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As the Internet of Things (IoT) applications have been introduced into daily life, privacy

issues have become significant concerns to users, network service providers, device

producers, and related roles. This study provides a high-level introduction of current

privacy-preserving solutions in IoT systems within the three phases of data collection,

transmission, and storage. In these three phases, the following aspects were examined:

(1). security protocols at the physical and data link layers; (2). network solutions; and (3).

data storage and sharing approaches. Real-world implementations often involve more

than one phase, and numerous technologies are combined to ensure privacy. Thus, an

understanding of all phases and their technologies can be helpful for IoT research, design,

development, and operation.

Keywords: IoT, privacy, SDN, edge computing, differential privacy, PPDM (privacy preserving data mining),
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1. PRIVACY IN IOT

Privacy is a topic with a long history, appeared as early as in ancient Greek philosophical
discussions. With the development of modern technologies, discussions of privacy have been
across domains such as philosophical, political, sociological, and anthropological, and its scope
has also been very much evolved (DeCew, 2018). Many countries specify the right to privacy
in constitutions and have established laws to regulate personal information dissemination.
Internationally, regulations, industrial conventions, and privacy agreements, such as the European
Union’s Data Protection Directive (1995) and Data Protection Regulation (2012), have been
proposed. However, taking subtle differences in personalities and cultural backgrounds into
account, privacy is still a delicate topic beneath attempts to generalize. Therefore, under the
circumstances of the ever-changing world of technology, we often find ourselves uncertain about
our privacy.

Privacy is categorized as physical privacy and information privacy. Information privacy is related
to the security of personal information and partially overlaps with data security, which is data
protection against unauthorized access during transmission across a network and in storage. On
top of the data security, privacy is related to the social context of the data (Parent, 1983), as data
may contain personal information of an individual. These privacy concerns have increased with the
introduction of the Internet of Things (IoT). Personal information leaks can be direct or indirect.
Direct leaking of personal information, such as sensitive data, location, and identity, can lead to
privacy threats in terms of tracking, localizing, and personalization (Porambage et al., 2016). In
indirect data violations, content analysis is used for various dataminingmethods. Misconduct from
IoT system owners (or service owners) can lead to severe direct and indirect privacy leaks.
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By benefiting from the convergence of multiple technologies,
such as cloud computing, artificial intelligence, fifth-generation
(5G) networks, and software-defined networks, the IoT
offers various applications covering many domains, including
home care, healthcare, logistics, transport, and automated
vehicular systems. It opens for a diversity of combinations and
possibilities to leverage the connectivity to develop cohesive and
optimally functional IoT applications and networks, leading to a
considerable volume of personal data being generated, gathered,
shared through networks, and subsequently analyzed. According
to an estimate from the International Data Corporation, by 2025,
41.6 billion IoT-enabled devices are expected to generate 79.4
zettabytes of data.

This study examines current security and privacy measures in
IoT systems from the perspective of data collection, transmission,
storage, and sharing. The current technologies used on IoT
devices and over the IoT networks are security measures
with confidentiality, integrity, availability, authenticity, and
accountability. We first investigate the security protocols used at
the physical and data link layers in Section 2 and detail possible
network solutions in Section 3. In Section 4, we investigate
various privacy models and privacy-preserving data mining, and
discuss privacy concerns in implementing data-chain structures
for IoT applications. In Section 5, we compare the current
publications on IoT privacy-related topics and conclude further
research directions.

2. ARCHITECTURES AND PROTOCOL
STACKS

An IoT architecture typically has three layers, namely perception,
network, and application layers from the bottom to top.
These layers provide data sensing, data transmission, and data
processing for heterogeneous IoT devices/applications. The
sensors on the devices sense and collect data, such as physical
parameters, from the environment; the network layer connects
devices to the network to transmit and process the sensor data,
and delivers application-specific services to end-users (Zeadally
et al., 2019).

Alternatively, a five-layer architecture was also proposed and
referred to. In this architecture, the network layer is categorized
into transport and processing layers. In the transport layer,
the data are transferred through different networks, and the
processing layer stores and processes the data from the transport
layer. Databases, cloud computing, and big data processing
modules are implemented in the processing layer (Sethi and
Sarangi, 2017). In the business layer, data-driven solutions are
determined to achieve business goals. This layer is added at the
top of the application layer, forming a five-layer architecture (see
Figure 1).

