
Applied Intelligence
https://doi.org/10.1007/s10489-021-02539-4

Dynamic maintenance model for high average-utility pattern
mining with deletion operation

JimmyMing-Tai Wu1 ·Qian Teng1 · Shahab Tayeb2 · Jerry Chun-Wei Lin3

Accepted: 18 May 2021
© The Author(s) 2021

Abstract
The high average-utility itemset mining (HAUIM) was established to provide a fair measure instead of genetic high-
utility itemset mining (HUIM) for revealing the satisfied and interesting patterns. In practical applications, the database is
dynamically changed when insertion/deletion operations are performed on databases. Several works were designed to handle
the insertion process but fewer studies focused on processing the deletion process for knowledge maintenance. In this paper,
we then develop a PRE-HAUI-DEL algorithm that utilizes the pre-large concept on HAUIM for handling transaction deletion
in the dynamic databases. The pre-large concept is served as the buffer on HAUIM that reduces the number of database
scans while the database is updated particularly in transaction deletion. Two upper-bound values are also established here
to reduce the unpromising candidates early which can speed up the computational cost. From the experimental results, the
designed PRE-HAUI-DEL algorithm is well performed compared to the Apriori-like model in terms of runtime, memory,
and scalability in dynamic databases.

Keywords Pre-large · High average-utility itemset · Dynamic database · Transaction deletion

1 Introduction

Knowledge Discovery in Database (KDD) [2, 5, 8, 19, 32] is
a way to obtain useful and interesting patterns/information
from the databases. At present, KDD has been widely used
in many domains and applications. Association-rule mining
(ARM) [1] is regarded as the generic and basic research in
KDD for identifying frequent itemsets (FIs) by minimum
support threshold and then discovering association rules
(ARs) by minimum confidence threshold. Apriori algorithm
[1] was firstly proposed to discover association rules (ARs),
which utilizes the generate-and-test model for identifying
the possible candidates level by level. In order to improve
the mining efficiency, Han et al. [9] built a frequent pattern
(FP)-tree structure to compress the database by keeping

This article belongs to the Topical Collection: Emerging topics in
Applied Intelligence selected from IEA/AIE2020
Guest Editors: Hamido Fujita, Philippe Fournier-Viger and
Moonis Ali

� Jerry Chun-Wei Lin
jerrylin@ieee.org

Extended author information available on the last page of the article.

necessary information and process an efficient FP-growth
mining algorithm to reveal the set of frequent itemsets
(FIs). Then, a new structure called N-list was introduced by
Deng et al. [5] and PrePost algorithm was presented to find
frequent itemsets (FIs) efficiently. In order to effectively
discover different types of patterns, many approaches have
presented in different fields and applications [8, 19, 32].

However, in traditional ARM, it is assumed that each
item is purchased at most once in each transaction and
only the amount of appearance of items in databases
is considered without other meaningful factors, i.e.,
significance, weight, or unit profit. A frequent item/itemset
can bring frequency information to retailers, but cannot
guarantee high profits for retailers. High-utility itemset
mining (HUIM) [7, 22, 23, 28] was provided by looking
at both quantity and unit of profit of items to reveal
high-utility itemsets (HUIs). An itemset is considered as a
high-utility itemset (HUI) if its measured utility is no less
than a pre-defined minimum utility threshold. Regarding the
downward closure (DC) property, the initial HUIM does not
hold DC thus the “combinational explosion” happens in the
mining process. Transaction-weighted utilization (TWU)
model [23] was defined by Liu et al. that designs an
over-estimated upper-bound utility on an itemset. Thus, the
size of the unpromising candidates can be greatly reduced.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02539-4&domain=pdf
http://orcid.org/0000-0001-8768-9709
mailto: jerrylin@ieee.org

J. M.-T. Wu et al.

Nevertheless, TWU model follows the generate-and-test
process, in which a large number of profitable HUIs can thus
be generated. To address this limitation, high-utility pattern
(HUP)-tree [16] was introduced to keep the promising 1-
itemsets into the tree structure. Tseng et al. [25] further
introduced the UP-growth+ approach based on the UP-tree
structure to reveal the set of HUIs accurately. Moreover,
utility-list (UL) structure [22] was proposed to obtain
the k-itemsets based on the simple join operation. Many
approaches have been respectively presented and discussed
and most of them were used in the static applications [21,
26, 29, 33]. Moreover, although the HUIM can discover
high-utility itemsets in practical applications, the total profit
value of an itemset increases along with its length. For
instance, diamonds combine with any commodities would
generate high utility and this combination might be regarded
as a HUI. To evaluate the high utility patterns fairly, high
average-utility itemset mining (HAUIM) [11] concerns the
number of items in an itemset to reveal the set of high
average-utility itemsets (HAUIs). If an itemset is called
as a HAUI, the average-utility of this itemset exceeds the
user-designed minimum threshold of average-utility. Hong
et al. [11] proposed a level-wise manner called TPAU to
reveal HAUIs, and this method introduced “average-utility
upper-bound (auub)” to retain the DC property. This auub
model is used to find high average-utility upper bound
itemsets (HAUUBIs), that the average-utility of a HAUUBI
is larger than the defined threshold value and the set of
HAUUBIs also keeps the completeness and correctness of
the satisfied HAUIs. To increase mining efficiency, a novel
structure called high average-utility pattern (HAUP)-tree
was designed by Lin et al. [15] to maintain 1-HAUUBIs.
Lin et al. [18] further designed average-utility list (AUL)-
structure to retrieve the k-itemsets quickly based on the
simple join operation. Other extensions of HAUIM [12, 17]
were also discussed and studied to improve the efficiency
problem of knowledge discovery.

The above existing approaches related to HAUIM
focused on mining HAUIs in the static database, but
in practical applications, the content of a database is
dynamically changed according to different operations,
i.e., insertion or deletion. In this case, traditional methods
to handle this situation is to re-perform the mining
progress again to re-scan the updated database that causes
an additional calculation. Cheung et al. developed Fast
UPdated (FUP) [3] concept and FUP2 [4] concept to
retain the discovered itemsets when some transactions
are inserted or deleted, respectively. However, HAUIM,
which applies the FUP concept, must also perform re-
scan process for mining the required information from the
updated transactions, which is very costly. Other extensions
of dynamic database [13, 27, 31] were also discussed and
studied to improve the efficiency of mining process. In this

paper, we first take advantage of pre-large concept [10] for
updating the discovered HAUIs when some transactions are
removed in the dynamic databases. Contributions of this
paper are shown as follows.

1. A PRE-HAUI-DEL algorithm based on pre-large
technique is first introduced for maintaining and
updating the discovered HAUIs for transaction deletion.

