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Abstract Traditional association-rule mining (ARM) considers only the fre-8

quency of items in a binary database, which provides insufficient knowledge9

for making efficient decisions and strategies. The mining of useful information10

from quantitative databases is not a trivial task compared to conventional al-11

gorithms in ARM. Fuzzy-set theory was invented to represent a more valuable12

form of knowledge for human reasoning, which can also be applied and utilized13

for quantitative databases. Many approaches have adopted fuzzy-set theory to14
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transform the quantitative value into linguistic terms with its corresponding1

degree based on defined membership functions for the discovery of FFIs, also2

known as fuzzy frequent itemsets. Only linguistic terms with maximal scalar3

cardinality are considered in traditional fuzzy frequent itemset mining, but4

the uncertainty factor is not involved in past approaches. In this paper, an ef-5

ficient fuzzy mining (EFM) algorithm is presented to quickly discover multiple6

FFIs from quantitative databases under type-2 fuzzy-set theory. A compressed7

fuzzy-list (CFL)-structure is developed to maintain complete information for8

rule generation. Two pruning techniques are developed for reducing the search9

space and speeding up the mining process. Several experiments are carried out10

to verify the efficiency and effectiveness of the designed approach in terms of11

runtime, the number of examined nodes, memory usage, and scalability under12

different minimum support thresholds and different linguistic terms used in13

the membership functions.14

Keywords fuzzy-set theory · fuzzy data mining · fuzzy-list structure ·15

pruning strategies16

1 Introduction17

Knowledge Discovery in Databases (KDD) [1,2,4,39,40,42] has been an impor-18

tant issue in many tasks since it can discover potential and implicit information19

from datasets. The first fundamental algorithm is known as Apriori [1], which is20

used to find associations of item(sets) in databases. Apriori uses the minimum21

support threshold to first identify the set of frequent itemsets (FIs), then apply22

the minimum confidence threshold to reveal the set of association rules (ARs)23

from the discovered FIs. An AR can thus be represented as X → Y , where24

support through XY and confidence X → Y will be considered as no less than25

the pre-defined two thresholds. Here, both X and Y are the item(sets) rep-26

resented in databases that are binary. Since Apriori is a level-wise approach,27

which needs higher computational costs to first generate the candidates then28

evaluates them level-by-level, an improved algorithm known as FP-growth [13]29

was implemented to improve mining efficiency by compressing relevant trans-30

actions into a tree structure (called FP-tree). Based on recursive FP-growth31

and compressed FP-tree structure, the k -itemsets can be recursively discov-32

ered.33

Motivation and application: In a real-world application (complex en-34

vironmental system, e.g. industrial sensor data), a wide variety of sensors are35

available that produce a massive amount of data. The produced dataset can36

make information mining and patterns analysis a more convenient task. The37

individual data sources have different uncertainty (data quantity) depending38

on the processing environment of different sensors. The information extraction,39

retrieval, and mining mostly used traditional mining based techniques to mine40

distinct patterns. The uncertainty factor assesses the reliability of patterns in41

terms of probability. Because of uncertainty associated with sensors resources42
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(e.g. wireless sensor network, Wifi system, and RFID), it is not trivial to dis-1

cover the meaningful and implicit information from databases. Also, analysis2

instead is based on the scanning of complete datasets (multiple scans) that3

requires a lot of computational resources for associated similarity and dissim-4

ilarity among data points. Since the size of sensor datasets grows with time,5

thus the computational cost to mine the required information increases as well6

with time. The mining procedures associated similar issues with fuzzy type sys-7

tems (e.g., type-1 fuzzy sets) is used for solving uncertainty with probability8

interpretations of a point [45]. The fuzzy type-1 membership function handles9

the values within the range [0, 1] for uncertainty measures. However, fuzzy10

type-1 still has interpretability issues as a membership function remains un-11

certain under different conditions [9]. The interpretability issues are resolved12

with the usage of a fuzzy type-2 membership function. The fuzzy type-2 sec-13

ond membership value makes it computationally less expensive throughout14

the domain. The fuzzy type-2 membership function has the uncertainty fac-15

tor to produce an interval for the fuzzy degrees (upper and lower values) by16

the utilization of the pre-defined membership functions. The utilization of the17

fuzzy type-2 membership function with a comprehensive list structure helps to18

encompass all the data-points and accommodate different data generated by19

sensors. It also helps to incorporate missing or uncertain points if results suffer20

from any type of hardware failure. It can encompass the missing information21

within a particular proximity. Thus, the uncertain factor can be involved and22

considered. Furthermore, with the help of a compressed data structure, a less23

number of scans is then required to handle the mining progress in big datasets,24

including the uncertainty factor associated with the data and its exponential25

growth.26

For most works regarding ARM, the focus is mostly centered around the27

mining of FIs or ARs from binary databases, which only considers whether an28

item(set) appears in the databases. The other important factors such as inter-29

estingness, weight, importantness, and quantity are not considered as major30

factors in ARM. Thus, the discovered information such as FIs or ARs can thus31

be used for making inefficient or wrong decisions since the discovered knowl-32

edge may be insufficient and incomplete. In real-life domains and applications,33

an item can be purchased with several amounts in shopping behaviours, for34

instance, as an example, suppose a patron buys five bottles of beer or two car-35

tons of milk. It is thus not a trivial task to discover knowledge and information36

from the quantitative databases. Fuzzy-set theory [10,23,45] was thus designed37

and used in many intelligent systems such as in engineering fields, manufac-38

turing, and/or medical diagnosis since the represented knowledge based on39

fuzzy-sets is more interpretable for human reasoning. Furthermore, it can be40

used for the conversion of quantitative values of items to linguistic terms in41

nature with corresponding degrees, which is easier for managers and retails42

to make efficient decisions. Hong et al. [12] designed an algorithm that uses43

the Apriori-like approach to level-wisely discover the set of fuzzy association44

rules (FARs). It considers terms that are linguistic with cardinality (maxi-45

mal scalar) of items able to clearly show its linguistic variable. Based on the46
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maximal scalar cardinality, the computational cost can be reduced, and the1