Other IoT architectures are similar to the previous two
architectures and follow the structure of the standard (OSI or
TCP/IP) protocol stacks from the physical layer to the application
layer. However, because most IoT devices feature a low capacity
of energy and memory, and low-end microcontrollers, some
of the existing Internet protocols may not be feasible for IoT

implementation. Examples include HTTP and TCP, which are
designed to support reliability, and both protocols introduce
considerable overhead and non-optimized communication
patterns.

Therefore since 2003, numerous Internet Engineering Task
Force (IETF) working groups have established a lightweight
communication protocol stack for the constrained IoT systems.
Protocols in the stack include IPv6 over Low-Power Wireless
Personal Area Network (6LoWPAN: RFC 6282), IPv6 Routing
Protocol for Low power and Lossy Networks (RPL: RFC 6550),
and Constrained Application Protocol (CoAP: RFC 7252), as
displayed in Figure 1.

In the IETF IoT stack, the IEEE 802.15.4 standard is used at
the physical and MAC layers, and it defines how the physical and
media access control layers should operate under low-bandwidth,
low-cost, low-speed, and low-energy conditions. 6LoWPAN is a
lightweight protocol designed by the IETF to allow IPv6 packets
to be transferred over IEEE 802.15.4 networks. RPL is a routing
protocol that manages information exchanged among nodes
within a local network by using a destination-oriented directed
acyclic graph topology, which is set up based on a rankmetric that
indicates the distance of each node to its reference root (Palattella
et al., 2013). The UDP is used for transport instead of TCP
to reduce energy requirements. The IETF constrained RESTful
environments working group has defined CoAP, which can be
easily translated to HTTP for integration with the web while
satisfying specialized requirements, such as multicast support,
low overhead, and simplicity, for constrained environments.

At the beginning of establishing this protocol stack, security
and privacy are not prioritized. However, some concerns were
presented: the RPL ranking algorithm can exclude spoofing nodes
from becoming parent nodes, IPsec can be implemented over
IPv6, and the CoAP specification has defined four different
security modes: NoSec, PreSharedKey, RawPublicKey, and
Certificate (Lin and Bergmann, 2016). Subsequently, the IETF
working groups in the security domain released solutions in
the context of a constrained environment, such as: (a). the
DTLS in constrained environment (DICE) (RFC 7925) provides
guidelines for using TLS and DTLS in the IoT system; (b).
the access in constrained environments (RFC 7744) defines
authentication and authorization mechanisms for the entire life
cycle of constrained devices; and (c). CBOR object signing and
encryption (COSE) (RFC 8125) defines security mechanisms
for the CBOR data format, including signatures, message
authentication code, and representation of cryptographic keys
using CBOR (Morabito and Jimenez, 2020).

In addition to IEEE 802.15.4, wireless air interfaces involved
in the IoT include Wi-Fi (IEEE 802.11), LoRaWAN (long-
range wide-area network), Bluetooth Low Energy (BLE), near-
field communication (NFC), radio-frequency identification
(RFID), and cellular/mobile connections (3GPP LTE. NR).
These wireless protocols provide ubiquitous wireless connections
that can ensure considerable diversity of IoT applications.
However, in wireless networks, broadcast renders transmission
vulnerable to both passive and active security attacks, and
the features of portable and mobile devices pose additional
risks.
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FIGURE 1 | IoT architectures and protocol stacks.

Security countermeasures at the lower layers of the IoT are
mainly categorized into computational security and information-
theoretic security (Zou et al., 2016). Computational security is the
primary approach for protecting communication systems where
cryptographic algorithms are implemented. Cryptographic
schemes are of two types, namely symmetric and asymmetric
(public-key cryptography [PKC]). In symmetric encryption
algorithms, substitution and transformation operations are
performed on the bits based on the key. Asymmetric encryption
algorithms are based on mathematical functions, such as discrete
logarithms, and the security is dependent on the computational
hardness of solving mathematical problems. Typically, PKC is
used for key distribution in a crypto system, and session keys are
shared for symmetric encryption/decryption.

This solution may not be the most suitable solution for IoT
devices with low-cost, low-energy, and lightweight computing
requirements. Furthermore, asymmetric schemes are vulnerable
to quantum attacks. When sufficiently capable quantum
computers are available, PKC schemes can be deciphered unless
the key sizes increase to impractical lengths (Zhang et al.,
2017). The physical layer security (PLS) relies on information-
theoretic proofs of perfect secrecy, was firstly introduced by
Shannon (1949), has been considered as an alternative security
solution for IoT devices. The information theory is typically
implemented in channel coding for ensuring the reliability of
digital communication. Channel coding enables the receiver
to detect and correct errors introduced during transmission
because of noise, interference, and fading. Examples include
the turbo codes used in 4G and 5G NR utilizing the polar
codes for the control channels and LDPC for the data channels.
In theory, a PLS system cannot be compromised, irrespective
of the adversarial computational, and its implementation is
straightforward.

