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Abstract. Probabilistic Movement Primitives (ProMPs) model robot
motor skills by capturing the mean and variance of a set of demonstra-
tions provided by a human teacher. Such a probabilistic representation of
motor skills is beneficial in physical human-robot cooperation (pHRC)
where robots have to respond to the inherent variance in human mo-
tion. However, learning ProMPs incrementally and from scratch, as it
is desirable in pHRC, is difficult due to the large number of parame-
ters required to model the distribution of a motor skill compared to the
few demonstrations available at the beginning of training. In this paper
we propose to predict the variance structure of a motor skill based on
the speed found in the individual demonstrations and to incorporate this
prediction into the prior parameter distribution of the ProMP. Our basic
approach is taking inspiration from the speed-accuracy trade-off found in
human motion. Experimental evaluation suggests that with the proposed
prior parameter distributions, the true distribution is approached faster
in incremental learning of a motor skill than with the priors previously
proposed for batch learning.

Keywords: Speed-Accuracy Trade-off · Movement Primitives · Learn-
ing by Demonstration

1 Introduction

In physical human-robot cooperation (pHRC) robots are placed in unstructured
environments where they have to deal with changing surroundings and, since
human and robot are in continuous physical contact over longer periods, the
variance inherent in the motions of their human partners. Some of the varia-
tions in the environment and human motion can be captured by probabilistic
representations of motor skills, as for example probabilistic movement primitives
(ProMPs) [5]. ProMPs represent probability distributions over trajectories, sum-
marizing motor skills in terms of a mean trajectory and corresponding variance.
ProMPs can be learned from human demonstrations which is a common ap-
proach in robotics, enabling humans to teach robots new motor skills fast and
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without writing code. In learning by demonstration (LbD) a human demon-
strates multiple instances of a movement to a robot by moving the robot’s end
effector around either directly or through a jointly gripped object. The robot
then learns a ProMP by computing e.g. maximum likelihood estimates (MLE)
of the ProMP parameters based on the provided examples.

This learning process can either happen incrementally or in batch. Learning
in batch means that a set of demonstrations is recorded at the beginning of
training. Thereafter, a learning algorithm computes the ProMP parameters on
basis of all demonstrations in the set. Since the robot remains passive during
the demonstration phase, any cooperation between human and robot is delayed
and the human experiences no support in providing the demonstrations in coop-
erative tasks such as the joint manipulation of objects. A possibility to achieve
human-robot cooperation with batch learning is to first train a ProMP covering
all expected variations in a task and then use conditioning to adapt the ProMP to
the preferences and circumstances at the time. However, this approach requires
external sensor systems to detect changes in the environment, aggravating its
use in practice. Furthermore, lay users have a limited understanding of how a
robot learns motor skills and how it reacts to new demonstration inputs, making
it difficult to deliver just the right demonstrations to the robot without any pre-
view of the resulting motor skill. The training in batch mode has the advantage
that a larger data set is available, making the estimation of the ProMP pa-
rameters easier, but is however unintuitive in cooperative tasks, where humans
expect an incremental training progress of their partner. Batch learning is thus
better suited for tasks outside the pHRC domain, where human and robot are
not contributing actively and simultaneously to the same task, and where tasks
can be broken down intuitively into a training and an execution phase.

In incremental learning, the ProMP parameters are updated sequentially
– each time a new demonstration arrives [6]. With that, incremental learning
is well suited to pHRC, where human and robot solve tasks together and a
new demonstration naturally arrives with each execution of a task. After each
execution, the motor skill can be slightly adjusted to the most recent preferences
of how to execute the task. Incremental learning has the advantage that the
human can observe the robot’s training progress while they learn a new task
together. Cooperation can emerge after the first demonstration and the human
can focus on corrections and adaptations – compared to batch learning, the time
in which the human has to take on the full leader role is minimized. Shaping
motor skills over time with corrective demonstrations can be further facilitated
by a forgetting factor which gives more weight to recent demonstrations over
what was learned earlier [6]. Incremental learning using a forgetting factor is a
step towards life long learning of motor skills.