# of derived linguistic terms remains the same number as the # of original2

database items. To speed up computations, Lin et al. next implemented a3

fuzzy frequent pattern tree (FFPT) [21], compressed FFPT (CFFPT) [22],4

and an upper-bound FFP tree (UBFFPT) [24] which is used to improve the5

performance for mining of FFIs. Many methods were respectively developed to6

mine FFIs based on different structures and pruning strategies to reduce com-7

putational cost. However, the above approaches only consider one linguistic8

term with the maximal scalar cardinality of an item, thus for decision-making9

purposes, the information which is discovered may only be partial. Several al-10

gorithms considered multiple fuzzy frequent itemsets (MFFIs) [15,16,25,26] to11

derive more complete and sufficient knowledge. Therefore, suppose the fuzzy12

value of a term that is linguistic of an item is great than the support threshold13

considered as a minimum, it will be treated as a frequent itemset. Based on14

this mechanism, more complete rules can be mined, and useful decisions can15

thus be produced.16

The above methods mostly consider the fuzzy set theory (type-1) to dis-17

cover required information and knowledge, i.e., ARs or FIs. However, the algo-18

rithms use the conventional type-1 fuzzy-sets currently as well as a linguistic19

term with a discrete value. Mendel then designed type-2 fuzzy-set theory [34]20

by involving the uncertain factor to mine required information for decision-21

making. Chen et al. [7] integrated the type-2 fuzzy-sets model and considered22

the pattern mining problem to handle quantitative databases based on the23

level-wise approach. However, this approach still holds the single-linguistic24

term of each item for knowledge presentation, thus derived information may25

still be incomplete. Lin et al. [28] was able to create a list method for efficiently26

mining type-2 fuzzy frequent patterns, which can increase mining performance27

when the directly side-by-side comparison is shown with the level-wise ap-28

proach. It does not, however, have successful pruning methods to prune the29

search space for pattern discovery. The authors, however, still explore many30

unpromising candidates.31

In this paper, we present a compressed fuzzy-list (CFL)-structure to keep32

more information for subsequent mining processes. Two effective pruning strate-33

gies and an efficient mining (EFM) algorithm have been developed to mine the34

multiple fuzzy frequent patterns (MFFPs). Major contributions of this paper35

are summarized below:36

1. An efficient fuzzy mining (EFM) method is presented to discover multiple37

fuzzy frequent patterns (MFFPs) efficiently considering the uncertainty38

based on fuzzy-sets (type-2).39

2. A compressed (CFL)-structure (fuzzy) is shown to keep the condensed40

upper-bound value on the potential candidates for subsequent mining pro-41

cesses.42

3. Two effective CFL-based pruning strategies are then built, to deduct the43

size of the search space, thus dramatically decreases the computational44

cost.45
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4. Experiments are conducted to show that the designed approach outper-1

forms the level-wise-like and conventional list-based approaches in terms2

of runtime and number of examined candidates.3

The remainder of this paper is structured in the following sequence. In4

Section 2, the literature is briefly discussed and reviewed. Through work in5

Section 3, the preliminary and problem statement of FFPM (fuzzy) are given.6

Section 4 describes the structure, algorithm, and pruning strategies that have7

been developed. Experiments in Section 5 are carried out and presented. The8

conclusion and future work will finally be drawn in Section 6.9

2 Literature Review10

As the rapid growth of information techniques [32,33], it is an interesting topic11

to reveal the relationship of the itemsets in the databases. ARM, known in12

long-hand as Association-Rule Mining [1, 2, 4] is a basic methodology used in13

knowledge discovery, which shows the relationships among itemsets in binary14

databases. The first algorithm is known as Apriori [2], which uses a “level-wise15

approach” to discover numerous association rules (ARs). It uses the minimum16

support threshold to first mine the set of frequent itemsets (FIs), then applies17

the minimum confidence threshold to explore the ARs from the discovered18

FIs. This approach is continued by a level-wise approach. Thus, the compu-19

tational cost is very high to produce ARs. To solve the limitation of Apri-20

ori, FP-growth [13] was presented to speed up mining performance. It uses21

the FP-tree structure to keep the frequent 1-itemsets then mines the set of22

FIs from the conditional FP-tree structure level-by-level. Several extensions23

of frequent itemsets mining (FIM) are then further studied and developed in24

many different applications and domains [20,29,30]. Most of the methodologies25

focus on mining the required information from binary databases. In realistic26

situations, an item may, however, be purchased with several quantities in a27

transaction [8, 31, 42]. It is thus a non-trivial task to retrieve the information28

from the quantitative databases since DC, short for downward closure, which29

is required for maintenance of ensuring the correctness and completeness of30

the discovered knowledge.31

In the last 20 years, fuzzy-set theory [10, 45] is effective in many areas32

since it is interpretable for human reasoning. Fuzzy-set theory is an extension33

of the conventional crisp set by identifying linguistic membership functions34

and their corresponding membership degrees (range from 0 to 1) based on the35

membership functions themselves. The fuzzy-set theory considers quantifying36

and reasoning using linguistic terms with the corresponding membership de-37

grees (fuzzy values). Several algorithms (both fuzzy and/or mining) have been38

shown to produce interesting rules which have been extensively discussed and39

developed. Srikant et al. [36] introduced the approach for defining ARs by par-40

titioning and transforming the problem with a binary database. Au et al. [3]41

designed F-APACS which is used to mine ARs that are fuzzy (FARs) by us-42

ing linguistic terms to find both exceptions as well as regularities, which can43
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be more meaningful for human experts to understand the mined knowledge.1

Kuok et al. [18] developed an algorithm to process the quantitative attributes2

and showed that the fuzzy-sets have a stronger capability to deal with values3

when compared to other methods. Hong et al. [12] implemented a fuzzy mining4

algorithm that mines rules based on the “generate-and-test” approach for han-5

dling quantitative databases then proposed a GDF approach [15] to efficiently6

discover the set of multiple fuzzy frequent itemsets (MFFIs). The GDF uses7

the gradual concept to mine the MFFIs that also reduces the size of the pro-8

cessed database gradually; the computational cost can thus be reduced since9

some unpromising linguistic terms can also be deducted together in the min-10

ing progress. Chen et al. [6] developed a novel model that fused other models,11

which is used to improve mining procedures. The rules are multi-level as well12

as fuzzy built on cumulative information. Watanabe et al. [41] has established13

the redundancy equivalence and theorems for FARs. The Apriori-like method14

was applied to use the redundancy equivalence of items (fuzzy) through the use15

of the principles of redundancy in the discovery of FARs. Mishra et al. [35] also16

implemented a frequent pattern mining method for handling a fuzzified gene17

expression and showed that the vertical fuzzy dataset format could produce18

more fuzzy FIs than the original one. Gupta and Muhuri used Tsukamoto’s19

inference method to analyze student academic performance [9]. The method20

used multi-objective linguistic optimization problems (MOLOPs) based on the21

2-tuple fuzzy linguistic approach for monotonic and non-monotonic functions.22

The authors show the proposed method with student performance evaluation.23

Shukla and Muhuri also addressed the uncertainty factor in big datasets using24

fuzzy type-2 sets [37]. The proposed method is used to handle the veracity25

issues in the big dataset. The methods use the concept of the footprint of26

uncertainty in interval type-2 fuzzy sets [37]. The method is then evaluated27

regarding consistency and efficacy with different aspects, which handles verac-28