2.1. Key Generation and Distribution
2.1.1. Zigbee

In a secured Zigbee network, security is centralized by the
network coordinator (trust center), which can authenticate
devices that wish to join the network. The trust center sends

a network key to authenticated devices, and all the nodes
from the same network use this key to encrypt/decrypt the
general protocol maintenance data and some user data. The
trust center also provides a link key for any two nodes that
wish to communicate using encryption/decryption functions
from the application layer. For the devices that run the same
ZigBee application, in each Zigbee device, a certificate-based
key establishment is used to drive a unique public key (and
other security elements) as its identity. In addition to the
centralized security network, ZigBee 3.0 allows decentralized
security management through a distributed security network.

2.1.2. BLE

BLE devices remain in the sleep mode, except when participating
in data exchange (BLE, 2017). Two BLE devices must first
authenticate their identities. During pairing, the two devices
distribute long-term keys for encryption. When authenticated,
the link between the two devices is encrypted, and the keys are
distributed. If the keys are saved for future reconnection, the
devices are said to be bounded. BLE specifies that a connection
can be operated in a specific security mode with several security
levels.

2.1.3. IEEE 802.11

The IEEE 802.11 wireless working group designed the
wired equivalent privacy (WEP) algorithm to ensure data
confidentiality in the original 802.11 standards (1997). In
2003, the Wi-Fi Alliance promulgated Wi-Fi Protected Access
(WPA) as an intermediate solution to WEP insecurities. In
2004, IEEE 802.11i was ratified as an amendment to the original
IEEE 802.11 and implemented as Wi-Fi Protected Access II
(WPA2), also called robust security networks (RSNs). The
IEEE 802.11i RSN security specification defines the following
services: authentication, access control, and privacy with message
integrity, by five phases of operations, including the generation
and distribution of two types of keys: pairwise and group
keys (Stallings, 2017). In 2018, the WPA3 was released with
improved security features: a more secure handshake procedure
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for establishing connections, providing protection for open
hotspots, and increasing the key size.

2.2. Data Encryption
In both Zigbee and BLE, 128-bit AES-based encryption is used for
network communication. The IEEE 802.11i amendment defines
two data confidentiality and integrity protocols, namely the
temporal key integrity protocol and counter mode with cipher
block chaining message authentication code protocol, in which
the cipher block chaining message authentication code is used to
provide message integrity and the CTR block cipher mode is used
with AES for encryption.

Although AES can be swiftly implemented on
microcontrollers, they tend to be large and complex. Moreover,
the block size may not always be optimal. For example, an RFID
authentication protocol may only ask 64-bit quantities to be
encrypted (Beaulieu et al., 2015). Therefore, many studies have
been conducted to reshape the AES into a lightweight solution
for IoT applications. In Hogan and Piccarreta (2018), NIST-
approved lightweight cryptography standards include ISO/IEC
29192-(1-5), cover block cipher, stream cipher, mechanisms
using asymmetric techniques, and hash function.

2.3. PLS
The objective of PLS is to investigate the physical properties of the
communication channel to enhance security through appropriate
coding and signal processing. According to Shannon’s theory, the
achievable secrecy rate is a function of the channel properties and
the block length of the encoders. Thus, security is related to the
properties of communication channels.

In the physical layer key generation, the randomness of
channels (the characteristic features), which involves channel
probing, quantization, information reconciliation, and privacy
amplification, are considered. The process does not necessitate
using a third party, and it is lightweight and requires limited
resources. Therefore, physical key generation can be used as
an alternative to PKC in many cases, especially in IoT devices.
In Shakiba-Herfeh et al. (2020), the feasibility of moving
security core functions (node authentication, message integrity,
and message confidentiality) down to the physical layer was
investigated by using both the communication radio channel
and the hardware as unique entropy sources. In Zhang et al.
(2017), a hybrid approach that is constructed by physical layer
key generation and physical layer encryption, which performs
encryption operations at modulation stages of the physical layer,
was used to protect the IoT system.

Many PLS transmission schemes are not practical because
their security benefits theoretically rely on an idealized
simplifying assumption, such as the availability of perfect channel
state information knowledge and the development of coding
(Zou et al., 2016).