A challenge in incremental learning is the low number of demonstrations
available at the beginning of training. When learning a motor skill from scratch,
the ProMP distribution initially has to be estimated on basis of a single demon-
stration, leading to a degenerate distribution with zero covariance. Also the sub-
sequent estimates, as long as the number of demonstrations is small compared to
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the dimension of the covariance matrix, suffer from numerical instability caused
by rank deficient (singular) covariance matrices. Poor estimates of the covariance
matrix are especially severe when the robot’s compliance along the trajectory is
adjusted according to the variance of the ProMP.

The problem of poor parameter estimates in face of a small sample of demon-
strations can be countered with regularization in the form of prior parameter
distributions, and hence the computation of maximum a posteriori estimates
(MAP) of the parameters, which has been shown to improve the robustness of
parameter estimates in batch [3] and incremental [6] learning of ProMPs. The
authors in [3] propose to use an uninformative prior for the mean of the ProMP
and an informative, data-dependent prior for its covariance matrix, where they
use the (scaled) block-diagonal maximum likelihood estimate of the covariance
matrix as an initial guess for the parameter. With this setting, the MAP of
the mean is equal to its MLE. The block-diagonal prior for the covariance ma-
trix favours the off-diagonal elements representing the correlations between the
robot’s joints to be zero in presence of a small number of demonstrations, yield-
ing numerically more robust estimates while holding the variances of each joint
close to their MLEs. Even though this prior has a positive effect on the robust-
ness of the covariance estimates, it does not actually input prior knowledge into
the system but instead utilizes information from all available demonstrations.
Hence, it does not cope with the lack of information about the movement/task
itself encountered when learning new motor skills incrementally.

It is of course difficult to make general prior assumptions about all arbitrary
movements that could possibly be learnt, but it may be possible to make as-
sumptions about the distribution of a specific motor skill based on individual
demonstrations. Considering that the demonstrations come from a human ma-
nipulating the robot’s end effector, characteristics/features of human motion can
potentially serve as a source for such prior assumptions. One such feature is the
speed accuracy trade-off found in human motion, implying that movement ac-
curacy decreases as speed increases. The most renowned model of this trade-off
may be Fitts’ law [2]. Fitts’ law, originally proposed for translational movements,
states that the movement time in a pointing task is a function of the distance to
the target and the target width. The smaller the target width, the greater the
elapsed time to reach the target. Experiments show that also one-dimensional
rotational movements and combined translational and rotational movements can
be modelled well with a Fitts’ law equivalent [7]. Fitts’ law was later generalized
to trajectory-based movements, resulting in the steering law [1]. The steering
law proposes a linear relationship between the steering time and the ”tunnel”
width which imposes a spatial accuracy constraint on the movement. Further
research has been devoted to the steering law, investigating the effects of com-
binations of spatial and temporal constraints [11], the effects of narrowing or
widening tunnels on the steering time [9] and steering through sequential linear
path segments [10]. The aforementioned research is rooted in the field of human
computer interaction and the derived models are only verified for simple 1 or 2
dimensional movements in absence of force interactions with the environment.
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Fig. 1. Example data supporting our assumption of a speed-accuracy trade-off in kines-
thetic teaching. The data are computed from 51 kinesthetic demonstrations recorded in
the setup on the top-right. The plot shows in light grey the absolute mean task-space
velocities in X,Y,Z as well as the 2-norm of the mean velocity vector. The sample vari-
ance of the mean task-space positions in X,Y,Z and the 2-norm of the mean position
vector are shown in black. When the task-space velocity is high the variance of the
task space position is high as well. The variance and thus the velocity is low at sections
b and d and c where the movement is physically constraint by the environment. Note
that the velocity peak in section c has no corresponding peak in the variance since
we aligned the data with dynamic time warping (DTW). Without DTW the speed-
accuracy relationship is even more distinct.

Only recently, motivated by the growth of virtual and mixed reality technology,
the development of higher dimensional speed-accuracy models suited to describe
3D object interactions has gotten into focus [8].