ity issues and is efficient in reducing instances. Several algorithms based on the29

fuzzy-set theory for mining the required information in different applications30

and domains were then studied and developed in progress [5,11,19,27,38,43].31

To speed up the generate and test methodology for mining the FFIs,32

Lin et al. then developed the fuzzy frequent pattern tree (FFP)-tree algo-33

rithm [21] to compress the fuzzy 1-itemsets into a tree structure for later34

mining process. The transformed terms (fuzzy linguistic 1-itemsets) with their35

values are ordered (ascending) for every transaction. However, the given ap-36

proach has produced a loose tree structure. Thus a compressed CFFP-tree37

algorithm [22] was proposed in an attempt to reduce the size of all the nodes38

in the tree. An array is used to keep more information about each node. Thus,39

the fuzzy values are preserved consequently. This process can greatly reduce40

the computational cost of mining performance. However, this approach still41

needs extra memory usage for the attached array. Consequently, it sometimes42

has the dreaded memory leakage problem. As a solution, the upper-bounded43

FFP tree (UBFFP)-tree algorithm [24] was created to ensure a higher con-44

denses structure of the tree, thus reducing the memory leakage problem for45

handling big datasets.46
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The above works only work on the type-1 fuzzy-set theory, where uncer-1

tainty is not considered as a factor. The functions for membership of set theory2

(fuzzy type-1) are entirely sharp, which is inadequate in realistic applications3

to manage uncertainty models. For instance, sensed information from various4

sensors could be affected by environmental factors. (i.e., snow, storms, or rain).5

To better present discovered knowledge with uncertainty, set theory (type-26

fuzzy) [14, 17, 34] was invented and established concurrently. To incorporate7

type-2 fuzzy-sets with pattern mining, Chen et al. [7] first developed a con-8

ventional level-wise (or Apriori-like) approach to mine fuzzy type-2 frequent9

patterns level-wisely. This approach requires to generate many unpromising10

candidates with highly computational cost, which is not efficient for any sort11

of mining tasks. Moreover, it uses the maximal scalar cardinality approach to12

retrieve only a term (single linguistic) of a given item, which for all intents13

and purposes should create a lack of actual knowledge for decision-making. Lin14

et al. [28] then gave a list-based approach to maintain complete information15

for subsequent mining processes. However, without efficient pruning strategies16

and the tighter upper-bound value on unpromising patterns, this approach still17

has to examine many candidates for deriving actual fuzzy frequent patterns.18

3 Preliminaries and Problem Statement19

To better understand the paper’s notation that is used, a notion table is given20

in Table 1.21

Table 1: A notation table

Sybmol Description
D the database in which D = {T1, T2, . . . , Tn}.
I the items in the database in which I = {i1, i2, . . . , im}.
viT the quantity of the item i in transaction T.
X the set of the items in which X = {i1, i2, . . . , ik}.
δ the minimum support threshold.
µ the defined membership function.
fiT the fuzzy linguistic terms of item i in transaction T.

fvlower
iT l the lower membership degree of viT for an item i in the l-th fuzzy terms.

fvupperiT l the upper membership degree of viT for an item i in the l-th fuzzy terms.

Ril the l-th fuzzy term of i in µ.
fvciT l the degree of fuzzy term Ril.

Sup(Rjl) the scalar cardinality of Ril.
fv(X) the fuzzy membership value of X in T.

mrfv(X,T ) the maximum remaining fuzzy value of X in T.
rmrfv(X,T ) the relative maximum remaining fuzzy value of X in T.
Sup(X) the sum up value of mrfv of X.
rSup(X) the sum up value of rmrfv of X.

We can assume I is given as a set finite in nature with m distinct items22

in the database D. To better present the following content, i is then used to23
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represent each item in the database D. The database with quantitative values1

of the items is considered as D, in which D has n transactions. Each item i in2

T has its purchase amount, which is denoted as viT . A k -itemset is denoted as3

X, in which each X ⊆ I. Without the quantitative value of i in a transaction T ,4

X must appear in any of the combinations of i in T . A membership functions5

used in type-2 fuzzy-set theory is denoted as µ. A threshold δ is used as the6

minimum support to verify whether an itemset is considered as the fuzzy7

frequent pattern. A simple example is illustrated in Table 2, which consists of8

ten transactions and six distinct items, denoted from a to f.9

Table 2: An illustrated quantitative database.

TID Items with the purchase amounts
T1 a:5, c:4, e:1
T2 a:3, e:1
T3 a:1, e:2, f :2
T4 b:2, c:1, e:3
T5 a:4, b:5, c:5, d :3, e:3
T6 b:4, d :1, e:4
T7 c:4, e:2
T8 b:4, e:4, f :3
T9 b:3, c:4, e:2, f :1
T10 e:5, f :5

Suppose that the minimum support threshold in Table 2 is set as δ (=10

20%), and the type-2 fuzzy-sets used in the example are illustrated in Fig. 1.11

Here, 3 terms called L−Low, M −Middle, and H −High which are given as12

part of µ. We address here that a user can specify the number of terms based13

on a variety of different requirements.14

Definition 1 The viT is represented as the quantitative value of i, which15

shows the quantitative of the item (linguistic variable) i in a transaction T .16

For instance, the quantitative values of the items (a), (c), and (e) in trans-17

action 1 respectively are and vaT1
(= 5), vcT1

(= 4), and veT1
(= 1).18

Definition 2 The fiT is considered as the set of fuzzy linguistic terms with
their membership degrees (fuzzy values) that was transformed from the quan-
titative value viT of the linguistic variable i by µ as:

fiT = µi(viT )(=
(fvlower

iT 1 , fvupperiT 1 )

Ri1
+

(fvlower
iT 2 , fvupperiT 2 )

Ri2
+· · ·+

(fvlower
iTh , fvupperiTh )

Rih
),

(1)
in which h represents the number of fuzzy terms of i transformed by µ, Ril19

shows the l -th fuzzy terms of i, vlower
iT l indicates the lower membership degree20

(fuzzy value) of viT for i in the l -th fuzzy terms Ril, fv
upper
iT l states the upper21

membership degree (fuzzy value) of viT for i in the l -th fuzzy terms Ril,22

fvlower
iT l ≤ fvupperiT l , and fvlower

iT l , fvupperiT l ⊆ [0, 1].23
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Fig. 1: An illustrated membership functions with (L), (M ), and (H )
linguistic terms.