2. A safety bound is defined (for pre-large itemsets) to
reduce the multiple database scans while transactions
are removed. Scanning the updated database only
happens while there the accumulated number of
transactions is then deleted. This strategy, in turn,
significantly improves the maintenance performance.

3. Two upper-bound values are then established here to
reduce the unpromising candidates in the early stage,
thus the performance of the designed model is retained.

4. Numerous experiments are then implemented to verify
the performance of the designed PRE-HAUI-DEL
algorithm compared to the Apriori-like approach in
terms of runtime, memory usage, and the scalability.

2 Review of related work

High average-utility itemset mining (HAUIM) and the
concept of pre-large are separately introduced in this
section.

2.1 High average-utility itemset mining

The fundamental algorithms of ARM [1] are designed
to find patterns by only considering the frequency of
itemsets. However, these algorithms can simply manage the
binary database but the other interesting factors such as the
importance, weight, or unit profit and quantity are ignored.
To discover more sufficient and significant information,
HUIM (high-utility itemset mining) [6, 23, 28] concerns
both quantity and unit profit of items to obtain the profitable
patterns from databases. In order to maintain the downward
closure (DC) property for the mining progress, transaction-
weighted utilization (TWU) model [23] was applied to keep
the DC property of the high transaction-weighted utilization
itemsets (HTWUIs). Lin et al. [16] further constructed
high-utility pattern (HUP)-tree to store the 1-HTWUIs in a
tree structure, which can improve the mining efficiency in
HUIM. To apply HUP-tree structure, HUP-tree algorithm
was designed to reveal the set of HUIs efficiently. Compared
with the traditional Apriori-like method, HUP-tree approach
is more efficient. To better enhance the mining performance,
Tseng et al. [25] developed the UP-tree structure to reserve
essential information for mining process, and designed
UP-Growth+ algorithm and several pruning strategies for

Dynamic maintenance model for high average-utility pattern mining...

finding HUIs. Liu et al. [22] then proposed a utility-list (UL)
structure to quickly obtain the k-candidate HUIs by a very
simple join operation. Based on the UL structure, the HUI-
Miner algorithm was designed to reveal HUIs efficiently.
Many studies of HUIM [20–22, 26, 29, 33] have been
extensively discussed and developed to improve the mining
process in KDD.

Although HUIM has the ability to discover profitable
information for decision-making, the utility value increases
along with the size of the itemset. Due to this consequence,
it might produce the misunderstanding information for
decision-making. For example, any combinations with
caviar/diamond may be considered as a HUI as well. To
evaluate the high utility patterns fairly, high average-utility
itemset mining (HAUIM) [11, 15] was presented to take into
account the length of itemsets for revealing high average-
utility itemsets (HAUIs). The first algorithm related to
HAUIM is called TPAU [11], which uses average-utility
upper-bound (auub) model to keep downward closure (DC)
property in a Apriori-like process. Lin et al. [15] then
developed HAUP-tree, which is a compressed tree structure
to maintain the 1-itemsets, thus the search space can be
greatly reduced. HAUI-Miner algorithm applied a link-list
structure to store crucial information based on a novel list
structure. Several approaches for HAUIM [14, 17, 24, 30]
have been studied and the development of HAUIM is still in
progress.

2.2 Pre-large concept

Traditional pattern mining only considered to find the
significant information from a static dataset, such as
association-rule mining (ARM) [1], frequent itemset mining
(FIM) [2], and high-utility itemset mining (HUIM) [6].
When a database is dynamically changed, for instance,
transaction deletion, insertion or modification, the batch
approaches have to examine the updated database again
to maintain the discovered knowledge. Thus, the previous
calculations and results have become invalid and the
additional cost is necessary and required.

To deal with the dynamic data mining efficiently, Cheung
et al. then developed Fast UPdated (FUP) [3] concept and
FUP2 [4] concept to keep the revealed itemsets when the
size of the dataset is changed. For instance of transaction
deletion in FUP2 concept, it separates the discovered
patterns into four cases according to the original dataset and
the deleted one, and each case has its own designed model to
maintain and update the discovered information. However
in some cases, the original database is still required to be
rescanned for updating the discovered patterns, thus it takes
some computational cost for knowledge maintenance.

To maintain the discovered information efficiently
and decrease the number of database rescans, Hong

et al. [10] furtherer proposed the pre-large concept for the
maintenance progress. Based on the pre-large concept, two
thresholds were designed that keeps not only the large
itemsets but also the pre-large itemsets for knowledge
maintenance. The pre-large itemsets can thus be considered
as a buffer to avoid the extra movements of an itemset from
large (high) to small and vice-versa. Based on the benefits of
pre-large concept, the re-scanning process of databases can
only be performed while a certain amount of transactions
are inserted into the databases or deleted from the databases.
This idea can greatly reduce the computational cost of
multiple database scans. In pre-large concept for transaction
deletion, nine cases are then arisen and shown in Fig. 1.

In Fig. 1, for the cases 2 to 4, 7, and 8, the final results are
the same as the results before transaction deletion. However,
the number of discovered knowledge may be reduced in
case 1, and some new patterns can thus be produced in cases
5, 6, and 9. If the large itemsets and the pre-large itemsets
are maintained and stored from the original database, it is
simple to maintain cases 1, 5, and 6. For case 9, if the
number of deleted transactions is no large than the safety
bound (f), the itemsets in case 9 are impossible to be a large
itemset in the updated database. The safety bound (f) is
defined as:

f = � (Su − Sl) × T UD

Su

�, (1)

where Su and Sl are respectively the upper-bound threshold
and the lower bound threshold, which can be both defined
by user or an expert. The possible results of the all cases are
given in Table 1.

Deleted records

Large Prelarge Small
Itemsets Itemsets Itemsets

Large
Itemsets Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Prelarge
ItemsetsOriginal databases

Small
Itemsets

Fig. 1 Nine cases of the pre-large concept

J. M.-T. Wu et al.

Table 1 Nine cases regarding L(large), PL(pre-large) and S (small) for
deletion

Case Original/Deleted DB Possible Results

1 L/L L, PL, S

2 PL/L L

3 L/S L

4 PL/L PL, S

5 PL/PL L, PL, S

6 PL/S L, PL

7 S/L S

8 S/PL S

9 S/S PL, S

3 Definitions and problem statement

3.1 Partial upper-bound and high partial
upper-bound itemset

In general, auub property has been widely used in the past
methods of HAUIM. The average utility of an itemset in
HAUIM is smaller than auub value since the auub is an
over-estimated value in HAUIM that is used to keep the DC
property in the mining progress. However, auub is too large
thus there will be many unpromising candidates generated.
To solve this limitation, the proposed pub was designed and
defined as below.