Even though we did not find specific studies proving the speed-accuracy
trade-off to be present while a human is manipulating a robot’s end effector
in 3D space by kinesthetic teaching, we suggest to exploit the basic idea of
Fitts’ law to make prior assumptions about the variance of a ProMP/motor skill
based on individual demonstrations. We assume that while delivering demon-
strations, the human is subject to a speed-accuracy trade-off limiting the human
to guide the robot in a slower pace in directions in which the spatial constraints
of the movement are stringent. Fig. 1 shows observations we found in kines-
thetic demonstration data from a setup that imposes a spatial constraint on the
robot’s end effector that support this assumption. We propose, that by examin-
ing the task-space velocity along the path, we are able to make an estimate of
the variance that can be expected in one section relative to other sections of the
movement. These estimated variances can be incorporated into the prior of the
covariance matrix, enhancing the ProMP with context about the task in early
stages of training.
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2 Probabilistic Movement Primitives

A ProMP represents a distribution over trajectories [5]. A trajectory τ = {yt}Tt=1

is a time-series of vector-valued robot states yt ∈ S in a state space S ⊆ RD,
where D is the dimension of the state space. In this paper we encode trajectories
in task space by recording the robot’s end effector position in 3D Euclidean space.
Trajectories are concisely represented as weight vectors w ∈ RKD in the basis
function model yt = Φtw + ϵy, where Φt ∈ RD×KD is a time dependent, block
diagonal basis function matrix containing on its diagonal a row vector ϕ⊺

d,t ∈ RK

for each degree of freedom, which again contains the values of K normalized,
evenly spaced, Gaussian basis functions ϕk(t) evaluated at time t. The last term
ϵy ∈ RD is a vector containing the observation noise which is assumed to be
independent and identically distributed according to the normal distribution
N (0,Σy). Given a weight vector w, it follows that a trajectory τ consisting of
T time steps is distributed according to

p(τ |w) =
∏T

t=1 N (yt|Φtw,Σy) . (1)

Multiple demonstrations of the same movement are expected to differ slightly.
This implies that different weight vectors wn are needed to represent the n
different instances of a movement. The underlying mechanism generating the
weight vector samples is assumed to be a Gaussian distribution

p(w|θw) = N (w|µw,Σw) , (2)

where θw = {µw,Σw} are the distribution parameters. The mean vector µw ∈
RKD summarizes the mean of the demonstrations in each degree of freedom.
The covariance matrix Σw ∈ RKD×KD represents the variances and covariances
of the demonstrations in respectively between each degree of freedom.

Learning a ProMP from demonstration can be done by maximizing the
likelihood of the N observed trajectories Y = {τn}Nn=1 with respect to the
ProMP parameters i.e. computing the maximum likelihood estimate (MLE)
θMLE
w = argmaxθw

p(Y |θw), where the marginal likelihood is given by

p(Y |θw) =
∏N

n=1

∫
p(wn|µw,Σw)

∏T
t=1 p(ynt|wn)dwn . (3)

For regularization of the MLE, a prior distribution p(θw) over the ProMP pa-
rameters can be incorporated into the maximization problem which becomes
θMAP
w = argmaxθw

p(Y |θw)p(θw). Where θMAP
w is the mode of the posterior

distribution p(θw|Y ) known as the maximum a posteriori estimate (MAP). This
maximization can be accomplished by means of the expectation-maximization
(EM) algorithm in batch [3] and incremental [6] learning settings. Details about
the learning algorithms can be found in the respective publications. Since the
distribution in Eq. 1 is assumed to be a multivariate normal with unknown mean
and variance its conjugate prior is a normal-inverse Wishart distribution [4]. Us-
ing the conjugate prior has the advantage that the computations in the EM can
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be solved in closed form. The normal-inverse Wishart prior has the form

p(θw) = NIW(µw,Σw|m0, k0,S0, v0)

= N (µw|m0,
1
k0
Σw)IW(Σw|S0, v0) , (4)

where N (µw|m0,
1
k0
Σw) is a normal distribution representing our prior belief

about the ProMP mean with m0 being the prior mean and k0 controlling the
prior strength, and IW(Σw|S0, v0) is an inverse Wishart distribution represent-
ing our prior belief about the covariance matrix of the ProMP with S0 being
(proportional to) the prior mean and v0 controlling the prior strength [4].