Note that the fvlower
iT l and fvupperiT l are respectively two membership degrees1

for the fuzzy term Ril. For instance, the item (c) with its quantitative value2

4 in T1 is transformed by the membership functions in Fig. 1 as ( (0.5,0.63)
c.M +3

(0.5,0.63)
c.H ), where only two fuzzy terms (c.M ) and (c.H ) are considered here;4

(c.M ) is the fuzzy term for the membership degree as (0.5,0.63). The lower5

value is 0.5 and upper value is 0.63 for (c.M ); (c.H ) is the fuzzy term for the6

membership degree as (0.5,0.63). The lower value is 0.5 and upper value is7

0.63 for (c.H ). We can also observe that the lower membership degree (0.5) is8

less than the upper membership degree (0.63) such that 0.5 < 0.63.9

Definition 3 The i is an attribute (item) in the database such that i ∈ I,10

which is also treated as the linguistic variable, and its value is the set of fuzzy11

terms represented as the natural language such that Ri1, Ri2, . . . , Rih. These12

fuzzy terms can be transformed by the pre-defined µ (membership functions).13

For instance, six linguistic variables (attributes) such as (a), (b), (c), (d),14

(e), and (f) are denoted in Table 2 and three linguistic terms of L, M and15

H are defined in Fig. 1. In this membership function, suppose an item is set16

as X, and if the quantitative value is set as 1, the it is then converted as17

( (1,1)
X.L ) + (0,0.25)

X.M ; if the quantitative value is set as 2, it is then converted as18

(0.5,0.63)
X.L + (0.5,0.63)

X.M ; if the quantitative value is set as 3, it is then converted19

as (0,0.25)
X.L + (1,1)

X.M + (0,0.25)
X.H ; if the quantitative value is set as 4, it is then20

converted as (0.5,0.63)
X.M + (0.5,0.63)

X.H ; and if the quantitative value is set as 5, it21

is then converted as (0,0.25)
X.M + (1,1)

X.H . Note that the membership functions can22

be defined by users’ preference and the specific domains and applications, it23

is appropriate to present it by a figure.24
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For the given example in Table 2, each transaction in the database is then1

transformed by the membership functions of Fig. 1. The final results after2

transformation are shown in Table 3.3

Table 3: Table 2 as a transformed database

TID Linguistic fuzzy transformed terms

T1
(0,0.25)
a.M

+
(1,1)
a.H

,
(0.5,0.63)

c.M
+

(0.5,0.63)
c.H

,
(1,1)
e.L

+
(0,0.25)
e.M

T2
(0,0.25)

a.L
+

(1,1)
a.M

+
(0,0.25)

a.H
,

(1,1)
e.L

+
(0,0.25)
e.M

T3
(1,1)
a.L

+
(0,0.25)
a.M

,
(0.5,0.63)

e.L
+

(0.5,0.63)
e.M

,
(0.5,0.63)

f.L
+

(0.5,0.63)
f.M

T4
(0.5,0.63)

b.L
+

(0.5,0.63)
b.M

,
(1,1)
c.L

+
(0,0.25)
c.M

,
(0,0.25)

e.L
+

(1,1)
e.M

+
(0,0.25)

e.H

T5
(0.5,0.63)

a.M
+

(0.5,0.63)
a.H

,
(0,0.25)
b.M

+
(1,1)
b.H

,
(0,0.25)
c.M

+
(1,1)
c.H

,
(0,0.25)

d.L
+

(1,1)
d.M

+
(0,0.25)

d.H
,

(0,0.25)
e.L

+
(1,1)
e.M

+
(0,0.25)

e.H

T6
(0.5,0.63)

b.M
+

(0.5,0.63)
b.H

,
(1,1)
d.L

+
(0,0.25)
d.M

,
(0.5,0.63)

e.M
+

(0.5,0.63)
e.H

T7
(0.5,0.63)

c.M
+

(0.5,0.63)
c.H

,
(0.5,0.63)

e.L
+

(0.5,0.63)
e.M

T8
(0.5,0.63)

b.M
+

(0.5,0.63)
b.H

,
(0.5,0.63)

e.M
+

(0.5,0.63)
e.H

,
(0,0.25)

f.L
+

(1,1)
f.M

+
(0,0.25)

f.H

T9
(0,0.25)

b.L
+

(1,1)
b.M

+
(0,0.25)

b.H
,

(0.5,0.63)
c.M

+
(0.5,0.63)

c.H
,

(0.5,0.63)
e.L

+
(0.5,0.63)

e.M
,

(1,1)
f.L

+
(0,0.25)
f.M

T10
(0,0.25)
e.M

+
(1,1)
e.H

,
(0,0.25)
f.M

+
(1,1)
f.H

Lin et al. [28] developed a list-based structure to mine multiple fuzzy fre-4

quent patterns based on type-2 fuzzy sets. However, this methodology does5

not provide efficient pruning strategies to reduce the size of the search space.6

Consequently, many unpromising candidates are still examined. Moreover, the7

upper-bound values on the candidates are over-estimated. Thus, the problem8

statement of this paper is described next.9

10

Problem Statement: The problem statement is formally defined as fol-11

lows:12

Input : The quantitative database D, the type-2 membership functions µ, and13

the minimum support threshold δ.14

Output : The set of the discovered fuzzy frequent itemsets.15

Objectives: Design a compressed data structure to keep the complete infor-16

mation from D ; several pruning strategies to reduce the search space and the17

computational cost in the mining progress.18

4 Proposed efficient fuzzy mining (EFM) algorithm19

The purchase amount is considered as the quantitative value that will be20

transformed into the linguistic terms (variables) with the relevant fuzzy val-21

ues (degrees for the linguistic terms) based on the pre-defined membership22

functions. Different linguistic terms will be pre-defined based on users’ pref-23

erences in the membership functions. For instance, the database is shown in24

Table 2 was then taken through a transformation process using the member-25

ship functions of the type-2 fuzzy-set shown in Fig. 1. After that, results are26

stated in Table 3. Since it is not a trivial task to elaborate the interval fuzzy27
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value in the mining progress, the centroid type-reduction method [7] is then1

applied to reduce the complexity for mining MFFPs of the interval values. The2

definition is stated as follows.3

Definition 4 We can define the degree of membership of a given linguistic
term Ril in a database (transformed) D′ is clearly noted as fvciT l, and defines
as:

fvciT l =
fvlower

iT l + fvupperiT l

2
. (2)

For example in transaction T1 of the very first given Table 2, item (c)4

with its own quantity 4 which then goes through a transformation process5

as (0.5,0.63)
c.M + (0.5,0.63)

c.H . After that, the interval (0.5, 0.63) including c.M and6

c.H goes through a reduction process as 0.5+0.63
2 = 0.56 using centroid type7

reduction methodology. The linguistic term’s value that is fuzzy as given in8

Table 3 is further processed which leads to the results as shown in Table 4.9

Table 4: A revised database.