Definition 1 An item is an active item (ai) if this item at
least exists in one of pubis. The set of ai is denoted as aisn
and the formal definition is given below as:

aisn = {ai ∈ x | x ∈ pubisn−1}, (2)

where pubisn−1 is a pubis length is set as (n − 1).

Definition 2 rmua(i, t) is the remaining maximal utility of
an item i in a transaction t and the formal definition is given
below as:

rmua(i, t) = max{u(i) | i ∈ (ais ∩ It) \ i}, (3)

where It is a set of the purchase items in this transaction t.

Definition 3 pubt
i is the partial upper-bound of an item i in

a transaction t and the formal definition is given below as:

pubt
i =

⎧
⎪⎨

⎪⎩

u(i,t)+m×rmua(i,t)
|i|+m

, rmua(i, t) > au(i, t)
u(i,t)+rmua(i,t)

|i|+1 , 0 < rmua(i, t) ≤ au(i, t)

0, rmua(i, t) = 0,

(4)

where m is the length of (ais ∩ It) \ i.

Definition 4 pubi is the partial upper-bound of an item i

and the formal definition is given below as:

pubi =
∑

t∈D

pubt
i . (5)

Definition 5 An itemset X is a high partial upper-bound
itemset (hpubi) if its pub is not less than a predefined
threshold r , which is indicates that pubi ≥ r .

3.2 Lead partial upper-bound and high lead partial
upper-bound itemset

In this section, a smaller itemset is recommended to prevent
the further generation of candidate sets. This itemset is
called the high lead partial upper-bound itemset (hlpubi),
and it is a subset of hpubi. The definitions of lpub and hlpubi
are given below.

The predefined item order is defined as L =
{il1, il2, ..., ilp}. Assume that ij = ilw, and set an itemset

s = {ilw+1, i
l
w+2, ..., i

l
p}.

Definition 6 lrmua(i, t) is the lead remaining maximal
utility of an item i in a transaction t and the formal definition
is given below as:

lrmua(i, t) = max{u(i) | i ∈ (ais ∩ It ∩ s) \ i}. (6)

Definition 7 lpubt
i is the lead partial upper-bound of an

item i in a transaction t and the formal definition is given
below as:

lpubt
i =

⎧
⎪⎨

⎪⎩

u(i,t)+m×rmua(i,t)
|i|+m

, lrmua(i, t) > au(i, t)
u(i,t)+rmua(i,t)

|i|+1 , 0 < lrmua(i, t) ≤ au(i, t)

0, lrmua(i, t) = 0,

(7)

where m is the length of (ais ∩ It ∩ s) \ i.

Definition 8 lpubi is the lead partial upper-bound of an
item i and the formal definition is given below as:

lpubi =
∑

t∈D

lpubt
i . (8)

Definition 9 An itemset X is a high lead partial upper-
bound itemset (hlpubi) if its lpub is not less than a
predefined threshold r , which is indicates that lpubi ≥ r .

3.3 Problem statement

In dynamic situation of transaction deletion based on the
pre-large concept, there are nine cases that should be
considered and arisen. Assume d is the deleted transactions,
and |d| is the number of transactions in d . The problem

Dynamic maintenance model for high average-utility pattern mining...

statement of the HAUIM for transaction deletion is defined
as follows:

Problem Statement For the HAUIM with transaction
deletion, an efficient model is required for development that
can efficiently maintain the discovered knowledge without
multiple database scans while the transactions are deleted
from the databases. Thus, a satisfied itemset in the database
for transaction deletion is considered as an HAUI if it
satisfies the condition as:

HAUI ← {X | au(X)U ≥ (T UD − T Ud) × Su}, (9)

where au(X)U is the average-utility of itemset X in the
updated database, T UD and T Ud are respectively the total
utility in D and d .

4 Proofs of nine cases

In this part, the proofs of nine cases of the proposed method
based on the pre-large concept are given below.

Lemma 1 For case 1, an itemset X is large in both the
original database D (auub(X)D ≥ T UD × Su) and the
deleted database d (auub(X)d ≥ T Ud × Su), then it will
be large, pre-large, or small in the updated database U .

Proof For auub(X)D ≥ T UD × Su and auub(X)d ≥
T Ud × Su, if auub(X)D − auub(X)d ≥ T UD × Su −
T Ud × Su then X is large in the updated database U ; if
auub(X)D − auub(X)d < T UD × Su − T Ud × Su then
X is pre-large in the updated database U ; if auub(X)D −
auub(X)d ≤ T UD × Sl − T Ud × Sl then X is small in the
updated database U .

Lemma 2 For case 2, an itemset X is large in the original
database D (auub(X)D ≥ T UD × Su) and pre-large in the
deleted database d (T Ud × Sl ≤ auub(X)d < T Ud × Su),
then it will be large in the updated database U .

Proof For auub(X)D ≥ T UD × Su and T Ud × Sl ≤
auub(X)d < T Ud × Su, then auub(X)D − auub(X)d ≥
T UD × Su − T Ud × Su, even auub(X)U ≥ T UU × Su, so
X is large in the updated database U .

Lemma 3 For case 3, an itemset X is large in the original
database D (auub(X)D ≥ T UD × Su) and small in the
deleted database d (auub(X)d < T Ud ×Sl), then it will be
large in the updated database U .

Proof For auub(X)D ≥ T UD × Su, auub(X)d < T Ud ×
Sl and Su > Sl , then auub(X)d < T Ud × Su, then
auub(X)D − auub(X)d ≥ T UD × Su − T Ud × Su, even
auub(X)U ≥ T UU × Su, so X is large in the updated
database U .

Lemma 4 For case 4, an itemset X is pre-large in the
original database D (T UD × Sl ≤ auub(X)D < T UD ×
Su) and large in the deleted database d (auub(X)d ≥
T Ud × Su), then it will be pre-large or small in the updated
database U .

Proof For T UD × Sl ≤ auub(X)D < T UD × Su and
auub(X)d ≥ T Ud × Su, then auub(X)D − auub(X)d <

T UD ×Su−T Ud ×Su, even auub(X)U < T UU ×Su, so X

will be pre-large and small in the updated database U .

Lemma 5 For case 5, an itemset X is pre-large in both the
original database D (T UD × Sl ≤ auub(X)D < T UD ×
Su) and the deleted database d (T Ud × Sl ≤ auub(X)d <

T Ud × Su), then it will be large, pre-large, or small in the
updated database U .

Proof For T UD × Sl ≤ auub(X)D < T UD × Su and
T Ud × Sl ≤ auub(X)d < T Ud × Su, if auub(X)D −
auub(X)d ≥ T UD × Su − T Ud × Su then X is large in the
updated database U ; if auub(X)D − auub(X)d < T UD ×
Su − T Ud × Su then X is pre-large in the updated database
U ; if auub(X)D − auub(X)d ≤ T UD × Sl − T Ud × Sl

then X is small in the updated database U .