3 Prior Parameters inspired by Speed-Accuracy Trade-off

Inspired by the speed-accuracy trade-off described in studies on human motor
control, we investigate the design of the scale matrix S0 specifying our initial
guess of the ProMP variance based on the velocities in the demonstrations. For
our initial investigation of this idea in this paper we choose a straight-forward ap-
proach. We consider learning a new motor skill incrementally and from scratch,
using the incremental learning algorithm for ProMPs presented in [6]. The com-
putation steps are shown in Fig. 2. The training process begins with the human

Human provides new
demonstration

E-Step

M-Step for 

Compute 

M-Step for 

Incremental ProMP Trainer

Fig. 2. Computation steps during incremental learning with the speed-accuracy trade-
off (SAT ) prior proposed in this paper. The SAT prior is computed in the grey block
between the M-step of the mean µw and the M-step of the covariance matrix Σw.

providing the first demonstration to the robot via kinesthetic teaching. Dur-
ing the teaching, we record the Cartesian coordinates of the robot’s end effector

τ = {yt}Tt=1 =
{(

ptx pty ptz
)}T

t=1
. Each time a new demonstration is available, the

learning algorithm is executed to incorporate the new demonstration into the
ProMP. Between the M-step for the mean µw and the M-step for the covariance
matrix Σw we compute the prior parameter S0 as follows:

q̇ = Ψ̇µw (5)

Q̇abs = diag(abs◦(q̇)) (6)

S∗
0 = vminI + vmax−vmin

max(Q̇abs
ii ∀i)−min(Q̇abs

ii ∀i) (Q̇
abs −min(Q̇abs

ii ∀i)I) (7)

S0 = (v0 +KD + 1)Ψ−1S∗
0Ψ

−⊺ (8)
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where Ψ , Ψ̇ ∈ RHD×KD are a block diagonal basis function matrices with each
block containing K normalized Gaussian basis functions respectively the deriva-
tives of K normalized Gaussian basis functions evaluated at H = K evenly
spaced time steps. q̇ is the concatenation of the velocity profiles in x, y, z. By
setting H = K the velocity profiles will be coarse and consist only of as many
time steps as there are basis functions. In Eq. 6 the operator abs◦(·) computes
the element wise absolute values of the velocity vector. The diag(·) operator
forms a diagonal matrix from a given vector. In Eq. 7 the absolute velocities
are rescaled to the range between the minimum and maximum desired variance
[vmin, vmax], where 0 < vmin ≤ vmax. The resulting diagonal matrix S∗

0 con-
tains the rescaled absolute velocities on its diagonal, thus when interpreted as
a covariance matrix S∗

0 has higher variance at sections of the movement where
the velocity was high – representing a speed-accuracy trade-off. Multiplying S∗

0

by the inverse of the basis function matrices has the effect that vmin and vmax

correspond to actual minimum and maximum variance of the ProMP in task
space, making it more intuitive to set the scaling parameters. So can we set
them in task space units in terms of the smallest and biggest standard deviation
we expect for the task. The scaling still has to be set manually but is at least
limited to the maximum precision and maximum reach of the robot and can be
estimated from the dimensions of the real world set up of the task.

Similar to [3], we multiply S∗
0 by (v0+KD+1) such that the MAP estimate

Σw becomes a convex combination of S0 andΣMLE
w with a coefficient dependent

on the number of demonstrationsN . We set the parameter v0 = KD+2 to ensure
that the expected value of the inverse Wishart distribution equals S0.

Instead of using the scaling matrix computed in Eq. 5-7 alone, we can also
blend it with the block diagonal MLE of the covariance matrix, yielding

S0 = (v0 +KD + 1)
(
(1− λ)Ψ−1S∗

0Ψ
−⊺ + λ blockdiag(Σ∗

w)
)

(9)

λ =

{
n−1
η 1 ≤ n ≤ η

1 otherwise
, (10)

where n is the current number of demonstrations and η is the desired number
of demonstrations in which the influence of S∗

0 on S0 diminishes to zero. By
setting η ≈ 15, the prior assumption based on the speed-accuracy trade-off
helps to bridge the initial phase of training where only a few demonstrations are
available. As more and more demonstrations are accumulated the influence of
the MLE on the prior can be increased.