TID Transformed linguistic terms

T1
0.13
a.M

+ 1
a.H

, 0.56
c.M

+ 0.56
c.H

, 1
e.L

+ 0.13
e.M

T2
0.13
a.L

+ 1
a.M

+ 0.13
a.H

, 1
e.L

+ 0.13
e.M

T3
1

a.L
+ 0.13

a.M
, 0.56

e.L
+ 0.56

e.M
, 0.56

f.L
+ 0.56

f.M

T4
0.56
b.L

+ 0.56
b.M

, 1
c.L

+ 0.13
c.M

, 0.13
e.L

+ 1
e.M

+ 0.13
e.H

T5
0.56
a.M

+ 0.56
a.H

, 0.13
b.M

+ 1
b.H

, 0.13
c.M

+ 1
c.H

, 0.13
d.L

+ 1
d.M

+ 0.13
d.H

, 0.13
e.L

+ 1
e.M

+ 0.13
e.H

T6
0.56
b.M

+ 0.56
b.H

, 1
d.L

+ 0.13
d.M

, 0.56
e.M

+ 0.56
e.H

T7
0.56
c.M

+ 0.56
c.H

, 0.56
e.L

+ 0.56
e.M

T8
0.56
b.M

+ 0.56
b.H

, 0.56
e.M

+ 0.56
e.H

, 0.13
f.L

+ 1
f.M

+ 0.13
f.H

T9
0.42
b.L

+ 0.71
b.M

, 0.56
c.M

+ 0.56
c.H

, 0.56
e.L

+ 0.56
e.M

,
(1
f.L

+ 0.13
f.M

T10
0.13
e.M

+ 1
e.H

, 0.13
f.M

+ 1
f.H

To evaluate whether a pattern is an MFFP, the cardinality which is scalar10

for every term (linguistic) is next summed up for evaluation. We give useful11

definitions next.12

Definition 5 The scalar cardinality of each linguistic term is the summed up
value of the transformed membership degrees and can be represented as the
support value of a linguistic term as:

Sup(Rjl) =
∑

Rjl⊆Tr∧Tr∈D′

fvciql, (3)

To discover the complete information of MFFPs, the multiple linguistic13

terms of an item(set) is considered in the derived knowledge. The strategy14

called MultiTerm is then adopted here to keep the complete information for15

later mining progress of F2FPs, which is described next.16
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Strategy 1 (Multiple terms with scalar cardinality, MultiTerm) To mine1

more and complete information, each linguistic term Rin of an item i, whose2

scalar cardinality (Sup) is no less the predefined minimum support count3

(minSup×|D|) is considered to be represented of the item. Thus, each linguis-4

tic may have at least one represented fuzzy term with its membership degree5

(fuzzy value).6

For example in Table 4, the minimum support threshold is set as 20%.7

Thus, the minimum support value is calculated as 0.2×10(= 2). For instance,8

the Sup(c.H) (= 2.68 > 2), Sup(e.L)(= 3.94 > 2), Sup(e.M)(= 5.19 > 2),9

and Sup(e.H)(= 2.94 > 2) satisfy the condition and are considered as MFFPs.10

Based on this strategy, the multiple fuzzy frequent itemsets can thus be dis-11

covered and used to provide more complete information for decision-making.12

To maintain the downward closure property for building the compressed13

fuzzy-list (CFL)-structure, the linguistic terms in the transactions are sorted14

in order (ascending) by ASCorder strategy, which is described next.15

Strategy 2 (Sort in ascending order, ASCorder) Each linguistic term of16

transactions in the transformed database D′ is then sorted in ascending order17

of their support value, and denoted as ≺ which can be used for later processing18

of CFL-structure construction phase.19

For example, the terms that are remaining of the entire transaction set20

as shown in Table 4 next go through a sorting procedure (ascending) of their21

given support values. The revised and sorted transactions are indicated in22

Table 5.23

Table 5: The sorted database.

TID Linguistic terms

T1
0.56
c.H

, 1
e.L

, 0.13
e.M

T2
1

e.L
, 0.13
e.M

T3
0.56
e.L

, 0.56
e.M

T4
0.13
b.M

, 0.13
e.H

, 0.13
e.L

, 1
e.M

T5
0.13
b.M

, 0.13
e.H

, 1
c.H

, 0.13
e.L

, 1
e.M

T6
0.71
b.M

, 0.56
e.H

, 0.56
e.M

T7
0.56
c.H

, 0.56
e.L

, 0.56
e.M

T8
0.71
b.M

, 0.56
e.H

, 0.56
e.M

T9
0.71
b.M

, 0.56
c.H

, 0.56
e.L

, 0.56
e.M

T10
1

e.H
, 0.13

e.M

After the original database is revised and sorted, the algorithm is processed24

to construct the CFL-structure. Each remaining 1-itemset is used to construct25

its relevant CFL-structure for maintaining the complete information. Proper-26

ties of the CFL-structure are given next.27

Definition 6 Assume that X is considered as the set of the linguistic terms28

and T is set as a transaction such that X ⊆ T . Thus, the remaining set for all29

linguistic terms in T after X is denoted as T/X.30
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For instance in Table 5, T1/(c.H) = (e.L, e.M) and T1/(e.L) = (e.M).1

Definition 7 The maximum remaining fuzzy value of X in T, denoted as2

mrfv(X,T ), is the maximum fuzzy membership value of all terms in T/X as3

mrfv(X,T ) = max (fv(i, T/X)).4

Definition 8 The relative maximum remaining fuzzy value of X in T, denoted5

as rmrfv(X,T ), is the minimum fuzzy membership value betweenmrfv(X,T )6

and fv(X,T ).7

The definition of the developed CFL-structure is then described in Defini-8

tion 9.9

Definition 9 Each element in the CFL-structure of X has three attributes10

(ordered) as: tid, fv, and rmrfv.11

– tid shows that the term X is in a transaction T.12

– fv shows the fuzzy membership value of X in a transaction T.13

– rmrfv shows the relative maximum remaining fuzzy membership value after14

X in a transactionT, which is the minimum value between mrfv(X,T ) and15

fv(X,T ).16

Here, Sup is defined as the sum up value of fv in the CFL-list structure, and17

rSup is the sum up value of rmrfv in the CFL-list structure. From Definition18

9, the new developed CFL-structure is given in Fig. 2. For instance as we show19

clearly through Fig. 2, the fuzzy term (b.M) appears in transactions T4, T5,20

T6, T8, and T9, and its elements are (4, 0.13, 0.13), (5, 0.13, 0.13), (6, 0.71,21

0.56), (8, 0.71, 0.56) and (9, 0.71, 0.56), respectively. The Sup and rSup are22

0.239 and 0.194. In this example, the Sup is greater than the minSup (= 0.2)23

that means the (b.M) is considered as the MFFP. However, since its rSup is24

less than 0.2, it is not necessary to explore the extensions of (b.M); the size of25

the search space can thus be greatly deducted. The construction algorithm of26

the CFL-structure is then stated in Algorithm 1.27

Algorithm 1: Construction of the 1-pattern in the CFL-structure.