Lemma 6 For case 6, an itemset X is pre-large in the
original database D (T UD × Sl ≤ auub(X)D < T UD ×
Su) and small in the deleted database auub(X)d < T Ud ×
Sl), then it will be large or pre-large in the updated database
U .

Proof For T UD × Sl ≤ auub(X)D < T UD × Su and
auub(X)d < T Ud × Sl , then auub(X)D − auub(X)d ≥
T UD ×Sl −T Ud ×Sl , even auub(X)U ≥ T UU ×Sl , so X

will be large and pre-large in the updated database U .

Lemma 7 For case 7, an itemset X is small in the original
database D (auub(X)D < T UD × Sl) and large in the
deleted database d (auub(X)d ≥ T Ud × Su), then it will
be small in the updated database U .

Proof For auub(X)D < T UD × Sl , auub(X)d ≥ T Ud ×
Su and Su > Sl , then auub(X)d ≥ T Ud × Sl , then
auub(X)D − auub(X)d < T UD × Sl − T Ud × Sl , even
auub(X)U < T UU × Sl , so X is small in the updated
database U .

J. M.-T. Wu et al.

Lemma 8 For case 8, an itemset X is small in the original
database D (auub(X)D < T UD × Sl) and pre-large in the
deleted database d (T Ud × Sl ≤ auub(X)d < T Ud × Su),
then it will be small in the updated database U .

Proof For auub(X)D < T UD × Sl and T Ud × Sl ≤
auub(X)d < T Ud × Su, then auub(X)D − auub(X)d <

T UD × Sl − T Ud × Sl , even auub(X)U < T UU × Sl , so
X is small in the updated database U .

Lemma 9 For case 9, an itemset X is small in both the
original database D (auub(X)D < T UD × Sl) and the
deleted database d (auub(X)d < T Ud ×Sl), then it will be
pre-large or small in the updated database U .

Proof For auub(X)D < T UD × Sl and auub(X)d <

T Ud × Sl , if auub(X)D − auub(X)d ≥ T UD × Su −
T Ud × Su then X is large in the updated database U ; if
auub(X)D − auub(X)d < T UD × Su − T Ud × Su then
X is pre-large in the updated database U ; if auub(X)D −
auub(X)d ≤ T UD × Sl − T Ud × Sl then X is small in the
updated database U .

Theorem 1 X is a small itemset (not a high average-utility
itemset nor pre-large itemset) in the original database and
the deleted database. It is impossible to be a high average-
utility itemset in the updated database if the total utility
of the deleted transactions is not larger than the following
safety bound as:

T Ud < f = � (Su − Sl) × T UD

Su

�. (10)

Here, theorem 1 will be used in the proposed algorithm in
which the pre-large itemsets serve as a buffer to store some
extra information. It is thus sufficient to reduce the time by
performing the multiple database scans and further diminish
the updating cost of the deletion operation.

5 Proposed pre-large-based framework
for transaction deletion

An innovative algorithm called PRE-HAUI-DEL is pro-
posed to maintain and update the set of HAUIs in a dynamic
database efficiently, and this algorithm is based on Apriori-
like method. This section introduces the detailed Apriori
framework for maintaining and updating the set of HAUI in
dynamic databases. In the process of knowledge updating,
the PRE-HAUI-DEL algorithm uses the novel upper-bound
value to find new itemsets, thus pruning the optimistic

candidates early and reducing the search space. First, a
novel partial upper-bound (pub) is suggested to prune the
unpromising candidates, and an itemset is named as a high
partial upper-bound itemset (hpubi) if its utility exceeds the
pub. Second, there will be a subset selected from hpubi,
called hlpubi (high lead-pubi). In fact, these two sets are
produced simultaneously, but it uses a tighter upper-bound
than pub called lead-pub (lpub). The smalled upper-bound
can further prevent the generation of candidate sets.

5.1 The designed framework

As shown in Fig. 2, the algorithm first mines the HAUI,
pre-large itemsets and pubis, lead-pubis from the original
database, If some data is deleted, then calculate the
threshold r. According to the size of r, the next step is to
re-scan the updated database again or update the new HAUI
from the obtained itemsets. If you want to continue to delete
the dataset, update the threshold r, and proceed to the next
round.

5.2 Proposed PRE-HAUI-DEL algorithm

To efficiently update the discovered information for
transactions deletion, a novel algorithm called PRE-HAUI-
DEL is developed. The proposed algorithm is shown in
Algorithms 1 and 2. For Algorithm 1, it is an Apriori-based
process to discover the sets of high average-utility itemsets
and pre-large itemsets from the original database. Moreover,
it utilizes two upper-bounds (pub and lpub) to generate the
candidate itemsets.

First in Algorithm 1, the proposed method calculates
the safety-bound value for database rescan in line 2 and
scans the whole original database for each item to reveal the
set of HAUIs with one item and initialize pubis and lead-
pubis in lines 3 to 15. Note that the proposed process uses
auub to initialize pubis and lead-pubis in line 12. Then a
while loop in lines 16 to 38 is performed to evaluate the
candidate itemsets and reveal HAUIs. This while loop first
generates the candidate itemsets by performing a sub-loop
for lead-pubis in lines 18 to 20. The first n-1 itemsets of
each candidate itemset with n items should be included in
lead-pubis. For instance, if the itemsets “{a, b, c}” are the
candidate itemset, the itemset “{a, b}” definitely exists in
lead-pubis and the itemsets “{a, c}” and “{b, c}” absolutely
exists in pubis. In fact, according to the above definitions,
“{a, b}” are also included in pubis since lead-pubis is a
smaller set than pubis, it can reduce the searching space
for the generation progress of the candidate itemsets. The
second loop here is to evaluate the whole candidate itemsets

Dynamic maintenance model for high average-utility pattern mining...

into the sets of pubi, lead-pubi, pre-large itemset and high
average-utility itemset by checking their pub, lpub and au,
respectively. The sets of pubi and lead-pubi are used to
generate the candidate itemsets for the next round and the
sets of pre-large itemset and high average-utility itemset will
be used in Algorithm 2 to update the final result with the
safety-bound value r .

