate the 

privacy entirely. On the other extreme, releasing no data 

can maximize privacy; however, there would be no data 

utility [14]. The proposed methodology in this section 

provides an approach for addressing this problem, which is 

based on cryptography for data anonymization. 

3.1 Problem Definition 

In the following two subsections we discuss the two criteria 

for this problem. We define the anonymization problem as 

guaranteeing the privacy while maximizing the utility of 

the data for the statistical and machine learning data 

analysis. 

3.1.1 Privacy Preservation 

This section explains the privacy threats for sharing the raw 

information through an example; there exist two types of 

privacy concerns, namely identity linkage and attribute 

linkage. Table 1 shows the raw patient data. The raw data 

does not have the identifier features but is still vulnerable 

to the violation of privacy. Education, sex, and age are 

quasi-identifying attributes [1]. Disorder is the sensitive 

feature that the adversary does not know about the victim 

patient and tries to infer it. Finally, there exists one class for 

every record in the dataset. 

Based on the following assumptions about the adversary, 

there are two types of privacy concerns to address. As 

mentioned in Introduction, the adversary is assumed to 

have anonymous data for all the patients. Moreover, the 

adversary has parts of the victim patient’s record, in its raw 

format; this information is part of or all the quasi-

identifying attributes and is only for one patient. The extent  
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ID 

Quasi-identifier (QID) Sensitive 

Class Education Sex Age Disorder 

1 BSc F 40 Depression cat. #1 

2 MSc M 53 ADHD cat. #1 

3 HS-grad F 40 Depression cat. #2 

4 PhD F 31 Social Anxiety cat. #1 

5 MSc M 31 Bipolar cat. #2 

Table 1 An example of raw data table. 

of adversary’s information about the victim patient is 

assumed differently in different studies. For instance, in [1] 

the author for k-anonymity model assumes that the 

adversary has all the values for quasi-identifying attributes, 

but in [2] in LKC-privacy model limits the adversary’s 

information to only the values of L number of the quasi-

identifying attributes. Finally, the adversary does not know 

about the sensitive information of the victim and is willing 

to infer it. Accordingly, hospitals face two common privacy 

concerns [2] described below: 

• Identity Disclosure: If the record is highly specific, 

matching the records with the victim’s information is 

simple, which lead to the inference of the patient’s 

sensitive information. For instance, in Table 1, the raw 

data table, if the adversary knows that the victim’s 

education and age are 'MSc' and '31', respectively, then 

s/he confidently identifies that record number 5 is the 

victim’s and infers that the victim’s disorder is 

'Bipolar'. 

• Attribute Disclosure: If with some quasi-identifying 

attributes, the sensitive value happens repeatedly, it 

makes the inference of the sensitive value easy, 

although the accurate data record of the victim is not 

identifiable. For instance, in Table 1, the raw data 

table, if the adversary knows that the victim’s sex and 

age are 'F' and '40', respectively, then, s/he can match 

the victim’s information to records number 1 and 3. 

However, since both sensitive values for record 

number 1 and 3 are the same, 'Depression', then, the 

adversary can infer with 100% confidence that the 

victim’s disorder is 'Depression'. 

3.1.2 Utility of Data 

To make sure that the anonymization method is not 

degrading the utility of the data, a comparison of the utility 

of raw data with the anonymous data is essential. The 

classification performance is a valid criterion for making a 

comparison between the utility of data before and after 

anonymization. Since the main concern of this study is 

sharing the data for data mining purposes, the difference 

between the classification performance for the raw and 

anonymized data shows the excellence and efficiency of the 

algorithm.  

Information gain [19] is another criterion that indicates how 

much a method may degrade or improve the data quality 

for every feature of the data individually. Information gain 

was first introduced for decision trees and is based on the 

information entropy [20]. Nevertheless, since it does not 

consider the correlation and combination of the attributes, 

it is not as reliable as the classification performance 

criterion. 

3.2 The Anonymization Method 

For the preservation of privacy, we seek a function to map 

each unique record of raw data to another unique record, 

different from the raw record and in the same feature space. 

The anonymized data records must be different enough to 

prevent identity and attribute attacks. The anonymized data 

must not allow the possibility for the adversary to map back 

to the raw data. Therefore, the utilized function for mapping 

the raw data must not be reversible, or in other words must 

be one-way, for those with whom the anonymized data will 

be shared. 

Cryptography fulfills the privacy objectives by 

construction. Mapping a number to another unique number 

through one-way functions is the main purpose of 

cryptography. Therefore, by such intrinsic features of 

cryptographic algorithms, we can make sure of the 

preservation of privacy criterion without taking further 

actions. Since, after encryption, the values would be 

meaningless numbers for the adversary, and it is not 

possible for one without a key to map back to the raw data.  

Due to the objective of this study for anonymization of the 

structured health data containing categorical and numerical 

features, encryption is entirely feasible. Since in both cases 

there are numbers, more precisely category numbers and 

numerical values, which are mapped to other numbers. The 

sensitive attribute is not an exception and is encrypted as 

well. Normalization of data is the second phase of 

anonymization. Normalization, in addition to the positive 

impact on learning, reinforces preserving the privacy as this 

is a hashing phase after encryption. 

As described earlier the anonymization methods should 

fulfill two criteria, namely privacy preservation and data 

utility. Application of cryptographic algorithms guarantees 

the privacy preservation criterion by construction. 

However, we also need to make sure about the performance 

of this methodology in regard to the utility of data. In this 

study, we experimentally show that our proposed 

methodology for anonymization of structured data is also 

efficient regarding the data utility. 

The utility of the data needs to be preserved and this is 

related to the correlation of attributes and labels in data 

samples and the algebraic distance of samples from each 

other. To ensure satisfying this criterion after encryption 

and normalization of the dataset, the utility of the data is 

compared before and after anonymization based on two 

measurements described previously in this section. If the 

results for raw and anonymized data are close, then in 

addition to the preservation of the privacy, there also would 

be a confidence about the utility of data. A loss to a limited 

extent in the utility of data is acceptable as there exists a 

trade-off between privacy and data utility in data 

anonymization [14]. 

4 EVALUATION SETUP 

4.1 Dataset for Evaluation of the Methodology 

Adult dataset [21] is the de facto benchmark for evaluation 

of anonymization models [2, 12, 22-27]. In this dataset, the 

samples belong to two different classes; the rates of the 

positive and negative classes are 76.07% and 23.93%. The 

total number of records is 48842 (train=32561, 

test=16281), and the train and test sets were separated when 
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shared. Each record has 14 attributes, including eight 

categorical and six numerical ones. Furthermore, the 

dataset contains missing values. This study considers all the 

attributes as QID, although it is possible to suppose part of 

them as QID, like in [2] which considers marital-status as 

sensitive and others as QID attributes. 

4.2 Encryption Algorithms 

For the evaluation of the proposed approach, four 

cryptographic algorithms, including two from symmetric 

and two from asymmetric encryption systems, are 

considered. The symmetric algorithms are Advanced 

Encryption Standard (AES) and Data Encryption Standard 

(DES); the input and output data and key size for each is 

128 and 64 bits, respectively. The Asymmetric algorithms 

are RivestShamirAdleman (RSA) and ElGamal, which 

both are also homomorphic over multiplication. The key 

size for each is 2048 and 1024 bits, respectively. All the 

keys are generated randomly for every iteration of 

experiments, based on the toolbox. 

4.3 Comparison with K-Anonymity 

In order to evaluate the results of our methodology, a 

comparison between the results of the proposed and former 

methods of anonymization is necessary. K-anonymity is 

one of the most popular privacy models. In [28], the authors 

propose Mondrian for obtaining k-anonymity. This study 

considers this work for anonymizing the data based on the 

k-anonymity model for comparison with the proposed 

methodology. The corresponding parameters for these 

methods are k, set of QID, and the mode of the algorithm, 

which can be either relaxed or strict. In the experiments, k 

is set to 10 and QID are set to all the attributes, and the 

results for both relaxed and strict modes are provided. 

4.4 Utility Measure 

Two measures employed here for evaluation of data utility 

are information gain and classification performance. 

Information gain is based on information entropy and is 

being used to evaluate how well an attribute alone predicts 

the classes for samples in comparison to other attributes. In 

other words, every attribute is used to categorize samples, 

then the information entropy of the classes of the 

categorized samples are calculated. The lower the entropy 

of the samples’ classes in each category of samples 

categorized based on that specific attribute, the higher the 

information gain of that attribute. The loss of information 

gain after anonymization can indicate the extent of 

deterioration of data. However, since this measure does not 

consider the combination of attributes, it is not as reliable 

as classification performance. For calculation of 

classification performance, we used the geometric mean of 

the ratios of correctly classified samples to the number of 

samples in that particular class. Geometric mean is the only 

correct average for normalized measurement [29]. 

5 EVALUATION RESULTS 

To evaluate the efficiency of our proposed methodology, 

the Adult dataset [21] is anonymized with the proposed 

methodology by this paper. Afterward, the information gain 

and classification performance for raw and anonymized 

data are calculated and recorded for comparison and 

evaluation. The closer the results of raw and anonymized 

data the higher our confidence to the anonymization 

methodology regarding the preservation of data utility. 

As mentioned earlier, after one level of encryption, we need 

to normalize the data in order to obtain the anonymized 

data. The normalization method used for our experiments 

is min-max normalization: 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 
, (1) 

where 𝑥𝑛𝑒𝑤  is the normalized value of 𝑥, the encrypted 

number, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are respectively minimum and 

maximum values of the corresponding column in the matrix 

of encrypted numbers. 

Furthermore, for more certainty, the experiments for every 

method iterates for ten times, and the average results are 

measured. In every, iteration the key for encryption 

algorithms are generated separately and randomly, to 

ensure the classification results are independent of the keys. 

5.1 Information Gain 

The encryption is particularly useful when the attribute is 

numerical since, concerning the learning results, encryption 

of the number of categories is similar to mapping each 

specific category number to another random number 

specific for that category; therefore, for such attributes, 

encryption is not a necessary process. However, in this 

study’s experiments, we encrypted all the attributes and 

normalized the data afterward. Before and after 

anonymization by this methodology, the information gain 

of categorical attributes always remains the same, because 

of the characteristics of this measure, so there would be no 

points in reporting them here. 

Table 2 presents the information gain of the numerical 

attributes of raw and anonymized datasets; the results are 

from the average for ten independent iterations. The results 

in this table show that our anonymization methodology 

does not reduce the information gain of the numerical 

attribute unless in attributes 1 and 13, albeit negligible. 

Considering the information gain, the proposed 

methodology preserves the utility of data to a considerable 

extent. 

5.2 Classification Performance 

In addition to the anonymization with the proposed 

methodology of this paper, for comparison, we also 

anonymized the Adult dataset with Mondrian 

multidimensional k-anonymity approach [28]. Then, the 

results of these methods, along with the raw dataset, are 

used for learning a classification function. The learning 

algorithm used in this research is the random forest 

algorithm [30]. The training and testing sets for the raw data 

and anonymized data based on our proposed methodology 

are the same as published in [21]. However, for Mondrian 

multidimensional k-anonymity approach for every 

iteration, we take 70% of randomly shuffled data as the 

training set and the remaining 30% as the testing set; 

splitting the train and test sets for learning and evaluation 

in this setting is conventional and valid, considering the 

studies in the field [31]. 

Table 3 exhibits the classification performance based on the 

geometric mean measure, i.e., geometric mean of the ratios 

of correctly classified samples to the number of samples in
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DATASET INFORMATION GAIN 

Attribute 1 Attribute 3 Attribute 5 Attribute 11 Attribute 12 Attribute 13 

Raw Data 0.09754 0 0.09328 0.11452 0.05072 0.05814 

Anonymized Data (RSA Alg.) 0.096839 0 0.093379 0.118778 0.051108 0.057001 

Anonymized Data (ElGamal Alg.) 0.097563 0 0.093507 0.118503 0.05157 0.056479 

Anonymized Data (DES Alg.) 0.096581 0 0.093452 0.118688 0.051163 0.05713 

Anonymized Data (AES Alg.) 0.096755 0 0.093434 0.118512 0.051061 0.057325 

Table 2 Information Gain for numerical attributes of the Adult dataset [21] before and after anonymization. 

that particular class, for raw and anonymized data obtained 

adopting several methods.  All the results in Table 3 are the 

average of the results of ten independent iterations. The 

information gain table provided in this article is calculated 

using WEKA software [32]. The difference between the 

classification performance of anonymized data based on our 

methodology and the raw data is less than 3%; our proposed 

methodology, however, outperforms Mondrian 

multidimensional k-anonymity regarding classification 

performance for adult dataset as the results show that the 

geometric mean measure for our anonymization approach, 

in the worst case, is higher for at least 5%. 

Dataset Geometric 

Mean (%) 

Raw Data  75.37 

Anonymized Data (K-Anonymity Mondrian 

[21], Relaxed, K=10, QI = Attribute 1-14)  

67.87 

Anonymized Data (K-Anonymity Mondrian 

[21], Strict, K=10, QI = Attribute 1-14)  

68.08 

Anonymized Data (RSA Alg.)  73.30 

Anonymized Data (ElGamal Alg.)  73.59 

Anonymized Data (DES Alg.)  73.22 

Anonymized Data (AES Alg.)  73.57 

Table 3 Classification performance based on geometric 

mean for all methods for Adult dataset [21]. 

The results in Tables 2 and 3 show that our proposed 

methodology only deteriorates the data to a negligible extent 

depending on the application; this is justifiable as there 

exists a cost for preserving the privacy of individuals. A 

comparison between the classification results of the 

anonymized data obtained by our proposed methodology 

and Mondrian multidimensional k-anonymity approach, in 

Table 3, indicates that our methodology outperforms theirs 

as the prediction results, with the same learning algorithm, 

are more accurate. Moreover, the results suggest that 

maintaining the utility of data is not dependent on a specific 

cryptographic algorithm. 

Comparisons of two data utility measures for raw and 

anonymized data show that this methodology preserves the 

relations of values in the data table to a considerable extent. 

Therefore, analyses dependent on the relations of the data 

attributes to each other, and the labels are feasible and 

supported, e.g., learning tasks through machine learning 

algorithms. Such analyses are not dependent on the exact 

values in raw data since the anonymization changes the 

range of values for each attribute. The anonymized data is a 

matrix of numbers, likewise to the raw data, and it can be 

used the same way as the raw data. Moreover, regarding the 

privacy concerns described in the Problem Definition 

Section, if one manages to change the values in the raw data 

until the adversary cannot map it back to the original values, 

then the desired purpose is achieved. Using cryptographic 

algorithms for anonymization along with the fundamental 

property of these algorithms, i.e., mapping numbers by one-

way injective functions, dismisses the described privacy 

concerns, in other words, matching data values from what 

the adversary has and what is published as anonymized data 

is not possible. 

6 CONCLUSION 

In this study, we investigated the approach of anonymizing 

the structured health data by utilizing cryptographic 

algorithms, which is, to the best of our knowledge, the first 

application of these algorithms in anonymization. 

Anonymization methods must fulfill two criteria, namely 

privacy preservation and data utility. We evaluated the 

presented methodology on the de facto benchmark dataset 

for anonymization. The results are promising and indicate 

that such an approach may be employed in real-world 

applications by the healthcare sector. However, similar to 

the majority of anonymization techniques, our proposed 

methodology impacts the quality of data mining results, 

even though we have shown that this degradation is less than 

the previous works in the data anonymization domain. This 

methodology is particularly practical for anonymizing the 

data for data mining applications. For future works, the 

applicability of this approach may be investigated for 

unstructured types of health data, e.g., physiological signals. 

Moreover, automatic de-identification of clinical notes and 

overcoming the particular challenges is another closely 

related research area that can be tied up with natural 

language processing [33, 34]. Further studies on the field 

mentioned above would be analogous to this study and 

worthwhile. 
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Diversity-Aware Anonymization for Structured Health Data

Amin Aminifar1, Fazle Rabbi1,2, Violet Ka I Pun1,3, and Yngve Lamo1

Abstract— Patients’ health data are captured by local hospital
facilities, which has the potential for data analysis. However,
due to privacy and legal concerns, local hospital facilities are
unable to share the data with others which makes it difficult to
apply data analysis and machine learning techniques over the
health data. Analysis of such data across hospitals can provide
valuable information to health professionals. Anonymization
methods offer privacy-preserving solutions for sharing data for
analysis purposes. In this paper, we propose a novel method for
anonymizing and sharing data that addresses the record-linkage
and attribute-linkage attack models. Our proposed method
achieves anonymity by formulating and solving this problem
as a constrained optimization problem which is based on the
k-anonymity, l-diversity, and t-closeness privacy models. The
proposed method has been evaluated with respect to the utility
and privacy of data after anonymization in comparison to the
original data.

I. INTRODUCTION

Patients’ data is private and may contain sensitive infor-
mation, e.g., information about a health condition. Such data
may not be shared with other parties in their raw format
due to privacy and legal concerns [1], [2]. However, such
data may be required for analysis purposes to provide value
to medical experts and utilized for analysis by adopting
privacy-preserving data mining or privacy-preserving data
sharing approaches depending on the particular application
and scenario.

Privacy-preserving data mining techniques perform the
analysis without direct access to the data. Several approaches
adopt homomorphic encryption techniques for learning tasks
[3], [4]. However, such methods suffer from communication
and computation overhead and are not always practical
[5]. Several state-of-the-art techniques modify and adapt
algorithms for learning from distributed data without sharing
data and sacrificing privacy [6], [7], [8], [9], [10]. Nev-
ertheless, each algorithm should be extended to support
privacy-preserving distributed learning. Moreover, learning
a classification model from data is not the only objective in
particular scenarios, and a version of data may be required
to be published, e.g., for medical expert inspection and
visualization.

Privacy-preserving data sharing techniques share an al-
tered version of data for analysis. Several studies add noise to
data and perturb it before sharing [11], [12], [13]. However,
the utility of data will be negatively affected by the perturba-
tion of data. On the other hand, privacy will not be preserved
if the noise added is not sufficient. Moreover, noise removal
approaches pose a threat to the privacy of such methods [14],

1Western Norway University of Applied Sciences, Bergen, Norway
firstname.lastname@hvl.no

2University of Bergen, Bergen, Norway
3University of Oslo, Oslo, Norway

[15]. Several studies adopt neural networks and generative
adversarial networks (GAN) [16] for altering the data before
sharing [2], [17], [18], [19]. Such approaches mainly focus
on particular time-series data and data in wearable devices’
applications [20], [21], [22], [23].

Anonymization methods also alter the data to avoid iden-
tifying data subjects in such datasets [24]. Previous studies
proposed several privacy models for anonymization, e.g., k-
anonymization [25], l-diversity [26], t-closeness [27], LKC-
privacy [28]. The data holder selects a model based on the
scenario, utility, and privacy requirements. Several methods
have been proposed to comply with such privacy models and
avoid the associated attacks, i.e., record-linkage and attribute-
linkage attacks, e.g., using genetic algorithms to kd-trees
algorithms for generalization and achieving anonymity [29],
[30], [31], [32], [33].

In particular, [34] proposes the utilization of Mixed-
Integer Programming for achieving k-anonymity. Similarly,
[35] formulates the anonymization problem in a Mixed-
Integer Linear Programming (MILP) framework and achieves
k-anonymity based on optimization. This approach uses gen-
eralization for anonymization and optimizes the lower and
upper bound for each value of quasi-identifiers, which are the
attributes that the adversary may have information about for
identification. However, these anonymization methods [34],
[35] merely consider k-anonymity and does not prevent the
attribute-linkage attack, which is the issue addressed by the l-
diversity and t-closeness privacy models. Therefore, the joint
consideration of the k-anonymity, l-diversity, and t-closeness
privacy models in such frameworks have not been considered
to date.