3. NETWORK SOLUTIONS

Most IoT networks are cloud-centric solutions in which cloud
servers are the primary storage of user data and the center
of security services. With the exponential increase in the data

volume and the number of connected IoT devices, network
issues, such as high latency, bandwidth bottlenecks, and
scalability energy within this paradigm, have emerged. Thus, fog
computing and edge computing, in which computation and data
storage are close to end-devices, were subsequently introduced
into IoT networks. Security services, such as identification and
authentication, were consequently moved from the cloud to the
fog and edge layers.

The network’s privacy threats can be traffic analysis,
eavesdropping, and attacks like Man-in-the-Middle, DoS, and
DDoS are susceptible to IoT networks. Currently, authentication
of devices and key management mechanisms to prevent
communication channels from being compromised are
vital security measures for IoT networks. Because edge
servers consist of heterogeneous and distributed devices (or
infrastructures) with limited computing and storage capabilities,
the security services should be lightweight designed. Notably, the
identification and authentication of users and the confidentiality
of user data are typically handled differently by applications from
the application layer.

We propose a general solution for IoT networks by
introducing a software-defined network (SDN) that enables a
dynamic, programmable network configuration. By separating
the control and data planes, SDN controllers have a global
view of the network that helps traffic engineering identify
malicious traffic patterns by developing and implementing
different network functions as SDN applications. Thus, the
networks can be more resource-efficient and resilient to attacks.
We describe the IoT networks by local networks, edge servers,
a core network, and cloud servers, as shown in Figure 2. A
local area network (LAN) connects heterogeneous IoT devices
based on their IP addresses at the local network layer. Devices
are associated with a close edge server connected to the core
network. The nodes at the core network layer are primary SDN
controllers as the coordinators of their SDN domain, defined
as local networks operated by the same SDN controller at the
core network layer. SDN domains ensure effective management
to enforce security and privacy policies, such as access control,
authentication, and domain. In addition, data-chain structures,
such as blockchain, can be applied within a domain or among
domains as required. An example of the SDN is displayed in
Figure 2, which illustrates SDN domain 1 is a University campus
network that can be several buildings at different geographical
locations, and all LANs are connected to the same SDN controller
at the core network layer. SDN domain 2 is a smart home solution
connected to another SDN controller at the core network layer.

4. DATA STORAGE AND SHARING

Typically, data collected or generated from local IoT devices are
transmitted and stored in the cloud (some data/metadata may be
kept at the edge/fog layer). Depending on the structure and usage
of data, storage can be realized through relational databases,
NoSQL databases, and data lakes. Cloud services offer personal
data storage to individual users and data sharing possibilities for
business collaboration. Under these circumstances, private data
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FIGURE 2 | An example of SDN solution of IoT networks.

are vulnerable to malicious attacks and misconduct from service
providers. For the best use of the data, models that can abstract
global statistical information or apply certain data mining
algorithms for information sharing without revealing user
privacy become exigencies of the IoT. For other security concerns
about recording the events/transactions occur in the network,
a novel data structure, chain structure, has drawn considerable
attention from both industrial and academic research.

4.1. Differential Privacy
Cynthia Dwork defined the differential privacy in Dwork (2006),
it is dealing with present statistical properties from a database
while protecting individual’s privacy that is contained in the
database. In differential privacy, by introducing noise, a single
arbitrary substitution has a minimal effect on the global statistical
output; thus, arbitrary queries cannot track any individual and
provide privacy.

Wang et al. (2019) demonstrates an edge-based differential
data collecting scheme for sensor-cloud systems. A set of raw data
is categorized into metadata and residuals after being collected
from a local device and transmitted to an edge server. The
edge server encrypts the two parts of the data (using the AES-
Reed-Solomon code). The encoded residual data are uploaded
and stored in the cloud. Users can decide whether the encoded
metadata is stored at the edge server, the local device, or partially
on each server. This approach prevents the data from being
compromised or the raw data being revealed in the cloud. Two
algorithms were adopted to select appropriate metadata and
calculate the corresponding residuals: (1). root mean squared
error is used to determine a small degree of deviation between
the metadata and residuals; and (2) based on K-means clustering
algorithms, a data set with multidimensional attributes is divided

into subsets according to their similarity, and cluster centers are
determined as the metadata, and the distances from the cluster
center to the cluster are minimized as residuals. In Yin et al.
(2018), the authors introduced location privacy protection for
big data in industrial IoT by using differential privacy. This
study constructed a tree structure using multilevel location data,
determined accessing frequent patterns of locations, and added
Laplace distribution base noise to the frequent patterns. The
differential privacy protection model was applied to protect
location privacy and maintain data availability.