In Algorithm 2, it is an updating process for the itemsets
in a dynamic database with several deletion operations.
By obtaining the benefit of pre-large concept, the pre-
large itemsets come across as a buffer to retain the edge
itemsets which are almost high average-utility itemsets. The
re-scan threshold makes sure the other itemsets out of the
pre-large itemset is impossible to become a high average-
utility itemset if the number of deleted transactions does
not achieve the safety-bound value. In line 2, the updating
process first checks the size of the deleted transactions
and updates the re-scan threshold. Suppose the size of
the deleted transactions already achieves the threshold, in
that case, the proposed method will generate the updated
dataset and perform Algorithm 1 again to update the pre-
large itemsets, high average-utility itemsets, and re-scan

dataset
(D)

HAUI
pre-large

pubis
lead-pubis

candidatemining generate pubis
lead-pubis

delete
(d)

re-scan D-d updated

r<0 r>0

HAUI

delete

Fig. 2 The diagram of the designed framework

J. M.-T. Wu et al.

threshold r in lines 4 to 7. Otherwise, the proposed updating
progress will utilize the pre-large itemsets and previous high
average-utility itemsets to update discovered information, as
well as updating the threshold value in lines 9 to 11. Finally,
the proposed method will output the final P (pre-large
itemsets), H (high average-utility itemsets) and re-scan
threshold r as the final results in line 13.

6 An illustrated example

In this section, an example for maintaining and updating
HAUIs from a dynamic database is given. Table 2 is used
as the original database, and suppose the last 4 transactions
(7 to 10) are then deleted from the database. In addition,
Table 3 is the profit table, and we assume that the Su = 0.3
and Sl = 0.15. The process of the designed algorithm is
described below.

First, the designed algorithm calculate the safety-bound

value as: r = � (Su−Sl)×T UD

Su
� = 280 (Algorithm 1, line 2).

After that, the designed algorithms generates 1-HAUIs, 1-
HAUUBIs, 1-PAUUBIs, pubis and lead-pubis from original
database (Algorithm 1, lines 3 to 15). The results of the
auub values for 1-itemsets in the original database are then
shown in Table 4.

Here, we can obtain that Su × T UD = 168 and
Sl × T UD = 84. Thus, HAUIs = {C, D}, HAUUBIs
= {B, C, D}, PAUUBIs = {E} and pubis = lead-pubis =
{A, B, C, D, E} can be obtained. After that, the algorithm
calculates s = T Ud = 210, and updates r = 280 − 210 =
90 > 0 (Algorithm 2, lines 1 to 2). We then can also obtain
the sets of 1-HAUIs, 1-HAUUBIs, 1-PAUUBIs, pubis and
lead-pubis from the deleted database (Algorithm 2, line
4). Also, the auub values for the deleted transactions of
1-itemsets are shown in Table 5.

The designed algorithm then calculate Su × T Ud = 63
and Sl × T Ud = 31.5. In addition, HAUIs = {C, D},

Table 2 Original database

TID A B C D E

1 6 0 0 0 0

2 0 1 0 5 0

3 0 6 0 0 0

4 0 0 5 0 0

5 6 0 0 0 0

6 6 0 0 0 0

7 6 0 0 0 0

8 6 0 0 0 0

9 6 0 0 0 0

10 6 0 0 0 0

Table 3 Profit table

Item Profit

A 6

B 2

C 15

D 7

E 10

HAUUBIs = {B, C, D}, PAUUBIs = {E} and pubis = lead-
pubis = {B, C, D, E} are then obtained. The HAUUBIs and
PAUUBIs are the updated (Algorithm 2, lines 5 to 7), and
the results are respectively shown in Tables 6 and 7.

Since T UU = 350, we then can obtain that T UU ×
Su = 105. Thus, the final HAUIs is generated as: {C, E}.
After that, the candidates from pubis and lead-pubis are
then used to generate k-HAUIs (Algorithm 1, lines 16 to
38). After the recursive process of the designed algorithm
based on the genertae-and -test approach, we then can get
the maintenance results as the output of the developed
algorithm.

7 Experimental results

In this paper, two suggested upper-bound (pub and lpub)
are further utilized to reduce the search space of candidate
itemsets. This section describes two experimental processes
of the proposed PRE-HAUI-DEL regarding two upper-
bound models; one is with the lpub and another is without
the lpub, and the experiments showed that the proposed lpub
can reduce more candidate sets from being generated. The
experimental results show the effectiveness of PRE-HAUI-
DEL with different parameter settings on six different real
datasets. The datasets applied in the experiments and their
characteristics are given in Table 8. The experiments were
executed on a Mac with Mojava operating system, which
is equipped with Intel i5-5257U CPU and 8 GB main
memory. The Java language is then used for the program
implementation of the compared algorithms.

In the experiments, four algorithms are then compared
and discussed, which are Apriori, Apriori (lpub), PRE-
HAUI-DEL and PRE-HAUI-DEL (lpub). Apriori is the
algorithm that preforms the re-scan process by Algorithm 1
but does not use lpub; PRE-HAUI-DEL is the algorithm that

Table 4 auub values for original transactions of 1-itemsets

1-itemsets A B C D E

auub 76 188 199 168 130

au 48 44 180 168 130

Dynamic maintenance model for high average-utility pattern mining...

Table 5 auub valuses for deleted transactions of 1-itemsets

1-itemsets B C D E

auub 105 84 105 10

au 20 78 105 10

performs the updated process (Algorithm 2) but does not
use lpub, Apriori (lpub) is the algorithm that re-scans the
updated dataset when some transactions are deleted in the
original dataset by applying Algorithm 1, and PRE-HAUI-
DEL (lpub) is the algorithm that performs the updating
process by Algorithm 2.

7.1 Runtimewith different upper-bound utility
threshold

The runtimes of the developed PRE-HAUI-DEL under
different upper-bound utility thresholds in six real datasets
are discussed in this section. Experimental results are given
in Fig. 3.

From Fig. 3, it can be seen that whether the lpub
is applied in the designed algorithm, the proposed PRE-
HAUI-DEL is always better than the previous models.
Without lpub strategy, the designed PRE-HAUI-DEL still
well performs than the generic Apriori-like approaches.
This reason is that the designed model does not require
multiple database scans each time while the transactions
are deleted from the database. However, Apriori (without
pre-large technique) needs to scan the database even if
there is a tiny amount of transactions deleted from the
database. This computational cost is huge, especially when
the database is frequently updated. Mathematically, the
utilized lpub definitely is a tighter upper-bound than that
of both pub or auub. However, the algorithm with lpub
still suffers the computational cost in some cases, which
can be seen in Fig. 3e while the threshold is set as 1.74%.
The reason is even the number of reduced candidates is
reduced, the designed algorithm requires to take the huge
computational cost by holding the lpub property. In general,
the lpub usually enhances the performance in most cases,
and it can be seen from Fig. 3d that the Apriori with lpub
sometimes can obtain better performance than the proposed
PRE-HAUI-DEL without lpub.

Table 6 Updated auub 1-itemsets of HAUUBI in D

1-itemsets B C D

auub 83 115 63

au 24 105 63

Table 7 Updated auub 1-itemsets of PAUUBI in D

1-itemsets E

auub 120

au 120

7.2 Memory usage and number of candidate
with different upper-bound threshold

The number of candidates of the compared algorithms is
then evaluated, and the results are then shown in Fig. 4.
Since the designed PRE-HAUI-DEL and the Apriori use the
different framework to maintain and update the discovered
information, it is meaningless to compare them in terms
of number of the candidates. Thus, we only compare the
Aprior algorithm with and without lpub strategy in this
section. Note that an itemset is considered as a candidate if
it is required to check the utility of it.