In this paper, we propose a method to anonymize data
to ensure that each record is indistinguishable from, at
least, k-1 other records in the shared data while taking the
diversity and frequency of values in the sensitive attribute
into consideration. In other words, we propose a method
for anonymization of data considering the k-anonymity, l-
diversity, and t-closeness privacy models in a unified frame-
work. We formulate the anonymization problem in a con-
strained optimization framework as a clustering problem,
where the diversity and frequency of sensitive values are cap-
tured and enforced by constraints. We refer to our proposed
method as diversity-aware anonymization, where diversity
captures both the diversity concept in the l-diversity privacy
model and the frequency and distribution of sensitive values
in the t-closeness privacy model. The experimental results
show the preservation of utility of data for classification tasks
and the privacy properties noted in the discussed models.

The rest of this paper is organized as follows: Sec-
tion II covers the background with respect to k-anonymity,
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l-diversity, t-closeness, and their corresponding attack mod-
els. We formulate our proposed anonymization method in
the constrained optimization framework in Section III. Sec-
tion IV provides the experimental results for evaluation of
our method. Section V concludes our paper.

II. BACKGROUND

In this section, we briefly review the record-linkage and
attribute-linkage attack models. In addition, we discuss three
popular privacy models addressing such attacks, i.e., k-
anonymity, l-diversity, and t-closeness.

In the record-linkage and attribute-linkage attack models,
we suppose that a version of data after removing the identifier
attributes of patients, e.g., name and address, is shared with
a data recipient. At the same time, the adversary has access
to the data shared with the data recipient. This data contains
several attributes through which a patient (record owner) can
be identified, i.e., quasi-identifiers, and it is assumed that the
adversary has the exact value of these attributes for the victim
patient. Finally, there is a sensitive attribute in the data, e.g.,
family history for a health pathology, that the adversary is
interested in knowing about.

To explain this attack models, we use Tables Ia and Ib as
an example. The 2nd-4th columns are considered as quasi-
identifiers and refer to age, the number of children, and the
smoking state of the patient (Yes/No). The 5th column is
a sensitive attribute capturing the state of the HIV disease
for the patient (Positive/Negative). Table Ia represents shared
data after removing the identifier features. Suppose that Table
Ia is shared with the data recipient. If the adversary knows
that the victim is 37 years old, has two children, and smokes,
he/she can easily match his/her information to one of the
records (record one in Table Ia) and identify that the victim
is diagnosed with HIV. The record-linkage attack occurs by
matching the adversary’s information (quasi-identifiers) with
published data for identifying the patient’s (record owner)
sensitive information [36].

The k-anonymity privacy model was proposed to address
the record-linkage attack model. A dataset is k-anonymous
when the values of quasi-identifiers for each record are the
same as the values for at least k-1 other records in the data.
In this way, the adversary can only match his/her information
with at least k records. Table Ib shows a 3-anonymous
version of the same data in Table Ia. For instance, in our
example in Table Ib, if the adversary knows that the victim
is 37, has two children, and smokes, he/she can merely match
his/her information with a qid group containing the records
of three patients, records 1-3.

While the k-anonymity model guarantees that a patient is
only matched with a qid group, however, this model does not
guarantee the protection of patients’ privacy against attribute-
linkage attacks. That is, k-anonymity does not consider
the diversity of values for the sensitive attribute in each
qid group. In this example, in the first qid group, all the
values for the sensitive attribute are Positive. Therefore, in
the first qid group, the adversary can infer that the victim
patient is diagnosed with HIV by matching quasi-identifiers’

information. The attribute-linkage attack model occurs in
situations where the diversity of values for the sensitive
attribute is low. As a result, the adversary may infer the
sensitive attribute with high confidence.

To address the attribute-linkage attack, the l-diversity
model proposes that every qid group should have a least
l distinct values for the sensitive attribute. For instance, in
Table Ib, if the adversary matches his/her information with
the third qid group, he/she can not identify that the patient
was diagnosed with HIV for sure because both Negative
and Positive values are in that qid group. However, this
does not consider the confidence of the adversary’s inference
properly. For example, if we have both Negative and Positive
values in all qid groups, we have 2-divers data, but if the
proportion of Positive values in one qid group is high, the
adversary can infer that the patient is diagnosed with HIV
with high confidence. The entropy l-diversity and recursive
(c,l)-diversity are proposed to address such issues [26].

Entropy l-diversity is one of the existing privacy models to
address the distribution of values in the sensitive attribute.
A data table meeting the following condition for each qid
group is entropy l-diverse:

−
∑

s∈S
P (qid, s) log(P (qid, s)) ≥ log(l), (1)

where S is the set of values for sensitive attribute, and P(qid,
s) is the probability/proportion of value s for the sensitive
attribute in the qid group.

The entropy l-diversity still has several limitations. For
instance, if the entropy of values for the sensitive attribute in
qid groups is high, the l will be high. The entropy is highest
when the distribution of values is a uniform distribution.
Nevertheless, we prefer the minimum probability for the
sensitive value (Positive in our example) in the qid group.
In our example, we favor as few Positives in the qid groups
as possible to lower the confidence of inferring HIV positive
for the victim patient. Still, entropy l-diversity encourages an
equal number of Positives and Negatives in the qid groups.

Recursive (c,l)-diversity controls the frequency of values
for the sensitive attribute in the qid group. In this model,
c is a constant greater than zero, c > 0. The values for
the sensitive attribute S are: s1, s2, . . . , sm. The number of
occurrence for each value (for the sensitive attribute) in the
qid group are: n1, n2, . . . , nm. The number of occurrence for
values sorted in a decreasing order are: r1, r2, . . . , rm. If a
data table meets r1 ≤ c

∑m
i=l ri for each qid group, then the

data is recursive (c,l)-diverse.
The recursive (c,l)-diversity can relax the restrictiveness

compared to entropy l-diversity. When we have a larger
c, we can have a larger l. Therefore, we can relax the
restrictiveness by increasing c. This privacy model avoids
having a high frequency of highly repeated values (in the
dataset for sensitive value) in the qid group. It also forces
the less frequent values (in the dataset for sensitive value) to
be more frequent in the qid group. However, this may not
be desirable in certain scenarios. Many healthcare datasets
have sensitive attributes with highly imbalanced values. For
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Index Quasi Identifier Sensitive
Age Number of Children Smoke HIV

1 37 2 Yes Positive
2 36 0 Yes Positive
3 40 0 Yes Positive
4 35 3 Yes Negative
5 32 1 Yes Negative
6 34 1 Yes Negative
7 30 2 No Positive
8 34 2 No Negative
9 28 1 No Negative
10 31 1 No Negative

(a) Original data

Index Quasi Identifier Sensitive
Age Number of Children Smoke HIV

1 [36-40] [0-2] Yes Positive
2 [36-40] [0-2] Yes Positive
3 [36-40] [0-2] Yes Positive
4 [32-35] [1-3] Yes Negative
5 [32-35] [1-3] Yes Negative
6 [32-35] [1-3] Yes Negative
7 [28-34] [1-2] No Positive
8 [28-34] [1-2] No Negative
9 [28-34] [1-2] No Negative
10 [28-34] [1-2] No Negative

(b) 3-anonymous data

TABLE I: Patient data tables in original and 3-anonymous formats

instance, in a table of data with 1000 records, we may have
merely 20 patients diagnosed with HIV. In our example,
by increasing the frequency of a sensitive value (with low
frequency in the dataset) in a qid group, the adversary can
more confidently infer that the patient is diagnosed with HIV.

The t-closeness privacy model proposes having a more
similar distribution of values in the sensitive attribute among
the qid groups and the whole dataset. In the t-closeness
model, the maximum distance between these two distribu-
tions may not be greater than the threshold t. For measuring
the distance between probabilistic distributions, one possible
metric is as follows:

D[P,Q] =
m∑

i=1

|pi − qi|, (2)

where m is the number of values for the sensitive attribute.
P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qm} are the
distributions of sensitive attribute in the entire dataset and
in a particular qid group, respectively. This distance metric
(variational distance) does not consider the semantic distance
between values. In scenarios where the semantic distance of
values is important, we may use other distance measures.

In this paper, we propose a method for anonymization of
data by jointly considering the k-anonymity, l-diversity, and
t-closeness privacy models in a unified framework.

III. APPROACH

In this section, we describe our method for addressing the
attack models discussed in Section II. In our method, we
consider the indistinguishability of samples in a qid group,
proposed in k-anonymity, diversity of values in sensitive
attributes in qid group, discussed in l-diversity, and frequency
of sensitive values in qid group in t-closeness.

In this method, we suppose that the values for the sensitive
attribute are either sensitive or not. In our example, the
Positive value shows that the patient (record owner) is di-
agnosed with HIV and is sensitive, while the value Negative
if known to the adversary causes no consequence to the
patient. Therefore, we consider a binary state for the values
in the sensitive attribute and distribute them in the qid groups
evenly.

Our method clusters the points in the space of quasi-
identifiers and shares the center of each cluster (qid group) as

the quasi-identifiers’ values for each qid group. Each cluster
contains k samples and is clustered based on the distance of
instances to the cluster center and the number of samples
with sensitive values in each cluster.

We adopt the constrained optimization framework to solve
the described clustering problem. The classical clustering
techniques do not fulfill our requirements. First, we need
to introduce the constraints to have k samples in each
cluster to ensure the indistinguishability property of the k-
anonymity model. Second, we need to introduce a constraint
for distributing instances with sensitive values evenly among
qid groups (clusters) to ensure diversity in the l-diversity and
t-closeness models.

The described anonymization problem is formulated in the
Mixed-Integer Linear Programming (MILP) framework, as
follows:

min
B,C

nC∑

i=0

nS∑

j=0

|Bij · (Xj − Centeri)| (3)

s.t.
nC∑

i=0

Bij = 1, ∀j ∈ {0, . . . , nS} (4)

nS∑

j=0

Bij =
nS
nC

= k, ∀i ∈ {0, . . . , nC} (5)

(∑nS

j=0Bij ·Xj

)

k
= Ci, ∀i ∈ {0, . . . , nC} (6)

nS∑

j=0

Bij · Sj ≤ α ·
∑nS

j=0 Sj

nC
, ∀i ∈ {0, . . . , nC},

(7)

where nC is the number of clusters (qid groups), and nS

is the number of samples to be anonymized. Xj is the
vector of quasi-identifiers’ values for sample j. Bij indicates
if sample j belongs to cluster (qid group) i and it is a
Boolean optimization variable. Centeri is the i-th cluster
center calculated by k-means algorithm to be used as an
initial solution in our method to reduce the complexity of
our optimization problem.

The parameter k is the number of samples in each cluster
and is equal to nS

nC
. Ci is the center of cluster i which will

be optimized during solving this problem. The values of
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(a) Data samples before optimiza-
tion to find qid groups

(b) Optimization without consider-
ing the diversity constraint

(c) Optimization with considering
the diversity constraint

Fig. 1: Illustrative example for our anonymization method

vector Ci will be shared with data recipients, i.e., instead
of raw quasi-identifiers’ values for i-th qid group. Sj is a
Boolean parameter, Sj ∈ {0, 1}, that identifies if sample j
has a sensitive value. Finally, α is a parameter that controls
the restrictiveness of the constraint, i.e., the higher the value
of α, the less the restrictions in solving this optimization
problem. This parameter is introduced to be able to tune the
restriction with respect to diversity in each qid group.

Let us discuss the proposed formulated optimization prob-
lem. The |Bij · (Xj − Centeri)| expression in Eq. (3) is
the Manhattan distance of sample j, Xj , and cluster center
i, Centeri, when the Boolean variable Bij is equal to one.
Bij will be equal to one, Bij = 1, if sample Xj belongs to
cluster i, and it will be zero otherwise. The objective function
in Eq. 3 intends to optimize Bijs to minimize the distance
between samples in cluster i and Centeri, for all clusters and
samples.

Eqs. (4)-(7) are the constraints of our proposed optimiza-
tion problem:
• The first constraint, in Eq. (4), forces each sample to

belong to only one cluster. This is done by ensuring that
Bij is one exactly once for all i.

• The second constraint, in Eq. (5), forces the number of
samples in each cluster to be equal to k. The summation
of the number of samples must be equal to k for cluster
i. This condition can readily be relaxed to: at least k
samples in each cluster.

• The third constraint, in Eq. (6), finds the optimized
cluster centers, i.e., Cis. The optimized center for cluster
i is the average of all k samples that belong to cluster
i.

• Finally, the last constraint, in Eq. (7), forces the opti-
mization to distribute the samples with sensitive values
(Sj = 1) into all clusters. The left-hand side of the
constraint is equal to the number of sensitive values in
cluster i. The right-hand side is the number of samples
with sensitive value divided evenly among the clusters
(multiplied by α, which is the parameter for relaxing
the hard constraint in our optimization problem).

After the optimization, we know which sample belongs to
which qid group or cluster, based on B matrix. We also know
the optimized cluster centers, identified based on the values
of Cis. Therefore, the values of sample quasi-identifiers will

be replaced by their respective cluster center values. In this
way, we obtain a solution that addresses record-linkage and
attribute-linkage attack models. We force the samples in
the anonymized data to be indistinguishable from k-1 other
samples while considering the diversity of values in the
sensitive attribute.

Fig. 1 presents an example in which the solution in Fig.
1b merely considers k-anonymity property, while Fig. 1c
considers the diversity of values in the sensitive attribute
addressed in l-diversity and t-closeness. The color of the
circles shows if the samples contain a sensitive value. If the
color is blue, the sample does not have a sensitive value,
Sj = 0, while a red circle shows having a sensitive value
Sj = 1.

In Fig. 1b, samples 0, 1, 2, 4, 9 fall in the same qid group.
The rest of the samples fall in the second group. By sharing
the cluster centers for each group, we achieve 5-anonymous
data. However, in such a solution, the samples with sensitive
values are not evenly distributed. By considering the con-
straint introduced for the diversity of values in the sensitive
attribute, we obtain the solution presented in Fig. 1c. In this
solution, the data is still 5-anonymous, i.e., it has five samples
in each cluster. Nevertheless, in this case, sample 2, falls in
the same cluster with 5, 6, 7, 8 to evenly distribute samples
with sensitive values.

IV. EVALUATION AND DISCUSSION

In this section, we evaluate the proposed method experi-
mentally and discuss the experimental results. For evaluation,
we consider data utility and data privacy criteria and demon-
strate their trade-off [39]. Then, we present and discuss the
experimental results.

In this paper, the data analysis task that is going to
be performed on the anonymized data is classification.
Therefore, the anonymization method should alter the data
to the extent that learning high-performance classification
models are possible. We train the learning algorithms on both
original and anonymized data to evaluate the anonymization
method in terms of data utility preservation. Our method
preserves the data utility if the classification model learned
from altered data has similar performance compared to the
one learned from original data.
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TABLE II: Classification performance for trained models on three different versions of Heart Disease dataset (Cleveland)
[37], [38]

Algorithm Original Data Anonymized Data Without Diversity Anonymized Data by Our Method
F1-score Accuracy MCC F1-score Accuracy MCC F1-score Accuracy MCC

ERT 81.0% 81.0% 0.615 81.1% 81.4% 0.625 81.0% 81.4% 0.625
Random Forest 82.5% 82.6% 0.647 80.1% 80.4% 0.603 80.0% 80.3% 0.602
XGBoost 78.9% 79.0% 0.573 74.7% 75.1% 0.493 74.7% 75.1% 0.495
Decision Tree 73.8% 73.8% 0.470 68.9% 69.3% 0.372 69.2% 69.8% 0.382
SVM 83.0% 83.1% 0.656 73.3% 73.3% 0.459 72.8% 72.9% 0.449

On the other hand, the anonymized data should be suffi-
ciently altered to avoid the identification of record owners.
In this paper, we address the record-linkage and attribute-
linkage attack models. We consider the property for making
samples indistinguishable in the qid group, discussed in k-
anonymity privacy model, the diversity of values in sensitive
attribute, in l-diversity, and the frequency of sensitive values,
in t-closeness.

There is a trade-off between the utility of data and privacy
of data in anonymization methods. On the one hand, we can
share no data to preserve patients’ privacy, but there will be
no utility for the data. On the other hand, we can publish the
data in its original format to maximize the data utility, but the
privacy of data subjects is going to be violated. Therefore,
in anonymization techniques, we require altering the data to
the extent that we establish a trade-off between data utility
and privacy [39].

A. Experimental Setup

In our experiments, we use the Heart Disease dataset [37],
which is one of the popular datasets publicly available on the
UCI repository. We utilize Cleveland’s processed dataset [38]
to predict the presence of heart disease (presence/absence).
The dataset contains 282 complete records, and each belongs
to one patient. The data includes 13 attributes which we
consider in this work.

Quasi-identifiers are the attributes that the adversary
can potentially obtain information about them from other
sources. In addition to quasi-identifiers, the sensitive attribute
should also be identified. In our experiments, we suppose
all 13 attributes are quasi-identifiers. Moreover, we select
the Boolean attribute for family history of coronary artery
disease as the sensitive attribute.

For evaluation of preservation of utility, we split the
dataset into train and test sets. We anonymize the training
set using our method with soft constraints and train several
classification algorithms based on the resulting data. Then,
we measure the classification performance on the test set. We
also train the same algorithms on the original data and the
data anonymized without considering the diversity constraint
and measure the performance of the trained classification
models on the test set. The comparison of the classification
performance results indicate the utility of anonymized data
in our method.

In our experiments, we randomly select 200 samples as the
train set and the rest as the test set at each round. We repeat
the same process for 1000 rounds and report the average
results for classification performance. The algorithms used

for learning classification models are Extremely Randomized
Trees (ERT), Random Forest, XGBoost, Decision Tree, and
linear SVM. The measures used for classification perfor-
mance are F1-score, Accuracy, and Matthews Correlation
Coefficient (MCC).

B. Experimental Results

Table II shows the classification performance results for
three different training sets, i.e., original data, anonymized
using our method, and anonymized without considering the
diversity constraint. For both anonymization methods k is set
to 10.

The classification results for the original data are at a
similar level (±0.5% due to randomness in the algorithms)
or higher than the anonymized data. However, since there
is a trade-off between privacy and utility in anonymization
[39], we may accept a loss in the utility to obtain privacy.
The results in Table II show that our method preserves the
information in data that leads to learning high-performance
models. Moreover, the classification performance difference
between our method and the approach without considering
the diversity is negligible. This indicates that introducing
the diversity constraint in our method does not significantly
affect the data utility.

We now evaluate the privacy preservation of our method
in Table III. Here, we set the value of k to 10. This means
that if the adversary has the values for quasi-identifiers for
one patient, he/she can only map his/her information to 10
records. Therefore, through our method, we avoid record-
linkage attacks. Second, our method evenly distributes the
samples with sensitive value, i.e., having a family history
of coronary artery disease, to qid groups. This weakens
the confidence of the adversary’s inference for identifying
a patient with sensitive value.

The number of patients with the sensitive value can be
different at each round. In our method, in the worst qid
group with respect to l-diversity, entropy l-diversity, and
recursive (c,l)-diversity, we have two samples with non-
sensitive value and eight with the sensitive value. In other
words, the proportion of patients with a family history of
coronary artery disease in the qid group is 80.0%, which is
optimal since the proportion of samples with the sensitive
value in the training set at this round was 70.5%. This leads
to l = 2 in l-diversity, l = 1.64 in entropy l-diversity, and
l = 2 and c ≥ 4 in recursive (c,l)-diversity in Table III. In
the worst qid group with respect to the variational distance D
in t-closeness, we have six with non-sensitive value and four
with the sensitive value, while the proportion of samples with
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TABLE III: Privacy properties of the anonymized data by
our method and the approach without diversity

No Diversity Our Method
k in k-anonymity 10 10
l in l-diversity 1 2
l in entropy l-diversity 1 1.64
l and c in recursive (c,l)-diversity l=1, c ≥ 1 l=2, c ≥ 4
D in t-closeness 1.06 0.38

the sensitive value in the dataset at this round was 59.0%.
This leads to variational distance D = 0.38 in t-closeness.