4 Experimental Evaluation: Comparison of Prior
Parameters in incremental Learning

For a brief experimental evaluation of our proposed approach, we compare the
effects of different prior parameters for the covariance matrix on a data set
generated from demonstrations recorded on a Franka Emika Panda manipulator.
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The experimental setup is shown in Fig. 1. The goal of the task was to hand-
guide the robot’s end effector from the round mark on the right to the round
mark on the left, while following along the tube with the circular gripper fingers
without touching it. The tube poses a physical constraint in task space that
could correspond to sliding/insertion movements or tasks like glueing, cutting
or welding in industrial settings. During the tube section, the human has to be
precise (diameter of the tube 10mm, diameter of the gripper 40mm), hence we
argue that he/she is guiding the robot slowly. Our prior computed as described
in section 3 incorporates this assumption and suggests a lower variance during
the tube section than during the sections before and after the tube.

We recorded 51 demonstrations on the physical setup. Dynamic time warping
(DTW) was used for temporal alignment of the demonstrations to rule out that
our proposed prior predicts variance stemming from temporal misalignment of
the data and not from the speed-accuracy trade-off of the human. Since DTW
removes the variance tangential to the path, we removed the tangential variance
from our prior by transforming S∗

0 to the Frenet-Serret frames of the path rep-
resented by the mean vector µw, setting the tangential component to zero, and
transforming it back to task space coordinates. From the aligned demonstrations,
we compute MLE estimates of the parameters of a ProMP with the batch EM
algorithm from [3]. We use this ProMP as a reference to compare the parameter
estimates during the incremental training under the different priors. We compare
following four priors with different prior parameter S0: MLE, SAT, blended and
const. tube. MLE is computed from the block diagonal MLE estimate of Σw as
proposed by [3]. SAT is computed as proposed in this paper in Eq. 5-8. Blended
is computed as a blending of SAT and blkdiag MLE as proposed in Eq. 9-10
with η = 15. Const. tube is computed as in Eq. 8 with S∗

0 = vmin+vmax

2 I which
yields a constant tube with a radius equal to the mean of the minimum and
maximum radius of the SAT prior. The const. tube prior serves as a benchmark
to get an impression how much information is conveyed in the scaling of the SAT
prior alone and whether the information about the variance structure based on
the speed-accuracy trade-off is beneficial. All other prior parameters are set to
same values: m0 = 0, k0 = 0 and v0 = KD+2 = 62. To check the sensitivity of
the performance of our proposed prior to the scaling parameters vmin and vmax,
we tested and compared three different parameter settings. As training data
for the incremental training, we sampled 500 demonstrations from the reference
ProMP. These 500 demonstrations where split into 10 blocks of N = 50 demon-
strations. The results presented in Fig. 3 are averaged results of the 10 blocks.
All ProMPs in the experiment have K = 20 basis functions. We compare the
effect of the different priors on the incremental training performance by means
of the Kullback-Leibler divergence (KLD) between the reference ProMP and the
ProMPs under test. In addition, and to emphasize the effect of the variances, we
compute the KLD where we set all off-diagonal elements of the covariance ma-
trices Σw of reference and ProMPs under test to zero. To monitor the numeric
stability of the covariance estimates, we compute the matrix condition number
of Σw during the course of training.
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Fig. 3. Results of the experimental evaluation. Each column shows the results of a
different scaling setting of the SAT prior and the const. tube. The first row shows
the Kullback-Leibler divergence (KLD) of the ProMPs with different priors to the
reference ProMP. The second row shows the KLD where only the diagonal elements
of the covariance matrix Σw are considered. The last row shows the matrix condition
number of Σw. All y-axes are in logarithmic scale.