Input: D′, a revised and sorted dataset.
Output: the CFLs-structures and large 1-patterns L′.

1 for each linguistic term tjn of item j do
2 if Sup(tjn)≥ minSup then
3 put tjn into L′, and keep L′ as Sup-ascending order;

4 for each linguistic term tjn of L′ in each T of D′ do
5 add element (tid, fv of tjn in T , rmrfv of tjn in T ) to tjn-CFL-structure;
6 CFLs = CFLs

⋃
tjn-CFL-structure;

7 return L′, constructed CFLs ;

After CFL-structures are generated, a pruning strategy will be taken to28

reduce the space searching, which uses the Supt and rSup of such a list X29
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b.M

4 0.13 0.13

5 0.13 0.13

6 0.71 0.56

8 0.71 0.56

9 0.71 0.56

e.H

4 0.13 0

5 0.13 0.13

6 0.56 0

8 0.56 0

10 1 0

c.H

1 0.56 0.56

5 1 1

7 0.56 0.56

9 0.56 0.56

e.L

1 1 0

2 1 0

3 0.56 0

4 0.13 0

5 0.13 0

7 0.56 0

9 0.56 0

e.M

1 0.13 0

2 0.13 0

3 0.56 0

4 1 0

5 1 0

6 0.56 0

7 0.56 0

8 0.56 0

9 0.56 0

10 0.13 0

tids fv rmrfv

Fig. 2: A built CFL-structure.

to decide whether to search the extension of X. The strategy is described as1

Lemma 1.2

Definition 10 A termset is considered as the combinations of the linguistic3

terms (variables), forming as k -itemsets (k ≥ 1) in the database.4

Lemma 1 For an termset X, if Sup(X) or rSup(X) is less than the minimum5

support threshold, then any supersets (extension) of X is not multiple fuzzy6

frequent pattern and should be pruned.7

From the given example, the search space for mining the required MFFPs8

is based on the enumeration tree, which is shown in Fig. 3.9

To perform and generate the k-itemsets(k ≥ 2), the terms of Px and Py10

are used to generate the CFL-structure, forming as Pxy. The fuzzy terms are11

first examined to determine whether the valid Pxy.CFL is generated. If Px12

and Py appear in the same transactions (TIDs), the simple join operation is13

then performed to calculate the fv of each transaction T . Furthermore, the14

minimum operation is also adopted to find the remaining rmrfv of the Pxy in15

T . This process is then described next.16

– Exy.tid=Ex.tid (or Ey.tid).17

– Exy.fv=min(Ex.tid, Ey.tid).18

– Exy.rmrfv = min(Ex.rmrfv, Ey.rmrfv).19

Here, we can note that if the sum of fv is no larger than the predefined20

minimum support count, it is not considered as the MFFP and the supersets21

will be discarded and ignored, directly without any further exploration. This22

progress is then executed recursively until no candidates can be generated.23

The details are stated in Algorithm 2.24
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b.M e.H c.H e.L e.M

b.M

e.H

b.M

c.H

b.M

e.L

e.H

c.H

c.H

d.L

c.H

e.M

b.M

e.H

c.H

b.M

c.H

e.L

b.M

e.M

b.M

e.H

e.M
b.M <e.H <c.H < e.L < e.M

Fig. 3: The size of search space in the running example.

Algorithm 2: Construct(Px.CFL,Py.CFL) for k -itemset algorithm.

Input: CFL-structures of Px.CFL and Py .CFL.
Output: CFL-structure of Pxy .CFL.

1 if x, y is generated from the same item then
2 return null .

3 for each element in Px.CFL do
4 if ∃Ey ∈ Py .iFL and Ex.tid == Ey .tid then
5 Exy ← (Ex.tid, min(Ex.fv, Ey .fv), min(Ex.rmrfv, Ey .rmrfv));
6 Pxy .CFL← Pxy .CFL + Exy .

7 return Pxy .CFL.

An example is given below to show the process for how to construct the1

CFL-structure. For example, the CFL-structure of (b.M , e.H) is constructed2

having four elements (4, 0.13, 0), (5, 0.13, 0.13), (6, 0.56, 0) and (8, 0.56, 0), which3

is shown in Fig. 4. The element (4, 0.13, 0) is constructed from elements (4, 0.13, 0.13)4

and (4, 0.13, 0) as: (4,min(0.13, 0.13),min(0.13, 0)) = (4, 0.13, 0.13).5

After the CFL-structure is generated, we then present another pruning6

strategy to reduce the size of the search space by using the Sup and rSup of7

such a list X to decide whether to search the extension of X. The strategy is8

described as Lemma 2.9

Lemma 2 For a termset X, if Sup(X) or relative remaining support rSup(X)10

is less than the minimum support threshold, then any supersets (extension) of11

X is not a MFFP and should be discarded.12
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b.M, e.H

4 0.13 0

5 0.13 0.13

6 0.56 0

8 0.56 0

b.M, c.H

5 0.13 0.13

9 0.56 0.56

b.M, e.L

4 0.13 0

5 0.13 0

9 0.56 0

b.M, e.M

4 0.13 0

5 0.13 0

6 0.56 0

8 0.56 0

9 0.56 0

Fig. 4: CFL-structures for the 2-itemsets.

Algorithm 3: Developed EFM algorithm.
Input: CFLs, the built CFL-structure.
Output: MFFPs, the set of multiple fuzzyfrequent patterns.

1 for each list X in CFLs do
2 if Sup(X) ≥ minSup then
3 add items of X into MFFPs;
4 if rSup(X) ≥ minSup then
5 exCFLs← null;
6 for each iFL-structure Y after Xin CFLs do
7 exCFLs← exCFLs+ Constrcut(X,Y );

8 EFM(exCFLs);

9 return F2FPs.

The developed EFM algorithm is then shown in Algorithm 3. First, the1

algorithm begins with the initially constructed CFL-structures, and for each2

termset (such as X), the Sup(X) is firstly compared with the minSup to3

examine whether X is frequent. After that, the relative remaining support4

value of X, called rSup(X), is then utilized to decide whether the extensions5

of X should be explored. Here, a construction function in Algorithm 2 is then6

performed to build the extensions of the termset X. After that, the algorithm7

is processed again for the next k -itemsets until all the required MFFPs are8

determined.9

5 Experimental Evaluation10

In this section, the performance of the developed EFM is then compared to the11

level-wise algorithm [7] and list-based approach [44] in several known datasets.12

The algorithms were implemented using the popular JAVA language, perform-13

ing on a PC with Intel Core i7-3470@3.40GHz and 8GB main RAM. All of14

the algorithms as implemented are programmed and administered on a 64-15
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bit Microsoft Windows 10 OS (Operating System). We use six real-world 1
1

chess, retail, foodmart, mushroom, and BIBLE datasets, and one synthetic2

T10I4D100K dataset were conducted for all experiments. The parameters are3

stated as follows. #|D| is the size of transactions in the database; #|I| repre-4

sents the number of items, and each item is a distinct item to others; AvgLen5

is the average value of transaction length, and MaxLen shows maximal length6

value of the transactions. Furthermore, the characteristics of the conducted7

datasets are shown in Table 6.8

Table 6: Characteristics of used datasets.