For the approach without diversity constraint, in the worst
qid group with respect to l-diversity, entropy l-diversity,
and recursive (c,l)-diversity, we have ten patients with the
sensitive value. This leads to l = 1 in l-diversity, l = 1 in
entropy l-diversity, and l = 1 and c ≥ 1 in recursive (c,l)-
diversity in Table III. This allows the adversary to infer that
the patient had a family history of coronary artery disease
with 100% confidence. Moreover, in the worst qid group with
respect to the variational distance D in t-closeness, we have
nine records with the non-sensitive value and one with the
sensitive value. The proportion of samples with the sensitive
value in the dataset at this round was 63.0%. This increases
the variational distance between the distributions of values in
the sensitive attribute in the qid group and the whole dataset
to D = 1.06 in Table III.

The results in Table III demonstrates that by adopting
our method, we will have higher l in l-diversity, entropy
l-diversity, and recursive (c,l)-diversity. Moreover, the vari-
ational distance between the distributions of values in the
sensitive attribute for the train set and the qid group is lower
in our method. Therefore, regarding the diversity of values
in sensitive attributes and the attribute-linkage attack, we
observe that introducing the diversity constraint improves
patients’ privacy.

We also investigate the data privacy and data utility based
on different values of k, size of qid groups. For each k, we
have 100 rounds that in each we randomly split the data
into the train and test sets. The classification performance
results are the average results for all rounds. The privacy
results are the worst results in all rounds and qid groups.
We perform these experiments based on our method and the
anonymization approach without the diversity constraint and
show the results in Figs. 2 and 3 for comparison.

Figs. 2a-2c show the results based on F1-score, Accuracy,
and MCC metrics. The patterns in the results show that the
higher the qid group size (k), the lower the classification
performance. On the other hand, increasing the value of
k improves the privacy with respect to the record-linkage
attack model. These figures illustrate the trade-off between
the privacy and data utility.

The results in Figs. 3a-3d exhibit the privacy properties of
the anonymized data. Regarding the attribute-linkage attack
model, the results display that the data anonymized by our
method has higher privacy properties than the anonymized
data without diversity constraint. Increasing the value of k
significantly improves the diversity and frequency of values

in the sensitive attribute, compared to the approach without
considering the diversity constraint, but without any major
loss in terms of classification performance.

The experimental results show that our method pro-
vides privacy against record-linkage and attribute-linkage
attacks. Furthermore, the utility of the data is retained
after anonymization, allowing learning of high-performance
classification models. The slight degradation of utility is
the cost for providing patients privacy, which is a common
phenomenon in anonymization approaches [39].

V. CONCLUSION

In this paper, we have proposed a method for obtaining
anonymized data by ensuring that data samples are indistin-
guishable in qid groups while considering the diversity and
frequency of values in the sensitive attribute. Our method is
based on constrained optimization and clustering of the sam-
ples into qid groups by jointly considering the k-anonymity,
l-diversity, and t-closeness privacy models. The evaluation
results show that the proposed method retains data utility
while reducing the privacy concerns related to data sharing.
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optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al.,
“Communication-efficient learning of deep networks from decentral-
ized data,” arXiv preprint arXiv:1602.05629, 2016.

[10] S. Baghersalimi, T. Teijeiro, D. Atienza, and A. Aminifar, “Personal-
ized real-time federated learning for epileptic seizure detection,” IEEE
Journal of Biomedical and Health Informatics, 2021.

[11] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in
Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, 2000.

[12] S. Agrawal and J. R. Haritsa, “A framework for high-accuracy privacy-
preserving mining,” in 21st International Conference on Data Engi-
neering (ICDE’05). IEEE, 2005.

120 Paper B



(a) F1-score (b) Accuracy (c) MCC

Fig. 2: The classification performance for anonymized data based on F1-score, Accuracy, and MCC measures for different values of k

(a) l in l-diversity (b) l in entropy l-diversity (c) c in (c,l)-diversity (d) D in t-closeness

Fig. 3: The privacy properties of the data anonymized by our method and the approach without considering the diversity constraint for
different values of k

[13] S. J. Rizvi and J. R. Haritsa, “Maintaining data privacy in association
rule mining,” in VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases. Elsevier, 2002.

[14] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On the privacy
preserving properties of random data perturbation techniques,” in Third
IEEE international conference on data mining. IEEE, 2003.

[15] Z. Huang, W. Du, and B. Chen, “Deriving private information from
randomized data,” in Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, 2005.

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” arXiv preprint arXiv:1406.2661, 2014.

[17] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Mo-
bile sensor data anonymization,” in Proceedings of the international
conference on internet of things design and implementation, 2019.

[18] M. Alzantot, S. Chakraborty, and M. Srivastava, “Sensegen: A deep
learning architecture for synthetic sensor data generation,” in 2017
IEEE International Conference on Pervasive Computing and Commu-
nications Workshops (PerCom Workshops). IEEE, 2017.

[19] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” arXiv
preprint arXiv:1806.03384, 2018.

[20] D. Sopic, A. Aminifar, A. Aminifar, and D. Atienza, “Real-time event-
driven classification technique for early detection and prevention of
myocardial infarction on wearable systems,” IEEE transactions on
biomedical circuits and systems, 2018.

[21] ——, “Real-time classification technique for early detection and
prevention of myocardial infarction on wearable devices,” in 2017
IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE,
2017.

[22] A. Aminifar, P. Eles, and Z. Peng, “Optimization of message encryp-
tion for real-time applications in embedded systems,” IEEE Transac-
tions on Computers, 2017.

[23] F. Forooghifar, A. Aminifar, and D. Atienza, “Resource-aware dis-
tributed epilepsy monitoring using self-awareness from edge to cloud,”
IEEE transactions on biomedical circuits and systems, 2019.

[24] “Health informatics — Pseudonymization,” International Organization
for Standardization,” Standard, 2017.

[25] L. Sweeney, “k-anonymity: A model for protecting privacy,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 2002.

[26] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on
Knowledge Discovery from Data (TKDD), 2007.

[27] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy be-
yond k-anonymity and l-diversity,” in 2007 IEEE 23rd International
Conference on Data Engineering. IEEE, 2007, pp. 106–115.

[28] N. Mohammed, B. C. Fung, P. C. Hung, and C.-k. Lee, “Anonymizing
healthcare data: a case study on the blood transfusion service,” in
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 1285–1294.

[29] V. S. Iyengar, “Transforming data to satisfy privacy constraints,” in
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002.

[30] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-
anonymization,” in 21st International conference on data engineering
(ICDE’05). IEEE, 2005, pp. 217–228.

[31] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multi-
dimensional k-anonymity,” in 22nd International conference on data
engineering (ICDE’06). IEEE, 2006.

[32] A. Majeed, F. Ullah, and S. Lee, “Vulnerability-and diversity-aware
anonymization of personally identifiable information for improving
user privacy and utility of publishing data,” Sensors, 2017.

[33] A. Aminifar, Y. Lamo, K. I. Pun, and F. Rabbi, “A practical method-
ology for anonymization of structured health data,” in Proceedings of
the 17th Scandinavian Conference on Health Informatics, 2019.

[34] K. Doka, M. Xue, D. Tsoumakos, and P. Karras, “k-anonymization by
freeform generalization,” in Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, 2015.

[35] Y. Liang and R. Samavi, “Optimization-based k-anonymity algo-
rithms,” Computers & Security, 2020.

[36] B. C. Fung, K. Wang, A. W.-C. Fu, and S. Y. Philip, Introduction to
privacy-preserving data publishing: Concepts and techniques. CRC
Press, 2010.

[37] R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J. Schmid,
S. Sandhu, K. Guppy, S. Lee, and V. Froelicher, “International ap-
plication of a new probability algorithm for the diagnosis of coronary
artery disease,” The American journal of cardiology, 1989.

[38] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[39] J. S. Davis and O. Osoba, “Improving privacy preservation policy in
the modern information age,” Health and Technology, 2019.

Paper B 121





PAPER C
SCIENTIFIC PAPER III: PRIVACY PRESERVING
DISTRIBUTED EXTREMELY RANDOMIZED TREES

Amin Aminifar, Fazle Rabbi, Violet Ka I Pun, and Yngve Lamo

In Proceedings of the 36th Annual ACM Symposium on Applied Computing. 2021.





Privacy Preserving Distributed Extremely Randomized Trees∗

Amin Aminifar1, Fazle Rabbi1,2, Ka I Pun1,3, and Yngve Lamo1
1Western Norway University of Applied Sciences, 2University of Bergen, 3University of Oslo

{amin.aminifar,fazle.rabbi,ka.i.pun,yngve.lamo}@hvl.no

ABSTRACT
Applying machine learning and data mining algorithms over data
distributed in multiple sources is challenging. One complication is
to perform data analysis without compromising personal informa-
tion, which is a primary concern in healthcare applications. Another
issue involves communication overhead incurred from the transfer
of raw data from one party to others for conducting centralized data
mining. In healthcare applications, we are particularly interested in
running data mining algorithms over big data without disclosing
sensitive information about data subjects due to privacy and legal
concerns. In this paper, we consider the classification problem and
show how the Extremely Randomized Trees (ERT) algorithm could
be adapted for settings where (structured) data is distributed over
multiple sources. We propose the Privacy-Preserving Distributed
ERT approach for privacy-preserving utilization of the ERT algo-
rithm in a distributed setting. To the best of our knowledge, this
is the first application of the ERT algorithm in the distributed set-
ting, with privacy consideration (without sharing the raw data or
intermediate training values), without any loss in classification
performance.
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• Computing methodologies → Artificial intelligence; Dis-
tributed artificial intelligence; Cooperation and coordination; Ma-
chine learning; Machine learning algorithms;
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1 INTRODUCTION
In many real-world applications, such as in healthcare systems, data
is inherently distributed over an arbitrary number of sources in-
stead of being stored in a central database. It is not straightforward
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to apply data mining algorithms in situations where distributed data
cannot be transferred to a central location due to communication
overheads, as well as privacy concerns. Figure 1 shows one such
scenario and environment for this problem. The figure illustrates
a setting where hospitals need to apply data mining methods for
extracting useful patterns from patients’ data. Although individual
hospital information systems may be able to locally store health
information and perform data mining with their limited resources,
it is a necessity to share health information across hospitals to
fully exploit the learning capacity of the data mining techniques.
However, this is a challenging task due to privacy and legal con-
cerns. Hospitals often need to comply with privacy regulations
that restrict sharing health information about patients with other
parties [13, 16, 19]. A similar problem exists when the data is stored
on patients’ personal devices, such as mobile phones or wearable
devices with limited resources [8, 21–23]. How can we utilize large
amount of healthcare data stored in an arbitrary number of sources
for data mining without disclosing the private information of the
subjects? In this paper, we address this problem by developing a
novel approach for privacy-preserving data mining over distributed
(structured) healthcare information.

Traditionally, it was assumed that all sources holding part of
the data may share their information with a trusted party. How-
ever, sharing sensitive data with trusted parties is not a feasible
assumption in many scenarios. In order to address the privacy
concern, one solution would be to perturb data and share it. How-
ever, perturbation-based solutions do not provide absolute data
privacy and utility because the privacy will not be preserved if
the perturbation is not sufficient and the data utility will decrease
if the perturbation is not controlled precisely [4, 26]. Similarly,
anonymization techniques, e.g., [1, 14, 17, 24], share an altered ver-
sion of data to prevent the re-identification of data subjects [10].
Nevertheless, there is always a trade-off between data privacy and
utility in these techniques [4]. Therefore, such techniques have
limited applicability. Moreover, communication and computational
overheads would still be a problem for the approaches we discussed
above, especially when dealing with large scale data.

There exist several data mining algorithms that utilize the in-
direct use of raw data. One such approach is the cryptographic
technique and secure multi-party computation method for conduct-
ing privacy-preserving data mining [5, 11, 25]. However, they are
inefficient when dealing with big data, due to extreme communica-
tion/computation costs [26]. Other techniques have been proposed
to address communication/computational overheads of the stated
privacy-preserving data mining algorithms, e.g., [7, 12, 18]. These
solutions provide privacy as well as efficiency w.r.t. communication
and computational overheads. Nevertheless, the data mining algo-
rithms should be modified, depending on the possibility to support
applications in distributed settings, which may negatively affect
the machine learning model’s performance.
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Figure 1: Overview of the environment for learning from
structured data distributed over several parties

In this paper, we target the problem of learning from multiple
data holders, without explicit sharing of the raw healthcare informa-
tion. We assume that the learning data is horizontally partitioned,
i.e., different records of data are stored on different sources. We
consider the classification problem, in which each data record has
one category as the target. We consider that data is structured, i.e.,
it can be stored in spreadsheets, and contains categorical attributes,
e.g., gender or mental-disorder history, and numerical attributes,
like age or frequency and duration of pathological episodes. We
focus on the class of tree-based algorithms that have been shown to
consistently outperform or to be on a par with the other state-of-the-
art techniques when it comes to structured data [3, 15]. To learn
from such horizontally-partitioned structured data, we propose
privacy-preserving distributed extremely randomized trees (PPD-
ERT). We first extend the ERT algorithm [9] to a distributed setting,
to enable learning without explicit sharing of the raw data. We
then introduce a secure aggregation technique over the distributed
ERT algorithm to avoid any information leakage. We evaluate the
proposed solution experimentally and compare the results against
the state-of-the-art techniques.

2 PRIVACY PRESERVING DISTRIBUTED ERT
This section presents the proposed solution which is based on
Extremely Randomized Trees (ERT) [9] algorithm, and discusses
the procedure of learning an ensemble of decision trees based on
the ERT algorithm in the discussed settings. Our main contributions
w.r.t. the traditional ERT algorithm are:

• We extended ERT to the distributed setting.
• We employed a security layer by utilizing SMC techniques.

2.1 Initialization and Initiation
In the initialization phase, the mediator starts the process of leaning.
The mediator initiates and mediates the overall learning process. It
begins with sharing the global and personal random seeds with data
holder parties. The mediator will then repeatedly learn decision
trees based on our privacy-preserving distributed ERT algorithm.

In the ERT algorithm, we have two parameters of randomness
for learning a weak classifier. First, we need to randomly select
several attributes, among all possible data attributes, for selecting
candidate decision nodes at every step of building our decision
tree. Second, a random splitting point for every attribute in the
candidate decision node is required. The data holder parties and the
mediator are required to have the same candidate decision nodes at
every step of learning a decision tree. Therefore, instead of making
these randomly-made candidate decision nodes in the mediator
and sharing them with all parties for further tasks, we share a
common random seed that all parties, including the mediator, use
to locally generate these candidate decision nodes. Since all parties
use a common random seed, i.e., the global random seed, they
generate the same candidate decision nodes at every step, without
any communication overhead. Moreover, for the secure aggregation
of partial results, described further in Section 2.3, each data holder
party and themediator share a personal random seed. These random
seeds are exclusive and private for each data holder party. Only
the data holder party and the mediator have access to this personal
random seed.

2.2 The Process of Learning One Decision Tree
The learning of a decision tree based on the privacy-preserving dis-
tributed ERT algorithm is a recursive procedure, which is executed
top-down, starting from the root and ending at the leaves.

The mediator generates the candidate decision nodes, for build-
ing the decision tree, after receiving the results from the data holder
parties to select the best candidate among them. The candidate de-
cision nodes are generated randomly based on the global random
seed. Several attributes from the dataset’s possible attributes are
selected for candidate decision nodes. Then, each candidate deci-
sion node’s splitting points are selected. We assume that all parties
already have the possible categories and ranges for each attribute.

To decide the candidate decision nodes for each branch, the
mediator requires the collective outcome of the classification with
candidate decision nodes from all data holders on all their data.
By having the combination of data record labels for each branch,
the mediator can both decide if we require a leaf at that place or
if we should calculate the information gain. The mediator sends a
request to the first data holder party and waits for receiving the
aggregated result from the last party through secure aggregation
described in Section 2.3. The aggregated results are two vectors,
one for each branch, representing the combination of data record
labels after classification with each candidate decision node.

Having the aggregated results, the mediator determines if a
decision node is required for that place in the tree. If all the labels
are the same or if the number of received labels is less than the
threshold parameter in the ERT algorithm, the mediator puts a
label on that place, as a leaf. Otherwise, the mediator calculates
the information gain of each candidate decision node based on
the results from data holder parties. It then selects the candidate
decision node with the highest information gain and informs all
parties about this. The selected node will be used to build the tree
at the mediator. After selecting the best decision node candidate,
the same process is performed for each of the branches.
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This process leads to learning a single decision tree; we repeat
the same process for having an ensemble of decision trees.

2.3 Secure Aggregation of Results From Parties

We adopt an SMC technique in our proposed distributed ERT algo-
rithm to avoid sharing the vectors representing the combination of
the data record labels for each candidate decision node and each
branch in each data holder party. In addition to the provided privacy
by not sharing the raw values of data attributes, which is by con-
struction, adoption of the SMC technique for aggregating the partial
results from data holder parties contributes to privacy preservation.
In an extreme example, suppose our data has one sensitive attribute
in it, e.g., having previously conducted transgender surgery, and
each data holder party has only one record on it. Then, sharing
the partial results from one party, i.e., the vectors representing the
combination of data record labels for one candidate decision node,
can reveal sensitive information. If the candidate decision node is
"whether the record falls into the transgender branch or not," the
mediator can infer if that individual with the specified record has
conducted transgender surgery. Therefore, to avoid such vulner-
abilities, we adopt an SMC technique for aggregating the partial
results from the data holder parties. We consider privacy among
collaborating parties, but we assume no active external adversaries.

We now describe the proposed technique. The mediator shares a
personal random seed with each data holder party through secure
communication, to avoid sending and receiving exclusive random
numbers between the mediator and each party.

Then, in the process of learning a decision tree, the mediator
sends the request for secure aggregation to the first party. The
party makes calculations described earlier and obtains two resulting
vectors for each decision node. Afterwards, the party generates
random integer masks based on its personal random seed and adds
it to the results from the previous step. If the data holder party
receives partial results vectors from the previous data holder party,
then it also aggregates those values to the calculated vector in the
previous step. Eventually, the party passes its outcome to the next
party or mediator if that party is the last one.

Finally, the mediator receives the masked aggregated results
from the last party. Since the mediator has the personal random
seeds, it generates the same randommasks as generated on the data
holder parties. Then, the mediator subtracts those random masks
from the received masked aggregated result. At this step, without
sharing the partial information about data labels by each data holder
party, the mediator has the aggregated vectors representing the
combination of data record labels for each branch of each candidate
decision node for all parties.

3 EVALUATION AND DISCUSSION
In this section, we evaluate our proposed approach w.r.t. classifica-
tion performance, scalability and overhead, and privacy criteria [2].
We compare our approach with [7] since, similar to our approach,
it is a tree-based method, employing SMC techniques for secure
aggregation of partial results, to address classification problems in
scenarios where data is horizontally partitioned.

Table 1: Comparison of Classification Performance

Distributed Approaches Centralized Approaches
Dataset 𝑀𝑒𝑡𝑟𝑖𝑐 𝑃𝑃𝐷-𝐸𝑅𝑇 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐼𝐷3 [7] 𝐸𝑅𝑇 [9] 𝐼𝐷3[20]

Multiple Features 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 98.3% 88% 98.3% 93.5%
𝐹1-𝑆𝑐𝑜𝑟𝑒 98.3% 𝑁𝑜𝑡 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 98.3% 93.5%

Nursery 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 98.1% 95.7% 98.1% 99.5%
𝐹1-𝑆𝑐𝑜𝑟𝑒 95.3% 𝑁𝑜𝑡 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 95.3% 79.2%

First, the privacy-preserving distributed ERT algorithm basically
breaks the task of the centralized ERT algorithm into several parts
distributed on different nodes but does not introduce any nega-
tive impact on performance by construction. Secondly, the SMC
technique adopted to introduce privacy does not change the re-
sult of aggregation as opposed to the existing differential privacy
techniques. The resulting vectors, representing the combination of
record labels for each branch, aggregated securely by the described
SMC technique, yields the same results as aggregation without
adopting any SMC techniques. Therefore, the classification per-
formance of our privacy-preserving distributed ERT remains the
same as the centralized ERT. However, the proposed approach in
[7] suffers from a decline in classification performance caused by
its underlying learning algorithm, i.e., the ID3 algorithm.