In the Section 7.3, it can be seen that lead partial upper
bound (lpub) is more suitable for dense database, and from
Fig. 4, it can be seen that there are fewer itemsets needed
to be examined by using lpub in the dense databases, such
as accidents, mushroom, and chess. This is because the
lpub is a rigorous upper-bound and can reduce the size
of candidates effectively. In a sparse database, it is not
sensitive to be affected by shift values of upper-bounds.
There might be a big utility cap between each possible
itemset. Therefore, the influence between pub and lpub
is not very obvious. To solve this issue, a dynamic self-
adjusting technique should be developed in future works
that can be used to select a suitable upper-bound for the
current database during the mining process.

In addition, it can be seen from Fig. 5 that the Apriori
uses more memory than Apriori (lpub). It shows that our
new lead partial upper bound (lpub) strategy is effective for
pruning the candidates in the search space. Moreover, the
Lpub can cut more candidate sets and use less memory to
store them. Secondly, we find that memory usage increases
with the increase of candidates, because when there is more
candidates generated, the more itemsets are stored in the
memory.

Table 8 Characteristics of used datasets

Dataset mushroom foodmart BMS accidents chess retail

#|D| 8,124 21,557 59,602 340,183 3,196 88,162

#|I | 119 1,559 497 468 75 16,470

AvgLen 23 4 2.5 34 37 10

Type dense sparse sparse dense dense sparse

J. M.-T. Wu et al.

Fig. 3 The runtimes with
different upper-bound utility
thresholds

(d) chess (e) BMS (f) accidents

(a) retail (b) mushroom (c) foodmart

5.7% 5.75% 5.8% 5.85% 5.9% 5.95% 1% 1.25% 1.5% 1.75% 4% 4.25% 4.5% 4.75% 5%

1.4% 1.6% 1.8% 2% 2.2% 2.4% 3% 3.25% 3.5% 3.75% 4% 0.1% 0.125% 0.15% 0.175% 0.2%
0

1000

2000

3000

0e+00

2e+05

4e+05

6e+05

2500

5000

7500

0

500

1000

0

500

1000

1500

2000

2000

4000

6000

8000

Threshold

T
im

e

Method Apriori Apriori (lpub) PRE−HAUI−DEL PRE−HAUI−DEL (lpub)

7.3 Scalability of database size

In this section, the runtimes of the proposed PRE-HAUI-
DEL with different database sizes for deletion are then
compared and discussed. Six different databases are utilized
to verify the effectiveness of the proposed method. The
experimental results are provided in Fig. 6.

In Fig. 6, it can be seen that the utilized lpub has
better performance regarding the runtime cost. In most real
datasets, the running time of Apriori (lpub) is less than
that of the generic Apriori, especially in dense datasets,
i.e., the mushroom and the chess databases. However, for
instance, in both the foodmart and the retail datasets, the
execution efficiency of Apriori (lpub) is not as good as that
of Apriori. Thus, we can say that the lpub is more suitable
for dense databases, but lpub does not play a better role in
sparse databases. The main reason can be concluded that
even the number of the candidates is reduced but the cost
for performing the lpub strategy is high in some cases with

the additional calculation. Thus, the lpub is not suitable for
spares databases.

In addition, the designed PRE-HAUI-DEL could handle
the decreasing process and reduce the runtime effectively.
However, it can also be seen that the runtime of the
PRE-HAUI-DEL is sometimes larger than Apriori. That
is because some non-large and non-small itemsets are
generated and maintained by using pre-large concept
during the maintenance process. Moreover, PRE-HAUI-
DEL algorithm needs to examine the updated utility value
to achieve the final results for further maintenance or
knowledge generation. Similarly, in these cases, the runtime
of Apriori (lpub) is smaller than that of PRE-HAUI-DEL
(lpub). In some cases, the performance of PRE-HAUI-DEL
(lpub) is still better than that of PRE-HAUI-DEL, although
its execution performance is worse than Apriori.

In Fig. 6a, we can see that the database size is reduced
by fewer transactions each time, and in Fig. 6b, the database
size is reduced by more transactions. As shown in Fig. 6a,

Fig. 4 The numbers of the
candidates with different
upper-bound utility thresholds

(d) chess (e) BMS (f) accidents

(a) retail (b) mushroom (c) foodmart

5.70% 5.75% 5.80% 5.85% 5.90% 5.95% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 4.00% 4.20% 4.40% 4.60% 4.80% 5.00%

1.40% 1.60% 1.80% 2.00% 2.20% 2.40% 3.00% 3.20% 3.40% 3.60% 3.80% 4.00% 0.10% 0.12% 0.14% 0.16% 0.18% 0.20%

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

0

500000

1000000

1500000

2000000

2500000

0e+00

5e+05

1e+06

0e+00

1e+05

2e+05

0

5000

10000

15000

0e+00

3e+05

6e+05

9e+05

Threshold

C
an

di
da

te

Method Apriori Apriori(lpub)

Dynamic maintenance model for high average-utility pattern mining...

Fig. 5 The memory usage with
different upper-bound utility
thresholds

(d) chess (e) BMS (f) accidents

(a) retail (b) mushroom (c) foodmart

5.70% 5.75% 5.80% 5.85% 5.90% 5.95% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 4.00% 4.20% 4.40% 4.60% 4.80% 5.00%

1.40% 1.60% 1.80% 2.00% 2.20% 2.40% 3.00% 3.20% 3.40% 3.60% 3.80% 4.00% 0.10% 0.12% 0.14% 0.16% 0.18% 0.20%

0

250

500

750

1000

0

200

400

600

0

200

400

600

800

0

100

200

300

400

500

0

30

60

90

0

200

400

600

Threshold

M
em

or
y

Method Apriori Apriori(lpub)

the re-scan operation will be performed after three times
of transaction deletion, but the re-scan operation will be
performed frequently in Fig. 6b. Based on (1), if the size
of the decreased data is large, the safety bound will be

small; according to (1), the re-scanning process will be
frequently performed; it causes that the pre-large concept
is not suitable to be applied in a situation with a huge size
of the deletion database. Another example can be observed