The KLD of the MLE prior from [3] is greater throughout the entire training
than those of the other priors in all three scaling settings. The other three priors
perform relatively similar during the first 15 demonstrations, towards the end
of training the SAT and blended perform slightly better than the const. tube.
The performance of all priors is better when we only consider the diagonalized
covariance matrices. The MLE and hence also the blended show the biggest
performance increase. The blended prior achieves the lowest final KLD in all
experiments, followed by the SAT prior which has the second lowest final KLD
except for the second scaling setting where the upper scaling bound is very large.
For a qualitative comparison of the effects of the different priors on the initial
training phase we show the ProMPs after training on only the first demonstration
in Fig. 4. The ProMP trained with the SAT (blended and SAT are identical after
one demonstration) resembles the reference best and already gives hints about
the task constraints after just one demonstration.

5 Discussion and Conclusion

The experimental results in this paper show that the MLE prior from [3] is not
the best choice for incremental learning settings. The three other priors tested
approach the true distribution faster within 50 demonstrations of training. Mea-
sured in terms of the KLD, the difference between the const. tube and the SAT
and blended is not large, but slightly more distinct when considering the diago-
nalized covariance matrices. We conclude that the proposed prior inspired by the
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Fig. 4. Qualitative comparison: effects of the different priors on the variance structure
of the ProMPs after training on the first demonstration only. The black lines show the
mean and the grey tubes two standard deviations of the ProMPs, plotted without the
observation noise Σy. The ProMP trained with the SAT prior proposed in this paper
resembles the Reference best and already gives hints about the task constraints after
just one demonstration. The ProMP with the blended prior is identical to the SAT
ProMP after the first demonstration and therefore not shown separately. The tube of
the ProMP trained with the MLE prior appears black since its diameter is smaller
than the thickness of the mean line.

speed-accuracy trade-off provides additional beneficial information compared to
a constant variance structure along the movement. How much this additional
information helps in practice, e.g. in the cooperative learning of a new task, has
to be determined in real world experiments. Based on the qualitative comparison
of the ProMPs which shows that our SAT prior reveals more information about
the spatial constraints of the task than the others after the first demonstration,
we speculate that our prior can have a noticeable effect in incremental, cooper-
ative learning settings where the physical interaction between human and robot
is controlled according to the variance of the ProMP. We speculate that when
using the proposed prior, the robot would take over the leader role in precise
sections of a task early, relieving the human from the tedious precise control
in these sections. Since we only predict variance of the human in interaction
with the environment but not variations in the environment itself, our approach
fails in tasks that have precise sections (e.g. via points) that change position.
In such cases either separate primitives for the via point positions have to be
learnt, or the position of the via point has to be captured and encoded as a
context variable of the primitive. More work has to be devoted to the proposed
method for computing priors before it can be used in practice. At this stage, it
is rather a tool to demonstrate the principle idea to estimate task constraints
from movement speed. We have only tested our approach on a limited set of
tasks and there are still some open parameters that have to be guessed when
computing the prior, e.g. the scaling of minimal and maximal desired variance
of the prior. Even though the experiments did not show a strong sensitivity to-
wards the scaling, the influence of the parameters on the performance has to be
studied in further experiments.

Regardless of the applicability and possible benefits of our prior, it is inter-
esting that it is possible to predict, to some extent, the variance structure of a
motor skill by means of the speed-accuracy trade-off. This paper did not aim to
provide conclusive proof of a relationship between movement speed and spatial
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accuracy in kinesthetic teaching, but we think it shows that further investiga-
tion of the underlying idea of this paper with regard to incremental learning of
movement primitives may be worthwhile.

6 Future Work

To develop the idea of priors inspired by the speed-accuracy trade-off further
and to establish them for use in practice, we need to test them on a wider range
of tasks. We also need to investigate how to include orientations in addition
to translations and how to determine the overall scaling of the variance struc-
ture automatically by some algorithm. Furthermore, it is interesting to explore
whether there are differences in predicting the variance of point-to-point and
trajectory based movements and if priors resembling Fitts’ law or the steering
law work better in either of them.
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