We now evaluate the classification performance of our proposed
approach. Similar to [7], we utilize Multiple Features and Nursery
datasets [6] and use 2/3 of the data for learning and the rest for
the test. We adopt the F1-Score and accuracy as our classification
performance metrics. The accuracy of the proposed approach in
[7] is also reported here for comparison. For the Multiple Features
dataset, since the number of records for each class is the same,
the accuracy is a proper metric for evaluating the classification
performance. However, since the Nursery dataset is imbalanced,
the accuracy is not a reliable measure; hence, we also consider the
F1-Score. Table 1 compares the classification performance of our ap-
proach PPD-ERT with the one in [7], with their best setting where
128 parties are collaborating. Moreover, the classification perfor-
mance of centralized versions of ERT [9] and ID3 [20] algorithms,
i.e., the underlying standard learning algorithms for PPD-ERT and
the proposed approach in [7], are also provided for comparison.

In our experiments, on the PPD-ERT, and the ERT algorithm, we
learn an ensemble of 25 decision trees. For the number of candi-
date decision nodes’ parameter in the algorithm, we used 5-fold
cross-validation for the model selection (concerning classification
performance measured by the F1-Score). For the Multiple Features
dataset, we generate 65 candidate decision nodes (proportionate to
10% of the number of features in the dataset) at every step, and for
the Nursery dataset, eight candidate decision nodes (proportionate
to 90% of the number of features in the dataset) are generated. The
results in Table 1 for PPD-ERT, ERT, and ID3 are the average of
10 rounds of learning and evaluation. In the case of the Multiple
Features dataset, the PPD-ERT algorithm outperforms the proposed
technique in [7] by 10.3%. For the Nursery dataset, the PPD-ERT
outperforms the method in [7] by 2.4%. However, in the case of
the Nursery dataset, since the data is imbalanced, using the accu-
racy metric may lead to misleading results. When considering the
F1-Score metric, which is a reliable metric even for imbalanced
datasets, the simple ID3 algorithm that always outperforms the
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Table 2: Communication Complexity of Different SMC Ap-
proaches

Approach Party Communication Total Communication
Send Receive

NOSMC Data Holders 1 0 (n-1)×1 + 1×(n-1)Mediator 0 n-1
PPD-ERT All 1 1 n×(1+1)

proposed method in [7] shows 16.1% lower performance compared
to the PPD-ERT approach.

We now discuss the privacy and overhead of our proposed ap-
proach. We adopt an SMC technique to avoid direct sharing of
the vectors, representing the combination of record labels for each
candidate decision node, with other parties and the mediator. We
compare the communication overhead and privacy of our adopted
SMC technique against the NOSMC approach. Table 2 presents the
communication overhead of both methods. In the table, 𝑛 is the
number of parties, and the communication overheads in the table
are for one round of secure aggregation.

In the first approach (NOSMC), no SMC technique is adopted,
and all the values are directly shared with the mediator and known
to it. This approach has the lowest possible communication cost and
one colluding parties, and is considered as a baseline. On the one
hand, our approach’s communication overhead is from order 𝑂 (𝑛),
which is from the same order as NOSMC. On the other hand, our
technique offers interesting privacy features compared to NOSMC.
Firstly, it takes three parties (or two parties in case the data holder
party is the first or last) for collusion. Secondly, one of the colluding
parties needs to be the mediator, which can be assumed as an honest
party in many scenarios. In the case of a secret value revelation,
we know that the mediator has been involved in the collusion.

We demonstrate that our proposed PPD-ERT approach provides a
solution to classification of structured data distributed over multiple
sources with privacy-preservation consideration. In particular, our
approach does not negatively affect the classification performance
compared to the centralized ERT algorithm.

4 CONCLUSION
In this paper, we have extended the ERT algorithm to ensure pri-
vacy in a distributed setting, where data is held by several parties.
In our proposed algorithm, on the one hand, the data holders do not
share their data values with other parties for learning. On the other
hand, the required partial-information from data holders, the com-
bination of labels after splitting their records by candidate decision
nodes, which has a low risk of revealing important information, is
securely aggregated to minimize the likelihood of inference of sensi-
tive information by an adversary. We have evaluated our proposed
algorithm extensively and demonstrated its efficiency in terms of
prediction performance, scalability and overheads, as well as pri-
vacy. We show that our approach outperforms the state-of-the-art
distributed ID3 by up to 10.3% in terms of classification performance
while ensuring scalability and privacy.
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ABSTRACT

Today, in many real-world applications of machine learning
algorithms, the data is stored on multiple sources instead of at
one central repository. In many such scenarios, due to privacy
concerns and legal obligations, e.g., for medical data, and com-
munication/computation overhead, for instance for large scale
data, the raw data cannot be transferred to a center for analy-
sis. Therefore, new machine learning approaches are proposed
for learning from the distributed data in such settings. In this
paper, we extend the distributed Extremely Randomized Trees
(ERT) approach w.r.t. privacy and scalability. First, we extend
distributed ERT to be resilient w.r.t. the number of colluding
parties in a scalable fashion. Then, we extend the distributed
ERT to improve its scalability without any major loss in clas-
sification performance. We refer to our proposed approach as
k-PPD-ERT or Privacy-Preserving Distributed Extremely Ran-
domized Trees with k colluding parties.

Index Terms— Distributed Learning, Privacy-Preserving
Data Mining, Extremely Randomized Trees, Secure Multiparty
Computation, Structured Data

1. INTRODUCTION

A basic assumption in traditional data mining algorithms is
that all training data are stored in one data center where min-
ing algorithms run. However, this assumption is not practi-
cal in many of today’s real-world applications. Today, data
is generated and stored on various machines, often located in
distributed places. For example, health data is generated and
stored at various hospitals, health service providers, and pa-
tients’ personal devices. Such raw data cannot be shared with
a data mining center due to privacy and legal concerns [1, 2].
At the same time, if each party performs mining on its limited
data, the performance of the resulting model will largely be
subordinate to the performance of a model that can be learned
from all the data. Therefore, new mining approaches are re-
quired to learn from data distributed across multiple sources
while maintaining privacy.

The learning from distributed data in privacy-preserving
fashion have been extensively studied over the past decades.
The first category of solutions is based on sharing raw data with
a trusted third party, which might not be practical in certain sce-
narios since individuals’ privacy cannot be protected from that
party [3]. On the other hand, several studies have focused on

This research is supported by INTROducing Mental health through Adap-
tive Technology (INTROMAT) project.

perturbation-based solutions, e.g., [4–8], to address this issue
by adding noise to the data before sharing it. While perturb-
ing the data improves privacy, it also reduces the data utility.
Moreover, noise removal techniques cast doubt on the privacy
of such approaches [9, 10]. In addition, several anonymiza-
tion methods, e.g., [11, 12], have been proposed to alter data
values, by adopting techniques such as generalization (in k-
anonymization [13]) or encryption of data values (in [14]),
to avoid reidentification of data subjects [15], e.g., through
linking attack [13]. However, in such perturbation-based and
anonymization techniques, there is a trade-off between data
utility and privacy, which make them impractical in certain
scenarios.

Existing literature on data mining over distributed plat-
forms incorporate approaches based on cryptographic and
secure multiparty computing techniques [16–20]. However,
such methods significantly increase communication and com-
puting overhead, making them inefficient and impractical for
many real-world scenarios, where we have large-scale data
or limited communication and computing features, e.g., in
mobile phones or resource-limited wearable devices [21–24].
Several state-of-the-art solutions, such as [3, 25, 26], aim to
address learning in distributed settings in terms of reducing
communication and computational overheads. This is because
the complexity and scalability of the approach, along with the
quality of data mining results and privacy, are among the three
primary metrics for evaluating privacy-preserving data mining
algorithms [27].

In this paper, we focus on the Extremely Randomized Trees
(ERT) algorithm [28], which has a competitive performance
for structured data, where we have independently meaningful
attributes, compared to the existing state-of-the-art techniques,
e.g., standard deep neural networks [29]. We consider the ERT
algorithm in the distributed setting to reduce the amount of raw
data leaving a party and privacy concerns [30]. We extend this
distributed ERT framework in order to improve its scalability
and privacy. We adopt an efficient Secure Multiparty Compu-
tation (SMC) technique for secure aggregation of partial results
in our approach, which is resilient to multiple colluding parties,
similar to Shamir’s secret sharing technique [31]. We further
propose a practical implementation of our proposed framework
to reduce its overhead and improve its scalability. Moreover,
we extend our proposed framework for efficient handling of
large scale data and where only a subset of the parties partici-
pate in the process of learning. Our proposed framework offers
the opportunity to make a trade-off among performance, pri-
vacy, and overhead.
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2. BACKGROUND

Extremely Randomized Trees (ERT) is a tree-based ensemble
supervised learning method [28]. This approach is robust to
overfitting since it follows the logic of bagging, i.e., it generates
an ensemble of different weak classifiers and finally classifies
based on a majority vote among these classifiers. The random-
ness parameters for generating distinctive weak classifiers are
data attributes and splitting points for generating candidate de-
cision nodes.

This paper considers the distributed ERT framework, which
is adapted for learning classifier models from structured data,
with categorical/numerical attributes and categorical labels,
distributed over an arbitrary number of sources. In such a set-
ting, the training data is horizontally partitioned and distributed
over multiple sources, i.e., different records are stored on dif-
ferent data holder parties. The raw data cannot be shared with
a central server for mining due to privacy and legal concerns.
Therefore, the distributed ERT learns from the data without di-
rect access to it and merely by partial and limited information
from parties that hold the training data.

Distributed ERT iteratively learns an ensemble of decision
trees. Learning a decision tree requires selecting a decision
node at each step. The selection of decision nodes is per-
formed based on the information gain. Information gain is a
measure/score that indicates how well a decision node, com-
pared to others, classifies the data samples to have more pure
sets of samples at every branch of the decision node consid-
ering samples’ labels. To calculate the information gain, the
classification results of candidate decision nodes are required
(from all data holder parties). Therefore, in distributed ERT,
every data holder party classifies its records with the randomly
generated decision nodes and obtains partial results (two vec-
tors representing the combination/mixture of record labels fall
into True and False branches). The aggregation of such partial
results from all data holder parties enables the calculation of
scores/information gains.

The direct sharing of such partial results to other parties
puts the privacy of data subjects at risk. For instance, assum-
ing the party holds only one record, if the candidate decision
node classifies the data based on a sensitive attribute, e.g., suf-
fering from a mental disorder, then the partial result indicates if
the data subject falls under a certain category. For calculating
the score, only the aggregation of partial results is required. In
distributed ERT, each party aggregates its partial results to the
previous party’s received result and sends it to the next party.
Although this technique is more efficient compared to the em-
ployed techniques in similar studies [3], e.g., Shamir’s secret
sharing technique [31], the number of colluding parties to re-
veal a secret value, in the worst case, is one.

In this study, we extend the distributed ERT framework and
the secure aggregation protocol to be resilient to k colluding
parties, where k is determined by the user. We further propose
an efficient implementation for our framework, which is scal-
able and robust for large scale data w.r.t. the participation of a
subset of data holder parties.

𝑷𝟏 𝑷𝟐 𝑷𝒏

𝑴𝒆𝒅𝒊𝒂𝒕𝒐𝒓

Initialization

Fig. 1: Overall scenario for our privacy-preserving learning

3. APPROACH

In this section, we explain the proposed k-PPD-ERT algorithm.
Section 3.1 describes the adopted secure aggregation technique
for k-PPD-ERT. In Section 3.2, we explain how we can im-
prove the scalability of the approach to learn from large scale
data.

3.1. Privacy in the Presence of k Colluding Parties

Figure 1 illustrates the overall scenario for the proposed
privacy-preserving learning framework. In the initialization
phase of the k-PPD-ERT algorithm, each data holder party
shares two seeds for the random function to other data holder
parties (and receives two in return from each data holder party).
The first seed (Seed for Selection of Parties, SSP ) is unique
for each sender but common for receivers, but the second seed
(Seed for Secure Aggregation, SSA) is unique for each sender
and receiver couple.

We suppose that the number of data holder parties is n.
Therefore, after this initialization procedure, party m, Pm

(where 1 ≤ m ≤ n), receives two sets of n − 1 seeds
from other data holder parties ({SSPP1

all, . . . ,SSP
Pn

all} and
{SSAP1

Pm
, . . . ,SSAPn

Pm
}) and holds the seeds which were sent

to other parties (SSPPm

all and {SSAPm

P1
, . . . ,SSAPm

Pn
}). More-

over, the secret value of party m is denoted by secret valPm .
The responsibilities of party m in one round of secure ag-

gregation is explained in the following steps:

(a) Identifying the k parties that participate in the secure
aggregation for Pm:
Party Pm uses SSPPm

all , in its random function, to iden-
tify which parties participate in secure aggregation for
Pm, i.e., by randomly generating the party indices. Then,
Pm generates random masks based on the sent SSA
seeds ({SSAPm

P1
, . . . ,SSAPm

Pn
}) of selected parties and

aggregates them. It stores the result of aggregation in
rnd sumPm

self .

(b) Identifying the parties for which Pm participate in
the secure aggregation:
Party Pm uses its received SSP seeds ({SSPP1

all, . . . ,

SSPPn

all}) to identify the parties with whose received
SSA seeds, Pm must generate random masks. Then,
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Pm generates random masks based on the received SSA
seeds ({SSAP1

Pm
, . . . ,SSAPn

Pm
}) of selected parties and

aggregates them. It stores the result of aggregation in
rnd sumPm

others.

(c) Aggregation and transfer of partial results (P.R.) to
the mediator:
Party Pm calculates P.R.Pm as follows: P.R.Pm =
secret valPm − rnd sumPm

self + rnd sumPm

others. Then,
Pm sends P.R.Pm to the mediator.

The mediators calculates the desired result (aggregation of
secret values) by aggregating all received partial results.

Privacy: We now show that the secret values of par-
ties are kept private in our proposed protocol. The par-
tial result P.R.Pm , which is shared with the mediator con-
sists of three components: secret valPm , rnd sumPm

self ,
and rnd sumPm

others. The two components, rnd sumPm

self

and rnd sumPm

others, mask the secret value. The value of
rnd sumPm

self can only be identified by collusion of k parties
holding the random seeds for generating the random masks,
which are the components of rnd sumPm

self . At the same
time, rnd sumPm

others can only be identified by collusion of k
(potentially) other parties which generate the components of
rnd sumPm

others. In the worst case, the k parties involved in
rnd sumPm

self and rnd sumPm

others may be the same; hence, the
minimum number of colluding data holder parties equals to
k. Moreover, since the mediator receives the victim’s partial
result, the collusion of other parties without the mediator’s
participation is ineffective. Therefore, for identifying a secret
value, the collusion of k data holder parties and the mediator is
necessary.

Correctness: We also show that the final value of aggre-
gation of partial results is equal to the aggregation of secret
values. Without loss of generality we consider k = n − 1.
The aggregation of all partial results sent to the mediator is as
follows:
n∑

j=1

P.R.Pj = secret valP1 − rnd sumP1
self + rnd sumP1

others

... (1)

+ secret valPn − rnd sumPn
self + rnd sumPn

others

=
n∑

j=1

secret valPj−
n∑

j=1

rnd sum
Pj

self+
n∑

j=1

rnd sum
Pj

others.

Based on (a), rnd sumPm

self =
∑n

i=1 rnd
Pm

Pi
− rndPm

Pm
,

where rndPm

Pi
is the shared random mask between Pm and

Pi. On the other hand, based on (b), rnd sumPm

others =∑n
i=1 rnd

Pi

Pm
− rndPm

Pm
. Substituting these two equations

in equation 1, we obtain:
n∑

j=1

P.R.Pj=

n∑

j=1

secret valPj−
n∑

j=1

rnd sum
Pj

self+

n∑

j=1

rnd sum
Pj

others

=

n∑

j=1

secret valPj−
n∑

j=1

(

n∑

i=1

rnd
Pj

Pi
− rnd

Pj

Pj
) (2)

+
n∑

j=1

(
n∑

i=1

rnd
Pi
Pj

− rnd
Pj

Pj
)=

n∑

j=1

secret valPj .

The above equations show that the aggregation of partial
results from data holder parties is equal to the aggregation of
data holder parties’ secret values.

3.2. Efficient Handling of Large Scale Data

In distributed ERT, all the data holder parties participate in (col-
laborate on) the process of selecting the best decision node/leaf
at every round of the algorithm. However, in order to effi-
ciently handle large scale data sets and reduce the communi-
cation/computation overheads, in k-PPD-ERT, only a subset of
data holder parties participate in the process of learning at ev-
ery round. The probability of participation of each party in the
learning process at each round is a parameter that is set by the
user.

The algorithm uses the aggregation of data holder par-
ties’ partial results to calculate the candidate decision nodes’
score/information gain. In certain rounds, the result of this
aggregation is used to select a leaf for the tree. In k-PPD-ERT,
when not all the parties participate in the aggregation process,
the result of aggregation changes. However, in Section 4,
we experimentally show that this technique does not lead to
a major loss in the classification performance of our learned
models.

Random participation of data holders in the described pro-
cess changes the result of aggregation and, consequently, the
learning. However, the learning results are not noticeably af-
fected (shown experimentally in Section 4). The randomness in
the participation of data holder parties, similar to the random-
ness in the generation of candidate decision nodes in the dis-
tributed ERT, is another source of randomness in our approach.
Introducing another source of randomness in ensemble learn-
ing methods while keeping the algorithm’s ability to generate
weak classifiers is in accordance with the logic of bagging.

To determine which parties participate at each round, the
mediator shares a common random seed (Seed for Participat-
ing Parties, SPP ) with all data holder parties. Therefore, by
using this seed and the constant probability of participation,
every party determines the participating parties in that round
of secure aggregation (for selecting the best candidate decision
node/leaf). Then, each participating party picks its k peer par-
ties for secure aggregation based on the available parties in that
round, determined by SPP .

4. EVALUATION AND DISCUSSION

In this section, first, we evaluate the adopted secure aggrega-
tion technique. We compare our technique with distributed
ERT and Shamir’s techniques. These secure aggregation tech-
niques are evaluated based on the communication cost in one
round of secure aggregation and the minimum number of par-
ties that need to participate in collusion in order to identify a
secret value. Then, we examine the limited participation of
data holder parties in the process of selecting the best candi-
date decision node/leaf. We evaluate the classification perfor-
mance and the scalability of k-PPD-ERT offered by adopting
this approach.
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Fig. 2: Analysis of the classification performance, the elapsed learning time, and number of secure aggregations for learning based on different
proportions of participating parties in the learning process

Table 1 exhibits and compares communication costs (in one
round of secure aggregation) and the minimum number of par-
ties necessary to collude for identifying a secret value. Accord-
ing to the table, the communication complexity of k-PPD-ERT
has the lowest order, while offering the highest minimum num-
ber of colluding parties for identifying a secret value. The com-
munication complexity of the k-PPD-ERT technique is O(n),
similar to the distributed ERT, while this equals to O(n2) for
Shamir’s technique. On the other hand, the minimum number
of colluding parties for k-PPD-ERT is k data holder parties plus
the mediator, which is the highest. Therefore, the k-PPD-ERT’s
secure aggregation technique offers privacy with multiple col-
luding parties, while preserving the algorithm’s scalability.

Table 1: Scalability and privacy comparison against existing
techniques

Approach Party Communication (N is the number of parties) Min Number of
Send Receive Total (All N parties) Colluding Parties

Distributed ERT All 1 1 2N 1

k-PPD-ERT Data Holders 1 0
2(N − 1) k + 1 (k < N )Mediator 0 N − 1

Shamir [31]
k-1 Parties N N − 1

2(N2 −N + k − 1) k (k < N )One Party N − 1 N + k − 2
The Rest N − 1 N − 1

In k-PPD-ERT’s secure aggregation technique, the total
number of send and receive messages in k-PPD-ERT is in-
dependent of k, so we can always set k to n − 1. This does
not introduce any cost, concerning the communication, in our
algorithm.