Fig. 6 The runtimes
comparisons regarding different
sizes for transaction deletion

foodmart(215) 0.0018 mushroom(81) 0.036 retail(882) 0.016

accidents(3400) 0.042 BMS(600) 0.008 chess(31) 0.0595

20600208002100021200 780079008000 84000850008600087000

326000330000334000 565005700057500580005850059000 3040308031203160

2000

3000

4000

5000

6000

0

500

1000

1500

2000

0

500

1000

2500

5000

7500

10000

0e+00

2e+05

4e+05

6e+05

100

150

200

250

300

Size

T
im

e

Method Apriori Apriori (lpub) PRE−HAUI−DEL PRE−HAUI−DEL (lpub)

(a)

foodmart(1075) 0.0018 mushroom(405) 0.036 retail(4410) 0.016

accidents(17000) 0.042 BMS(3000) 0.008 chess(155) 0.0595

1600017000180001900020000 650070007500 700007500080000

270000290000310000 4500048000510005400057000 2400260028003000

2000

4000

6000

8000

0

500

1000

1500

2000

500

1000

1500

5000

10000

15000

250000

500000

750000

1000000

1250000

50

100

150

200

250

Size

T
im

e

Method Apriori Apriori (lpub) PRE−HAUI−DEL PRE−HAUI−DEL (lpub)

(b)

J. M.-T. Wu et al.

from Fig. 6 that two designed PRE-HAUI-DEL algorithms
showed good performance in the case of accidents database
with the 3,400 transactions for deletion. When the size of
deleted transactions grows up to 17,000 for each operation,
the two PRE-HAUI-DEL algorithms will perform the re-
scan process every time; this is because the lpub strategy
of the over-estimated upper-bound value requires the extra
computational cost, thus the developed PRE-HAUI-DEL
requires more time than that of the Apriori approaches.
Although this issue can be solved by increasing the size of
the pre-large concept, but the developed model will suffer
the huge computational cost in the updating progress. Thus,
the proposed PE-HAUI-DEL with the pre-large concept is
not suitable to be applied in the case by removing a very
huge size of the transactions for deletion.

8 Conclusion and future work

In this paper, we first utilized pre-large concept into HAUIM
for handling transaction deletion in dynamic databases.
Besides, the lpub upper-bound model is also utilized in
the developed algorithm that can be used to greatly reduce
the size of the examined candidates in the search space.
Compared to the generic model for updating the discovered
knowledge in a batch mode, the designed PRE-HAUIM-
DEL can well maintain the discovered HAUIs without
multiple database scans; the computational cost can be
greatly reduced and the discovered knowledge regarding
HAUIs can be maintained correctly and completely. In
the future, we will then discuss the big data issue for
HAUIM and also consider to apply different platforms (i.e.,
Hadoop or Spark) to handle the large-scale problems in
HAUIM. At the same time, we will continuously study the
concept of pre-large and apply it to the other mining tasks
in dynamic databases, i.e., transaction modification. More
effective model rather than the pre-large concept will be
further discussed and studied in the future works.

Acknowledgments This research is supported by Shandong Provincial
Natural Science Foundation (ZR201911150391).

Funding Open access funding provided by Western Norway Univer-
sity Of Applied Sciences.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Agarwal R, Srikant R (1994) Fast algorithms for mining
association rules. In: International conference on very large data
bases, vol 1215, pp 487–499

2. Agrawal R, Imieliński T, Swami A (1993) Mining association
rules between sets of items in large databases. In: ACM SIGMOD
International Conference on Management of Data, pp 207–216

3. Cheung DW, Han J, Ng VT, Wong C (1996) Maintenance of
discovered association rules in large databases: An incremental
updating technique. In: Proceedings of the Twelfth International
Conference on Data Engineering, pp 106–114

4. Cheung DW, Lee SD, Kao B (1997) A general incremental
technique for maintaining discovered association rules. In:
Database systems for advanced applications’, vol 97, pp 185–194

5. Deng ZH, Lv SL (2014) Fast mining frequent itemsets using
nodesets. Expert Syst Appl 41(10):4505–4512

6. Erwin A, Gopalan RP, Achuthan N (2008) Effcient mining of high
utility itemsets from large datasets. In: Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, pp 554–561

7. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Tseng VS, Yu
PS (2019a) A survey of utility-oriented pattern mining. IEEE
Transactions on Knowledge and Data Engineering

8. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Yu PS (2019b) A
survey of parallel sequential pattern mining. ACM Trans Knowl
Discov Data 3(3):1–34

9. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns
without candidate generation: a frequent-pattern tree approach.
Data Min Knowl Disc 8(1):53–87

10. Hong TP, Wang CY, Tao YH (2001) A new incremental data
mining algorithm using pre-large. Intell Data Anal 5(2):111–129

11. Hong TP, Lee CH, Wang SL (2011) Effective utility mining with
the measure of average utility. Expert Syst Appl 38(7):8259–8265

12. Kim H, Yun U, Baek Y, Kim J, Vo B, Yoon E, Fujita H (2021)
Efficient list based mining of high average utility patterns with
maximum average pruning strategies. Inf Sci 543:85–105

13. Kim J, Yun U, Yoon E, Lin JCW, Fournier-Viger P (2020)
One scan based high average-utility pattern mining in static and
dynamic databases. Futur Gener Comput Syst 111:143–158

14. Lan GC, Hong TP, Tseng VS (2012) Efficient mining high
average-utility itemsets with an improved upper-bound strategy.
Int J Inf Technol Decis Making 11(5):1009–1030

15. Lin CW, Hong TP, LuWH (2010) Efficiently mining high average
utility itemsets with a tree structure. In: Asian Conference on
Intelligent Information and Database Systems, pp 131–139

16. Lin CW, Hong TP, Lu WH (2011) An effective tree structure for
mining high utility itemsets. Expert Syst Appl 38(6):7419–7424

17. Lin JCW, Ren S, Fournier-Viger P, Hong TP (2017a) Ehaupm:
efficient high average-utility pattern mining with tighter upper-
bounds. IEEE Access 5:12927–12940

18. Lin JCW, Ren S, Fournier-Viger P, Hong TP, Su JH, Vo B (2017a)
A fast algorithm for mining high average-utility itemsets. Appl
Intell 47(2):331–346

19. Ling Z, Zengrui T, Metawa N (2019) Data mining-based
competency model of innovation and entrepreneurship. J Intell
Fuzzy Syst 37(1):35–43

20. Liu J, Wang K, Fung BC (2012) Direct discovery of high
utility itemsets without candidate generation. In: International
Conference on Data Mining, pp 984–989

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Dynamic maintenance model for high average-utility pattern mining...