Dataset #|D| #|I| AvgLen MaxLen Type
Chess 3196 75 37 37 dense

Mushroom 8,124 119 23 23 dense
Foodmart 21,556 1559 4 11 sparse

Retail 88,162 16470 10.3 76 sparse
BIBLE 36369 13,904 17 77 sparse

T10I4D100K 100,000 942 10.1 29 sparse

The purchase amount of each item in the quantitative database is first9

transformed according to the defined type-2 membership functions. In the10

experiments, the linguistic 2-terms and 4-terms respectively shown in Fig. 511

and Fig. 6 are used to show the performance of the designed model. Linguistic12

terms are given a user’s preference.13

5.1 Execution time14

The execution time of the compared algorithms for 2-terms membership func-15

tions under different minimum support thresholds is first illustrated in Fig. 7.16

It can be seen from the above results that the developed EFM algorithm17

has better execution time than the conventional level-wise and the state-of-18

the-art list-based algorithm for mining MFFPs with fuzzy linguistic 2-terms19

in all experimental datasets. From the above observation, it can be seen that20

the execution time decreases along with the increase of the minimum sup-21

port threshold. This is acceptable since as the increasing of minimum support22

threshold, the number of MFFPs decreases since fewer patterns satisfy the con-23

dition with a higher threshold. For instance in Fig. 7(e), the execution times24

of the level-wise, list-based, and the designed EFM are respectively 389.1,25

201.68, and 103.94 seconds while the minimum support threshold is set as26

0.75%. When the support threshold increases to 1.05%, the execution times of27

the compared algorithms are 226.71, 181.45, and 95.23 seconds.28

The execution times decrease with the increase of minimum support for29

the chess dataset mentioned in Fig. 7(a), mushroom dataset Fig. 7(b), and30

foodmart Fig. 7(c). The results are increased greatly to a higher ratio when31

1 https://www.philippe-fournier-viger.com/spmf/
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Fig. 6: The membership function of linguistic 4-terms.

compared with level-wise and list-based structure, respectively. The proposed1

EFM structure improvement is rational as the number of rules is decreased2

when the minimum threshold value is set higher. The proposed efficient com-3

pressed structure helps to reduce the runtime by ignoring certain transactions.4

Therefore, we can observe that the designed EFM needs fewer computations5
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Fig. 7: Execution time comparisons with 2-terms membership functions.

than the compared approaches. Furthermore, experiments under the member-1

ship functions with linguistic 4-terms are compared and shown in Fig. 8.2
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Fig. 8: Execution time comparisons with 4-terms membership functions.

In Fig. 8(a), Fig. 8(b), and Fig. 8(c) when the support values are set to3

low, the proposed model performed 3× better than both the list-based and4

level-wise algorithm. The reason is that the proposed model limits the scan5
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for multiple transactions whereas list-based and level-wise algorithms are re-1

quired to scans more transactions to extract rules. For the dense datasets,2

the developed EFM still performs better than compared algorithms while the3

threshold is set relatively low. Furthermore, the execution times of the level-4

wise dramatically decrease while the threshold value is set higher which can5

be observed in Fig. 8(a), Fig. 8(b), Fig. 8(c), Fig. 8(e), and Fig. 8(f). Thus,6

more execution times of the level-wise approach are required especially in the7

dense datasets. This is reasonable since, for every transaction in the dense8

datasets, it contains more items than that of the sparse ones. Thus, the de-9

veloped CFL-structure can keep complete and relevant information for later10

progress. Furthermore, the proposed two pruning strategies are effective to re-11

duce the size of the search space; less unpromising candidates are determined12

and examined compared to the level-wise and the list-based structure. Results13

regarding # of nodes that are examined in space (search) for the compared14

algorithms are then shown next.15

5.2 Number of examined nodes16

In this section, the number of examined nodes in the search space of the enu-17

meration tree for the three compared algorithms are then determined. Results18

under linguistic 2-terms membership functions are then stated in Fig. 9.19
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Fig. 9: Comparisons for the number of nodes under linguistic 2-terms
membership functions.

In Fig. 9(a) to Fig. 9(c), it can be easily observed that the designed EFM20

has generated fewer nodes for examination in the search space compared to21
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the other two approaches. The reason is that the proposed structure can effi-1

ciently reduce the number of database scans by keeping relevant information.2

Therefore, the proposed list-based structure reduces the search space size by3

limiting the extraction rules. For instance in Fig. 9(f), the level-wise and the4

list-based approaches respectively need to examine 872, 334 and 870, 801 can-5

didates but the developed EFM only examines 869, 203 for the actual 2, 8376

MFFPs while the minimum support threshold is set as 0.2%. When the thresh-7

old increases, for example, 0.50%, the level-wise and the list-based methods8

required to examine 396, 025 and 396, 017 nodes respectively but the EFM9

approach determines 333, 853 candidates when the threshold is set as 0.45%.10

We can also observe that the difference between the compared algorithms is11

not huge from Fig. 9(f). The reason is that this dataset belongs to the sparse12

dataset; the relevant relationship of the items in the database is thus low.13

Besides, the examined nodes in the search space are not considered as the14

MFFPs; many candidates are determined but fewer patterns are considered as15

the MFFPs. Thanks to the advantage of the designed two pruning strategies,16

they are effective to reduce some unpromising candidates for examination in17

the search space of the MFFPs. Experiments for the linguistic 4-terms mem-18

bership functions are then conducted and shown in Fig. 10.19
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Fig. 10: Comparisons for the number of nodes under linguistic 4-terms
membership functions.