We now evaluate data holder parties’ limited participation
at every round of a selecting decision node/leaf. To investi-
gate this feature, we use Multiple Features [32] and Waveform
Database Generator (Version 1) [33] datasets, and allocate 2/3
of each dataset for learning and the rest for testing. We dis-
tribute the training data evenly among ten parties. The mediator
learns an ensemble of 25 decision trees by k-PPD-ERT in ev-
ery experiment. We repeat the learning process for situations in
which the proportion of participating parties at every round of
selecting the best decision node/leaf is 0.2, 0.3, 0.4, ..., 1. Fig-
ure 2 visualizes the results of these experiments. In every ex-
periment, we record: the classification performance, shown in
Figure 2a and 2b, the elapsed time for learning process, in Fig-
ure 2c, and the number of required secure aggregations for the

learning process, in Figure 2d. The Y-axis in Figure 2c and 2d
has a logarithmic scale (because of the differences in the mag-
nitude of results for Multiple Features and Waveform datasets).

On the one hand, the results in Figure 2a and 2b show that
random participation of only 40% of data holder parties at each
round leads to high classification performance. The difference
in classification performance for 40% of participation and more
(even when all parties participate, similar to distributed ERT) is
negligible. Furthermore, in some experiments with data hold-
ers’ limited participation, we obtain models with higher classi-
fication performance. The logic behind bagging and the intro-
duced source of randomness in k-PPD-ERT may explain these
improvements.

On the other hand, the results in Figure 2c and 2d show im-
provements concerning the scalability when fewer data holders
participate in learning at each round. Figure 2c shows the de-
crease of elapsed time for learning a model by reducing the
number of participating parties. In addition, Figure 2d exhibits
the continuous growth of secure aggregation rounds by increas-
ing the number of parties that participate in different rounds of
selecting a decision node/leaf for our decision trees.

The results in Figure 2 show that our algorithm’s scalabil-
ity improves by limiting the number of data holder parties that
participate in every round of selection of a decision node/leaf.
However, the learning performance and its resulting models
will not have any noticeable loss.

5. CONCLUSION

In this paper, we consider the distributed ERT framework and
extend it by adopting a secure aggregation technique that is re-
silient to the collusion of up to k data holder parties and the me-
diator. We further proposed a scalable implementation for our
framework, which is efficient w.r.t. the communication over-
head. Moreover, we investigated the efficient handling of large
scale data with the limited participation of data holder parties
at every round of the learning process. Our evaluation demon-
strates the privacy preservation and resilience of the proposed
framework w.r.t. the number of colluding parties and its scala-
bility and robustness for large scale data w.r.t. the participation
of a subset of data holder parties.
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Monitoring Motor Activity Data for Detecting Patients’ Depression
Using Data Augmentation and Privacy-Preserving Distributed Learning

Amin Aminifar1, Fazle Rabbi1,2, Violet Ka I Pun1,3, and Yngve Lamo1

Abstract— Wearable devices are currently being considered
to collect personalized physiological information, which is lately
being used to provide healthcare services to individuals. One
application is detecting depression by utilization of motor
activity signals collected by the ActiGraph wearable wristbands.
However, to develop an accurate classification model, we require
to use a sufficient volume of data from several subjects, taking
the sensitivity of such data into account. Therefore, in this pa-
per, we present an approach to extract classification models for
predicting depression based on a new augmentation technique
for motor activity data in a privacy-preserving fashion. We
evaluate our approach against the state-of-the-art techniques
and demonstrate its performance based on the mental health
datasets associated with the Norwegian INTROducing Mental
health through Adaptive Technology (INTROMAT) Project.

I. INTRODUCTION

Mental health disorders are the primary contributor to
chronic diseases in Europe [1]. Twenty-five percent of people
develop at least one mental or behavioral disorder in their
life [2]. Depression is the most prevalent among mental
health disorders and is expected to increase in the following
years [3], [4], [5]. Therefore, addressing and controlling
depression is necessary for society as it affects individuals’
physical, emotional, and economic aspects [6].

Wearable devices provide the opportunity to monitor pa-
tients on a long-term basis to detect and prevent health disor-
ders in earlier stages [7], [8], [9], [10]. Wearable technologies
offer pervasive healthcare solutions at an affordable price
by removing time and location restrictions [11]. The data
collected by such devices has attracted a lot of attention
for mental health applications [12]. One such application
is detecting depression in patients based on motor activity
data collected from ActiGraph wristband [13]. The motor
activity is captured by the accelerometry signals acquired by
the ActiGraph wristband. Figure 1 explains a scenario for the
analysis of sensor data generated by wearable devices. In this
figure, the activity signal of each individual is collected by a
wristband, and is transferred to the personal mobile phone.
Then, the raw data may be preprocessed and prepared for the
analysis task locally on the phone or analyzed in a distributed
fashion [14], [15].

Monitoring mental health and, in particular, depression by
using signals collected by wearable devices involve several
challenges. Firstly, sharing healthcare data for analysis pur-
poses is not always feasible due to privacy and legal concerns

1Western Norway University of Applied Sciences, Bergen, Norway
firstname.lastname@hvl.no

2University of Bergen, Bergen, Norway
3University of Oslo, Oslo, Norway

[16], [17], [18], [19]. In particular, privacy and security are
among the most concerning challenges in real-time health
monitoring using mobile health technologies [20], [21], [22].
Privacy-preserving data sharing, e.g., [23], [24], [25], and
privacy-preserving data mining [26], [27], [28], [29], [30],
[15] approaches offer a solution to data analysis without the
raw data leaving the individuals’ devices. Secondly, although
there is a connection between mental health problems and
disturbance in internal biological systems, relations between
mood and physiological signals are not well-identified [31],
[13]. Therefore, finding the correlation between physiologi-
cal signals and mental health problems is challenging.

This paper addresses analyzing motor activity data col-
lected by the ActiGraph wristband. We use the Depresjon
(depression in Norwegian) dataset 1 [13] which contains mo-
tor activity signals of patients from control (non-depressed)
and condition (depressed) groups. Our goal is to predict de-
pression in patients based on such data. Previous studies [13]
have considered a feature-based approach for the detection of
depression. However, as we show in this paper, the prediction
performance may be improved by further exploiting the
information carried in the signals (beyond the basic statistical
attributes, e.g., the mean and standard deviation).

In this paper, we propose an augmentation approach for
generating new records from the Depresjon dataset [13] to
improve the classification performance. In other words, our
approach produces new data records from the raw data in
order to use them for the learning and evaluation process.
We show that adopting our augmentation approach leads
to learning classification models with higher performance,
i.e., up to 7.9% higher F1-score, 8.2% higher Accuracy, and
0.169 higher Matthews Correlation Coefficient. However, the
motor activity raw data that is required for the analysis is
generated on each patient’s wearable device and inherently
distributed. Such data cannot be transferred to a center for
further analysis due to personal and/or legal privacy concerns
(e.g., to infer mental health status from the data). To address
this privacy issue, we investigate the possibility of using
our recently proposed privacy-preserving distributed machine
learning approach, PPD-ERT [33], for sensor data based on
the Depresjon dataset, which paves the way for the real-world
applications of our approach for wearable technology in the
described settings.

The remainder of this article is structured as follows:
The approach and details about generating records from the

1The Depresjon dataset is publicly available at [32], and is collected
within the INTROMAT project.
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Fig. 1: Analysis of sensor data generated by wearable devices

Depresjon dataset are described in Section II. The evaluation
of the approach and experimental results are presented in
Section III. Finally, Section IV concludes the paper.

II. APPROACH

This section presents our approach to detecting depression
based on the motor activity data. We, first, describe our
approach for generating data records from the Depresjon
dataset. Then, we discuss how PPD-ERT [33] is utilized
for privacy-preserving distributed learning of classification
models from generated data records and in the context of
real-world wearable devices.

Let us first give an overview of the Depresjon dataset.
The dataset consists of motor activity data of 55 patients
(30 and 25 for females and males) collected by ActiGraph
wristband worn at the right wrist of patients. In this dataset,
23 of the patients are diagnosed with depression, including
both unipolar and bipolar patients, and the remaining 32
belong to the control group. Each patient wore the ActiGraph
wristband for an arbitrary number of days, between 5 to 20
days. The total number of days for the condition group is
291 days, and for the control group is 402.

The recorded values (samples) for each patient in each
minute are proportionate to the quantity, duration, and the
strength of the patient’s movements. Each patient has at least
a sample value greater than or equal to zero for every minute
of a day. It should also be noted that, on the first day for
each patient, the recording started in the middle of the day.
We refer to the data for each day of each patient as a record.
Each record consists of several sample values (or samples in
short).

The authors in [13] proposed the application of the mean
and the standard deviation of the activity level along with
the proportion of minutes with no activity in a day as
the data attributes for depression classification. In addition,
a normalization between zero and one is performed for
attribute values. Therefore, this approach leads to only 693
records (291 for the condition group and 402 for the control
group), one for each day in the raw data.

Although adopting the proposed approach in [13] ex-
tracts a representation of the raw data that results in a fair
classification performance, it may still lead to suboptimal
results. In this dataset, the total number of recorded data
for patients is limited, i.e., only 693 days. Therefore, if we
generate one record for each day, the volume of the data
that the algorithm is trained on will be small, which in
turn limits the detection performance. Moreover, the motor
activity signal on certain days are shorter, where we do not
have a recorded sample for every minute of the day. In this
way, the mean, standard deviation, and the proportion of zero
activity for that data are affected and will be very different
from the days with complete recording. On the other hand,
the number of recorded days for each patient is different.
We have less than one week of recorded activity for some
of the patients, while we have almost three weeks for some
others. Therefore, the approach presented in [13] makes the
data more imbalanced, which may eventually lead to poor
classification performance.

This paper adopts a data augmentation approach for gen-
erating data records from the original Depresjon dataset.
Data augmentation is a functional approach for increasing
the diversity and volume of data by augmenting records
at random [34], [35]. The majority of machine learning
algorithms, e.g., deep neural networks, learn higher perfor-
mance classification models when they are trained on larger
datasets. Moreover, data augmentation can lead to better
generalization and robustness by learning models invariant
to the transformation of the data, e.g., learning an object
classifier model that can classify objects correctly even if
the images are rotated.

By adopting a data augmentation approach, we generate an
equal number of records for each patient. All the generated
records will have a unique size equal to the number of
minutes in a day. For each patient, we generate n records,
where n can be adjusted based on the user needs. The length
of each record, l, is equal to the number of minutes in a day,
i.e., l = 1440 (60×24), representing the patient activity level
in one day.

Let us denote the set of all samples for patient i by Si and
define it as: Si = {sijk ∈ Rij ,∀j, k}. Rij captures the j-th
record of patient i and sijk is the sample k in record Rij .
For every minute t during the day, we check the available
samples for this patient and for this specific time in the day,
e.g., t = 12:00. The recorded samples for different days
of this patient around this particular time, i.e., t± δ, are the
candidates for being selected as the new (augmented) sample
for this timestamp, where 2 ·δ is the duration of this interval.
The parameter δ determines the time interval within which
we acquire the augmented sample.
R̂ij captures the j-th augmented record of patient i and is

defined as: R̂ij = [ŝij1, ..., ŝijl]. ŝijk denotes the k-th sample
for the generated record R̂ij , where 1 ≤ k ≤ l. ŝijk is the
sample at time t and is selected at random from set Si and
in the time interval [t − δ, t + δ]. This is formally defined
as ŝijk ∈ {s ∈ Si|t − δ ≤ t(s) ≤ t + δ}, where t(s) is the
time of sample s. This process is repeated until we have n
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(a) Subject 20 from condition group (b) Subject 20 from control group

Fig. 2: The figure presents two examples of generated records based on the raw data for individuals in condition and control groups.
Each signal/record showed by gray dots represents one recorded day of the patients. The last signal shown by blue dots represents the
generated record by our proposed approach (l = 1440 and δ = 10). The examples show the correspondence of raw data and generated
records and that the subject in the condition group usually has less activity, after the sleeping time, compared to the one from the control
group.

records for each patient.2

The augmented record reflects the patients’ activity level
in a day and is proportionate to the original data since its
samples for all timestamps (t) are randomly chosen from
samples for the close timestamps (t ± δ) in the reported
days. Therefore, the approach preserves the changes in the
activity level of the patients in the data. This is particularly
important, as studies found evidence that suggests a relation-
ship between decreased daytime motor activity and increased
nighttime activity and a depressive state, compared to healthy
individuals [36], [13]. In similar studies, the decreased motor
activity and more diversity in the activity level are reported
for patients suffering from bipolar depression [37]. That
being said, this means that preservation of activity level
changes during the day for a patient is one of the main

2The source code of our approach is available at
https://github.com/AminAminifar/dataprep

advantages of our augmentation approach.
Figure 2 shows the generation of records from two pa-

tients’ raw data. The horizontal axis represents the time in
a day, and the vertical axis shows the activity level. All
patient’s activity levels at different timestamps are shown
in the figure by gray bubbles, and the blue bubbles are
the samples for the generated record by our augmentation
technique. Figures 2a and 2b show the raw signals/records
(twelve days) and the augmented record for Subject 20
from the condition group and Subject 20 from the control
group, respectively. The figure shows the association of the
generated record and the raw data. In the intervals that the
patient usually has a low level of activity, e.g., from midnight
to the morning, the generated record also shows a low level
of activity and vice versa.

The augmented dataset can then be used by the machine
learning algorithms for the detection of depression. The raw
data generated from each patient’s activity are stored on
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TABLE I: Classification performance (leave one patient out) of different classification algorithms for the approach in [13]
and the generated data records based on our approach

Algorithms Our approach Approach in [13]
F1-score ACC MCC F1-score ACC MCC

Distributed PPD-ERT 76.3% 76.8% 0.518 66.3% 67.0% 0.310
Distributed ID3 65.1% 65.0% 0.286 65.6% 66.5% 0.296

Centralized

ERT 76.3% 76.8% 0.518 66.3% 67.0% 0.310
Random forest 74.4% 75.1% 0.481 64.3% 64.7% 0.266
XGBoost 76.2% 76.3% 0.510 64.3% 64.7% 0.265
Decision Tree 65.7% 65.8% 0.293 60.6% 60.7% 0.191
Linear SVM 69.5% 69.5% 0.375 68.4% 68.6% 0.349

patients’ personal devices. Due to privacy and legal issues,
such data cannot be transferred to a center for analysis in
such healthcare applications. A practical solution in such
situations is performing analysis through privacy-preserving
distributed data analysis methods. Therefore, here we adopt
our proposed PPD-ERT algorithms [33], [38] for analyzing
the Depresjon dataset and learning the classification model.
The ensemble learning procedure adopted by PPD-ERT
reduces the risks of overfitting.

The described approach for generating data instances
(augmenting data) is compatible with our privacy-preserving
distributed methods. This is because the new records are
generated merely based on one patient’s raw data and are
independent of other patients’ data. Therefore, each patient
generates the instances on its own device locally. Then, the
generated records are the data that is used for training the
PPD-ERT algorithm. By employing the PPD-ERT approach,
we learn high-performance classification models without
sharing raw data or sensitive information. The learned mod-
els will then be used for detecting depression by each
individual.

III. EVALUATION AND DISCUSSION

In this section, we evaluate our proposed augmentation
technique for motor activity data. We consider several classi-
fication algorithms to assess and compare the results obtained
from our proposed approach and the approach in [13].
Moreover, we use our recently proposed method, PPD-ERT
[33], for the described problem, i.e., detection of depression
in patients based on motor activity data, to investigate the
possibility of applying this method for such data from
wearable devices.

The objective here is to learn classification models to de-
tect depression based on the motor activity signals collected
by the ActiGraph wristband. The trained model will later
be used to detect depression in individuals based on their
activity levels. The target categories for classification are
two, i.e., normal/control category and depressed/condition
category.

As described in Section II, [13] proposes using a dataset
(obtained from original data) which contains three attributes
(i.e., mean, standard deviation, and zero activity ratio) and
one label for each record, and each record represents one
day of collected data for one patient. This is while our
approach generates records that contain a sample for each

minute during the day, i.e., 1440 attributes for each record
(l = 1440). In our experiments, we generate 100 records for
each patient (n = 100). Every record is generated based on
the samples collected at different days of a patient’s collected
signals. Each timestamp’s sample for the record is selected
among the available samples in 10 minutes time span around
it (δ = 10). Therefore, in both approaches, each generated
record belongs to one and only one patient. This provides the
possibility for leave-one-patient-out evaluation, which in turn
enables the adoption of our privacy-preserving distributed
learning framework.

In our experiments, we measure the classification perfor-
mance of several learning algorithms on data generated based
on the two approaches, with leave-one-patient-out evaluation.
We perform the leave-one-out evaluation for each patient,
where the target patient’s data is considered as the test set and
the remaining data from other patients is considered as the
training set. We use F1-score (weighted average), Accuracy
(ACC), and Matthews Correlation Coefficient (MCC) to
measure the quality of classification, which are the metrics
used for performance evaluation on this dataset [13].

We perform the learning process on both the data with
attributes proposed in [13] and generated data records by
our approach, based on five centralized and two privacy-
preserving distributed machine learning algorithms. Table I
exhibits these results.

The results show a substantial improvement in the clas-
sification performance by employing our approach for gen-
erating data records from raw data. Particularly, tree-based
ensemble learning approaches, i.e., PPD-ERT, ERT [39],
random forest [40], and XGBoost [41], present more accurate
results when trained on data generated by our augmentation
approach. This is while training on the data with attributes
proposed in [13] yields the best results when employing the
linear SVM algorithm [42]. Comparing the best results for
both approaches shows that applying our approach leads to
learning more accurate classification models, i.e., models
with 7.9% higher F1-score, 8.2% higher ACC, and 0.169
higher MCC. The PPD-ERT and ERT algorithms follow the
same learning procedure and have the same classification
performance [33].

Figures 3a and 3b show the heat-map for the raw and
generated data, respectively. Each box represents the average
activity level of one patient in one-hour intervals in a day. For
the raw data, Figure 3a represents the average activity level
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(a) Heat-map for the raw data

(b) Heat-map for the augmented data

Fig. 3: Heat-map for averaged activity level in one-hour intervals for each patient
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of each patient based on all recorded days for him/her. Figure
3b shows the heat-map for the average activity of patients
based on the generated data by adopting our approach.

The heat-maps of activity level based on the raw dataset
and the generated dataset in Figures 3a and 3b are visually
similar. This similarity explains the association of the gener-
ated records and the original dataset. In order to measure the
similarity between the generated data by our approach and
the raw data, we calculate the relative difference among the
corresponding values for each cell, averaged over the entire
heat-map. The average relative difference is calculated as
follow:

D[R,A] =
1

n ·m
n∑

i=1

m∑

j=1

|rij − aij |
rij

, (1)

where n is the number of patients in each group, and
m is the number of one-hour intervals in a day. R =
{r11, r12, . . . , rnm} is the set of average activity level of
one patient in one-hour intervals in a day calculated from
raw dataset. The rij is the average activity level of patient
i in one-hour interval j in the raw data. Moreover, A =
{a11, a12, . . . , anm} is the set of average activity level from
augmented dataset. The average activity level of patient i in
one-hour interval j in the augmented data is captured by aij .
The value of D for the condition group is 3.3%. The value
of D for the control group is equal to 3.5%.

In summary, the evaluation results in this section indicate
the preservation of the activity-level information in the
augmented data for the detection of depression from motor
activity data. Our experimental results show that modern
techniques, e.g., tree-based ensemble learning algorithms,
learn more accurate classifier models given such extensive
information compared to learning from the few basic statis-
tical attributes in previous studies.