21. Liu J, Wang K, Fung BC (2015) Mining high utility patterns in
one phase without generating candidates. IEEE Trans Knowl Data
Eng 28(5):1245–1257

22. Liu M, Qu J (2012) Mining high utility itemsets without candidate
generation. In: International Conference on Information and
Knowledge Management, pp 55–64

23. Liu Y, Wk Liao, Choudhary A (2005) A two-phase algorithm for
fast discovery of high utility itemsets. Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining, pp 689–
695

24. Truong T, Duong H, Le B, Fournier-Viger P, Yun U (2019)
Efficient high average-utility itemset mining using novel vertical
weak upper-bounds. Knowl-Based Syst 104847:183

25. Tseng VS, Shie BE, Wu CW, Philip SY (2012) Efficient
algorithms for mining high utility itemsets from transactional
databases. IEEE Trans Knowl Data Eng 25(8):1772–1786

26. Wu JMT, Lin JCW, Tamrakar A (2019) High-utility itemset
mining with effective pruning strategies. ACM Trans Knowl
Discov Data 13(6):1–22

27. Wu JMT, Teng Q, Lin JCW, Yun U, Chen HC (2020) Updating
high average-utility itemsets with pre-large concept. J Intell Fuzzy
Syst 38(5):5831–5840

28. Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach
to mining itemset utilities from databases. In: International
Conference on Data Mining, pp 215–221

29. Yen SJ, Lee YS (2007) Mining high utility quantitative association
rules. International Conferenceon Data Ware Housing and
Knowledge Discovery, pp 283–292

30. Yun U, Kim D, Yoo E, Fujita H (2018) Damped window based
high average utility pattern mining over data streams. Knowl-
Based Syst 144:188–205

31. Yun U, Nam H, Kim J, Kim H, Baek Y, Lee J, Yoon E, Truong T,
Vo B, PedryczW (2020) Efficient transaction deleting approach of
pre-large based high utility pattern mining in dynamic databases.
Futur Gener Comput Syst 103:58–78

32. Zhao Z, Li C, Zhang X, Chiclana F, Viedma EH (2019) An
incremental method to detect communities in dynamic evolving
social networks. Knowl-Based Syst 163:404–415

33. Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS (2017)
Efim: a fast and memory efficient algorithm for high-utility
itemset mining. Knowl Inf Syst 51(2):595–625

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jimmy Ming-Tai Wu is
currently an Assistant Profes-
sor at College of Computer
Science and Engineering,
Shandong University of Sci-
ence and Technology. He was
also an Assistant Professor
at School of Computer Sci-
ence and Technology, Harbin
Institute of Technology-
Shenzhen, China. His current
research work is related
to Data Mining, Big Data,
Cloud Computing, Artificial
Intelligence, Evolutionary
Computation, Machine Learn-

ing and Deep Learning. He was graduated and earned his Ph.D. degree
with major in Computer Science and Engineering from National
Sun Yat-sen University, Kaohsiung, Taiwan. He worked in an IC
design company in Taiwan as a firmware developer and information
technology manager in two years. He also was a research scholar in
the Department of Computer Science and Information Engineering
in National University of Kaohsiung, Kaohsiung, Taiwan and in
the Department of Computer Science, College of Engineering in
University of Nevada, Las Vegas.

Qian Teng is now a post-
graduate in School of Com-
puter Science and Engineering
at Shandong University of Sci-
ence and Technology, Qian-
dao, China. Her research area
is big data, and at present the
main research is utility pattern
mining.

J. M.-T. Wu et al.

Shahab Tayeb is a fac-
ulty with the Department of
Electrical and Computer Engi-
neering in the Lyles College
of Engineering at California
State University Fresno. Dr.
Tayeb’s research expertise
and interests include network
security and privacy, partic-
ularly in the context of the
Internet of Things (IoT). His
research incorporates machine
learning techniques & data
analytics approaches to tackle
the detection of zero-day
attacks. He has authored 45+

refereed research papers over the past four years, and his research
findings have been highlighted by local, regional, and national agen-
cies, including the National Science Foundation. He has also been the
recipient of several scholarships and national awards, including a US
Congressional Commendation for STEM mentorship.

Jerry Chun-Wei Lin received
his Ph.D. from the Depart-
ment of Computer Science
and Information Engineering,
National Cheng Kung Univer-
sity, Tainan, Taiwan in 2010.
He is currently a full Professor
with the Department of Com-
puter Science, Electrical Engi-
neering andMathematical Sci-
ences, Western Norway Uni-
versity of Applied Sciences,
Bergen, Norway. He has pub-
lished more than 400 research
articles in refereed journals
(IEEE TKDE, IEEE TCYB,

IEEE TII, IEEE TITS, IEEE TNSE, IEEE TETCI, IEEE SysJ, IEEE
SensJ, IEEE IOTJ, ACM TKDD, ACM TDS, ACM TMIS, ACM
TOIT, ACM TIST) and international conferences (IEEE ICDE, IEEE
ICDM, PKDD, PAKDD), 12 edited books, as well as 33 patents (held
and filed, 3 US patents). His research interests include data mining,
soft computing, artificial intelligence/machine learning, and privacy
preserving and security technologies. He is the Editor-in-Chief of the
International Journal of Data Science and Pattern Recognition, the
Guest Editor/Associate Editor for several IEEE/ACM journals such as
IEEE TFS, IEEE TII, ACM TMIS, ACM TOIT, and IEEE Access.
He has recognized as the most cited Chinese Researcher respectively
in 2018, 2019, and 2020 by Scopus/Elsevier. He is the Fellow of IET
(FIET), senior member for both IEEE and ACM.

Affiliations

Jimmy Ming-Tai Wu1 · Qian Teng1 · Shahab Tayeb2 · Jerry Chun-Wei Lin3

Jimmy Ming-Tai Wu
wmt@wmt35.idv.tw

Qian Teng
qrape@foxmail.com

Shahab Tayeb
shahabtayeb@gmail.com

1 School of Computer Science and Engineering, Shandong
University of Science and Technology, Qingdao, China

2 Department of Electrical and Computer Engineering, California
State University, Fresno, USA

3 Department of Computer Science, Electrical Engineering
and Mathematical Sciences, Western Norway University
of Applied Sciences, Bergen, Norway

http://orcid.org/0000-0001-8768-9709
mailto: wmt@wmt35.idv.tw
mailto: qrape@foxmail.com
mailto: shahabtayeb@gmail.com

	Dynamic maintenance model for high average-utility pattern mining...
	Abstract
	Introduction
	Review of related work
	High average-utility itemset mining
	Pre-large concept

	Definitions and problem statement
	Partial upper-bound and high partial upper-bound itemset
	Lead partial upper-bound and high lead partial upper-bound itemset
	Problem statement
	Problem Statement

	Proofs of nine cases
	Proposed pre-large-based framework for transaction deletion
	The designed framework
	Proposed PRE-HAUI-DEL algorithm

	An illustrated example
	Experimental results
	Runtime with different upper-bound utility threshold
	Memory usage and number of candidate with different upper-bound threshold
	Scalability of database size

	Conclusion and future work
	References
	Affiliations