4.2. Privacy-Preserving Data Mining
Data mining is the process of extracting data patterns. Typical
data mining examples that breach privacy include location
pattern mining, identification mining, and sensitive text context
mining. To address the privacy concerns in data mining,
privacy-preserving data mining (PPDM) protects sensitive
information from unsolicited or unsanctioned disclosure and
preserves the use of the data (Xu et al., 2014). PPDM
is used to modify the original data so that data mining
algorithms can efficiently perform without compromising
the privacy of the individual contained in the data. The
modifications include perturbation, blocking, aggregation, and
swapping. Moreover, numerous privacy preservation methods,
such as K-anonymity, classification, clustering, association rule,
distributed privacy preservation, L-diversity, randomization,
taxonomy tree, condensation, and cryptography, have been
devised for data mining (Sachan et al., 2013). Distributed PPDM
(DPPDM) methods can be implemented for distributed data
storage and sharing environments. Existing DPPDM techniques
are categorized into three groups, namely secure multiparty
computation, perturbation, and restricted query (Aldeen et al.,
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2015). Other techniques such as game theory and rational
multiparty computation have been proposed for addressing
privacy concerns in IoT applications (Du J. et al., 2019; Du M.
et al., 2019; Butpheng et al., 2020).

4.3. Chain Structures
4.3.1. Blockchain

The blockchain is essentially a distributed ledger that multiple
participants jointly maintain. The ledger is a chain of blocks that
are time-stamped and linked by cryptographic hash functions,
as each block holds the previous block’s hash value. The
cryptographic linkage among blocks in the chain results in the
properties of the blockchain being append-only and immutable.
The chain is duplicated across the network and distributed by
a group of nodes, such as mining nodes, which create and
append new blocks to the chain according to a predefined
consensus mechanism. These properties ensure the integrity of
the data and resistance to the tempering of transactions by design.
Because all transactions are stored and shared by all nodes in a
decentralized fashion, blockchains provide new possibilities for
the interoperability of the network. Therefore, blockchain-based
architectures have been proposed for many IoT applications
to provide superior security and improve the interoperability
of systems. The most prevalent implementation is in the E-
healthcare system, in which the patients’ health records are
chronological and commonly shared by authorized healthcare
institutes.

However, privacy concerns remain when implementing
blockchain in IoT systems. Blockchain networks ensure
the anonymity of users participating in transactions using
pseudonyms. For example, for the Bitcoin payment system, when
a user joins the network, he/she obtains a Bitcoin account, which
is defined by an elliptic curve key pair where the public key is
used to generate a Bitcoin address as its public identity, and the
corresponding private key held by the user to spend Bitcoin from
this account (Herrera-Joancomarti, 2014). Anonymity in the
Bitcoin network is based on users’ ability to create any number
of Bitcoin accounts for their transactions.

A transaction records a certain amount of Bitcoins from a
source address to a destination address. Although the addresses
are pseudonyms, the amount of Bitcoins is indicated in the
plaintext in any transaction. To prevent double-sending attacks,
each transaction is broadcasted to the network, and every
user must validate the transaction. Finally, all transactions are
recorded on the blockchain permanently. It is possible to reveal
information such as the usage pattern of a particular account or
the usage pattern between two certain accounts. The worse thing
is possible to find out a real-world identity associated with the
Bitcoin accounts. Since a single user can have many accounts,
the attacker’s strategy is to identify a cluster of addresses in
the blockchain system belonging to the same user. In Reid
and Harrian (2011), a transaction network and a user network
were constructed from Bitcoin’s public transaction history, with
external information and techniques such as context discovery
and flow analysis on these two networks. The results revealed
that many Bitcoin addresses could be associated with each other,
with external identifying information, and users’ activities can
be observed in detail. In Androulaki et al. (2013), the authors

simulated the Bitcoin system used as a primary currency for daily
transactions of individuals in a university setting. The results
revealed that the profiles of almost 40% of the users could be
unveiled.