IV. CONCLUSION

In this paper, we propose an approach based on data
augmentation to analyze the Depresjon dataset and im-
prove the performance of detecting depression in subjects.
We introduced an approach for augmenting data records
from the Depresjon dataset, which leads to higher detection
performance when employing modern learning algorithms.
Employing our approach leads to learning more accurate
models with up to 7.9% higher F1-score, 8.2% higher
ACC, and 0.169 higher MCC. Moreover, the possibility of
employing privacy-preserving data analysis for such data is
investigated. We demonstrate the possibility of using our
privacy-preserving distributed data analysis technique, PPD-
ERT, for wearable devices/sensors to ensure the preservation
of the privacy of sensitive information for the patients in the
context of depression and mental health disorders.
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ABSTRACT Artificial intelligence and machine learning have recently attracted considerable attention in
the healthcare domain. The data used by machine learning algorithms in healthcare applications is often
distributed over multiple sources, for instance, hospitals or patients’ personal devices. One main difficulty
lies in analyzing such data without compromising patients’ privacy and personal data, which is a primary
concern in healthcare applications. Therefore, in these applications, we are interested in running machine
learning algorithms over distributed data without disclosing sensitive information about the data subjects.
In this paper, we propose a distributed extremely randomized trees algorithm for learning from distributed
data with privacy preservation. We present the implementation of our technique (which we refer to as
k-PPD-ERT) on a cloud platform and demonstrate its performance based on medical data, including Heart
Disease, Breast Cancer, and mental health datasets (Depresjon and Psykose datasets) associated with the
Norwegian INTROducing Mental health through Adaptive Technology (INTROMAT) project.

INDEX TERMS Distributed learning, extremely randomized trees, privacy-preserving machine learning,
structured health data, federated machine learning.

I. INTRODUCTION
Artificial intelligence (AI) and automated decision-making
have the potential to improve accuracy and efficiency in
healthcare applications. In particular, AI is proven to outper-
form medical experts in certain domains. Two examples are
the classification of rhythms in electrocardiography signals
with deep neural networks in [1] and prediction of breast
cancer using the AI system presented in [2]; more related
studies can be found in [3], [4]. However, the application
of AI and machine learning for automated decision-making
in healthcare comes with challenges, such as security and
privacy. For instance, a patient’s privacy is violated if sharing
his/her medical data with a third-party data recipient reveals
that he/she has a medical condition. This becomes more
challenging considering that, in healthcare systems, the data

The associate editor coordinating the review of this manuscript and
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could be distributed over a number of sources rather than
being stored in a central database.

In distributed settings, hospitals need to apply data min-
ing methods to extract useful patterns from patients’ data.
Although hospitals may individually be able to use their
limited resources and locally stored health information to
perform data mining, the use of available health information
across several hospitals leads to obtaining more valuable and
accurate information. However, this is a challenging task due
to privacy and legal concerns. Hospitals often need to comply
with privacy regulations that restrict sharing health informa-
tion about patients with other parties, e.g., other hospitals,
family doctors, and specialists [5], [6]. A similar problem
exists when the data is distributed over patients’ personal
devices, such as mobile phones or wearable devices [7]–[11].

Traditionally, it was assumed that all sources holding part
of the data might share their information with a trusted party.
However, such an assumption, i.e., putting this level of trust
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in a third party, is not feasible in every scenario because
the privacy of data sources cannot be protected from the
third party [12]. In order to address the privacy concern,
one solution would be to perturb the data before sharing
it. However, perturbation-based solutions have limitations in
satisfying data privacy and data utility requirements [13],
[14]. This is because the utility of the data will decrease if
the perturbation is not precisely controlled, and the privacy
will not be preserved if the perturbation is not sufficient [14].
Similarly, anonymization techniques, e.g., [15]–[20], share
an altered version of data to prevent the re-identification of
data subjects [21]. Moreover, methods providing differential
privacy [22] share data while preserving the privacy of indi-
viduals by adding noise. Nevertheless, in these techniques,
there is always a trade-off between data privacy and data
utility [13].

Previous studies also consider cryptographic techniques
and secure multi-party computation methods for conducting
privacy-preserving data mining [23]–[25]. However, such
approaches are inefficient, mainly when dealing with large-
scale data, due to considerable communication and compu-
tation costs [14]. Several techniques, e.g., [12], [26], [27],
have been proposed to address these types of overheads in
the privacy-preserving machine learning algorithms and to
improve their efficiency.

In this paper, we target the problem of learning from data
held on multiple sources without explicit sharing of raw
information. We assume that the learning data is horizon-
tally partitioned, meaning that different records of data are
stored on different sources. We focus on the classification
problem and structured health data, which can be stored in
spreadsheets. We build upon our previous work [28] and
propose a scalable privacy-preserving framework for dis-
tributedmachine learning based on the extremely randomized
trees algorithm, which has a linear overhead in the num-
ber of parties and can handle missing values. We refer to
our approach as k-PPD-ERT (Privacy-Preserving Distributed
Extremely Randomized Trees), in which k is the number
of colluding parties in our approach. We use two popular
publicly available healthcare datasets for performance eval-
uation, i.e., the Heart Disease [29] and the Breast Cancer
Wisconsin (Diagnostic) [30] datasets. This data represents
medical applications where missing values are present, and
our algorithm is designed to handle such scenarios. Finally,
we present the implementation of our technique onAmazon’s
AWS cloud and evaluate it in a real-world setting based
on the mental health datasets associated with the Norwe-
gian INTROducingMental health through Adaptive Technol-
ogy (INTROMAT) project [31].

The remainder of this paper is organized as follows.
Section II reviews the state of the art of distributed
privacy-preserving machine learning techniques to address
the discussed problem. Section III covers the background
related to the extremely randomized trees algorithm and
secure multi-party computation. In Section IV, we illustrate
our proposed k-PPD-ERT method, which is an adaptation

and extension of the ERT algorithm for distributed settings.
Section V illustrates the distributed extremely randomized
trees algorithm through a small example. In Section VI,
we evaluate the performance, overhead and privacy of the
proposed technique. Section VII serves as the conclusion of
this article.

II. STATE OF THE ART
The topic of collaborative learning from distributed data has
been discussed in the literature for many years. A wide range
of distributed learning techniques has been proposed in the
literature that do not explicitly consider privacy aspects [26],
[32]–[34]. Nevertheless, such techniques indirectly con-
tribute to privacy preservation by limiting the amount of data
that has to be sharedwith other parties or transferred to central
servers or the cloud.
Randomization has been adopted in several stud-

ies [35]–[38] to preserve the privacy of individuals in data
mining techniques. For instance, a technique that incorpo-
rates noise into raw data before sharing and performing
data mining processes is proposed in [35]. However, the
original values can be estimated using noise removal tech-
niques. Hence, such techniques do not provide strong privacy
guarantees [14], [39]–[41].
Secure multi-party computation (SMC) has been employed

in several studies [12], [23]–[25], [42], [43] to perform data
mining over data distributed in multiple parties, where no
private information except the mining results should be dis-
closed. In SMC, we are interested in the result of a com-
putation without knowing the secret values required for this
computation. Therefore, techniques utilizing SMC usually
compute intermediate results in the learning process without
revealing the secret to other parties. Although such methods
can satisfy the privacy requirements, the incorporation of
inefficient secure computation techniques and homomorphic
encryption in the method can substantially increase the com-
munication and computation overheads. This leads to issues
related to efficiency, particularly when we have a large num-
ber of parties or when we are dealing with a high volume of
data [12].
Cryptographic methods have been adopted by several stud-

ies [23], [24], [44] for achieving privacy [14]. These methods
address classification, clustering, anomaly detection, etc.,
by employing different data mining algorithms [45]–[48].
Nevertheless, such techniques usually suffer from communi-
cation and computation overheads and are impractical when
dealing with large-scale data [49].
Federated learning has been proposed to collaboratively

train a model, with the orchestration of one party, while keep-
ing the training data decentralized [26], [32], [50]. Several
systematic literature reviews of the state-of-the-art federated
machine learning techniques are performed in [51]–[53]. The
majority of previous studies in this domain have focused on
deep neural network algorithms. In such neural network algo-
rithms, in addition to data-holder parties’ contribution, i.e.,
gradients, sharingmodel parameters is also a privacy concern.
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This is due to recent attacks on the neural networks, i.e., mem-
bership inference attack [54], [55]. For addressing privacy
concerns, previous studies adopt differential privacy [22] in
their methods [56]–[58]. However, differential privacy can
degrade the performance of the machine learning model due
to the trade-off between privacy and data utility [13].

In many applications, tree-based methods can be more
accurate than neural networks. Deep neural network
algorithms are appropriate solutions when dealing with
unstructured data, e.g., for video, audio, and text in [59]–[61].
However, the tree-based methods can outperform such algo-
rithms when dealing with structure data, where the data
attributes are individually meaningful, and we do not have
strong multi-scale structures related to time or space [62].
Therefore, tree-based algorithms are currently being adopted
in many applications in which the training data is structured.
Tree-based machine learning techniques have been inves-

tigated in conjunction with privacy concerns and distributed
learning in several studies [12], [14], [42], [63]. In [14], the
authors consider the problem of learning decision trees, with
Random Decision Trees (RDT) algorithm [63]. They present
a technique based on homomorphic encryption and apply it
for horizontally and vertically partitioned datasets. However,
this approach suffers from high computational complexity.
In [42], the authors propose the utilization of SMC techniques
for learning decision trees based on the ID3 algorithm [64].
In this approach, the data is horizontally partitioned and
distributed among two parties. The number of parties in this
method can be increased to more than two, but the efficiency
and scalability of the technique decrease [49]. Moreover, per-
turbation techniques may also be used to build approximate
decision trees. In [65], the authors propose the application of
Randomized Response techniques to disguise the data before
transferring it to a center for learning decision trees based on
their modified ID3 algorithm. Nevertheless, transferring the
entire data from all sources to one center, even after applying
randomization techniques, undermines our confidence in the
technique’s privacy.
Gradient and tree-based algorithms have been employed

by several studies in conjunction with strategies related to
federated learning [66]–[69]. In [68], the authors propose a
privacy-preserving distributed dataminingmethod for regres-
sion and classification based on the Gradient Boosting Deci-
sion Tree (GBDT) algorithm [70]. The trees are trained
locally on data-holder parties and passed to the following
parties after being modified according to differential privacy
requirements [68]. Nevertheless, injecting noise into partici-
pants’ contribution, model parameters, etc., can increase the
learning time and degrade the results of learning due to the
trade-off between privacy and data utility [13]. Similarly,
in [69], the authors propose a method based on GBDT for
distributed scenarios called SimFL. In this framework, each
party boosts a number of trees utilizing similarity informa-
tion using locality-sensitive hashing. However, their privacy
model is weaker than secure multi-party computation for

improving efficiency, and their model performance is not the
same as GBDT but comparable to it [69].

There are other studies that propose tree-based methods
that are not gradient-based but are under the name of feder-
ated learning, e.g., [71], [72]. In [72], the authors propose a
method employing the decision tree algorithm, ID3, that uses
the combination of differential privacy and secure multi-party
computation for addressing privacy concerns. The model’s
performance is degraded compared to the performance of the
machine learning model in a centralized scenario. In [71],
the authors propose a solution based on the random for-
est algorithm [73], [74]. This method requires a third-party
trusted server and employs encryption, which increases the
communication and computation overheads [12].

Closely connected to this work, the authors in [12] propose
a tree-based method that utilizes a secure multi-party com-
putation technique as an additional layer in their approach to
havemore confidence about its privacy. Particularly, Shamir’s
secret sharing [75] is used to aggregate the results received
from each party at every step of learning with the ID3
algorithm. The limitation in the incorporation of methods
with high communication and computation overheads leads
to higher efficiency. However, Shamir’s secret sharing tech-
nique still introduces major overheads in communication and
computation and suffers from the scalability problem.

In our preliminary study [76], we have considered
the problem of privacy-preserving machine learning using
the extremely randomized trees algorithm, which is only
robust to two colluding parties (in the worst-case scenario).
We extend this idea to k colluding parties in [28]. However,
this approach suffers from quadratic complexity in the worst-
case scenario, i.e., O(n2), and is limited to datasets without
missing values, which is rarely a case in real-world healthcare
applications. In this work, we addressed these problems and
proposed a scalable privacy-preserving distributed extremely
randomized trees framework, withO(kn) complexity, where k
can be adjusted based on the sensitivity of the data.We imple-
ment our technique on Amazon’s AWS cloud and evaluate it
in a real-world setting based on the mental health datasets
associated with the Norwegian INTROducing Mental health
through Adaptive Technology (INTROMAT) project.

III. BACKGROUND
In this section, we present a brief overview of the extremely
randomized trees (ERT) algorithm and secure multi-party
computation (SMC), which provide the basis for our
privacy-preserving distributed machine learning framework.

A. THE ERT ALGORITHM
ERT [77] is a tree-based ensemble learning algorithm that has
been widely used for solving classification problems due to
its learning performance and robustness to overfitting, which
are among the characteristics of tree-based ensemble learning
algorithms [62], [78], [79]. However, the traditional ERT
algorithm is used when the data is stored in a central location.
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We adapt the ERT algorithm for distributed settings where
data is stored and essentially distributed among several par-
ties. In the following, we discuss some of the advantages of
the ERT algorithm compared to other available solutions for
its utilization in distributed settings.

First, since the ERT algorithm is an ensemble learning
method, it is robust in tackling overfitting. Ensemble learning
methods incorporate weak learners to generate weak clas-
sifiers that are independent of other generated classifiers.
Therefore, based on Condorcet’s jury theorem (1785) [80],
the majority vote of this ensemble of learned classifiers
predicts better than the vote of an individual classifier,
and if we increase the number of classifiers, the accuracy
improves [81]. Therefore, in the ensemble learning method,
we generate a collection of classifiers instead of only one,
e.g., in [12], and finally predict based on the voting result of
the learned classifiers. In such ensemble learning methods,
randomness parameters in the learning algorithm cause gen-
erating classifiers different from each other. In the ERT algo-
rithm, the randomness of candidate attributes and the splitting
point for every decision node in the tree are the randomness
parameters [77], which result in learning different classifiers.
The ERT approach follows the logic of bagging in ensemble
learning. Bagging combines the learned classifiers by voting,
i.e., it predicts based on the majority vote among the learned
classifiers. While not increasing the bias, bagging leads to
lower variance in our learned model since we are averaging,
and the lower variance in the learned model reduces the risk
of overfitting [78].

Second, ERT is tree-based, and tree-based algorithms have
been shown to outperform other techniques for structured
data that we are addressing. In [62], the authors report that for
tabular-style data where the data attributes are individually
meaningful and where we do not have strong multi-scale
structures related to time or space, learned models from
tree-based algorithms usually outperform models learned by
standard deep neural networks, e.g., [26], [32]. Moreover,
in the health domain’s applications, the interpretability of the
learned models is advantageous. The patterns that tree-based
learned models unveil, particularly in the healthcare domain,
may be more useful than the prediction capability of the
learned model [62]. Tree-based algorithms are more inter-
pretable compared to deep neural networks [79]. This is an
advantage for ERT. However, since ERT is an ensemble learn-
ing method, and in ensemble methods, instead of learning
a model with a single tree, e.g., in the ID3 algorithm [64],
the algorithm constructs several trees as a model. Hence, this
decreases the explainability of such approaches compared to
the ID3 algorithm.

B. SECURE MULTI-PARTY COMPUTATION
The secure multi-party computation framework, initiated by
Yao’s Millionaires’ problem [82], considers the problem of
collaborative computation among several parties, each of
which holds a secret value. The parties are interested in
the result of a computation performed based on their secret

values, while they refrain from sharing their secret values
with other parties.

A simple solution for computing the desired value without
sharing secret values with other parties is to share them with
a party that is trusted by everyone. The trusted party can
then perform the computation and return the result to all
parties. However, the assumption of trusted parties is not
feasible in many scenarios because the privacy of parties with
secret values cannot be protected from the third party, so such
solutions are not practical. Therefore, based on the type of
the computation and the scenarios, we need to devise other
solutions to perform the desired collaborative computation in
a secure way and without violating privacy.

To illustrate SMC, we describe a simple method for secure
aggregation of secret values. Figure 1 represents the method
for secure aggregation. In this example, we have four parties,
each holding a secret value (S.V .), and the parties are inter-
ested in the summation of all secret values, i.e.,

∑4
i=1 S.V .i.

For securely aggregating the secret values:

(i) The first party generates a random mask, aggregates it
with its secret value (S.V .1), and sends the result to the
next party.

(ii) The following parties receive the input, aggregate it with
their secret values, and send the result to the next party.
The last party sends the result to the first party.

(iii) The first party receives the result from the last party,
removes its random mask from the result, and informs
all parties about the final result.

FIGURE 1. Secure aggregation.

In this way, each party cannot identify the secret value of
the previous parties based on the received information. How-
ever, in this method, if two neighboring parties, i.e., the par-
ties before and after a certain party in the ring, collude, they
will be able to identify the secret value of the victim party.
For instance, if Party 2 reveals the input of Party 3, and at
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the same time, Party 4 reveals the output of Party 3, then they
can reveal the secret value of Party 3. Therefore, theminimum
number of colluding parties required for identifying a secret
value is two in this method. Moreover, in terms of overhead,
for one secure computation operation in this method, each
party sends one message and receives one message. Thus, the
communication overhead for this method is 2n, in which n is
the number of parties.

IV. PRIVACY-PRESERVING DISTRIBUTED EXTREMELY
RANDOMIZED TREES
This section presents the proposed solution, which is based
on the extremely randomized trees (ERT) algorithm and the
secure multi-party computation (SMC) scheme. As men-
tioned in Section I, we refer to our approach as k-PPD-ERT,
where k is the number of colluding parties in our approach
in the secure aggregation process. Note that k is a parameter
that can be tuned based on the privacy requirements. The
algorithm preserves privacy since, on the one hand, the algo-
rithm is distributed and the raw data is not directly shared,
and, on the other hand, the partial information is aggregated
using a secure multi-party computation technique. Finally,
our proposed framework is based on the ERT or Extremely
Randomized Trees algorithm in [77].

A. ADAPTATION OF ERT FOR DISTRIBUTED SETTINGS
This section presents the detailed procedure of learning an
ensemble of decision trees based on the ERT algorithm in the
discussed setting. The pseudocode of the algorithm is also
provided for clarity.

1) INITIALIZATION AND START OF THE LEARNING PROCESS
We have two types of parties in our distributed learning
framework. We have a mediator that mediates and orches-
trates the overall learning process and several data-holder
parties that collaborate with each other and the mediator to
learn a classification model. Algorithm 1 and Algorithm 2
show the pseudocodes of the procedures and functions for the
mediator and data-holder parties, respectively.

(a) Sharing the Random Seeds
To start this process, a global seed for the random func-
tion is agreed upon among all parties (Algorithm 1,
Line 1 and Algorithm 2, Line 1). The global seed
is common among the mediator and all data holders.
In the ERT algorithm, we have two parameters of ran-
domness for learning a weak classifier. First, we need
to randomly select several attributes for the candidate
decision nodes, at every step of building our decision
tree (Algorithm 1, Line 24 Algorithm 2, Line 25).
Second, a random splitting point for every attribute in
the candidate decision node is required (Algorithm 1,
Line 25, and Lines 28–35, andAlgorithm 2, Line 26, and
Lines 29–36). The data-holder parties and the mediator
are required to use the same candidate decision nodes
at every step when learning a decision tree. For this

Algorithm 1Mediator

1 • The global random seed (known to all parties) is set in
the mediator

2 • Wait for data-holder parties’ connection
3 for i = 1 to M do
4 • Generate tree: ti = Build_k-PPD-ERT(0, ‘None’)
5 end
6 E = {t1, t2, . . . , tM }
7 Function Build_k-PPD-ERT(Split_ID, Branch)
8 • Send Secret_aggregation(Split_ID, Branch)

request to data-holder parties
9 • Wait until receiving the results from data-holder

parties
10 • Sum = aggregated the received results form

data-holder parties
11 • Generate_splits() (based on the global seed)
12 if number of classified records is less than nmin or

labels of the classified records are the same then
13 return a leaf label
14 else
15 • Calculate each split’s score (Information

Gain) based on Sum
16 • Select the split with the highest score.
17 • Inform all parties about the selected split (for

Split_ID)
18 • Build tree_T = Build_k-PPD-ERT(next

Split_ID, ‘T’)
19 • Build tree_F = Build_k-PPD-ERT(next

Split_ID, ‘F’)
20 • Create a node with the selected split, attach

tree_T and tree_F as T and F subtrees, and
return the resulting tree.