Generally, the designed EFM performs better than the compared level-wise20

and list-based approaches, especially in Fig. 10(e), the number of examined21

nodes for the level-wise approach is almost more than twice of the developed22

EFM approach. The reason is in this dataset, the produced linguistic terms23

are highly relevant; the designed pruning strategies are effective to reduce24
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the size of the unpromising patterns in the search space, and the list-based1

approach keeps a little bit more nodes for an examination compared to the2

designed EFL-structure. Also, it still can be found that the designed EFL-3

structure is better than the past list-based approach, which can be seen in4

Fig. 10(c) while the minimum support threshold is set higher (from 0.13% to5

0.18%). Furthermore, in Fig. 10(f), it can be observed that the three compared6

algorithms showed almost the same size as the determined nodes. The reason7

is that for this sparse dataset, since it is hard to find the relevant information8

of the determined linguistic terms, thus the pruning strategies do not well9

perform to early reduce the number of examined candidates; the compared10

algorithms almost produce the same size as the determined nodes in the search11

space.12

5.3 Memory usage13

In this section, the Java API is used to measure the memory usage for the14

compared algorithms under six databases. Results are then shown in Fig. 1115

and Fig. 12 respectively for 2-terms and 4-terms membership functions.16
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Fig. 11: Comparisons for the memory under linguistic 2-terms membership
functions.

From the results, it can be seen that the designed EFM algorithm requires17

less memory usage compared to the level-wise and the list-based models. As18

the increasing of the threshold value, the designed EFM remains stable for19

the memory usage, as well as the list-based algorithm except in the foodmart20

database with 2-terms membership functions shown in Fig. 11(c). Moreover,21
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Fig. 12: Comparisons for the memory under linguistic 4-terms membership
functions.

the level-wise algorithm requires the most memory usage since it needs to1

perform the multiple database scans for the generate-and-test mechanism. In2

general, the designed pruning strategies used in the EFM model can efficiently3

reduce memory usage than the state-of-the-art approaches. For both member-4

ship terms, the proposed algorithm performed 3× better. The memory usage is5

reduced due to the filtration of a large number of unpromising patterns. When6

the support threshold value is set to low, the level-wise and list-based algo-7

rithms required more time to search the required information, which makes it8

harder to return extracted rules.9

5.4 Scalability10

In this subsection, the proposed algorithm is compared to the state-of-the-art11

algorithms in terms of memory usage under 2-terms and 4-terms member-12

ship functions. Experiments are then performed under synthetic T10I4N4KDXK13

dataset. The dataset with various number of transactions X (from 100k to14

500k, increments 100k each time) was generated using the simulated IBM15

Quest synthetic data generator 2. During experiments, we set the utility thresh-16

old as 20%. The results are compared in terms of runtime, memory consump-17

tion and the number of visited nodes shown in Fig. 13(a) to Fig. 13(d), re-18

spectively.19

From the scalability analysis, it is observed that the proposed algorithm20

always performs better in terms of runtime, memory usage, and the visited21

2 http://www.Almaden.ibm.com/cs/768 quest/syndata.html
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Fig. 13: Scalability results.

number of nodes compared to the other given approaches. The level-wise1

algorithm has the most runtime, memory consumption, and the number of2

visited candidates for mining the MFFIs. The list-based algorithm has bet-3

ter results than that of the level-wise approach. This is reasonable since the4

list-based algorithm can reduce the computational cost for multiple database5

scans. However, the designed model utilized an improved list structure and6

efficient pruning strategies, thus reducing the memory usage and the num-7

ber of visited candidates. Moreover, the proposed algorithm follows the linear8

trend when the transaction size is increased from 100k to 500k. The observed9

linear trend suggests that the proposed algorithm has excellent performance10

and scalable for handling large datasets. From the results, it can be concluded11

that the proposed algorithm has good robustness and more scalable to handle12

the big data issue compared to the state-of-the-art approaches.13

6 Conclusions and Future Works14

In this paper, an efficient fuzzy mining (EFM) algorithm is presented to dis-15

cover the set of multiple fuzzy frequent patterns (MFFPs) based on the type-216

fuzzy-set theory. A compressed fuzzy-list (CFL) is also maintained for storing17

the satisfied fuzzy frequent itemsets that reduce the conventional limitation18

of multiple database scans. Two effective pruning strategies are also designed19

to reduce the unpromising candidates early, thus reduces the search space to20

find the required MFFPs. Experiments were performed on six datasets varying21

minimum thresholds to verify the performance of the designed EFM method22

compared to the previous two works in terms of execution time and the num-23

ber of examined nodes in the search space. In the future, a more condensed24

structure and tighter upper-bound values should be explored on patterns to25
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speed up the mining processes’ efficiency. Moreover, it is also a big challenge to1

maintain sufficient information for incremental mining in dynamic databases2

or efficiently synthesizing the discovered knowledge (i.e., MFFPs) from differ-3

ent branches which should be considered in further studies.4
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Appendix:1

Lemma 1: For an termset X, if Sup(X) or rSup(X) is less than the min-2

imum support threshold, then any supersets (extension) of X is not multiple3

fuzzy frequent pattern and should be pruned.4

Proof ∀ transaction T ⊇ X ′,5

∵ X ′ is an extension of X, (X ′−X) = (X ′/X), we can obtain that X ⊆ X ′ ⊆6

T ⇒ (X ′/X) ⊆ (T/X),7

∴ fv(X ′, T ) = fv(X,T ) ∪ fv((X ′ −X), T ) = min(fv(X,T ), fv(X ′/X, T )) ≤8

fv(X,T ) and min(fv(X,T ), fv(X ′/X, T )) ≤ fv(X ′/X, T ) = rmrfv(X,T ).9

10

Suppose that X.tids denotes the set of tids of X,11

∵ X ⊆ X ′ ⇒ X ′.tids ⊆ X.tids,12

∴
∑

id(T )∈X′.tids fv(X′,T )

N ≤
∑

id(T )∈X.tids fv(X,T )

N ⇒ Sup(X) < minSup.13

14

Furthermore, we can obtain that
∑

id(T )∈X′.tids rmrfv(X′,T )

N ≤
∑

id(T )∈X.tids rmrfv(X,T )

N ⇒15

rSup(X) < minSup.16

Lemma 2: For a termset X, if Sup(X) or relative remaining support17

rSup(X) is less than the minimum support threshold, then any supersets18

(extension) of X is not a MFFP and should be discarded.19

Proof ∵ X ⊆ X ′ ⇒ X ′.tids ⊆ X.tids,20

∴ Sup(X ′) =
∑

id(T )∈X.tids fv(X′,T )

N =
∑

id(T )∈X′.tids min(fv(X,T ),fv(X′/X,T )

N21

≤
∑

id(T )∈X′.tids min(fv(X,T ),rmrfv(X,T )

N =
∑

id(T )∈Q′ fv(X,T )+
∑

id(T )∈Q′′ rmrfv(X,T )

N =22

rSup(X) ≤ minSup.23

24

Note that suppose Q′ ∪Q′′ = X ′.tids and Q′ ∩Q′′ = , T ∈ Q′, fv(X,T ) <25

rmrfv(X,T ), and T ∈ Q′, fv(X,T ) ≥ rmrfv(X,T ).26

27