4.3.2. Holochain

As an alternative to the blockchain, implementations of
holochain in the IoT systems have been discussed and explored
recently. Holochain is an application framework where a peer-
to-peer application, namely hApp is developed and run on.
In holochain, the use of an agent-centric approach allows the
user (agent) of hApp to have autonomy, as the user maintains
a private source chain of his/her transactions locally. Peers
in the network validate transactions by utilizing a distributed
hash table (DHT) that is unique in the network and shared
among the peers (Brock et al., 2021). Each agent of a holochain
network stores the information of every transaction with the
validation rules and application source code locally. Similar to
the blockchain, to ensure the integrity of transaction data and
prevent tempering, holochain exhibits a chain structure for
data blocks and generates a hash value as the signature for each
block. Each block contains the hash value of the previous block.
However, unlike blockchain, the same chain is duplicated among
the P2P network; the holochain is stored locally as a private
source chain on each agent’s device. An agent of the holochain
only maintains transactions that have happened to him/her.
Each agent stores transaction data locally in the source chain and
publishes the headers of transactions (and other public data) to
a random selection of peers for validation. If the transaction is
valid, the peers store the copy and share it with their neighbors.
The holochain network holds a DHT, which is a key/value table
for all valid shard headers, and each node holds a small shard of
the DHT1. In terms of privacy, the individual agent has authority
over data sharing, access, and storage through the hApp. This
agent-centric approach provides superior control of personal
data compared with data-centric approaches (Wahlstrom et al.,
2020).

In Janjua et al. (2020), a fog computing-based architecture
was proposed in which log collection from an IoT environment
is automated and secured. The architecture consists of three
layers. In addition to the log generation and collection layer,
the log preservation layer uses holochain to preserve the log in
fog nodes to ensure the integrity of logs and provide temper
resistance. In their design, the fog nodes receive the logs from
edge nodes, create information digests of logs, and store them
locally on the chain, whereas the log files are eventually stored
in the log archiving layer (the cloud). This design also provides
trust admissibility and ownership nonrepudiation of logs. The
investigator can verify the logs stored on the cloud by recovering
the digests stored on the fog node holochains and DHT from the
log preservation layer.

5. DISCUSSION AND CONCLUSION

Privacy is a concern in the modern technological world. With
the advent of IoT and its widespread, privacy concerns have

1https://developer.holochain.org/concepts/
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FIGURE 3 | Total publications by research topics from 2020 to 2021 (from Google Scholar).

increased manifold. In general, for any IoT application, data
are collected from the perception layer, transmitted across
networks, and stored in a data storage. This study reviewed
the privacy concerns and current methods used at each phase
to ensure IoT privacy. At the physical and data link layers
of communication, during the data collection phase, privacy
is offered by standardized data security protocols (such as
encryption, authentication, and key distribution). In cases where
the security protocols are not suitable for the IoT devices or
can not satisfy the requirements of the application, then specific
encryption, authentication, or key distribution algorithms are
proposed. Thus, the critical privacy concerns at this phase remain
on indirect privacy leaks, such as finding users’ behavior patterns,
and protecting the user anonymity. In the data transmission and
storing/sharing phases, the individual system design is performed
according to specific policies or rules that provide privacy to the
system users.

We often see a combination of technologies in actual
implementations or proposed research solutions, with privacy
concerns for each component. For example, design lightweight
encryption/authentication methods on the IoT devices/network,
use fog edge structure and cloud storage as the network
architecture, and use blockchain for anti-tampering, tacking
logs, or improving system inter-operability. In Figure 3, a
statistical overview of publications on IoT privacy research is
listed from Google Scholar from 2020 to the end of 20212.

2The results are a total number of publications by using advanced search of words

in Google Scholar from 2020 to November of 2021 (on IoT privacy, there were

39,400 publications). Google Scholar does not cover all the publications. The order

of words matters results because of the search algorithms, and search by words

unnecessary return the publications are all on that explicit topic of the words. The

figure displays approximately and comparable results.

Many IoT security/privacy solutions have been developed,
especially in data storage and sharing, and are application-
specific. We have seen different IoT applications have various
implementations of differential privacy and PPDM. Thus
comparing the implementations and summarizing the essentials
will be necessary for future work.

Although most solutions emphasize the lightweight of
implementation, this may quickly result in an inefficient
and over-complex IoT ecosystem. If proposing a generalized
paradigm is not feasible because of the fast development of
the involved technologies, modularization could help in this
situation. And, we also notice that the most significant challenge,
the leaking of user privacy from IoT system owners (or service
owners), has not been addressed sufficiently. Since the network
and data storage are developed and belong to system owners,
users have very limited data autonomy and often have limited
knowledge about their data. When the functionality of an IoT
application is more critical to the user, such as some healthcare
applications, users can only compromise or risk their privacy
since they have no choice. Thus further research in this direction
on data storage and sharing is critical, especially the user data
autonomy.
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