21 end
22 end
23 Function Generate_splits()
24 • Select D attributes randomly: {a1, . . . , aD}
25 • Generate D splits: {s1, . . . , sD}, where si =

Pick_rand_split(ai)
26 return splits {s1, . . . , sD}
27 end
28 Function Pick_rand_split(a)
29 if a is categorical then
30 return a possible category
31 end
32 if a is numerical then
33 return a possible value in the min and max range
34 end
35 end

purpose, we use the global random seed that all par-
ties, including the mediator, utilize to locally generate
these candidate decision nodes (Algorithm 1, Line 11,
and Algorithm 2, Line 17). This is instead of making
these randomly-made candidate decision nodes in the
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Algorithm 2 Data-Holder Party

1 • The global random seed (known to all parties) is set in
the data-holder party

2 • Wait for completion of data-holder parties
initialization. In initialization, k selected data-holder
parties send their unique seeds to other data holders.
In initialization, SSApipj is sent by party i (i is among the k
selected parties) and received by party j

3 • Connect to the Mediator
4 Function Secret_aggregation(Split_ID, Branch)
5 • secret_valPj = Split_data(Split_ID, Branch)

6 • rand_sum
Pj
others = Generate and aggregate random

masks based the received seeds
7 if the party, Pj, is among k selected data-holder

parties for secure aggregation then
8 • rand_sum

Pj
self = Generate and aggregate

random masks based the sent seeds
9 else
10 • rand_sum

Pj
self = 0

11 end
12 • Result =

secret_valPj − rand_sum
Pj
self + rand_sum

Pj
others

13 • Send Result to the mediator
14 end
15 Function Split_data(Split_ID, Branch)
16 • Ssub = records in the computational node that

should be split based on Split_ID and Branch
17 • {s1, . . . , sD} = Generate_splits() (based on the

global seed)
18 for i = 1 to D do
19 • Split Ssub to two sets (T, F) by si
20 • Append vectors {VecT ,VecF } representing the

records’ labels for each of the above sets to
Result

21 end
22 return Result
23 end
24 Function Generate_splits()
25 • Select D attributes randomly: {a1, . . . , aD}
26 • Generate D splits: {s1, . . . , sD}, where si =

Pick_rand_split(ai)
27 return splits {s1, . . . , sD}
28 end
29 Function Pick_rand_split(a)
30 if a is categorical then
31 return a possible category
32 end
33 if a is numerical then
34 return a possible value in the min and max range
35 end
36 end

mediator and sharing them with all parties for further
tasks. Since all parties use a common random seed,

i.e., the global random seed, they generate the same
candidate decision nodes at every step, without major
communication overhead.
In addition, for the secure aggregation of partial results,
described further in Section IV-B, k selected data-holder
parties send unique seeds for the random function
to other data holders through secure communication
(Algorithm 2, Line 2). These random seeds are exclusive
and private for each pair of data-holder parties.

(b) Initiate the Process of Learning One Decision Tree
The privacy-preserving distributed ERT algorithm is an
ensemble learning method, therefore, we repeat the pro-
cess of learning a decision tree for M times, until we
have M decision trees (Algorithm 1, Lines 3–5). The
number of trees, M , is a parameter tuned by the user
to make a trade-off between robustness and overhead.
We learn different decision trees every time due to the
randomness in ERT. Finally, after repeating the process
of learning a decision tree M times, we store the trees
in E (Algorithm 1, Line 6). For future prediction, the
ensemble of the learned trees, E , will be used.

2) THE PROCESS OF LEARNING ONE DECISION TREE
The learning of a decision tree based on the privacy-
preserving distributed ERT algorithm is a recursive proce-
dure. The procedure is executed top-down and starts from
the root and ends in the leaves. For the root decision node,
the Split_ID or the ID for the decision node is zero, and
there is no previous branch, so the Branch input is set to
‘None’(Algorithm 1, Line 4).
(a) Generation of Candidate Decision Nodes

For building each decision tree, extremely randomized
tree, themediator generates the candidate decision nodes
(Algorithm 1, Line 11). The mediator will further select
the best decision node among the candidates based on
the results received from data-holder parties. The can-
didate decision nodes are generated randomly, based
on the global random seed, according to Algorithm 1,
Lines 23–35, and Algorithm 2, Lines 24–36. The num-
ber of candidate decision nodes, D, is a parameter in
the ERT algorithm tuned by the user. D attributes from
all possible attributes are selected for candidate deci-
sion nodes (Algorithm 1, Line 24, and Algorithm 2,
Line 25). Then, each candidate decision node’s splitting
point is selected (Algorithm 1, Line 25, andAlgorithm 2,
Line 26). If the attribute is categorical, one random
possible category is selected to be checked (Algorithm 1,
Lines 29–31, and Algorithm 2, Lines 30–32); other-
wise, when the attribute is numerical, a point in the
possible range is selected for comparison in the deci-
sion node (Algorithm 1, Lines 32–34, and Algorithm 2,
Lines 33–35). We assume that all parties already have
the possible categories and ranges for each attribute.

(b) Parties Classify Their Records
To decide about the candidate decision nodes for each
branch, the mediator requires the collective outcome of
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the classification with candidate decision nodes from all
data holders on all their data. By having the combination
of data record labels for each branch (True and False),
the mediator can decide if we require a leaf or we need to
calculate the score, i.e., information gain (Algorithm 1,
Line 12). Information gain captures the extent of sam-
ples’ purity (concerning their class/category) after split-
ting and is used as a basis for comparing decision nodes.
The mediator sends a request to data-holder parties and
waits for receiving the result from all parties, which is
masked according to the secure aggregation technique
described in Section IV-B (Algorithm 1, Lines 8–9).
The masked results are two vectors, one for each of the
True and False branches, representing the combination
of data record labels after classification with each can-
didate decision node.
Each party receives Split_ID and Branch to deter-
mine the local records for classification (Algorithm 2,
Line 16). Then, the party randomly generates candidate
decision nodes based on Lines 24–36 in Algorithm 2 and
the global random seed (Algorithm 2, Line 17). Next,
it classifies the selected local data based on each candi-
date decision node and returns the result (Algorithm 2,
Lines 18–22).
We describe how each party returns the result to the
mediator in the following, using an example. VecT rep-
resents the combination of labels for the records that fall
in the True branch, and VecF represents the combination
of labels for the records that fall in the False branch.
For instance, if three records with labels A, A, and B fall
in the True branch of the candidate decision node, and
we have three labels, A, B, and C in the dataset, then
VecT = [2, 1, 0].

(c) Each Party Sends the Result to the Mediator
After adopting the secure aggregation protocol
described in Section IV-B, each data-holder party returns
the masked result to the mediator to select the best
decision node (or generate a leaf instead of a decision
node). For every candidate decision node, the mediator
receives and aggregates the results from all parties and
obtains two vectors, for True and False branches, rep-
resenting the combination of data labels (Algorithm 1,
Lines 9–10).

(d) Mediator Determines the Best Candidate for the
Decision Node
Now that the mediator has the value of Sum
(Algorithm 1, Line 10), it determines if a decision node
or a leaf node is required here in the tree (Algorithm 1,
Lines 12). If all labels are the same or if the number of
received labels is less than our threshold parameter, the
mediator introduces a leaf node (Algorithm 1, Line 13).
Otherwise, the mediator calculates the score, i.e., infor-
mation gain, of each candidate decision node based
on the results from data-holder parties (Algorithm 1,
Line 15). It then selects the candidate decision node
with the highest information gain and informs all parties

FIGURE 2. Initialization.

about it (Algorithm 1, Lines 16–17). The selected
node will be used to build the tree at the mediator
(Algorithm 1, Line 20). This decision is communicated
to all data-holder parties and is required to select records
for classification at every step (Algorithm 2, Line 16).

(e) The Mediator Initiates Another Round From the
First Step
After selecting the best candidate decision node, the
mediator continues the process for each branch of this
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decision node. Therefore, the same process is performed
from the first step, for each of the True and False
branches (Algorithm 1, Lines 18–19). After returning
from these recursive calls, the selected subtrees for each
branch are returned (Algorithm 1, Lines 13 and 20).

B. SECURE AGGREGATION OF RESULTS FROM
DATA-HOLDER PARTIES
We adopt an SMC technique in our proposed distributed
ERT algorithm to avoid sharing the vectors representing the
combination of the data record labels for each candidate
decision node and each branch in each data-holder party.
In addition to the provided privacy by not sharing the raw
values of data attributes, which is by construction, the adop-
tion of an SMC technique for aggregating the partial results
from data-holder parties contributes to privacy preservation.
In an extreme example, suppose our data has one sensitive
attribute in it, e.g., having conducted transgender surgery
before, and each data-holder party has only one record on it.
Then, sharing the partial results from one party, the vectors for
the combination of data record labels for each candidate deci-
sion node, can reveal sensitive information. If the candidate
decision node is ‘‘whether the record falls into the transgender
branch or not,’’ the mediator can infer if that individual
with the specified record has undergone transgender surgery.
Therefore, to avoid such vulnerabilities, we adopt an SMC
technique to aggregate the partial results from the data-holder
parties.

The secure aggregation procedure begins with an initializa-
tion process. Subsequently, the parties can securely aggregate
their secret values through this approach.

1) INITIALIZATION
In the initialization phase, k selected data-holder parties share
their unique seeds for the random function with all parties.
These seeds are unique and private between each pair of
parties. Without loss of generality and for the simplicity of
the presentation, we assume that the k selected data-holder
parties are Pi (∀i ∈ {1, . . . , k}). Party Pi (∀i ∈ {1, . . . , k})
sends unique seeds to party Pj (∀j ∈ {1, . . . , n | i 6= j}).
Figure 2a shows this process.

The seed party Pi shares with party Pj is represented with
SSAPiPj , and it is a unique seed; SSA is the short form of
Seed for Secure Aggregation. Parties 1 to k, send n − 1 and
receive k − 1 seeds. Parties k + 1 to n, receive k seeds.
This is shown in Figure 2b. Therefore, k parties send n − 1
and receive k − 1 messages, and n − k parties send zero
and receive k messages. The total communication overhead
for initialization is 2k(n− 1). The communication overhead
by adopting this approach is equal to O(kn), which can be
adjusted by adapting k based on the sensitivity of the data.
If all parties were required to send and receive seed, then, the
communication overhead would be equal to 2n(n − 1). The
communication overhead by adopting this approach is equal
to O(n2) [28].

FIGURE 3. Secure aggregation.

2) SECURE AGGREGATION
In the adopted SMC technique, shown in Figure 3, parties add
random masks to their partial result vectors and pass them
to the mediator. The mediator aggregates the partial results
received from all parties. After aggregation, the random
masks from all parties cancel each other. We now describe
the proposed technique in detail:
• Step 1: The mediator initiates the secure aggregation
process round (Algorithm 1, Line 8). This is shown in
Figure 3a.

• Step 2: Data-holder parties generate random masks and
aggregate them with their secret values (Algorithm 2,
Line 12). This is shown in Figure 3b.
– Parties Pi (∀i ∈ {1, . . . , k}) generate random masks

based on the sent and received seeds (Algorithm 2,
Lines 6–11).

– Parties Pi (∀i ∈ {k + 1, . . . , n}) generate ran-
dom masks based on received seeds (Algorithm 2,
Lines 6–11).
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• Step 3: In the next step, the parties send the masked
results to the mediator (Algorithm 2, Line 13). Then,
the mediator receives the results from all parties
(Algorithm 1, Line 9). Figure 3c shows this.

• Step 4: In the last step, the mediator aggregates all
the received results to obtain the desired value, i.e., the
aggregated secret values from all parties (Algorithm 1,
Line 10). This is shown in Figure 3d.

3) PRIVACY
We now show that the secret values of the parties are kept
private in our proposed protocol. The partial result ResultPi ,
which is shared with the mediator, consists of three compo-
nents: secret_valPi , rnd_sumPiself , and rnd_sum

Pi
others. The two

components, rnd_sumPiself and rnd_sum
Pi
others, mask the secret

value.
• For Pi (∀i ∈ {1, . . . , k}), the value of rnd_sumPiself can
only be identified by the collusion of n − 1 parties
holding the random seeds for generating the random
masks, which are the components of rnd_sumPiself . At the

same time, rnd_sumPiothers can only be identified by the
collusion of k − 1 parties that generate the components
of rnd_sumPiothers. Therefore, the minimum number of
colluding parties required to reveal the secrete value of
Pi is n− 1.

• For Pi (∀i ∈ {k + 1, . . . , n}), the value of rnd_sumPiself
is zero and known to all, and secret_valPi is masked
by rnd_sumPiothers. However, rnd_sum

Pi
others can only be

identified by the collusion of k parties that generate the
components of rnd_sumPiothers, i.e., the k selected parties
for secure aggregation.

In the worst case, i.e., for Pi (∀i ∈ {k + 1, . . . , n}), the k
selected parties for secure aggregation are required to collude
to identify a secret value; hence, the minimum number of
colluding data-holder parties is equal to k . Moreover, since
only the mediator receives the victim’s partial result, the
collusion of other parties without the mediator’s participation
is not possible. Therefore, for identifying a secret value,
the collusion of k data-holder parties and the mediator is
necessary.

4) CORRECTNESS
We also show that the final value of the aggregation of
partial results is equal to the aggregation of secret values. The
aggregation of all the partial results sent to the mediator is as
follows:
n∑
j=1

ResultPj

= secret_valP1 − rnd_sumP1self + rnd_sum
P1
others...

+secret_valPn − rnd_sumPnself + rnd_sum
Pn
others

=

n∑
j=1

secret_valPj−
n∑
j=1

rnd_sum
Pj
self +

n∑
j=1

rnd_sum
Pj
others.

(1)

In addition, we also have the following equations for the
data-holder parties:
• For Pi (∀i ∈ {1, . . . , k}), rnd_sum

Pi
self =

∑n
j=1 rnd

Pi
Pj −

rndPiPi , where rnd
Pi
Pj is the shared random mask between

Pi and Pj. On the other hand, rnd_sumPiothers =∑k
j=1 rnd

Pj
Pi − rnd

Pi
Pi .

• For Pi (∀i ∈ {k + 1, . . . , n}), rnd_sumPiself = 0. On the

other hand, rnd_sumPiothers =
∑k

j=1 rnd
Pj
Pi .

Substituting these in Equation 1, we obtain:
n∑
j=1

ResultPj

=

n∑
j=1

secret_valPj−
n∑
j=1

rnd_sum
Pj
self +

n∑
j=1

rnd_sum
Pj
others

=

n∑
j=1

secret_valPj−
k∑
j=1

(
n∑
i=1

rnd
Pj
Pi − rnd

Pj
Pj )−

n∑
j=k+1

(0)

+

k∑
j=1

(
k∑
i=1

rndPiPj − rnd
Pj
Pj )+

n∑
j=k+1

(
k∑
i=1

rndPiPj )

=

n∑
j=1

secret_valPj−
k∑
j=1

(
n∑
i=1

rnd
Pj
Pi )+

k∑
j=1

(rnd
Pj
Pj )

+

k∑
j=1

(
k∑
i=1

rndPiPj )−
k∑
j=1

(rnd
Pj
Pj )+

n∑
j=k+1

(
k∑
i=1

rndPiPj )

=

n∑
j=1

secret_valPj−
n∑
i=1

(
k∑
j=1

rnd
Pj
Pi )+

n∑
j=1

(
k∑
i=1

rndPiPj )

=

n∑
j=1

secret_valPj . (2)

The above equation shows that the aggregation of partial
results from data-holder parties is equal to the aggregation of
data-holder parties’ secret values.
As shown above, the correctness and accuracy of our SMC

technique do not depend on k or the minimum number of
colluding parties. By increasing k, the minimum number
of colluding parties required for revealing a secret value
increases, which in turn improves the privacy of the method.
Increasing k increases the communication overhead in the ini-
tialization phase. Therefore, the trade-off is between privacy
and communication overhead of the initialization phase.

C. HANDLING MISSING VALUES
In this section, handling missing values when the data
is distributed is explained in the context of our pro-
posed privacy-preserving distributed learning framework,
i.e., k-PPD-ERT. In the application of distributed learning
approaches, particularly in the healthcare domain, we deal
with data with missing values. Missing values in a dataset
may occur as a result of improper collection of data, refusal of
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TABLE 1. Example of structured data distributed among two parties with
missing values.

patients to share information, etc. In scenarios where the data
is distributed, handling missing values can require a different
procedure in comparison to scenarios in which the data is held
in one center.

Several approaches can still be used in such scenarios,
e.g., deleting records with missing values. However, they
might not be helpful in all cases, e.g., where we have a low
number of data records or when the percentage of records
with missing values is high. Another solution is to replace
the missing values in an attribute with the mean/average of
the available values in that attribute. This approach avoids
deleting data records and is particularly relevant when dealing
with smaller datasets with missing values.

For calculating the mean of the available values for an
attribute, we require the summation of these values. Due to
privacy concerns, data-holder parties refrain from sharing the
summation of their available values with others. In particular,
this is a major privacy concern when each data-holder party
holds only one record. Therefore, we adopt the approach
presented in Section IV-B to address this issue, as we merely
require the final summation of the available values.

We explain the approach using an example. Suppose we
have two parties, and each party holds three records. Table 1
represents the data for each party. Each record contains the
sex and height of record owners or patients. Two records
miss the value for height. Assume that by preserving privacy,
we can calculate the summation of available values for the
height, i.e., 668 in our example, as well as the summation of
the number of records not missing the height value, i.e., 4 in
our example. In that case, we can calculate the mean for the
height, i.e., 167 in our example.

The summation of the available values and the number of
available values are calculated using our secure aggregation
method. Finally, the mediator divides the summation of the
available values by the number of available values and calcu-
lates the mean. Then, the mean is shared with all parties to
replace the missing values.

Our technique may also be modified based on the problem
settings. For instance, in the above example, suppose the user
requires the mean of values for male and female patients sep-
arately, i.e., 174 and 160, respectively. Then, our technique
can be adjusted by only securely aggregating the available
values belonging to male or female patients.

We use the same technique for categorical attributes, i.e.,
to calculate the frequencies of categories in one attribute.
Then, we may decide how to fill the missing values based
on these frequencies. We may decide to replace all values

with the most frequent category, i.e., the mode. The missing
category can also be drawn randomly based on the distribu-
tion of frequencies. Moreover, we may also decide on filling
the missing values by jointly considering the frequencies and
information from other attributes.

V. ILLUSTRATIVE EXAMPLE
In this section, we provide an illustrative example to clarify
the procedure of learning for our algorithm. This procedure
is shown in Figure 4. For the sake of simplicity of the pre-
sentation, we do not consider the secure aggregation in this
section. In the learning process initiation, the global random
seed, secure aggregation’s random seeds, number and type of
data attributes, possible categories or range of data attributes,
and learning parameters for the algorithm are shared among
all parties. In our example, we have two data-holder parties
and a mediator. The first and second parties hold three and
two training data records, respectively, as shown in Figure 4a.
Each record has three attributes (two numerical and one
categorical) and one label.

The goal is to learn an ensemble of decision trees from
all the records available on the data-holder parties based on
our algorithm. The mediator initiates a round of learning a
decision tree and, after finishing the procedure for learning
one tree, repeats it to have an ensemble of decision trees.
At every step of choosing a decision node for the decision
tree, each party, including the mediator, generates two ran-
dom decision nodes based on the global seed. Since all parties
use the same seed, they locally generate candidate decision
nodes that are similar to the generated decision nodes in other
parties. Figure 4a shows the local generation of the candidate
decision nodes for the first decision tree’s root.

In the next step, the parties classify their records using
each randomly generated candidate decision node, as shown
in Figure 4b. Several data records fall under the True branch
(for each candidate decision node) and several fall under
the False branch. Therefore, based on the records’ labels
(classes), we make two vectors for each branch that repre-
sent the combination of the labels. For instance, for the first
candidate decision node in the first party: the True vector is
[0, 1], and it means that zero records of this party belonging
to class (label) A, and one record of this party belonging to
class (label) B fall under the True branch of this candidate
decision node. Thus, each data-holder party, for each can-
didate decision node, generates two vectors representing the
combination of records labels (that fall under True and False
branches).

The resulting vectors for each candidate decision node and
in all data-holder parties should be returned to the mediator
and, then, be aggregated there. Figure 4c shows this proce-
dure, in which all vectors for the True and False branches of
each candidate decision node are returned to the mediator.
At this point, for each candidate decision node, the mediator
has the combination of labels for the True and False branches.
In addition to deciding on making a leaf or decision node in
the decision tree’s current position, such vectors determine
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FIGURE 4. Illustrative example.

which candidate decision node has a higher score/information
gain and should be selected. For calculating the score (infor-
mation gain) for a decision node, the combination of labels at
each branch is required. In our example, the second decision
node has a higher information gain and is selected.

As shown in Figure 4d, the second candidate decision node
is selected for the root of the decision tree. After checking the
labels in its True branch, [2, 0], we observe that all the records
falling in the True branch belong to the same class (have
the same label: A). Therefore, instead of making a decision
node, we make a leaf in the True branch. We follow the same
procedure of making a decision node for the False branch.
However, this time, the data-holder parties only consider
the records that fall in the root’s False branch, i.e., 2, 3,
and 5. We continue the same procedure for the rest of the
tree.

VI. EVALUATION AND DISCUSSION
In this section, we evaluate our proposed approach with
respect to classification performance, scalability and over-
head, and privacy criteria [83].

A. DATA
We consider two sets of data for the evaluation in this paper.
First, we consider two popular publicly available health-
care datasets, i.e., Heart Disease [29] and Breast Cancer
Wisconsin (Diagnostic) [30]. For the Heart Disease case,
we utilize the processed Cleveland’s data [84] to predict the
presence or absence of heart disease. In the other case, Wis-
consin Diagnostic Breast Cancer (WDBC) data [84] is used
to predict breast cancer’s diagnosis as benign or malignant.

In addition to the above publicly available datasets,
we also consider two mental health detests associated with

6020 VOLUME 10, 2022

Paper F 159



A. Aminifar et al.: Extremely Randomized Trees With Privacy Preservation for Distributed Structured Health Data

the Norwegian INTROMAT (INTROducing Mental health
through Adaptive Technology) project:
• The Depresjon dataset [85] contains motor activity data
from 55 individuals (30 females and 25 males) recorded
using an ActiGraph wristband worn on the right wrist.
23 individuals in this dataset have been diagnosed with
depression, including both unipolar and bipolar individ-
uals, while the remaining 32 are in the control group.
Each individual wore an ActiGraph wristband for an
arbitrary number of days, ranging from 5 to 20 days. The
condition and control groups were monitored for 291
and 402 days in total, respectively.

• The Psykose dataset [86] contains motor activity data
from 54 individuals (23 females and 31 males) recorded
using an ActiGraph wristband worn on the right wrist.
22 individuals in this dataset have been diagnosed with
schizophrenia, and all used antipsychotic medications,
while the remaining 32 are in the control group. Each
individual wore an ActiGraph wristband for an arbitrary
number of days, ranging from 8 to 20 days. The condi-
tion and control groups were monitored for 285 and 402
days in total, respectively.

B. PERFORMANCE EVALUATION METRICS
The performance of the proposed algorithm is evaluated
by measuring the F1-score (F1), Accuracy (ACC), and
Matthews Correlation Coefficient (MCC), which are defined
as follows:

F1 =
TP

TP+0.5 · (FP+FN )

ACC =
TP+TN

TP+FP+TN+FN

MCC =
TP · TN − FP · FN

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

where FP, TN , TP and FN definitions are the false positive,
true negative, true positive, and false negative, respectively.

C. EVALUATION AND RESULTS
1) CLASSIFICATION PERFORMANCE FOR WIDELY USED
HEALTHCARE DATASETS
To evaluate the classification performance for Heart
Disease [29] and Breast Cancer Wisconsin (Diagnostic) [30]
datasets, we perform a three-fold cross-validation. We divide
the dataset into three parts, and in each round, we use one of
the parts as the test set and the rest as the training set and
finally report the averaged results. We adopt the F1-score
(weighted average) and accuracy as our classification perfor-
mance metrics. The F1-score is the harmonic mean between
the precision and recall metrics, while the accuracy mea-
sures the ratio of correctly classified samples. Table 2 exhibits
the classification performance of our approach, k-PPD-ERT,
against the distributed ID3 algorithm [12]. We compare our
approach against the distributed ID3 [12] since, similar to
our approach, it is a state-of-the-art tree-based method that

TABLE 2. Classification performance for our proposed method,
distributed ID3, and centralized ERT.

employs SMC techniques for secure aggregation of partial
results and addresses classification problems in scenarios
where the data is horizontally partitioned. Moreover, the
classification performance of the centralized version of ERT
is also provided for comparison.

The k-PPD-ERT and ERT algorithms follow the same
learning procedure. This means that, for both algorithms,
the same steps for selecting candidate decision nodes and
building the decision tree are followed. In our experiments,
we set the same seeds for the random functions and the same
learning parameters for both algorithms, e.g., the number of
candidate decision nodes.Moreover, the datasets are split into
train and test sets in the samewaywith the same random seed,
so these sets are the same for both experiments. Therefore,
both algorithms result in the same classification performance,
i.e., by following the same procedure, setting the same seeds
and parameters, and having the same train and test data.

In our experiments, for our approach, k-PPD-ERT, and
the ERT algorithm, we learn an ensemble of 25 decision
trees. For the number of candidate decision nodes’ param-
eter in the algorithm, we use 5-fold cross-validation on the
training set for the model selection (concerning classifica-
tion performance measured by the F1-score). In the case
of the Heart Disease dataset, k-PPD-ERT outperforms the
distributed ID3 [12] by up to 5.9%. For the Breast Cancer
dataset, our approach outperforms the distributed ID3 by
up to 4.1%.

2) CLASSIFICATION PERFORMANCE FOR MENTAL HEALTH
DATASETS ASSOCIATED WITH INTROMAT PROJECT
In addition to the widely used public datasets, we also con-
sider the data associated with the Norwegian INTROMAT
(INTROducing Mental health through Adaptive Technology)
project, i.e., Depresjon dataset [85] and Psykose dataset [86].
We use F1-score (weighted average), Accuracy (ACC), and
Matthews Correlation Coefficient (MCC) for measuring the
classification performance, which are the metrics used for
performance evaluation on these datasets [85], [86]. We con-
sider both the original and augmented data for each dataset.
The original data includes the mean and the standard devia-
tion of the activity level along with the proportion of minutes
with no activity [85], [86]. The augmented sample reflects
the activity level of an individual in a day by locally resam-
pling the raw data from the same individual. The problem
related to the difference in the number of recorded days for
each individual, which makes the dataset more imbalanced,
is addressed by augmentation. Augmentation also addresses
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TABLE 3. Classification performance (leave one patient out) of different classification algorithms for mental health datasets associated with the
Norwegian INTROMAT project, i.e., Depresjon dataset [85] and Psykose dataset [86].

TABLE 4. Communication complexity and privacy of different SMC approaches.

the problem of samples with a shorter length, i.e., motor activ-
ity signals recorded starting from the middle of the day [87].

We compare our approach against several state-of-the-art
machine learning algorithms, including ERT [77], random
forest [73], XGBoost [88], Decision Tree [64], and linear
SVM algorithm [89]. Table 3 shows the classification per-
formance of different algorithms for the INTROMAT data.
The results demonstrate that the proposed approach performs
on par or better than state-of-the-art techniques. We also
compare our approach against the distributed ID3 [12]. For
the Depresjon dataset [85], the k-PPD-ERT technique out-
performs distributed ID3 [12] by 0.7% in terms of F1-score,
0.5% in terms of ACC, and 0.014 in terms of MCC for the
original data and by 11.2% in terms of F1-score, 11.8% in
terms of ACC, and 0.232 in terms of MCC for the aug-
mented data. For the Psykose dataset [86], the k-PPD-ERT
technique outperforms distributed ID3 [12] by 2.4% in terms
of F1-score, 2.4% in terms of ACC, and 0.05 in terms of
MCC for the original data and by 12.9% in terms of F1-score,
13.2% in terms of ACC, and 0.261 in terms of MCC for the
augmented data.

3) PRIVACY AND OVERHEAD OF SECURE MULTI-PARTY
COMPUTATION TECHNIQUES
We now discuss the privacy and overhead of our proposed
approach. We adopt an SMC technique to avoid direct shar-
ing of the vectors representing the combination of record
labels for each candidate decision node with other parties and
the mediator. We compare the communication overhead and
privacy of our adopted SMC technique against three other
techniques, including the SMC methods employed in [12],

i.e., Shamir’s technique [75]. Table 4 presents the commu-
nication overhead and privacy evaluation of each approach.
In the table, N is the number of parties, and k is a parameter
in k-PPD-ERT and Shamir’s secret sharing for the minimum
number of colluding parties to identify a secret value. The
communication overheads in the table are for one round of
secure aggregation.

In the first approach (NOSMC), no SMC technique is
adopted, and all values are directly shared with the medi-
ator and known to it. This approach has the lowest possi-
ble communication cost and number of colluding parties,
and, here, it is considered as a baseline. The other approach
for the aggregation of partial results is the straightforward
SMC (STSMC) approach. In this approach, in the first round,
each party aggregates its random mask and its secret value
to the received result from the previous party and passes it
to the next party, and in the second round, parties subtract
their randommasks from the aggregated result of the previous
round. This method’s communication overhead is of the same
order as NOSMC, O(N ), but it is more robust to collusion.
On the other hand, Shamir’s secret sharing is an SMCmethod
employed in [12] for secure aggregation. This approach can
tolerate the highest number of colluding parties, although it
has a high communication overhead, i.e., O(N 2).

Our approach’s communication overhead, similar to
NOSMC and STSMC, is from order O(N ), which is consid-
erably more efficient compared to Shamir’s approach with an
order of O(N 2). Concerning the number of colluding parties,
by adopting our approach, it takes k (k < N ) data-holder par-
ties and the mediator to collude for identification of the secret
values. In our approach, the participation of the mediator for
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TABLE 5. The scenarios for our experiments on Amazon’s AWS cloud.

collusion is required to reveal a secret value. The mediator
is assumed as an honest party in many scenarios, and in the
case of a secret value revelation, we know that the mediator
has been involved in the collusion. Shamir’s secret sharing
requires k (k < N ) parties to collude for identifying a secret
value but suffers from scalability and high communication
overhead.

4) LATENCY FOR OUR PROOF-OF-CONCEPT
IMPLEMENTATION
Finally, we have also implemented our proposed approach
on Amazon’s AWS cloud to evaluate the latency and scala-
bility of the k-PPD-ERT.1 We consider four scenarios where
we change the number of data-holder parties. We consider
four datasets, i.e., Heart [29], Breast [30], Depresjon [85],
Psykose [86]. For each dataset, the training data (75% of the
dataset) is distributed equally among the data-holder parties.
The mediator includes a 2 core 2.40 GHz CPU and 512 MB
RAM, runs Ubuntu 20.04, and is located in Sweden. The
machines in all other locations include a 1 core 2.40 GHz
CPU and 512 MB RAM and run Ubuntu 20.04.

The latency results are shown in Figure 5. In the first
scenario, as shown in Table 5, we consider two data-holder
parties located in Canada and Germany. Learning one
extremely randomized tree through our approach takes 15.9±
1.5, 11.8±3.5, 3.5±1.0, 2.4±0.7 seconds for Heart, Breast,
Depresjon, and Psykose datasets, respectively. In the second
scenario, as shown in Table 5, we consider five data-holder
parties located in Canada, Germany, the United States,
Japan, and Australia. Learning one extremely randomized
tree through our approach takes 43.5±4.1, 32.4±9.6, 9.5±
2.7, 6.6 ± 2.0 seconds for Heart, Breast, Depresjon, and
Psykose datasets, respectively. In the third scenario, as shown
in Table 5, we consider ten data-holder parties located in
Canada, Germany, the United States, Japan, Australia, Sin-
gapore, India, South Korea, France, and England. Learn-
ing one extremely randomized tree through our approach
takes 43.8 ± 4.2, 32.6 ± 9.7, 9.6 ± 2.7, 6.7 ± 2.0 seconds
for Heart, Breast, Depresjon, and Psykose datasets, respec-
tively. In the fourth scenario, as shown in Table 5, we con-
sider twenty data-holder parties located in Canada, Germany,
the United States, Japan, Australia, Singapore, India, South
Korea, France, and England, with two parties at each loca-
tion. Learning one extremely randomized tree through our
approach takes 43.6 ± 4.1, 32.5 ± 9.7, 9.6 ± 2.7, 6.8 ± 2.0

1The source code of our implementations is available at
https://github.com/AminAminifar/kPPDERT_cloud

FIGURE 5. The mean and standard deviation of learning time (ten times
performed) of one extremely randomized tree through k-PPD-ERT for
different datasets in several scenarios on Amazon’s AWS cloud.

seconds for Heart, Breast, Depresjon, and Psykose datasets,
respectively.

To better understand the reason for the increase and
decrease in the latencies reported above and the shape of the
graphs in Figure 5, it should be noted that the latency depends
on the geographical location of the data holders and commu-
nication delays. In scenario two, the latency has increased
due to the fact that the bottleneck communication distance
between the data holders and the mediator is increased. How-
ever, the results in scenario three are similar to scenario two
because the bottleneck communication distance remains the
same. In scenario four, the slight reduction in the latency is
due to the fact that we distribute the data among data-holder
parties (each party has fewer data samples to process), and the
learning process on each party is performed simultaneously
and in parallel, similar to big data analysis. These explain the
increase of latencies from scenario one to two and the almost
flat shapes of the graphs from scenario two to scenario four
in Figure 5.

5) COMMUNICATION LATENCY OF SECURE MULTI-PARTY
COMPUTATION TECHNIQUES
We also evaluate the communication latency of one secure
aggregation round for each SMC approach based on their
algorithms, the location of data holders in each scenario, the
volume of packets transferred between parties, and the net-
work bandwidth between parties. This shows to what extent
adopting each approach can increase the latency.

In this paper, we consider the propagation and transmission
delays for communication latency [90], [91]. The latency
of transferring a packet from Pi to Pj is equal to the sum
of propagation and transmission delays and is denoted by
L(Pi,Pj). The propagation delay is equal to the distance
between parties divided by the velocity of signal propagation,
which for unguided transmission through air or space is equal
to the speed of light [90]. The transmission delay is equal
to the number of bits in the packet divided by the rate of
transmission. For transmission delay, we divide the volume of
the message to be transferred from Pi to Pj by the bandwidth
between these parties.
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FIGURE 6. The mean and standard deviation of estimated communication latency of different methods for aggregation of secret values in learning
one extremely randomized tree (ten times performed) based on different datasets in several scenarios on Amazon’s AWS cloud.

The network bandwidth between two Amazon machines is
measured as 1.05 Mbits/sec using the iPerf tool [92]. When a
packet contains two arrays for true and false branches, each
including information for five candidate decision nodes for a
binary classification task, the volume of each packet is 384
bytes. The volume of the packet depends on the data, i.e., the
number of candidate decision nodes and the number of target
classes.

The following are the analysis of communication latency
for each method:
• For NOSMC and k-PPD-ERT, all parties (Pi, ∀i ∈
{1, . . . , n}) send one message to the mediator (M ) in
parallel. Since the messages are sent in parallel, the
communication latency is equal to the arrival duration of
the last message. Therefore, the communication delay is
equal to maxi L(Pi,M ), i ∈ {1, . . . , n}.

• For STSMC, we have two loops of message passing
between parties in each round, and finally, the first
party sends the result to the mediator. Therefore, the
communication delay is equal to 2·(

∑n−1
i=1 L(Pi,Pi+1)+

L(Pn,P1))+ L(P1,M ).
• For Shamir, each round of secure aggregation consists
of two parts performed sequentially. In the first part, all
data-holder parties send one message to n − 1 parties.
When all parties receive these messages, they calcu-
late the intermediate results [12] and send them to the

mediator. Therefore, the communication delay is equal
to maxi,j L(Pi,Pj), i, j ∈ {i, j ∈ {1, . . . , n} | i 6= j} plus
maxi L(Pi,M ), i ∈ {1, . . . , n}.

The number of required secure aggregation operations is
also recorded for the experiments in Section VI-C4. The
mean and standard deviation of the required number of
secure aggregation operations for learning one extremely
randomized tree (ten times performed) are 98.8±9.4, 73.6±
21.9, 22.0 ± 6.2, 15.4 ± 4.5 operations for Heart, Breast,
Depresjon, and Psykose datasets, respectively. For estimating
the total communication latency of each method for aggre-
gating secret values, the calculated latencies should be mul-
tiplied by the number of secure aggregations performed for
learning the classification model.

Figure 6 shows the mean and standard deviation of com-
munication latency of different methods for aggregation of
secret values for each scenario and each dataset. This figure
shows that k-PPD-ERT has the same communication latency
as the NOSMC procedure. Shamir’s technique has lower
communication latency compared to STSMC, but it still has
higher communication latency compared to k-PPD-ERT and
NOSMC procedures.

It should be noted that the communication latency of these
methods should not be confused with the communication
overhead presented in Table 4. The orders of communication
overhead for NOSMC, STSMC, and k-PPD-ERT are the
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same and lower than Shamir’s technique. However, since in
STSMC, we have two loops of message passing between
parties that are performed sequentially, this technique has
more delay for a secure aggregation operation. Shamir’s
technique has two rounds for each SMC operation, and in
each round, the message passings are performed in parallel,
so it has a lower delay compared to STSMC. For NOSMC
and k-PPD-ERT, we have one round of message passing that
is performed in parallel and has the lowest communication
latency.

Finally, we demonstrate that our proposed k-PPD-ERT
approach provides a solution for the classification of
structured data distributed over multiple sources with
privacy-preservation considerations, without performance
degradation.

VII. CONCLUSION
In this paper, we present the privacy-preserving distributed
extremely randomized trees algorithm for learning without
privacy concerns in the healthcare domain. We have evalu-
ated our proposed algorithm extensively using two popular
structured healthcare datasets and two mental health datasets
associated with the Norwegian INTROducing Mental health
through Adaptive Technology (INTROMAT) project. Our
approach outperforms the state of the art in distributed
tree-based models by up to 11.2% in terms of F1-score,
11.8% in terms of ACC, and 0.232 in terms of MCC for
the Depresjon augmented dataset, and by up to 12.9% in
terms of F1-score, 13.2% in terms of ACC, and 0.261 in
terms of MCC for the Psykose augmented dataset. Moreover,
we present the implementation of our technique on Amazon’s
AWS cloud, as a proof of concept, to evaluate the latency
and scalability of our framework. The proposed algorithm has
linear overhead with respect to the number of parties and can
also handle datasets with missing values. We demonstrated
our framework’s efficiency in terms of prediction perfor-
mance, scalability, and overheads, as well as privacy. The
proposed framework provides the possibility of developing
high-quality and accurate machine learning models without
privacy concerns and is expected to contribute to a better
healthcare system in the long term. As future work, we plan to
explore the possibility of extending the proposed framework
to settings where the parties do not follow the honest-but-
curious security model, which is beyond the scope of this
work.
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